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Abstract— Researchers designing the multiagent tools and 

techniques for CSCL environments are often faced with high 

cost, time, and effort required to investigate the effectiveness of 

their tools and techniques in large-scale and longitudinal studies 

in a real-world environment containing human users.  Here, we 

propose SimCoL, a multiagent environment that simulates colla-

borative learning among students and agents providing support 

to the teacher and the students.  Our goal with SimCoL is to pro-

vide a comprehensive testbed for multiagent researchers to inves-

tigate (1) theoretical multiagent research issues e.g., coalition 

formation, multiagent learning, and communication, where hu-

mans are involved, and (2) the impact and effectiveness of the 

design and implementation of various multiagent-based tools and 

techniques (e.g., multiagent-based human coalition formation) in 

a real-world, distributed environment containing human users.  

Our results show that SimCoL (1) closely captures the individual 

and collective learning behaviors of the students in a CSCL envi-

ronment, (2) identify the impact of various key elements of the 

CSCL environment (e.g., student attributes, group formation 

algorithm) on the collaborative learning of students, (3) compare 

and contrast the impact of agent-based vs. non-agent-based 

group formation algorithms, and (4) provide insights into the 

effectiveness of agent-based instructor support for the students in 

a CSCL environment. 

Index Terms—Collaborative Work, Cooperative Systems, 

Educational Technology, Simulation. 

 

I. INTRODUCTION 

OMPUTER-SUPPORTED collaborative learning (CSCL) 

environments facilitate student learning by enhancing 

their collaborative learning using computer and Internet tech-

nologies.  Today, CSCL environments contain agents and 

agent-based services to improve the collaborative learning of 

students from two different aspects.  First, the agents act as 

assistants to the students by monitoring the difficulties they 

face and helping them with customized support.  Second, the 

agents act as assistants to the teacher providing decision sup-

port and helping him or her with tasks like group formation.  

To design agents, agent-based services, and agent-based algo-

rithms for a CSCL environment, it is essential to: (1) under-

stand how those various elements of the CSCL environment 

work together to produce the learning outcome of the students 

 
Manuscript received August 30, 2009. This work was supported by NSF 

Grant DMI-044129 and Microsoft Research.  
Nobel Khandaker is a doctoral candidate in the Dept. of Computer Science 

and Engineering in the University of Nebraska – Lincoln, NE 68588 USA.  

Leen-Kiat Soh is an associate professor in the Dept. of Computer Science 
and Engineering in the University of Nebraska – Lincoln, NE 68588 USA. 

and (2) investigate how those services impact the students‘ 

interactions and learning outcomes.  Furthermore, without 

testing their algorithm on a large group of students for a suffi-

ciently long time, it is difficult for the researchers to: (1) fully 

understand the impact of their designs and (2) evaluate their 

designs and algorithms against the state of the art.  Albeit con-

sidered the most authentic way of validating the results, it is 

often difficult to conduct experiments with human users for 

various reasons: (1) it is difficult to acquire enough students 

for long enough time to do the experiments, (2) replication of 

experiments is often not possible, and (3) experiments may 

yield unwanted consequences (e.g., student apathy toward the 

use of CSCL environment) if the agents or agent-based servic-

es do not work as expected.  These issues can be alleviated by 

using agent-based simulation.   

However, the existing tools designed to simulate the CSCL 

environment has yet to consider the role of agents in support-

ing (or scaffolding) the activities.  When designed based on 

the individual and collaborative learning theories, the students 

and their interactions with each other in the simulation would 

closely represent the collaborative learning in the real-world 

CSCL classroom.  Existing tools such as [5] only simulate the 

student behavior using agents and do not include agents that 

act as the assistant agents or any agent-based services or algo-

rithms.  As a result, the decision making process of the CSCL 

module that provides scaffolding to help both the teacher and 

the students, as well as the appropriateness and costs of such a 

module, have not been studied comprehensively.  

In this paper, we describe SimCoL—a multiagent applica-

tion for simulating the collaborative learning of a set of stu-

dents in the CSCL environment.  The inspiration source of our 

paper is CSCL environments that combine research ideas from 

psychology (especially educational psychology), education, 

and computer science to create an online collaborative learn-

ing environment for students.  This simulator would improve 

the computer-supported collaborative learning, and collabora-

tive learning in general, in the following ways. First, SimCoL 

would allow researchers and teachers to gain insights into the 

collaborative learning process by carrying out what-if simula-

tions that reveals the emergent outcome for a given environ-

ment setting (e.g., students with specified knowledge and abil-

ity).  Second, SimCoL would allow the researchers and teach-

ers to better understand the impacts of the administrative deci-

sions like (1) group formation scheme, (2) group size, (3) and 

agent-based support [28] on the student learning outcome.  

To show the validity of SimCoL and to illustrate the various 
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scenarios that SimCoL could be used to investigate the sensi-

tivity of the CSCL environment design impacting various as-

pects of student models, we have run several large simula-

tions.  Our results show that the SimCoL environment is able 

to capture the change in the knowledge gain of the students 

due to: (1) the changes in the attributes (e.g., ability and moti-

vation) of the participating students and (2) the various tech-

niques (e.g., group formation method) used in CSCL.  Further, 

the individual and collective learning behavior patterns of the 

students in SimCoL closely represent the learning behavior 

patterns reported by the CSCL researchers.  These results sug-

gest the usefulness of SimCoL as a simulation tool. 

