CSCE100 Introduction to Informatics Fall 2020

Programming Assignment 4: Function Modularity

Points: 100 points. Assignment Date: September 22, 2020 Due Date: September 29, 2020

Objectives

- 1. To familiarize with writing and running Python programs and the Python environment
- 2. To familiarize with designing programmer-defined functions
- 3. To familiarize with problem decomposition
- 4. To familiarize with parameter passing with functions
- 5. To familiarize with the use of online documentations on Python

Relevance to Informatics or Data Science

- To practice computational thinking's decomposition in breaking down a solution into subparts
- 2. To understand what data to pass to a function and what data to return from a function
- 3. To understand how to compose a sequence of functions together in order to process data how to combine built-in functions in a sequence in order to design different data processing solutions

Problem

Use the solution that you created for Programming Assignment 2 or Programming Assignment 3 as the basis. Convert the solution by moving lines of code into functions. Define your functions accordingly. Here are some additional requirements:

- Your new program is required to perform *exactly* the same way as your solution in Programming Assignment 2, in terms of what users see when running the program. (5 points)
- Your program is required to have at least three programmer-defined functions. (10 points)
- You are required to describe, in a Table, each function that you have in your solution. (5 points). For example, they might be:

Name	Input Parameters	Returns	Purpose
readFile	The filename in string	The number of rows as an	To open a file and read row-by-row the content of the file, storing it in
	_	10WS as all	the content of the file, storing it in
	2. The variable list to	integer	the variable list.
	store the data		
writeFile	1. The filename in	Nothing	To write the data to an output file.
	string		

	2. The variable list to store the data		
wordFinder	 The list containing the stored data The list to store the words that have been found 	The list containing the words that have been found.	To perform necessary analysis on the given list and store the words that have been found into the second list.
solicitSentences	None	The list of arrays with the sentences entered by the user	To prompt the user to enter choices and sentences, and store the sentences in an array to be returned to the caller
processSentences	1. The list containing the stored sentences	Nothing, but print results to the screen OR A statistical value or an array of values	To process a list of sentences to generate statistics

- You are required to write an analysis of your functions, discussing the usefulness of each function: Does it improve Modularity? Readability? Maintainability? (5 points)
- You are also required to turn in a report on:
 - 1. Why do you choose those specific lines of code to convert into functions? (5 points)
 - 2. How general are the functions? How applicable are your functions to other types of problems? (5 points)
 - 3. Compare your functions to built-in functions in Python: which ones are more general? (5 points)
 - 4. If your functions are not general, how would you change them to be more general? (5 points)
- You must document your program (see https://devguide.python.org/documenting/).
 - Name, Date, Affiliation, a description of the program, what inputs does it need, what outputs does it generate (5 points)
 - Inline comments in the program (5 points)

Example Input/Output: None

Handin

- 1. The submission deadline for all handins is September 29, 2020, 11:00 AM. Late handins will not be accepted or graded.
- 2. You are required to handin a screen capture of your "testing session" using your program. (10 points)
- 3. You are required to handin all program files. (10 points)
- 4. You are required to handin all input and output files. (5 points)
- 5. You are required to handin your description file that consists of two parts: **the table of functions and the analysis**. (5 points)

6. You are required to handin online the above files to Canvas under Programming Assignment #3.

Think About

Now, think about the usefulness of functions. Defining a function improves modularity, maintainability, and reusability of our program. Furthermore, imagine a function that gets called numerous times at the different occasions in a program. If that function has 25 lines of code, how would the overall program code look like? Does it mean that if the function is called 4 times, then that means we would have to see 25 + 25 + 25 = 100 lines of repeated code in the program. Is that bad? Why? (*Hint*: Reusability of a function.)

Think about when we approach a problem to find a solution. One useful approach is to break the problem down to smaller subproblems. Why? And think about how the solution to a subproblem and a function are related. Indeed, programmers often think about how to break a problem down by identifying the functions that need to be designed first, before they start programming. This is especially so when the solution could involve many lines.