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QOutline

How does magnetism appear?
— From atoms and molecules to solids
— Anderson and Stoner models
Magnetic order
— Exchange interaction and its mechanisms
Magnetism in spin density functional theory
Mapping the Heisenberg model
— Fitting of different magnetic structures
— Linear response technique
— Noncollinear magnetic structures, spin spirals, generalized Bloch theorem

Implementation in FLEUR
Practical issues and a couple examples



Atomic magnetism: Hund’s rule

Fill the single-electron orbitals observing the Pauli principle
Degenerate orbitals: Hund’s rule (maximum multiplicity)

OXYGEN ATOM

CONFIGURATION —> | 1), N 1T
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Many-electron etfects become important for partially filled shells
Many-electron ¥(1, ..., N) is antisymmetric for all permutations

Non-relativistic H does not affect spin,

hence ¥(1, ..., N) =y(cy,...,00)W(ry, ..., Iy)
Permutation symmetry of y determines the total spin and matches
the symmetry of the coordinate y(x;, ..., 1y)

Coulomb energy is minimal when the electrons in the degenerate
shell avoid each other, i.e. for antisymmetrized y and hence
symmetrized j; maximal spin of the unfilled shell (Hund’s rule)



Magnetism of molecules

e Similar to atoms:
— Fill the single-electron (SCF) orbitals observing the Pauli principle
— Degenerate orbitals: Hund’s rule (maximum multiplicity)

e Example: O, and N, molecules

— Ground state
O,: triplet
N,: singlet

— Dissociation energy
O,:5.13 eV
N,:9.78 eV

— Singlet-triplet splitting
O,: 0.98 eV

 Hund exchange is “small”

2p-Orbitale

* Note the degeneracy!

2s-Orbitale
[ Delocalization reduces the magnetic

moment on the O atom from 2 to 1ug

d Most molecules have singlet ground state



Magnetism of solids

From molecules to solids:
— Bonding/antibonding orbitals become energy bands, degeneracy lifted
— Fractional filling of bands is possible (metals)

Band filling with orbital-independent SCF: non-magnetic state

Effects of on-site exchange and correlation:
— On-site Coulomb repulsion — penalizes electrons for occupying the same site

1
E. (n3d) = 5U3dn3d (n3d - 1)

— On-site exchange J — favors electrons on the same site to have parallel spins
— These are important for 3d and 4f orbitals

Magnetism appears if correlation energy wins over the band energy
Competing energy contributions:
— On-site repulsion U promotes integer 7,; hence local moments for odd 15,
— On-site (Hund) exchange directly promotes local moments
— Hybridization promotes delocalization, tends to destroy local moments



Anderson model: 3d impurity in a metal

H= Z Eka}mah + E E'da:fjaad, + Z{deaiﬂ,ﬂda + deazdaka)
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Solve the impurity problem by Green’s function - . j 2
method, minimize the HF total energy . ?
Result:

Stable solution with (7,;) #(n,,) if Up,(Ey) > 1

Impurities with resonant d levels near
Fermi level develop local moments

& Py

Delocalization: kinetic energy gain Localization: potential energy gain

VS



Stoner model

Band electrons with short-range Coulomb interaction (Slater; Stoner)
Originally H- =1 8(r—;), but let’s take the Hubbard model instead

H = ZEC C +UZ”T” gﬂfHZ( M4 An)

i

Denote I A /A ~
n, _<niT>+<nz\L>’ m; = <niT>_<nz\L>
Assume homogeneous n and m, use Hartree-Fock:

Nl = Ay <ni¢ > T, <niT > o <nz¢ > <niT>

In the magnetic state, energy bands are shifted: This can also come
guH from Hund exchange J

2% for denegerate bands
2

Totalenergy:AE(m): m’ _Um _g,LlBHm

4p(e.) 4 2

Susceptibility: P gu,m T divergesat U p (gF) =1
2H 1 U p( )

o =& tUn__ —

Stoner criterion

Degeneracy favors magnetism (cf. O,)




Interatomic exchange interaction...
which Is not really exchange

e Suppose that local moments exist
* How do they arrange themselves in the crystal?