The rest of the paper is organized as follows.  Section II 

presents a set of learning theories and observations based on 

the individual and collaborative human learning process and 

define the scaffolding of students in a collaborative learning 

environment.  In Section III, we use the observations in Sec-

tion II to design the agent that represents the teacher, the 

agents that represent the students, and the tasks in the SimCoL 

environment.  Then we describe how the SimCoL environ-

ment was realized using Repast—a multiagent simulation tool, 

in Section IV.  Section V describes our experiment setup and 

results.  Finally, in Section VI, we present some related work 

and in Section VII discuss the conclusions.  

Note that we use the following terminologies in this paper. 

An agent that simulates the teacher‘s behavior in SimCoL is a 

simulated teacher, while one that simulates a student‘s beha-

vior a simulated student. An agent that assists the students in 

forming groups is a student-assistant agent, while one that 

assists the teacher a teacher-assistant agent.   

II. LEARNING 

In this section, we discuss definitions, theories, and empirical 

observations regarding three different aspects of students‘ 

learning processes: (1) individual learning, (2) peer-based 

learning, and (3) collaborative learning in student groups.  

Using these learning theories, we derive a set of observations 

that are used in Section III to build agents to simulate the stu-

dent collaborative learning behavior in a CSCL classroom. 

A. Individual Learning 

We use ―learning‖ to refer to the improvement in a stu-

dent‘s knowledge or expertise on a topic or skill, which could 

be topic-specific, e.g., learning how to solve differential equa-

tion, or topic-independent, e.g., teamwork or communication 

skills.  According to learning theories [1], [7] the four main 

elements that affect how a person learns are: (1) what the stu-

dent already knows (knowledge), (2) how able/intelligent the 

student is (ability), (3) how motivated the student is (motiva-

tion), and (4) the emotional state of that student (emotion).  

The cognitive components that represent these factors are: (1) 

the crystallized intelligence as accumulated knowledge stored 

in long-term memory, (2) fluid intelligence as represented by 

working memory capacity, and (3) motivation as represented 

by working memory allocation [1], and (4) emotional state [7].  

Next, we define these elements in greater detail. 

Shell and Brooks [1] use the term knowledge to refer to the 

accumulated knowledge in a student‘s long-term memory.  

The ultimate result of learning would occur as the improve-

ment of the knowledge of the students.  Shell and Brooks [1] 

use ability to represent the cognitive ability or intelligence of a 

person.  They suggest that there are two different parts of abil-

ity: fluid intelligence and crystallized intelligence.  The fluid 

intelligence is a fixed entity that deals with general cognitive 

capacity and crystallized intelligence represents the accumu-

lated knowledge of the student.  Furthermore, the fluid intelli-

gence is basically the working memory of a student [1].  How-

ever, there is a difference between the absolute working mem-

ory capacity a person has and the amount of working memory 

capacity he or she has available at a particular time for a par-

ticular task.  The behavior of a person while working on a task 

and the improvement in his or her knowledge due to learning 

by working on that task depend upon the amount of working 

memory that person has available at that time.  Further, the 

amount of working memory available to any person at a time 

is determined by: (1) his or her existing knowledge for that 

task, (2) his or her motivation to work on that task, and (3) 

emotion [1].  Motivation determines why we do what we do 

[1].  In other words, motivation is the process whereby goal 

directed behavior is instigated and sustained.  Finally, the 

emotion of a student determines whether the students are feel-

ing happy or sad.  So, we write our first observations as: 

Observation 1: A student’s improvement of knowledge of a 

topic is mainly affected by: (1) his or her existing knowledge, 

(2) ability, (3) motivation, and (4) emotion. 

Observation 2: The amount of working memory available to 

a student determines how much he or she can learn. 

Observation 3: The working memory of a student interacts 

with his or her prior knowledge and new information (regard-

ing a task) to produce learning and behavior. 

Observation 4: A student’s available working memory for a 

task can be described as his or her ability for that task. 

Although the aforementioned four components that affect 

learning are cognitively distinct from one another, there are 

combinatorial effects [1]: (1) the prior knowledge stored in the 

long-term memory interacts with the working memory to pro-

duce learning, (2) available amount of working memory limits 

how much prior knowledge and information can be 

used/activated at any time, (3) the amount of working memory 

is determined by motivation, extent of prior knowledge, and 

emotion, and (4) as knowledge increases, it increases the ef-

fective working memory capacity allowing acceleration of 

future learning processes.  Finally, according to the recent 

research work on perceptual and motor acquisitions [26]-[27] 

the pace of skill acquisition for a learner accelerates in the 

beginning and slows down to a stable state, leading to:  

Observation 5: A student’s available working memory for a 

topic is proportional to his or her: (1) knowledge on that top-

ic, and (2) motivation to learn that topic.  Furthermore, this 

available working memory is inversely proportional to the 

emotional state of that student. 

Observation 6: As the knowledge of a student on a particu-

lar topic increases, his or her learning outcome for that topic 
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would increase at the beginning and slow down to a steady 

state after a certain amount of time. 

B. Peer-Based Learning 

When a student is working with his or her peer to solve 

some assigned task, the student and the peer may learn from 

each other about that task.  The possible learning scenarios 

between two interacting peers are summarized by [8] such as 

(Table I): learning by observation, learning by teach-

ing/guiding, learning by being taught, learning by reflec-

tion/self-expression, learning by apprenticeship, learning by 

practice, and learning by discussion.  From these peer-based 

learning scenarios, we observe that the prior knowledge of the 

participating students plays an important role in deciding what 

type of learning scenarios may occur.  For example, learning 

by teaching (and learning by being taught) is more common 

among two students where one student with more prior know-

ledge teaches his or her peer who has less prior knowledge.  

