Final Project Presentation

Hannah Kost, Rose Kottwitz, Summer Liu

Table of Contents

Introduction

Thomas R. Frieden

As reported by AMA

Murphy, Brendan. "Access, Not Hesitancy Now Biggest Barrier to COVID-19 Vaccination." AMA, 19 May 2021, www.ama-assn.org/delivering-care/public-health/access-not-hesitancy-nowbiggest-barrier-covid-19-vaccination. Accessed 4 Dec. 2021.

Ann Lee and Sheila Davis

In the Stanford Social Innovation Review

Lee, Ann, and Sheila Davis. "Ensuring Equitable Access to Vaccines." *Stanford Social Innovation Review*, 29 Jun. 2021, <u>https://ssir.org/articles/entry/ensuring_equitable_access_to_vaccines#</u>. Accessed 4 Dec. 2021.

Thomas R. Frieden

As reported by AMA

Ann Lee and Sheila Davis

In the Stanford Social Innovation Review

Our informatics problem

COVID-19 Confirmed Cases

by United States county

Employment Sex Socioeconomic Status Age Racial Identity

Our Goal:

To find a correlation between the number of confirmed cases in a U.S. county and socioeconomic status—calculated through analysis of the distribution of race, unemployment, sex, and age in said county—pointing towards a greater issue: the lack of access to preventative and essential resources.

Our Hypothesis: A Spectrum

Data Preparation

2/7

DATA EXPECTATIONS:

Based on our hypothesis we needed 2 datasets:

Dataset #1:

- COVID data (by county)
- Death count/Positive count
- Timeline
- Dependent/changing variable

Dataset #2:

- Brainstormed variables:
 - Race, age, sex, socioeconomic status, education, location, etc.
- Independent variables

Database 1: Covid_Cases.csv

COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University

UID	Province_State	County_Region	Combined_Key	Dates
84031109	Nebraska	US	Lancaster, Nebraska, US	3/13/2020 3/12/2021

Dataset #1:

- COVID data by county
- Chose positive count, more numbers

Pro:

- Minimal cleaning, more accuracy

Con:

- massive data set

Dataset #1:

- COVID data (by county)
- Death count/Positive count
- Timeline
- Dependent/changing variable

Database 2: Population_Est.csv

Annual County Resident 2020 Population Estimates by Age, Sex, Race, and Hispanic Origin based on 2010 Census

SUM LEV	State	County	STNAME	CITYNAME	YEAR	AGEGRP	TOT_POP	TOT_MALE	TOT_FEMALE
50	13	25	Georgia	Brantely County	13	12	1422	737	685

Dataset #2:

- Race, age, gender by county
- Independent variables
- But no socioeconomic indicators

Dataset #2:

- Brainstormed variables:
 - Race, age, sex, socioeconomic status, education, location, etc.
- Independent variables

Racial Distribution (M, F):

- WA 660, 648
- BA 61,20
- IA 2,3
- AA 1,1
- NA 0,0
- H 51,3

28,288 rows

Database 3: Unemployment_Rate.csv

United States Department of Agriculture Economic Research Service

State FIPS Code	County FIPS Code	County Name/State Abbrev	Period	Labor Force	Employed	Unemployed	Unemployment Rate
01	001	Autauga County, AL	July-20	25,811	24,190	1621	6.3%

Dataset #3:

- Unemployment rate by county
- Independent variables
- Couldn't cover all variables with 1 database

Three databases

- All were consistent sorted by county
- Missing minimal information
- Reliable
- Many diverse factors

Cleaning and Preprocessing: Excel

Data Analysis + Programming

Scores & Data Analysis

Score	1	2	3	4	5
Unemployment Data	0.7-6.06%	6.07-11.42%	11.43-16.78%	16.79-22.14%	22.15-27.5%
Racial Distribution Data	.0082322725	.2272644625	.4452666525	.6652688426	.88427-1.10326
Gender Distribution Data	.3049154481	.5448278471	.78472-1.02460	1.02461-1.26450	1.26451-1.50439

Scores & Data Analysis

Score	1	2	3	4	5
Unemployment Data	0.7-6.06%	6.07-11.42%	11.43-16.78%	16.79-22.14%	22.15-27.5%

Unemployment % per county range:0.7% - 27.5%Point range:5.36%

Scores & Data Analysis					
Score	1	2	3	4	5

Racial Distribution Data	.0082322725	.2272644625	.4452666525	.6652688426	.88427-1.10326
--------------------------	-------------	-------------	-------------	-------------	----------------

Total Minority Population

Avg ratio per county (by state) range:0 - 1.277734Point range:0.25554

Total Population

Database 2: Population_Est.csv

Annual County Resident 2020 Population Estimates by Age, Sex, Race, and Hispanic Origin based on 2010 Census

	SUM LEV	State	County	STNAME	CITYNAME	YEAR	AGEGRP	TOT_POP	TOT_MALE	TOT_FEMALE	
	50	13	25	<mark>Georgia</mark>	Brantely County	13	<mark>12</mark>	1422	<mark>737</mark>	<mark>685</mark>	

https://uofnelincoln-my.sharepoint.com/:x:/g/personal /hkost2_unl_edu/EZBx_1CYQJ5Gp5PUqncN9rlBggqvMi MptDMQ2cdZJ-fsdg