* Magnetic ordering is driven by kinetic energy gain
(interatomic exchange integrals are small and irrelevant)

Various mechanisms

* Direct exchange (virtual hopping between two magnetic sites)
* Superexchange (hopping through an intermediary anion)

« Zener double exchange (mixed valence manganites, etc.)

* Indirect exchange

* Rare earth metals and compounds

* RKKY (Ruderman-Kittel-Kasuya-Yosida): its linear response regime
* Exchange in metals

 Interplay of many mechanisms

* Local moments may depend on magnetic ordering



Exchange interaction In insulators

e Stable local moments
e Treat the hybridization perturbatively:

H=H,+H'=) H +) t.clc
i ij

Eigenstates |y;) of H, (single band):

0), E,

T>, I A Figenstates of H;:
V), E,+¢ P, ) =[y)®...8|w,)
T¢>, B A A ]



Antiferromagnetic direct exchange

Half-filled band

Ferromagnetic Antiferromagnetic

AE =0 AE:—K

U
* Hopping is possible only for antiferromagnetic pairs
* Energy is reduced for AFM (second-order perturbation theory)

* Band picture: in AFM state the occupied and empty states hybridize
and repel each other; occupied states are pushed down



Ferromagnetic direct exchange

Half-filled orbital to empty orbital

Ferromagnetic Antiferromagnetic

e
——
[\
L
(\®)

Uu-J
» Excited state is lower if the local moments are parallel

e Band picture: in the FM state the occupied band shifts down further in
the ferromagnetic state



Superexchange

Half-filled orbitals and a filled anion band

Ferromagnetic Antiferromagnetic

e Fourth-order virtual process in ¢
AFM state is lower in energy by ~ #4/A3
AFM also wins away from half-filling for like cation orbitals

* Band picture: Less gain from hybridization in the FM state

* Goodenough-Kanamori rules describe the sign of interaction



Description in terms of spin rotations

Consider a pair of spins at an angle
Different unperturbed basis

0

i cosge‘i‘”
Zi:[oj’ S |

sin—e'?

The amplitude for the hopping is now

/ . . 91’
<i|H |]>:ty.<;(i|T;(j>=tl.j81nEe(p

Second-order correction to total energy:

l.. l..
SE, = —2‘%sin2 g > ‘070039 ——J,ee,

‘2 ‘2

J;: exchange parameter (AFM in this case)

Heisenberg model appears in second-order in 7



Magnetism in density functional theory

Hohenberg-Kohn theorem:
External potential Ventersas H =H,+V (l‘)
It follows that the GS charge density uniquely determines V(r)
The proof is based on the fact that <LI’|H1 - H, |LP> = j(Vl - Vz)pd3r
Now add external magnetic field B:
H=H,+V(r)l+u,B(r)6=H,+

(V + ILlBBZ ILlBB—
where B, =B _*iB .

2H +V
HgB, V=B,

But <T 14 LP>:J-T1r (I},b)aﬁr where  Pyp (r):<LP l/}l (r)l/}ﬂ (r)|‘I’>

The GS spin density matrix p,z uniquely determines V and B

p= l(n T - j or in Kohn-Sham: Q5 = Z l//; (l‘)l//l.ﬁ (r)

2 m+ n— mZ ieocc

LSDA: B (r) =B [ m (r)}ﬁ:‘.) e Ground state may be collinear

m( ) or noncollinear

This is what drives magnetism in LSDA



Charge and spin density in b.c.c. Fe

(011) plane charge density | 17 Jan 2011 |

(001) plane spin density | 17 Jan 2011 |

 Magnetization is formed within a 0.7 A atomic sphere (3d wavefunction range)



Spin density in Gd compared to Co

Gd - (0001) plane - total spin density e N (N ET R I CH =R R CLu 1Y (Co - (0001) plane - spin density

Valence Cobalt

« The 4f part ("open core” here) of the magnetization (~7 ) is strongly localized
« The valence part (mainly 5d) is delocalized (~0.4 pg in and 0.3 pg out of the MT)
« Valence band is polarized by the 4f shell, otherwise would be non-magnetic