Furthermore, the difference between two interacting students‘ 

prior knowledge about how to solve a certain task can hinder 

their learning.  This effect is described in Vygotsky‘s zone of 

proximal development (ZPD) theory [9].  For example, it may 

be difficult for two students to learn from each other if the 

amount of prior knowledge they have on a topic is vastly dif-

ferent from each other [9].  So we write: 

Observation 10: Two students may learn about a topic from 

their interactions (Table 1) when the content of prior know-

ledge they have are not too different from one another. 

TABLE I 

POSSIBLE LEARNING SCENARIOS AMONG PEERS 
Obser-

vation 

Student— 

Peer Know. 

Learning by 

7 High—High Observation, Reflection, Practice, & 

Discussion 

8 High—Low or 
Low—High 

Observation, Teaching, Being Taught, 
Reflection, Practice, & Discussion 

9 Low—Low  Observation 

C. Collaborative Learning 

The term ‖collaborative learning‖ is an instruction method 

in which students at various performance levels work together 

in small groups toward a common goal [10].  Derived from 

Stahl [11] are: 

Observation 11: The collaborative knowledge building is a 

cyclic process that feeds on itself. 

Observation 12: This collaborative knowledge building 

cycle is a hermeneutic cycle, meaning, “one can only interpret 

what one already has an interpretation of”. 

Observation 13: Individual knowledge of a student is gained 

from collaborative knowledge of his or her group members 

through interaction.  That collaborative knowledge is in turn 

produced by individual knowledge of the interacting group 

members.  

Kreijns [12] describe the interaction between students as the 

key to collaboration among group members.  Furthermore, 

researchers [25] suggest that collaborative learning occurs 

from the exchange of dialogues among the students.   

Observation 14: The collaboration among the members of a 

group of students occurs due to their interaction/discourse 

with each other. 

Zumbach [13] describes a collection of dyadic (between 

two students) interactions for a group of students which were 

reported by researchers in the CSCL community.  An example 

of interactions mentioned in [13] is: (a) student a proposes a 

solution for the assigned task, (b) student b accepts or propos-

es another solution to the task.  Thus:  

Observation 15: The compilation of discourse/interaction 

patterns presented by Zumbach et al. [13] describes a typical 

dyadic (between two students) learning scenario in terms of a 

chain of action-reaction patterns. 

The quality the discourse/interactions within a group de-

pends on the affective state of a student [2] and his or her so-

cial relationship with other students in the group.  Jones and 

Issroff [14] and Vass [15] report that, students who are friends 

have established ways of working which are implicitly unders-

tood rather than explicitly discussed.  In addition, [12] men-

tions that social relationships contribute to common under-

standing, an orientation towards cooperation, and the desire to 

remain as a group.  Finally, as reported in [3], the students 

form their view of other students due to the type and extent of 

collaboration they receive from their peers.  Clear and Kassa-

bova [16] further report that in collaborative learning settings 

it is common to have students whose motivation is affected by 

the motivation of other group members.  When the other group 

members are motivated to learn and to collaborate, it increases 

the motivation of a student who had low motivation when he 

or she joined the group, and vice versa.  We derive from the 

above the following observations: 

Observation 16: Good social relationship improves the 

quantity and quality of interactions among group members. 

Observation 17: The quantity and quality (i.e., learning out-

come) of interactions among a group of students vary over 

time due to factors internal and external to the classroom en-

vironment.  Improvement in social relationship among the 

members of a group improves the quality of collaborations 

among them.  On the other hand, when a student group mem-

ber experiences distracting factors, that experience reduces 

the quality of his or her collaboration with other members. 
Observation 18: Motivation of the group members’ impacts 

the motivation of a student positively and negatively. 
Observation 19: Social relationship between a student and 

his or her peer (as perceived by the student) change according 

to the frequency, extent, and quality of collaboration (e.g., 

how many times did my peer helped me).  

D. Scaffolding 

Bruner [17] and Cazden [18] define scaffolding as the act of 

providing assistance to a child so that he or she is able to carry 

out a task (e.g., solve a problem) that he or she cannot do by 

herself.  Over time, the concept of scaffolding has been intro-

duced into traditional classrooms to aid learners to achieve 

difficult learning objectives and complete difficult tasks [3] 

where tools and software are used to (1) offer structure and 

support for completing a task and (2) promote peer interac-

tions to enable peers to support each other‘s learning.  In the 
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first type of scaffolding, the students are provided information 

about how to better approach to solve the task that they are 

having difficulty with.  In the second type of scaffolding, the 

peer support of a student is enhanced in the hope that those 

peers would provide guidance and information for that student 

to help him or her solve that task.  Researchers in the CSCL 

community are now utilizing scaffolding in the form of incor-

porating structure of learning activities (e.g.,[19]) and improv-

ing peer support (e.g.[20]).  As CSCL researchers (e.g., [3, 20] 

note that due to being in different zones of proximal develop-

ment, the learners benefit most when the scaffolding is tar-

geted toward their zone of development.  So, one of the rec-

ommendations provided to the CSCL practitioners is to cus-

tomize the scaffolding to specific learners‘ needs.  Hence: 

Observation 20: Scaffolding in the CSCL environment can 

be provided by: (1) providing structure and support for com-

pleting tasks and (2) improving of peer support. 

Observation 21: Scaffolding in the CSCL environment may 

be used to improve the knowledge of the learners regarding 

the assigned task.  

Observation 22: Learners in a CSCL environment benefit 

more when the provided scaffolding is targeted to their zone of 

proximal development. 