Racia	al Distr	ibution (M, F):
_	\٨/Δ	660 648
		61 20
-		01,20
-	IA	2,3
-	AA	1,1
-	NA	0, 0
-	Н	51, 3

Analysis					
Score	1	2	3	4	5
Total Minority P	opulation				
Total Popul	ation				

Gender	Distribution	Data
--------	--------------	------

.3049154481	.5448278471	.78472-1.02460	1.02461-1.26450	1.26451-1.50439
-------------	-------------	----------------	-----------------	-----------------

https://uofnelincoln-my.sharepoint.com/:x:/g/personal/hkost 2_unl_edu/EX38E2dQ0k5Fvf1UEHF70Z8BYO9J9-nZ31nj5Aqr9D vboQ

- Provided summer with an average # of cases per day list for correlation score

Sorting and Calculating through code

1. Variable.py

Separate variables file:

- Store score initial value
- Store score ranges

Will be imported into main function

3. Function: read_data_from_csv

- Read imported csv files (rates/ratios)
- Assigned score based on calculated range
- 3 variables: file name, column name, scope within function
- within main.py

2. Main.py

- Read in csv files
- Assign score based on calculated range
- Restrictions with decimals
- Imported Variable.py
- Used read_data_from_csv function
- Output into a new csv file for further analyzation

4. Correlation.py

- Calculate Pearson correlation coefficient
 - Index score
 - Avg. # of COVID cases per state
- Import numpy package, use correlation function

Scores & Data Analysis

A Perfect Score Distribution	3-6	7-10	11-15
	Low Number of	Average Number of	High Number of
	Confirmed Cases	Confirmed Cases	Confirmed Cases
	Low Unemployment	Average Unemployment	Low Unemployment
	Older Age	Variety of Ages	Younger Age
	Low minority population	Even distribution of races	Higher WA population

https://uofnelincoln-my.sharepoint.com/:x:/g/personal/ hkost2_unl_edu/EZzikYZNQNhOkh0kWa9fFLsB311I9zf 34SM8Qvw9xy7haw

5/7

COVID_rate_chart.py

- Matplotlib package bar graphs
- Average number of confirmed
 COVID-19 cases
 - / Per state
 - March 13, 2020 March 12, 2021
- Read in <u>COVID SCORE STATEAVG</u>.csv

Index_score_chart.py

- Matplotlib package bar graphs
- Calculated sum index score across all counties > averaged to find state
 - Read in <u>SCORE OVERALL</u>.csv

Matplotlib in Python

- Create initial graphs for index scores AND positive case count by state

CREATING COVID NUMBERS DEPTH CHART:

Sorting & Filtering

- Conditional Formatting
- 3. Use excel to create 2 types of visualization

CREATING COVID NUMBERS DEPTH CHART:

	A	В	С
1	Province State	COVID AVG	
2	Vermont	90018	DARKEST
3	Montana	201269.983	
4	Alaska	205015.788	
5	South Dakota	219333.25	
6	West Virginia	230585.86	
7	Maine	238699.333	
8	North Dakota	247405.164	
9	Wyoming	249946.08	
10	Nebraska	280486.779	
11	Kansas	331969.364	
12	Kentucky	360978.844	MEDIUM
13	Iowa	455003.347	
14	Mississippi	473692.179	
15	Idaho	480107.217	
16	Oregon	486210.605	
17	Virginia	507660.97	
18	Arkansas	509871.195	
19	Hawaii	575973.714	
20	Missouri	591266.297	
21	Oklahoma	607111.608	
22	New Hampshire	618176.583	MIDDLE
23	New Mexico	624726.743	
24	Minnesota	704725.022	
25	Colorado	781959.848	
26	Georgia	799076.814	
27	Indiana	846920.979	
28	Alabama	936812.841	
29	Louisiana	958097.455	
30	North Carolina	985240.235	
31	Michigan	985569.828	MIDDLE 2
32	Tennessee	990597.093	
33	Washington	1065837.59	
34	Wisconsin	1070393.53	
35	Ohio	1200553.18	
36	Utah	1200677.51	
37	South Carolina	1269975.81	
38	Texas	1286757.61	
39	Illinois	1552897.21	
40	Pennsylvania	1556906.25	
41	Nevada	1989823.79	MIDDLE 3
42	Maryland	2076254.35	
43	Delaware	2133250	
44	Rhode Island	2214268	
45	Connecticut	3506685.4	
46	New York	3552649.8	
47	Florida	3774085.55	
48	Massachusetts	4356430.12	
49	New Jersey	4752105.57	
50	Arizona	5859625.41	MEDIUM
51	California	6866833.52	DARKEST

- 1. Sorting & Filtering
- 2. Conditional Formatting
- 3. Split into groups
- 4. <u>MapChart.net</u>

Conclusions

No Correlation Found

- Correlation Score: 0.1668
- Can't say for certain that there is no correlation
- More avenues for research:
 - Looking only at counties, not consolidating to states
 - Comparing COVID-19 mitigation strategies in NY and CA
 - Are issues of access tied to population density?

Improved Skills

- Importance of data visualization
 - Affects people's reaction to info. and can affect findings
 - Using variety of approaches and perspectives
 Better prepared to handle data-heavy projects in the future

Python Purpose: - Calculate and export - Matplotlib - Numpy