Exchange interaction from DFT

Many practical options for systems with stable local moments

Fitting of total energies for different orderings
— Usually Heisenberg model
Linear response calculations with respect to the ground state
— Directly applicable to spin wave spectra
— Rigid spin approximation: valid in many cases, easy
Spin spirals
— Total energies for noncollinear “spin-spiral” configurations
— Applicable both to spin waves and beyond linear response
— Alternative to the supercell method
Thermodynamics

— Given a mapping to Heisenberg model, thermodynamic properties can
be studied; however, poorly justified assumptions are needed about the
character of magnetic fluctuations (e.g. classical spins)

— Mean field theory or Monte Carlo



Heisenberg model

Map the total energies of a solid onto an effective spin model

E=-)JSS,

gy
i<j

S, are classical vector spin variables (with DFT - what else?)

Mapping works well in most insulators and in some metals

Adiabatic approximation (“slow” effective spin variables)

Fitting of a collinear set

Straightforward way: fit the total energies of a number of collinear
spin configurations in supercells (i. e. treat S, as Ising o))

Similar to Connolly-Williams method in alloy theory, but odd
powers of S are not allowed (can’t make a scalar)

Some higher-order terms can not be extracted
For example, (S;S))* = S* = const for all collinear configurations



Constrained DFT for noncollinear states

e Imagine that the low-lying spin excitations are classical adiabatic
rotations of local moments (not well justified, but still...)

e We wish to stabilize (muffin-tin) local moments (m), = M._e,
e Introduce constraining fields in DFT as Lagrange multipliers

E[Paﬂ(r)] [paﬂ ]+Z}‘ e, x(m) . withd, |[e x(m)

* Denotee; x A =B_ (constrammg fields), then
E[p]=E[p]-D B.(m), with B -ex(m) =0

e This is well-defined in DFT, and one can use

Ele;] to map out the spin configuration space

e In practice, B, are iteratively adjusted to
achieve (m), || e, in parallel with DFT iterations

* InLSDA onecanalsouse B_(r)=B"(r)de,
to keep the total B, collinear B,

(complanar)




Exchange parameters: Linear response

Small deviations from the ground state

In the lattice model: Apply external fields B_, linear response:

ci’/

1
of pp 2 a ,of pp
E X Bl 5E——2 By B

i

Inverse susceptibility: B, Z( _1) oM /

Energy in terms of local moments:
1
SE =3 oM} (1 (x -1) M’

Exchange parameters (collinear reference state, only rotations):

J; =Ml.(;[1) M

ij J

Thus, one needs to calculate the inverse transverse susceptibility



Calculating the susceptibility in DFT

e In general, Vs =Veu + Vs P = ﬁ[VKs]
e Assuming zero charge response to transverse magnetic field:

5BKS — Bext + 5Bxc’ 5111 (l') — ;24?—5BKS — ;2+—Bext
* Result: 77'=3"'—] where I(r,r')=5B, (r)/om(r')

5, O 5 2(rr)= %Im [ G (r,r',2) G (¥ x,2)dz

52E:%Z j OB, (ri);(f_(ri,rj)é’BKS (rj)d31fid3rj—%Zj5mlf5mld3rd3r'
i vV, L,

]

* How to turn this into a reasonable Heisenberg model-like form?
* We may ask for the softest mode producing the given 6M,

e Then we need to calculate ° and 7 in a complete basis, use matrix inversion to obtain
X}, find its lowest eigenvalue

* This is likely a good approach to calculate the spin wave spectrum (as long as the
adiabatic approximation is valid)



Rigid spin approximation

Drastic simplification: assume that when M, are rotated, the total
B, rotate rigidly with them:

6By (r)=B., (r)de,, om, =M Se,

Then for i #j in second-order

52E :—5e -oe, '[JB )X, (Z, J) ( )d3rd3

\ _
—

—J..
ij
Easy to implement in KKR or LMTO (very popular)

|
Jij — 4—Im j Tr At 1TTAl‘ 1T¢ dz Liechtenstein et al., 1984

How come we have J ~ y, while we are supposed to have J~ y ~1?