III. SIMCOL ENVIRONMENT 

The SimCoL environment  represents a CSCL environ-

ment where the teacher forms student groups and assigns a set 

of tasks and the students solve those tasks collaboratively to 

improve their knowledge about some topic.  The SimCoL en-

vironment is defined as a 3-tuple: .  Where  is 

a set of tasks,  is an agent who simulates the teacher, and 

 is a set of agents who simulates the students 

in a collaborative classroom environment.  In this section, we 

first define the tasks .  Then, based on the observations pre-

sented in Section II, we describe the attributes and the beha-

vior of agents  who represent the students in SimCoL.  Fur-

thermore, we describe how the simulated teacher  forms 

groups of simulated students and carries out CSCL classroom 

sessions in the SimCoL environment using a set of simulation 

steps.  Finally, we describe the collaboration process of the 

simulated students  in a group in SimCoL using a set of si-

mulation steps and discuss how their attributes change.  

A. Task 

The tasks in SimCoL represent the problems and exercises that are 

solved by the students in a CSCL environment.  The set of tasks is 

denoted by,  where,  

 (1). 

Here,  denotes the concept of the task.  This concept represents 

the subjective knowledge required to solve the task.   , is the 

difficulty of the task as determined by the simulated teacher.     is 

the time limit within which the task is to be completed.  where is 

a vector representing the simulated student groups‘ (who are working 

on the task) view of the solution quality of the task  at time . 

B. Simulated Student 

We represent the model  of each simulated student 

 in SimCoL by a 6-tuple: 

 (2), 

where,  is the knowledge of si-

mulated student  at time  with  representing the concept 

of  and   is the expertise, i.e., the amount of know-

ledge the simulated student has about the concept.  The goal of 

simulated student collaboration is to increase the value of this 

expertise.   , is the ability of  at time  for task .  

 , is the motivation of  at time .   , is the 

emotional state of simulated student  at time   

 where   is the social relation-

ship between  and  at time  as perceived by .   

 denotes the target solution quality of  of  at time . 

We have included , , and  in the mod-

el according to Observation 1 and included  according to 

Observations 16 and 17.  Also, combining Observations 4 and 

5, we assume that the ability of a simulated student is related 

to his or her knowledge, motivation, and emotion in the fol-

lowing way: 

 (3), where and  are 

weights.  According to Eq. 3, the ability of a simulated student 

for a particular task at any time is proportional to the sum of 

his or her expertise on the concept of that task and motivation 

minus the absolute value of his or her emotional state.  We 

also define the target solution quality of a simulated student 

with:  (4). So, a simulated student‘s target of 

the quality of the solution of the assigned task is proportional 

to his or her ability for that task.  According to Observations 3 

and 4, the ability of a simulated student determines how much 

of his or her existing knowledge can be activated to produce 

behavior (i.e., effort to solve the task) and learning.  There-

fore, given the same time limit  for a task , a simulated 

student with higher ability would be able to solve the assigned 

task better than a simulated student with lower ability.  So, we 

assume that the simulated students have targets of the final 

solution quality according to their own abilities. 

C. Simulated Teacher 

The teacher  in SimCoL acts as the coordinator of the 

CSCL sessions. The teacher delivers instructions, forms 

groups, and assigns collaborative tasks.  In SimCoL, we have 

implemented three different group formation methods: ran-

dom, Hete-A [21], and VALCAM [22] group formation me-

thod.  Table 2 shows how the teacher carries out the CSCL 

session through a set of simulation steps.  First, the teacher 

initializes the classroom (tasks, group formation scheme, how 

often scaffolding should be provided, and how many groups 

would receive scaffolding).  Then, for each initialized task, the 

teacher: (1) initializes a collaborative session (Step 2a), forms 

simulated student groups (Step 2b-d), and announces the start 

of the collaborative session to all simulated students (Step 2e).  

Then until the collaborative session is over, the teacher period-



SMCC-09-08-0322 

 

5 

ically sorts the groups according to their current achieved so-

lution quality of the task (Step 2fa(1)) and then selects the 

groups who have the lowest solution quality.  Those selected 

groups are then provided scaffolding (Step 2fa(2)).  Finally, 

the teacher announces the end of the collaborative session 

when the time limit for the current task is over (Step 2g).  
TABLE II 

SIMULATION STEPS OF TEACHER 
1. Initialization: , group formation scheme, 

scaffolding period, , simulated students 

, and agents  

2. For all tasks , do, 

a. Initialize collaborative Session : , ,  

, and Announce task  to ,  

b. If , form Random Group for  

c. Else If , form Hete-A [21] groups for   

d. Else If , form VALCAM [22] groups for  

e. Announce start of collaborative Session  to   

f. While ( true)  

a. If  

1. Sort (ASC)  according to  

2. For   

Provide scaffolding to  

b.  

g. Else Announce end of collaborative Session  to  

D. Assistant Agents 

The student-assistant and teacher-assistant agents have been 

incorporated in SimCoL to implement various agent-based 

coalition formation algorithms.  Each student-assistant agent 

in SimCoL is assigned to a simulated student and it monitors 

the change in that assigned simulated student‘s: (1) expertise 

gain and (2) social relationship with other students.  The 

teacher-assistant agent is assigned to the instructor to (1) as-

sign and monitor student collaborative performances and as-

sign them virtual currency according to that performance and 

(2) communicate with the student agents to form groups using 

VALCAM [22].  

