
Open Vivado through the start menu or desktop shortcut created during
the installation process.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/launch-vivado/open-vivado.png?id=programmable-

logic%3Aguides%3Agetting-started-with-ipi)

Open a terminal, and change directory (cd) to a folder where log files for
your Vivado session can be placed, then run the following commands:

source <install_path>/Vivado/<version>/settings64.sh

vivado

(https://digilent.com/reference/_detail/vivado/getting_started/linux_start_vivado.p

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

This guide will work you through the process of setting up a project in Vivado and Vitis. A simple hardware design including a processor with several
AXI GPIO () peripherals connected to buttons and LEDs will be created. This design will then be exported to the Vitis IDE, and a baremetal software
project will be created and run which polls the buttons and writes to the LEDs.

Note: Screenshots presented in this guide may not have been taken with your version of the tools. The workflow presented here has been verified in Vivado and Vitis 2020.1.

A Digilent FPGA Development Board
USB Programming cables, USB UART cables, and Power Supply, as required by the board.

Vivado and Vitis installations
See Installing Vivado, Vitis, and Digilent Board Files (https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-vitis) for
instructions on how to install these tools.
You also need the board files for your board. This guide is intended for use with the board files available from Digilent's vivado-library
repo on Github. You can get these files using the process described in the Installing Vivado, Vitis, and Digilent Board Files
(https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-vitis) guide. These files will also be available through the
Vivado application itself in versions 2022.1 and newer.

Note: If you are using a version of Vivado that includes Xilinx SDK (2019.1 or older), check out Getting Started with Vivado IP Integrator and Xilinx SDK
(https://digilent.com/reference/vivado/getting-started-with-ipi/2018.2).

Select the dropdown corresponding to your operating system, below.

Windows

Linux

Getting Started with Vivado and Vitis for
Baremetal Software Projects

Overview

Inventory

Guide
Launch Vivado

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/launch-vivado/open-vivado.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/vivado/getting_started/linux_start_vivado.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-vitis
https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-vitis
https://digilent.com/reference/vivado/getting-started-with-ipi/2018.2


In Vivado's welcome screen, several options are presented:

Create Project: Opens a wizard used to begin creating a Vivado
project from scratch, which will be used here.
Open Project: Can be used to open a Vivado project (defined by
an XPR file) that has been previously created or downloaded
from the internet.
Open Hardware Manager: Can be used to program an FPGA
development board with a bitstream, without opening the
associated project.

Note: Various other options are available, but are not described here.

For the purposes of this guide, click the Create Project button.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-vivado-project/create_project.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The first page of the New Project wizard summarizes the steps involved
in creating a project. Click Next.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-vivado-project/new-project-1.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The first step is to set the name for the project. Vivado will use this name
when generating its folder structure.

Important: Do NOT use spaces in the project name or location path. This will
cause problems with Vivado. Instead use an underscore, a dash, or CamelCase
(https://en.wikipedia.org/wiki/CamelCase).

Pick a memorable location in your filesystem to place the project.

Checking the Create project subdirectory box will create a new folder
in the chosen location to store the project's files. This is recommended.

Click Next to continue.

Create a Vivado Project



https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-vivado-project/create_project.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-vivado-project/new-project-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://en.wikipedia.org/wiki/CamelCase
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-vivado-project/new-project-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-vivado-project/new-project-2.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

At the Select Project Type screen, choose RTL Project and check the
Do not specify sources at this time box. Advanced users may want to use the
other options on this screen, but they will not be covered here.

Click Next to continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-vivado-project/new-project-3.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, a part or a board must be chosen for the project to target. The
project will only be usable with the chosen device (though the selection
can later be changed through the project's Settings).

Selecting a board over a part is recommended, as the board files provide
additional configuration information for a variety of peripherals and
components in a design. Click the Board button to open the board tab.

Search for your board and select it from the list.

Important: If your board does not appear in the list, Digilent's board files have not
been installed. Review Installing Vivado, Vitis, and Digilent Board Files
(https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-vitis) for
instructions on installation of these files.