Long-wave or rigid spin approximation

To generate a large-angle rotation:

— Constraining fields are of order Weiss field J,M, where J, = Z J i
— Exchange-correlation field of order /M (exchange splitting)  /

Therefore _ gp! o g
Yo = B —T1+J=1|1+= close to diagonal
OM]. 1
~ 1~ 1 A o_ L _o\!

Or, in g-space at small g (“long-wave approximation)
' (4)- 4" (0)= 15" (0) 2 (0)- 2 (a) | 25" (0)

Generally valid for small g (long-wavelength magnons)
At high g it is invalid in strongly itinerant metals (e.g. Ni)
Antropov, 2003; Bruno, 2003

Non-adiabatic effects (damping of higher-q spin waves, longitudinal
spin fluctuations; no consistent treatment available)



Spin spirals

* Finite rotations - alternative to linear response

— Mapping to a Heisenberg model (plus higher-order terms) possible
e Small deviations from ground state require large supercells
e Solution: Spin spirals

Using “twisted” boundary conditions, total energies of such spirals are
accessible without increasing the unit cell size beyond that at q = 0.



Global magnetization rotation

Let’s drop spin-orbit coupling from the Hamiltonian

Then, H does not contain spin operators, and the wavefunctions
look like ¥(r,0,)=x(0,)e(r)

1 1

The total spin operator effects a global rotation of the spin
wavefunction, preserves its permutation symmetry

Hence, the total spin operator applied to an eigenstate from the
Fock space produces a degenerate eigenstate within the Fock space

This is preserved in DFT (xc functional is invariant under rotation of
the magnetization density)

How does this help us map the energies of noncollinear spin
configurations?



Generalized Bloch theorem

One can attach an operator rotating m(r) (denote it D,) to any space
group operator g, and then all gD, commute with H

Generalized translation group:
— Select a common rotation axis (usually chosen as the z axis)
— Attach D, to all translations 7, with ¢ = qR, i.e. redefine Ty — Dz Ty
— The generalized translation group is Abelian (and commutes with H)
Generalized Bloch theorem follows:

— We can find all wavefunctions as eigenstates of generalized translations
with a given q, and thereby a state with M(r) invariant under them

These are spin spirals; ground states under a constraint

In general constraining fields are needed
(otherwise such eigenstates generally do not exist!)



(1)
(2)
(3)

Magnetic symmetry

Magnetic space (or point) group can contain regular symmetry
operations plus their combinations with time reversal R

R is in the group — non magnetic or AFM (for point groups)

R does not appear at all

Index-2 subgroup H of a regular space group G:
Magnetic point group is formed as M = H + Rg;H
2 cosets — one without R (includes E), another one with R

Magnetic symmetry is not implemented in FLEUR
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Non-collinear magnetism in FLEUR

“Hybrid approach” T T A F T
— General m(r) outside the MT spheres @ /f,f, j, dj//, Lj f,
— Collinear m(r) = m(r) e, inside the MT spheres ;’//; X /;,; 7 ;@;

Augmentation orbitals in MT’s: /dj e /@ s
— Local frame with spin quantization axis along e, |7,/ 7= /7. ;f@f
— V,.is diagonal in this frame (B,_ Il e)) [ [ ]

— Orbitals ¢, (r) =, (1Y, and ¢, (r)Y,, in each MT
Interstitial region: | 0

— Plane waves ¢'**¢ ( ] and ' [ j in the global frame
Basis function: 0 :

— Plane wave augmented by a linear combination of ¢, (r) with both
spins; both W and 0W/0r matched at the MT boundary

Hamiltonian matrix off-diagonal; both spins mix

Spin density matrix Pup = Z an W VB )

veocc

Magnetization m(r) in MT’s projected onto e; collinear B, (r) in MT



Non-collinear magnetism in FLEUR: Options

Constraining fields

— Effective field B_.(r) =B, (r) + B., in MT approximated as collinear

— B_ adjusted to enforce the local moment directions specified by user
Relaxation of the spin configuration

— User defines initial local moment directions (not local minimum of E)

— Output spin density used to find the transverse components of M.