E. Collaboration and Scaffolding 

Following Observations 14 and 15, in SimCoL, we simulate 

the collaborative behavior (i.e., collaboration to solve the as-

signed task and to improve expertise) of a group of simulated 

students using a series of dyadic interactions among the group 

members.  Here, we describe how those interactions occur in 

SimCoL.  First, we define the following functions that dictate 

the behavior of the student agents simulating the collaborative 

learning in SimCoL.  Here, we assume that two simulated stu-

dents  and  with models  and  are working in a 

group  to solve task  and all variables  are weights: 

Motivation Update (Observation 18): 

 (5) 

Collaboration Probability (Observation 16): 

 

(6) 

Collaboration Cycle (Observation 15): 

 denotes a collaboration 

cycle completed by  with  at time  for task .  Here, 

 denotes an utterance of action,  denotes an 

utterance of reaction in reply to the action , and 

 denotes the reaction in reply to the reaction .  

 denotes a collaboration cycle initiated by  

but declined by .  

is the set of all collaboration cycles between  and  for . 

Solution Quality Update:   

If  and   Otherwise (7), 

where ,  denotes the solution quality update proba-

bility threshold and a random number that is drawn from a 

uniform random distribution respectively.    

Human Expertise Update (based on Obs. 3,4,7-10 & 13):  

if  

otherwise    

(8)  with   (9) where 

 is the ZPD constant. 

Social Relationship Update (based on Observation 19): 

 (10) 

Scaffolding Effect (based on Obs. 20-22): 

 If  

 and 0 otherwise (11)   where  is the 

scaffolding object, ,  denotes the level of expertise 

for the simulated student the scaffolding is designed for,  

denotes the cost (e.g., time and effort required to design the 

object) of the scaffolding,  is a probability value drawn 

from a uniform distribution, and  is scaffolding threshold.   

Table III shows the simulation steps of a simulated student 

in SimCoL with the various formulas that are used by the 

agents in parenthesis.  During initialization, the simulated stu-

dent receives its group assignment and the task (Step 1) from 

the simulated teacher (Step 2a in Table II).  Then the simu-

lated student updates its own motivation according to other 

group member‘s motivations, and its ability.  During the ses-

sion, the simulated student tries to collaborate with its group 

members if the quality of the solution is less than its expected 

solution quality (Step 2a) or if someone else in the group 

wants to collaborate (Step 2b).  In both of these cases, whether 

the collaboration is successful or not depends on the collabora-

tion probability (Step 2b(i)). During the collaborative session, 

if the simulated student receives scaffolding from the simu-

lated teacher (Step 2c) in the form of a scaffolding object, it 

updates its expertise.  When the collaborative session ends, the 

simulated student updates its own view of social relationship 

with its group members (Step 3). 

TABLE III 

SIMULATION STEPS OF STUDENT 
Simulation Steps of Student  

1. Initialize: group , task , update motivation (5) and ability (3)   

2. Until collaborative Session  is over, do, 

a. If  Then 

i. Propose collaboration to randomly chosen  

ii. If  agrees  

Complete and store , update solution Eq. 7,8 

iii. Else 

Store failed collaboration cycle in   
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b. If received collaboration request from  Then 

i. If  Then 

Complete and store , and update expertise (Eq. 8) 

ii. Else 

Decline request from  and store failed cycle in  

c. If received scaffolding , then 

Update expertise (11) 

3. Update social relationship (10) for group members  

IV. IMPLEMENTATION 

The SimCoL environment was implemented using the Java 

version of the Repast [24] – a multiagent simulation toolkit.  

Table IV describes: (a) the categorizations and the ranges of 

the randomly generated values in SimCoL, i.e., the student 

attributes and the weights and constants used in the equations 

in Section III.  Fig. 1 shows the deployment diagram and Fig. 

2 shows the input/output/control parameters of SimCoL. 

Fig. 1. Deployment diagram of SimCoL. 

TABLE IV 

CATEGORIZATIONS, DISTRIBUTIONS, WEIGHTS, AND CONSTANTS  

Eq. Attribute Categorization 
Generated from Nor-
mal Distribution with 

1 

Task 

Difficulty 
Low , 

erate , and high 

 

, , 

and range  

2 

Expertise Low , moderate 

, and high 

, 

, , 

and range  

2 

Ability Low , moderate 

, and high 

 

Calculated using 0 

with range  

2 

Motiva-

tion 
Low , mod-
erate[0.2,0.8), and 

high  

, , 

and range  

2 

Emotion Sad , 

tral , and 

py . 

 and , 

, and range 

 

2 

Social 

Relation-

ship 

Unknown , famili-

ar , and 

friend  

, , 

and range  

 Weights and Proportionality Constants 

3 Weights: , , and   

4 Prop. constant:  

5 Weights:  and  

6 Weights:  and  

7 Prop. constant:  

8 Weights:  and , prop. constant:  

9,10 Proportionality constant:  

Other Constants 

Collaboration threshold  

Zone of proximal development threshold  

V. RESULTS 

The goal of our experiment is three-fold: (a) discussing how 

SimCoL is able to identify and reveal the complex relationship 

between the variables (i.e., student attributes) of a computer-

supported collaborative learning environment, (b) comparing 

the emergent phenomenon of student performance in SimCoL 

with that of the published CSCL results, and (c) providing 

evidence of the validity of SimCoL simulation environment.  

In subsection A, we discuss how the social relationships 

among the students in SimCoL impact their collaborations.  In 

subsection B, we describe the experiment that shows the inter-

dependence of the students‘ attributes on their collaborative 

learning outcome.  In subsection C, we study the impact of 

group formation and group size on student learning.   

Fig. 2. Input Output and Control Parameters of SimCoL. 

This allows us to: understand the usefulness of SimCoL in 

carrying out what-if scenarios in CSCL environments and cor-

relate the observed patterns of student behavior in SimCoL 

with that of the reported CSCL studies.  In subsection C, we 

compare and validate the emergent patterns of student beha-

vior in SimCoL with that of the observed student behaviors in 

the reported CSCL studies.  Notice that, all of our experiments 

are replicated for 10 simulation seeds. 