Click Next to continue.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-vivado-project/new-project-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-vivado-project/new-project-3.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-vitis
jfalkinburg2
Highlight
Name your project Lecture_18 or similar.



(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-vivado-project/new-project-4.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The last screen of the New Project wizard summarizes what was chosen
in the previous screens. Click Finish to open your project.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-vivado-project/new-project-5.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Click the Create Block Design button in the IP Integrator dropdown of
Vivado's Flow Navigator pane. A block design provides a visual
representation of your hardware design, and can be used to easily
connect and configure IP cores.

Create a Block Design

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-vivado-project/new-project-4.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-vivado-project/new-project-5.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Select the Nexys Video board



(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-block-design/create-block-design-1.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the dialog that pops up, give your block design a name (or use the
default “design_1”).

Important: Do NOT use spaces in the block design name. Instead use an
underscore, a dash, or CamelCase (https://en.wikipedia.org/wiki/CamelCase).

The other two fields should be left as defaults. Directory can be used to
place the block design's source files outside of the project directory, and
Specify source set can be used to create block designs that are not part of
the normal Design Sources, which are used to build the project.

Click OK to continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-block-design/create-block-design-2.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

First, an external clock should be added to the block design, so that it
can be used to generate any other clocks required by the design. Open
the Board tab, and find the system clock. Right-click on it and select
Connect Board Component.

The process of adding a processor to your design is very different depending on the processor used. The Microblaze dropdown should be selected only if using a board that does not
have a Zynq or Zynq UltraScale+ device.

Add a Microblaze Processor to a Block Design
The Microblaze soft-core processor IP can be used to instantiate a processor within your FPGA design. This processor can be very useful for
controlling and configuring hardware components. This section discusses how you can add a Microblaze processor and several useful components,
including UART for standard output and DDR memory support, to your block design.

Note: This section is intended for use with boards without a Zynq chip. For Zynq boards, the Zynq7 Processing System should be used instead.

Note: If you aren't sure whether your board has DDR memory, check the Memory column of the specification table on this site's Programmable Logic
(https://digilent.com/reference/programmable-logic/start) page.

Follow the steps in this dropdown for boards without DDR memory



Add a Processor to a Block Design

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-block-design/create-block-design-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://en.wikipedia.org/wiki/CamelCase
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-block-design/create-block-design-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/programmable-logic/start
jfalkinburg2
Highlight
Skip to page 10 since we have DDR Memory



(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-1.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the Connect Board Component dialog, select the CLK_IN1 of a new
Clocking Wizard IP. This will add a clocking wizard to the design, which
can be used to easily configure the board's MMCMs and PLLs to
generate any required clocks. Click OK to continue.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-2.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, an external reset port should be added to the design that can be
used to reset the entire system. Click the Run Connection Automation
button in the green Designer Assistance toolbar.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-3.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-3.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the Run Connection Automation dialog, in the list on the left side of the
dialog, make sure that the Clocking Wizard's reset box is checked. The
Select Board Part Interface dropdown lists any options for resets that are
specified in your board's board files. For most boards, only one option
will be available. Click OK to continue.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-4.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Note: Depending on the polarity of the reset button (active high or active low), a
Utility Vector Logic IP may be inserted between the reset port and the Clocking
Wizard. This is used to ensure that the active high reset pin of the IP is provided
with the correct polarity of reset signal, and that the design will not be held in reset
while the reset button is not pressed.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-5.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Your design will require at least one clock from the clocking wizard. If
your design requires more clocks, then they must be added through the
Clocking Wizard.

Double click on the Clocking Wizard IP core to edit its settings.
Navigate to the Output Clocks tab. Additional clocks are added to the
Clocking Wizard by checking a box in the Output Clock column, and
specifying a Requested Output Frequency. Additionally, if desired, the ports
can be named according to their intended purpose.

If your design requires additional clocks (such as for an ext_spi_clock
pin), they should be added now.

Click OK to confirm your changes to the Clocking Wizard's settings.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-3.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-4.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-5.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


If you aren't sure that you have all of the clocks you need, don't worry,
you can always come back and add them by reconfiguring this IP. This
task can be performed whenever in the design process it becomes
necessary.