— Spin directions are rotated (mixing specified by user)

— Repeated until self-consistent directions e; are found (minimum of E)
If neither B,'s nor relaxation is used, self-consistency is incomplete
(except for special symmetric configurations), and energy is wrong
Spin spirals

— Spin rotation around the z axis (user must align rotation axis with z)

— User specifies the spiral q-vector

— B_/s not implemented (thus not self-consistent except for a planar spiral)
Calculation of Heisenberg model parameters

— Automated calculation through spin spirals with many q’s

— “Force theorem” is used (not self-consistent)

— Results are valid only if the rigid spin approximation is valid



Practical issues for magnetic insulators

LSDA is always bad (small band gap or wrong ground state)
LSDA+U often reasonable, but needs to be validated

Exchange is sensitive to U and J parameters! ir T
0 M 'I'{."uh'w N
~ AT
U Jy Js I3 Jy Js §1 . , Ibrm i
25 309 219  -060 183 492 g of e
Example: Cr,O; 30 239 173 -126 236 372 E h
35 186 138 -174 272 284 g -2
| . 2p i
40 146 11 211 -296 216 of oo cesn [
45 11 904 241 301 164 2
4

Energy (eV)

U needs to be either carefully calculated (difficult) or adjusted to
experimental data (band gap, structure, etc.)

Manipulate the band positions to explore mechanisms of exchange

V o A ++++ ++— +—+
Cr,0O;: Shifting the O-p states down i P - m ”
has little effect on exchange parameters, _, ;. ﬁ; 115 102 %
hence superexchange is ruled out 12 25 5.6 154 128 74
-4 35 7.9 102 80 51
24 215 77 145 110 71

Shi, Wysocki, KB, 2009




Ferropnictides (itinerant metals)

New family of high-temperature superconductors, T, up to 60 K
Magnetism competes with superconductivity
Pairing likely mediated by spin fluctuations

A
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Chemical substitution (normalized)



Energy (meV)

Energy {meV)

Heisenberg model fails! What is missing?

® Measured spectrum
I r |
200+ T T

Cur model
= = = Jiy= Jy, model

100

LI ]
QLE :
1.0 1.5 2.0 15 1.0
(H0 10 () {0,003 (rlw)

200

100

o  o0s 10 15 20
(L K1) rhu)

Zhao et al., Nature Physics 2009

Spin waves need [, # [, to fit
First-principles LR calculations confirm this

Heisenberg model gives a continuously
degenerate ground state; contradicts first-
principles calculations

Thin domain walls are observed

wu 19

Chuang et al., Science 2010



spin wave frequency (meV)

The solution: Biquadratic interaction

H:ZJijSi'Sj +Ki(si°sj)2

i<j i
. . . ~ —1 azH 2
Reinterpretation of linear response results: J, =—(S,-S, )" S5 =J, —2K,S%, -e,
Explains dependence of J; on local moment
Restores energy barrier between stripe domains e e |
) 200+ P T —— Ourmodel
Parameters from spin waves: J;-K-]J,-J_ model S it

Energy (meV)

[GRR R (AATH] O, 0,0 (rlud

Energy[(meV)

T T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

o] ‘ 0‘.5 ‘ 1b ' 15 ' 20
HOO 0KO (LK rlud



Thermodynamics of the J,-K-J,-J. model

0.8 |

Monte Carlo results

<
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T. for CaFe,As,: 90 K predicted

170 K experiment

May indicate that the (bare) local moment is
higher than (renormalized) measured
* Consistent, satisfactory model of magnetism

e Large K indicates strong electron-spin
fluctuation coupling: pairing mechanism?
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Nematic phase?

Wysocki, KB, Antropov, arXiv:1011.1715



Warnings

Heisenberg model sometimes fails (sometimes miserably)
Why classical spins? There is no good justification

Thermodynamic properties of itinerant metals are inaccessible to
current techniques

“Good agreement with experiment” often coincidental
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