A. Learners’ Collaboration Work 

Here, we ran the simulation for  students for  si-

mulation ticks for each run by varying the values of two 

attributes at a time.  We then plotted the successful collabora-

tions of the students against their changing attribute values.  

Among all attributes, we have found that the social relation-

ship among the group impacts students‘ collaboration efforts 

the most.  Fig. 3 shows the results and Table V shows the 

skewness and kurtosis values. 

This indicates that as the collaborative learning researchers 

[16] mention, social relationship among the students is a criti-

cal factor in improving the collaborations among them.  Fur-

thermore, the lack of the strong relationship between the other 

attributes like expertise can be explained by our formulation of 

collaboration probability (Eq. 6).  The two key factors that 

determine a student‘s participation in a collaboration cycle is 

the target solution quality (Eq. 4) and social relationship.  

However, if the task solution quality is high (due to other 

members‘ contributions), a student‘s expected solution quality 

is then mainly determined by his or her social relationship 

with other group members.  This result portrays a common 
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scenario where students often refuse to collaborate/contribute 

when they see other members solving the task [29]. 

B. Compound Impact Analysis  

This compound impact analysis allows us to: (a) investigate 

how the students belonging to the different categories of an 

attribute respond to the changes in another attribute, e.g., how 

do the student with low expertise react to a change in their 

motivation, and (b) investigate whether a student‘s lower val-

ue in an attribute can be compensated by a higher value.  For 

this experiment, we ran the simulation for  students for 

 simulation ticks for each run by varying the values of 

two attributes at a time.  Fig. 4 and Fig. 5 show the average 

and standard deviation of student expertise gain for students 

with low, medium, and high expertise against changing moti-

vation.  Fig. 6 and Fig. 7 show the average and standard devia-

tion of student expertise gain for students with low, medium, 

and high expertise against changing motivation.  Table VI and 

VII show the skewness and kurtosis of the students with low, 

medium, and high expertise plotted in Fig. 4 and Fig. 6. 

Fig. 3. Successful student collaborative cycles vs. average student social rela-

tionship. 

TABLE V 

SKEWNESS AND KURTOSIS OF DISTRIBUTIONS OF COLLABORATION CYCLES 
Social Relationship 0.2 0.4 0.6 0.8 1.0 

Skewness 1.2 1.8 0.2 -0.1 -0.8 

Kurtosis 3.2 6.4 2.1 2.3 3.3 

According to Fig 4, we see when the average motivation of 

the students is increased, the students of all categories (low, 

medium, and high) of expertise are able to improve their ex-

pertise gain and there are students who fall behind (unchanged 

standard deviation). This is to be expected as dictated by ex-

pertise update equation Eq. 8 where the expertise increase is 

determined by the motivation and difference in expertise.  

Furthermore, the unchanged standard deviation indicates that 

there are students in all three cases (low to high motivation) 

who cannot gain expertise due to the increased motivation. 

Fig. 6 shows that as the social relationship of students im-

prove, their expertise gain improves at first, and then that rate 

of improvement slows down to zero.  Furthermore, Fig. 7 

shows that the standard deviation of the students expertise 

gain remains somewhat unchanged with the increasing social 

relationship.  This occurs due to our use of student social rela-

tionship while calculating the collaboration probability among 

two students (Eq. 6).  The expertise gain of the students in the 

group depends on how well they collaborate.  As the social 

relationship among the students starts to increase from initial 

lower value, the probability of them collaborating increases.   

As a result, they are able to gain more expertise.  However, 

when their social relationship values are near maximum and 

all students in every group are collaborating, increase in the 

social relationship further, does not impact their expertise.   

Fig. 4. Avg. student expertise gain vs. average student motivation for low, 

medium, and high expertise (left to right) students. 

 
Fig. 5. StDev. of student expertise gain vs. average student motivation for 

low, medium, and high expertise (left to right) students. 

TABLE VI 

SKEWNESS AND KURTOSIS OF DISTRIBUTIONS OF EXPERTISE GAIN (FIG. 4) 
 Low Medium High 

Skewness 0.6 0.5 1.3 

Kurtosis 2.3 3.0 4.9 

 

 
Fig. 6. Average student expertise gain vs. average student social relationship 

for low, medium and high expertise (left to right) students 

TABLE VII 

SKEWNESS AND KURTOSIS OF DISTRIBUTIONS OF EXPERTISE GAIN (FIG. 6) 
 Low Medium High 

Skewness 0.13 0.1 0.9 

Kurtosis 2.1 3.2 3.5 

Our observations here provide us the insight that, the critical 

student attributes in a CSCL setting often impact (negatively 

and positively) one another‘s contributions to a student‘s col-

laboration and learning.  This observation is in sync with the 

current theories that describe the collaborative learning me-

chanism being affected by a variety of student attributes like 

motivation [1,2,16].  Thus, while setting up the collaborative 

learning environment, or when evaluating the outcome, it is 

important to look at all of those critical attributes together in-
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stead of in isolation as often discussed in the results of current 

CSCL research [13, 14, 21, 22].  In other words, while deter-

mining the impact of a collaboration script, group formation 

scheme, or other CSCL tool, the students‘ learning outcome 

alone may not be a sufficient indicator.  Instead, we should 

also look at factors like motivation and social relationship that 

could have influenced the students‘ expertise gain. 

Fig. 7. Standard deviation of student expertise gain vs. average student social 
relationship for low, medium and high expertise (left to right) students. 