(https://digilent.com/reference/_detail/reference/programmable-

logic/guides/microblaze-8.png?id=programmable-logic%3Aguides%3Agetting-

started-with-ipi)

Next, use the Add IP button ( ) to add the MicroBlaze IP to the

design. The block that is added represents the core of the Microblaze
processor.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-12.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, block automation will be run so that additional supporting
infrastructure can be added to the design. Click Run Block Automation
in the green Designer Assistance bar.

Note: The screenshot to the right is not representative for a design not using DDR,
as these designs will not contain a MIG IP core.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-13.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/reference/programmable-logic/guides/microblaze-8.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-12.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-13.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


In the Run Block Automation dialog, several settings can be specified for
how the Microblaze IP will be connected to the rest of the design:

Local Memory specifies how much block RAM () memory will
be dedicated to the processor. DDR-less designs require more
memory, and the amount of memory necessary depends heavily
on the size of the software application being run. 32KB is enough
for many small applications.
Cache Configuration can help the speed of designs using DDR
memory. It should be enabled when using DDR and disabled
otherwise.
Debug Module allows you to specify the capabilities of the
debugger. The default Debug Only option is recommended.
Peripheral AXI Port enables or disables the AXI master
interface of the processor. It must be enabled to allow the
processor to be connected to hardware peripherals.
Interrupt Controller specifies whether the processor can be
interrupted by its peripherals. Whether or not it needs to be
enabled depends on your design requirements. If any IP that you
intend to connect to the processor must have interrupts to
function correctly, the box must be checked.
Clock Connection specifies the processor's clock. Designs using
DDR should use the MIG's ui_clk pin, while designs without
DDR should use the Clocking Wizards clk_out1 pin.

Note: Settings not present in this list are out of the scope of this guide, and can
safely be left as their default.

Confirm that the settings meet your design requirements. It should be
noted that while it is possible to change these settings manually later (for
example, by manually adding an AXI INTC IP and connecting it to the
processor), the easiest way to do so will be to clear the Microblaze
processor out of your block design and restart the process of adding the
processor. This is to say, the settings chosen here are important. Getting
them right the first time will save you time in the long run.

Click OK to continue.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-14.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, in order for the software design to be able to print to a serial
console on a host computer, a UART peripheral must be connected.
Find the USB UART interface in the Board tab, right click on it, and
select Connect Board Component.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-18.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-14.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-18.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


In the dialog that pops up, select a new AXI Uartlite IP's UART
interface, and click OK to add the block to the diagram.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-19.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

To connect all remaining AXI cores that have not yet been connected to
the processor, click the Run Connection Automation button in the
green Designer Assistance bar. Check the All Automation box in the list on
the left side of the window to select all of the remaining AXI cores. The
dropdown settings available for each core can safely be left as their
default values. Click OK to automatically connect them to the processor.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-20.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Follow the steps in this dropdown for boards with DDR memory
When creating a design with DDR, it's best to add the DDR interface first, as it is typically also used to generate the clock or clocks that will be used by
the rest of your design.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-19.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-20.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Start here for boards with DDR Memory



In the Board tab, right click on the DDR interface and select “Auto
Connect”. This process will add a MIG and the external DDR interface
to the design. Two clock pins are also created, which will need to be
modified.

(https://digilent.com/reference/_detail/programmable-logic/guides/auto-
connect-ddr.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Delete the “clk_ref_i” pin. This can be accomplished either by right-
clicking on the pin and selecting delete or by selecting and pressing the
delete key.

(https://digilent.com/reference/_detail/programmable-logic/guides/delete-clk-

ref.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Verify that the “ui_addn_clk_0” pin has a frequency near 200 MHz () by
selecting it and looking at the “Frequency” value in the “Block Pin
Properties” pane.

