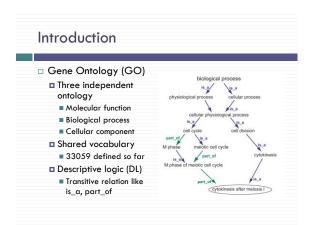
INVESTIGATING SEMANTIC SIMILARITY

MEASURES ACROSS THE GENE

ONTOLOGY: THE RELATIONSHIP BETWEEN


SEQUENCE AND ANNOTATION

P. W. Lord, et al (2003) Presented by Yuji Mo

Outline

- > Introduction
- Related work
- Method and Results
- Application
 - ➤ Error checking
 - > Search Tool
- Summary
- Future Work

Introduction > Bioinformatics Data > Gene product sequence > Enzymes and other proteins encoded in DNA > Not human readable > Annotation > Labels in scientific language > Not easy to interpret computationally

Introduction Number of relations in GO Is_a relation Part_of relation Biological Process 6207 35 Molecular Function 5697 989 Cellular Component 543 619

Introduction

- > Different ratio of Part_of and is_a relation
- > Part_of and is_a are often exclusive
- > They are treat equally in this paper

Related Work

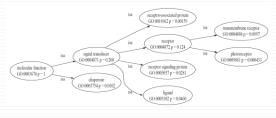
- Various Measure for quantifying the semantic similarity
 - Text based
 - Similar description has similar semantic
 - Path distance between term
 - Assume all semantic link equal weight
 - Information content
 - Used in this paper

Introduction

- SWISS-PROT KB
 - > Collaboratively annotated by GO
 - > Evidence code
 - > Traceable Author Statement (TAS)
 - > Inferred from Sequence Similarity (ISS)
 - ➤ Not Recorded (NR)

Method

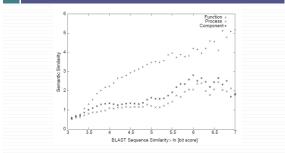
Semantic similarity between terms
 Probability of minimum subsume.


$$p_{ms}(c1, c2) = \min_{c \in S(c1, c2)} \{p(c)\}.$$

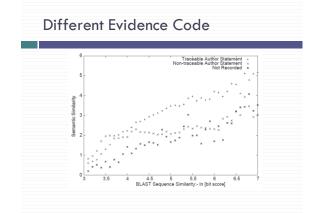
$$sim(c1, c2) = -\ln p_{ms}(c1, c2).$$

- □ S(c1,c2) is the set of common parent
- p(c) the probability that c or its children occur

Method


Example

Method


- □ Semantic similarity between proteins
 - \blacksquare Average similarity between all pair of terms
- □ Sequence similarity between proteins
 - Validation Metric
 - Bit score from BLAST results
 - Independent of database size
 - Logarithmic normalized measure

Different aspect of GO

Different aspect of GO

- As sequence similarity increasing, semantic similarity increases in all aspect
 - Similar sequences are likely to be annotated identically
- Molecular Function has higher semantic similarity
 Homologue proteins must has high Sequence Similarity

Different Evidence Code

- Records with all evidence code are all appeared to be correlated
- $\hfill\Box$ TAS shows much greater correlation
- □ Not all records are equally reliable

Results

Compare sequence and semantic similarity		
Aspect	Covariance	
Function	0.58	
Process	0.28	
Component	0.38	

	Evidence of molecular function		
Evidence code Covariance			
TAS 0.58			
NAS 0.26			
NR 0.49			

Application

- □ Error checking
 - Find protein pairs not obeying the trend above
 - low sequence but high semantic similarity
 - low semantic but high sequence similarity
- □ Search Tool
 - Find similar protein to a query protein

Error checking

- ☐ Proteins with low sequence similarity but high semantic similarity
 - Category specific
 - Groups where different class of protein involved in a same process, like "polymorphic group"
 - Mis-annotation
 - Terms with similar spell
 - Used an obsolete term
 - Errors in the GO structure

Error checking

- Proteins pair with low semantic similarity but high sequence similarity
 - Lack of biological knowledge
 - □ Lack of a more specific term
 - Mis-annotation

Search Tool

- > Similar search tool like BLAST
 - > Give a ranked list of semantic related proteins
 - > Useful to retrieve related protein by interest aspect
 - Offer an alternative view of the protein at other dimension

Summary

- $\hfill \Box$ Strong correlation between semantic and sequence similarity
- □ Correlation are not distributed in the same way
 In different aspect or evidence code
- $\hfill \square$ Semantic similarity has useful application

Future work

- □ Examine effect of different semantic links
- □ Investigate aspect other than molecular function
- □ Explore other validation metrics□ For example, microarray results

Thanks You

Questions and Comments ?