C. Impact of Group Formation Method 

In this section, we study the effect of two teacher-controlled 

aspects of a typical CSCL environment, i.e., (1) the group size 

and (2) the group formation scheme, on the average expertise 

gained by the students.  During the simulation, the student 

groups in this experiment were formed using Random, Hete-

A, and VALCAM group formation methods with the group 

size selected from the range of ].  VALCAM is an agent-

based algorithm of group formation which uses a multiagent 

system to form student groups that brings together experts 

with non-expert students where the members have high social 

relationships.  Hete-A algorithm is a non-agent-based algo-

rithm that forms heterogeneous groups.  In Hete-A, the stu-

dents are first categorized by assigning them to a matrix 

whose dimensions represent the attributes of a student. Once 

the students are categorized, the Hete-A algorithm builds hete-

rogeneous groups by selecting students with the highest dif-

ference of attribute values according to their position in the 

matrix.  Here, the Hete-A algorithm was used with the motiva-

tion and expertise as the two matrix dimensions.   We first ran 

the simulation with the parameters described in Table IV for 

30 students for 2000 ticks with expertise distribution mean 

, expertise distribution standard deviation , 

and collaboration threshold , for a set of 30 students, 

for  different tasks and for  simulation ticks, where the 

students mean expertise and social relationship was set to the 

mean initial values reported in [22]. Fig. 8 shows that the stu-

dents in the VALCAM-formed groups performed better than 

the randomly formed and HETE-A formed groups.   

The improvement in student performance in VALCAM-

formed groups was reported in [22], so this result reproduces 

those observations.  This improvement of student performance 

in VALCAM-formed groups can be explained by the way 

VALCAM forms student groups that contain expert and non-

experts who have high social relationships amongst them-

selves.  Since, the collaboration probability (Eq. 6) and there-

fore the collaborative learning in SimCoL is determined by the 

expertise difference (Eq. 8) and social relationship (Eq. 6), 

VALCAM-formed groups in SimCoL were able to collaborate 

better (i.e., higher number of successful collaborative cycles) 

yielding higher collaborative learning outcome. These results 

suggest that by setting the initial classroom conditions (e.g., 

student attributes) in SimCoL like a CSCL classroom, we 

could execute what-if scenarios by running simulations and 

compare the performances of group formation mechanisms.   

Fig. 8. Average expertise gain (y-axis) for varying group sizes (x-axis). 

D. Cost and Expertise Gain through Scaffolding 

In this experiment, we investigate how the individual and 

group scaffolding improves the expertise of the students when 

they are collaborating in various types of groups.  To collect 

data, we ran the simulation with the same default set of para-

meters Table IV for  students for  simulation ticks.  

We calculated: (1) the average improvement in the expertise 

gain of the students and (2) the cost incurred for providing 

scaffolding for individuals and groups.  For a group in this 

experiment, one scaffolding object is used per group for group 

scaffolding (i.e., scaffolding cost is required for one scaffold-

ing object) and one scaffolding object per group member (i.e., 

scaffolding cost is equal to the sum of all generated scaffold-

ing objects) is used for individual scaffolding.  Fig. 9(a) shows 

the average improvement of student expertise gains of the 

students when they are working in random, Hete-A, and 

VALCAM formed groups.  Fig. 9(a) shows that the students in 

all groups are able to improve their expertise more from the 

individual scaffolding than from the group scaffolding.  This 

is expected, since: (1) individual scaffolding addresses indi-

vidual students‘ needs, and (2) according to our design of scaf-

folding (Eq. 11), a student‘s expertise is improved most when 

the scaffolding is targeted towards his or her expertise level.   

Fig. 9 (b) shows that for all three types of groups, the group 

scaffolding yielded more expertise gain per unit cost than the 

individual scaffolding. The cost of scaffolding denotes the 

time and effort required for providing scaffolding to the stu-

dents.  Providing individual scaffolding requires more cost 

since each individual student has to be modeled and different 

types of scaffolding have to be provided to the students ac-

cording to their expertise level.  On the other hand, group scaf-

folding requires less cost since the scaffolding action is more 

generic and only one type of scaffolding is provided to the 

entire group.  But unexpectedly, the group scaffolding is 

shown to be more economical in terms of expertise improve-

ment per unit cost.  Upon closer analysis, this can be explained 

by the cyclic and convergent nature of the collaborative know-

ledge building process (Observation 11).  Due to this cyclic 

nature, collaborative knowledge is transferred among the 

group members due to their interactions throughout the colla-
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borative session.  Furthermore, our non-adaptive scaffolding 

process periodically provides scaffolding to a fixed number of 

student groups by first sorting them according to their perfor-

mances.  However, near the end of the collaborative cycle, due 

to the heterogeneous nature of groups of the random, Hete-A, 

and VALCAM groups, there are some students who have al-

ready reached near-maximum expertise level.  So, scaffolding 

for such group members is no longer effective.  As a result, 

both individual and group scaffolding do not yield any exper-

tise improvement for those high-expertise group members.  

But, for those high-expertise group members, the individual 

scaffolding incurs a much higher cost than would the group 

scaffolding.  As a result, the improvement of expertise per unit 

cost for individual scaffolding is smaller than the group scaf-

folding.  These results indicate that although targeted individ-

ual scaffolding may improve the expertise gain of a set of stu-

dents more than group-based scaffolding, the former is less-

economical when applied in a non-adaptive manner.  

Fig. 9. (a) (top) Average expertise gain for individual and group scaffolding 

(b) (bottom) Average expertise gain per unit cost for individual and group 

scaffolding. 

E. Validity and Correlation with CSCL Results 

Here we validate the design of SimCoL by running several 

basic simulations to see whether the results verify previously 

published collaborative learning patterns.   