(https://digilent.com/reference/_detail/programmable-logic/guides/check-ui-
addn-clk-properties.png?id=programmable-logic%3Aguides%3Agetting-started-

with-ipi)

https://digilent.com/reference/_detail/programmable-logic/guides/auto-connect-ddr.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/delete-clk-ref.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/check-ui-addn-clk-properties.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
No need to delete the "clk_ref_i" pin...it doesn't exist on the Nexys Video.

jfalkinburg2
Highlight
Pin doesn't exist.  Mig_7 may have it's own internal connection to a 200 MHz clock?



Download and extract digilent-xdc-master.zip
(https://digilent.com/reference/lib/exe/fetch.php?

tok=a49a20&media=https%3A%2F%2Fgithub.com%2FDigilent%2Fdigilent-
xdc%2Farchive%2Fmaster.zip). This file includes all of the latest template
XDC files released for Digilent's boards, which are available on Github
in the digilent-xdc (https://github.com/Digilent/digilent-xdc) repository.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/extracted-xdc-folder.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Returning to Vivado, click the Add Sources button in the Project Manager
section of the Flow Navigator pane. This will launch a dialog that you can
use to add a variety of types of source files to the project (or create new
ones).

Manually connect the “ui_addn_clk_0” pin to the “clk_ref_i” pin by
clicking and dragging from one to the other.

(https://digilent.com/reference/_detail/programmable-logic/guides/create-clk-

loopback.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

It's important to note that the “sys_clk_i” pin will not be constrained by the board files, and you will need to add a constraint file to map it to the
corresponding pin location on the FPGA.

If your project doesn't contain the master Xilinx Design Constraint (XDC) file for your board, the dropdown below details how to add it. This file
contains the constraints that your board places on designs using it - specific interfaces wired up to specific pins, clock frequencies, and FPGA bank
voltages, for some examples. Click the dropdown below for a walkthrough of how to add this file to your project.

Add a Master XDC File to a Vivado Project



https://digilent.com/reference/lib/exe/fetch.php?tok=a49a20&media=https%3A%2F%2Fgithub.com%2FDigilent%2Fdigilent-xdc%2Farchive%2Fmaster.zip
https://github.com/Digilent/digilent-xdc
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/extracted-xdc-folder.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/create-clk-loopback.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Can't connect this...?

jfalkinburg2
Highlight
Can get this on the course website as well.



(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/add-sources.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

On the first screen, select Add or create constraints. Click Next to continue.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/add-constraints.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the next screen, make sure that the constraint set specified (the one
that the master XDC will be added to) is set to constrs_1, and that it is the
active set. Click the Add Files button.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/add-files.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-sources.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-constraints.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-files.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


In the dialog that pops up, navigate to the folder that the digilent-xdc-
master.zip file was extracted into. Highlight the XDC file for your board,
then click OK to continue.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/find-xdc.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Back in the Add Sources dialog, make sure that your chosen constraint file
appears in the table. Also, make sure that the Copy constraint files into project
box is checked. If this box is unchecked, the file will be linked by your
project, and any modifications made within the project will affect the
version you downloaded. Since you may need to use this file again in
other projects, copying the constraint file is recommended, so that you
can always work from a fresh copy.

Click Finish to add the constraint file to your project.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/import-constraint-file.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Once added, the XDC file will appear in the Sources tab (in the same pane
as the Board tab). Double click it to open the file.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/open-constraint.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/find-xdc.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/import-constraint-file.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/open-constraint.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


Find the set_property and create_clock constraints for your board's 100
MHz () input clock, uncomment them by removing the #  at the start of
each line, and change the name of the port that they are constraining to
sys_clk_i , to match the name of the port in the block design.

If your board has multiple clocks, the 100 MHz () one can be determined
by observing that the create_clock constraint specifies a 10.000  ns
period, as seen in the screenshot to the right.

Make sure to save your changes.

(https://digilent.com/reference/_detail/programmable-logic/guides/change-

port-name.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, the MIG's reset pin will be connected to the board's reset button.
Click “Run Connection Automation” in the green bar at the top of the
window.

(https://digilent.com/reference/_detail/programmable-logic/guides/run-reset-

automation.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the list to the left side of the dialog that pops up, make sure that the
“sys_rst” box is checked. Click OK to connect the reset to the
corresponding board part interface.