Variance in Learning Rate.  As reported in [5], high-ability 

students have higher learning rates than low-ability students 

because they are able to grasp, process, and internalize infor-

mation received during the collaboration process.  When we 

compared the learning rates of high/low ability learners in 

SimCoL, we found that the high-ability students learn at a 

faster rate than the low-ability students (0.1 vs. 0.3). 

Convergence of Learning Rates.  CSCL researchers [18] 

described the collaborative knowledge building as a cyclic 

process that converges to a final value.  Researchers [5],[11] 

also described that the rate at which the students gain expertise 

is faster in the beginning and then slows down over time.  In 

the beginning, the members of the groups have expertise val-

ues that are different from one another.  As they collaborate 

with each other, the expertise values are updated and the dif-

ferences among their expertise values are reduced.  The total 

expertise gain curve shown in Fig. 10 has two properties: (1) 

the total expertise gain of the students converges to a final 

value and (2) the rate of change of the curves is higher in the 

beginning and slows down at the end.  Furthermore, the same 

convergence pattern is observed when the simulation run is 

repeated with Hete-A group formation method.  So, the know-

ledge gain of the students in SimCoL follows patterns de-

scribed by other CSCL researchers [28-29].    

Correlation with Observed CSCL Results. Here we try to 

compare our simulation results with CSCL results published in 

[22].  For this comparison, we have first mimicked a simulated 

environment as the CSCL classroom [22] by setting the para-

meters of SimCoL equal to the parameters of the CSCL class-

room [22], i.e., we set: (1) the mean expertise of the students 

in SimCoL as 0.7, (2) number of tasks as 5 for each collabora-

tive learning session, (3) number of students as 11, and (4) 

mean social relationship of the students as 0.9.  Then similar 

to the CSCL classroom, we have simulated 4 collaborative 

sessions in SimCoL. Then we have calculated the correlation 

between the actual CSCL results and simulated results in 

SimCoL.  Table VIII shows that for both expertise gain and 

social relationship change, the correlation was significant and 

high.  However, as we have discussed in Section V-B, student 

attributes like motivation may also impact the student exper-

tise gain which we have not collected data upon.  So, this cor-

relation can be made stronger with the consideration of those 

factors which is in our future plan (Section VI). 

 
Fig. 10. Total expertise gain of students collaborating in groups formed by 

random group formation method.  

TABLE VIII 

CORRELATION BETWEEN SIMCOL AND OBSERVED CSCL[22] RESULTS 
Attribute Correlation 

Student Expertise 0.83 

Student Social Relationship  0.97 

VI. RELATED WORKS 

Table IX compares the SimCoL with other relevant simula-

tion tools according to the considered factors in the environ-

ment.  As we have described in Section II (with published 

learning theories), the agent-based support and group forma-

tion algorithms are two key issues uniquely discussed in Sim-

CoL which improves the current state of the art of similar si-

mulation tools. 

TABLE IX 

COMPARISON OF SIMCOL WITH OTHER EDUCATIONAL SIMULATION TOOLS 

Considered Attribute/Aspect 

in Simulation 
SimCoL 

Sklar and 

Davies[4] 

Spoelstra 

and 

Sklar[5] 

Learning due to Collaborative 
Interactions 

 ---  

Student Knowledge    

Student Ability    

Student Motivation    
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Student Emotion  ---  

Student Social Relationship  --- --- 

Group Composition  ---  

Group Formation Algorithm  --- --- 

Agent-Based Scaffolding  --- --- 

 Considered  ---Not Considered 

VII. CONCLUSIONS 

The evolving domain of learning theories and CSCL sys-

tems [23] implies that a simulation environment could provide 

a low-cost tool to the researchers and teachers to better under-

stand the impact of instructional approaches.  In this paper, we 

have proposed SimCoL, an agent-based tool for simulating the 

collaborative learning in a CSCL system.  We have described 

the design and implementation of the SimCoL environment 

and its agents using observations reported by the researchers 

working in the individual, peer-based and collaborative learn-

ing domains.  The overall simulation results of the SimCoL 

environment is consistent with previously reported collabora-

tive learning patterns.  Furthermore, our results hint that the 

SimCoL environment allow the researchers to gain better in-

sights into the impact of: (1) individual student attributes, (2) 

various agent-based and non-agent based group formation 

algorithms, (3) different types of scaffolding processes on the 

collaborative learning outcome of students, and (4) CSCL and 

collaborative learning on real classrooms in particular, and any 

human-computer environments where online collaborative 

activities take place among users with diverse behaviors. 

Our future work involves gaining insights into a CSCL 

classroom by using a what-for simulation scenario.  For ex-

ample, for a given CSCL result, we would first match the ob-

served outcome of SimCoL with the CSCL results by tweak-

ing the input parameters and those required changes in the 

parameters would allow us to gain valuable insights into the 

environment dynamics (e.g., which of the student attributes 

was the dominant factor in determining the CSCL outcome) of 

that CSCL setting. However, for a realistic what-for simula-

tion scenario, we need actual measured data regarding all in-

put parameters of SimCoL.  We are now working on a large-

scale CSCL experiment that would involve collecting data for 

all critical student attributes (e.g., motivation) which will ena-

ble us to conduct the what-for simulation experiments.  In 

future, we also plan to (1) further investigate how the time, 

cost, and effort invested by the students towards their groups 

impact the motivation, social relationship, and expertise gain 

by comparing the CSCL experiment data with SimCoL‘s si-

mulation results and (2) we plan to compare the students‘ per-

formances by comparing the RAND indexes of the simulated 

and real-world CSCL data. 
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