(https://digilent.com/reference/_detail/programmable-logic/guides/run-reset-

automation-wizard.png?id=programmable-logic%3Aguides%3Agetting-started-

with-ipi)

The MIG block may have other ports which will need to be connected to ensure that it works correctly. This section discusses each of those ports.

Open this dropdown if your MIG has a "device_temp_i" port

https://digilent.com/reference/_detail/programmable-logic/guides/change-port-name.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/run-reset-automation.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/run-reset-automation-wizard.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Not necessary. The clock on the Nexys Video is 100 MHz

jfalkinburg2
Highlight
Shouldn't have one. Skip to next page.



If your MIG block has a “device_temp_i” port, it means that the MIG is
not using the chip's XADC analog-to-digital converter feature. We'll
ground this port to prevent any warnings that it may throw. Add a
“Constant” IP to the design.

(https://digilent.com/reference/_detail/programmable-logic/guides/add-

const.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Double click on the block to open it's
configuration wizard and modify it to
have a Value of “0” and a Width of “12”.

(https://digilent.com/reference/_detail/programmable-logic/guides/configure-const.png?id=programmable-

logic%3Aguides%3Agetting-started-with-ipi)

Connect its output port to the “device_temp_i” port on the MIG.

(https://digilent.com/reference/_detail/programmable-logic/guides/connect-

const-to-temp.png?id=programmable-logic%3Aguides%3Agetting-started-with-

ipi)

If your design requires more clocks than just the ui_clk provided by the MIG, you will need to add a clocking wizard IP that is driven by the MIG's
ui_clk.

https://digilent.com/reference/_detail/programmable-logic/guides/add-const.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/configure-const.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/connect-const-to-temp.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Add a clocking wizard with a 100 MHz clock for the MicroBlaze later.

jfalkinburg2
Sticky Note
If you right click on the reset input it is active low and should be named reset_n.  Make sure your clocking wizard is set for active low reset if directly connected to system reset line.  The 




Use the Add IP button to search for and add a Clocking Wizard to the
design.

(https://digilent.com/reference/_detail/programmable-logic/guides/add-

clocking-wizard-ip.png?id=programmable-logic%3Aguides%3Agetting-started-

with-ipi)

Manually connect the Clocking Wizard's clk_in1 and reset ports to the
MIG's ui_clk and ui_clk_sync_rst ports, respectively.

(https://digilent.com/reference/_detail/programmable-logic/guides/connect-

wizard.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Finally, double-click on the Clocking Wizard to open and configure it.
The third tab, Output Clocks contains all of the settings required to specify
how many clocks you need, and of what frequencies. The screenshot to
the right shows the wizard configured to create a 100 MHz () clk_out1
and a 50 MHz () clk_out2.

If your design requires additional clocks (such as for an ext_spi_clock
pin), they should be added here.

(https://digilent.com/reference/_detail/programmable-logic/guides/configure-

clocks.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/programmable-logic/guides/add-clocking-wizard-ip.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/connect-wizard.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/configure-clocks.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Sticky Note
clk_out2 will need to be 200 MHz for the Mig 7

jfalkinburg2
Highlight
Since we don't have this we need to create a 200 MHz clk_out2 on our clk_wiz_0 to connect to the sys_clk_i on the Mig_7.  The sys_clk_i should be connected to the clk_in1 on the clk_wiz_0



Next, use the Add IP button ( ) to add the MicroBlaze IP to the

design. The block that is added represents the core of the Microblaze
processor.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-12.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, block automation will be run so that additional supporting
infrastructure can be added to the design. Click Run Block Automation
in the green Designer Assistance bar.

Note: The screenshot to the right is not representative for a design not using DDR,
as these designs will not contain a MIG IP core.

Note: If you aren't sure that you have all of the clocks you need, don't worry, you can always come back and add them by reconfiguring this IP. This task can be performed
whenever in the design process it becomes necessary.

At the end of this process, the block design will look something like this:

(https://digilent.com/reference/_detail/programmable-logic/guides/connect-

wizard.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-12.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/connect-wizard.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-13.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the Run Block Automation dialog, several settings can be specified for
how the Microblaze IP will be connected to the rest of the design:

Local Memory specifies how much block RAM () memory will
be dedicated to the processor. DDR-less designs require more
memory, and the amount of memory necessary depends heavily
on the size of the software application being run. 32KB is enough
for many small applications.
Cache Configuration can help the speed of designs using DDR
memory. It should be enabled when using DDR, and disabled
otherwise.
Debug Module allows you to specify the capabilities of the
debugger. The default Debug Only option is recommended.
Peripheral AXI Port enables or disables the AXI master
interface of the processor. It must be enabled to allow the
processor to be connected to hardware peripherals.
Interrupt Controller specifies whether the processor can be
interrupted by its peripherals. Whether or not it needs to be
enabled depends on your design requirements. If any IP that you
intend to connect to the processor must have interrupts to
function correctly, the box must be checked.
Clock Connection specifies the processor's clock. Designs using
DDR should use the MIG's ui_clk pin, while designs without
DDR should use the Clocking Wizards clk_out1 pin.

Note: Settings not present in this list are out of the scope of this guide, and can
safely be left as their default.

Confirm that the settings meet your design requirements. It should be
noted that while it is possible to change these settings manually later (for
example, by manually adding an AXI INTC IP and connecting it to the
processor), the easiest way to do so will be to clear the Microblaze
processor out of your block design and restart the process of adding the
processor. This is to say, the settings chosen here are important. Getting
them right the first time will save you time in the long run.

Important! When working with multiple clocks in a design (as happens
to always be the case when working with the MIG) it is important to
verify that you are picking the correct Clock Connection from the

(https://digilent.com/reference/_detail/programmable-logic/guides/block-

automation.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-13.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/block-automation.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Go ahead and add the interrupt controller.



dropdown. In the screenshot to the right, the 100 MHz () clk_out1 from
a clocking wizard is chosen. You may instead wish to run your design off
of ui_clk itself. Do not select the system clock input to the MIG.

Click OK to continue.

Next, in order for the software design to be able to print to a serial
console on a host computer, a UART peripheral must be connected.
Find the USB UART interface in the Board tab, right click on it, and
select Connect Board Component.

Next, the MIG's AXI interface must be connected to Microblaze's cache ports, in order to allow data to move back and forth between processor and
DDR memory.

To connect the MIG's AXI interface to the processor, click the Run
Connection Automation button in the green banner at the top of the
block design.

(https://digilent.com/reference/_detail/programmable-logic/guides/run-

connection-automation.png?id=programmable-logic%3Aguides%3Agetting-

started-with-ipi)

In the dialog that pops up, you will be presented with several options for
interfaces that can be connected to other interfaces. Both the
Microblaze's IC and DC ports, as well as the MIG's AXI port will appear.
You should only run connection automation for one side of the
connection - the S_AXI port, as shown in the screenshot to the right.
Make sure that its box is checked. Check that the Master interface is set to
“/microblaze_0 (Cached)”, indicating that the microblaze local memory
will act as a cache for the DDR memory, then click OK to make the
connections.

(https://digilent.com/reference/_detail/programmable-

logic/guides/connection-automation.png?id=programmable-

logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/programmable-logic/guides/run-connection-automation.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/programmable-logic/guides/connection-automation.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Make sure you do not connect the IC and DC ports!!!



(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-18.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the dialog that pops up, select a new AXI Uartlite IP's UART
interface, and click OK to add the block to the diagram.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-19.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

To connect all remaining AXI cores that have not yet been connected to
the processor, click the Run Connection Automation button in the
green Designer Assistance bar. Check the All Automation box in the list on
the left side of the window to select all of the remaining AXI cores. The
dropdown settings available for each core can safely be left as their
default values. Click OK to automatically connect them to the processor.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-18.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-19.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-20.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-microblaze-processor/microblaze-20.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the pop up, search for and double click on ZYNQ7 Processing
System.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-zynq-processor/add-zynq.png?id=programmable-

logic%3Aguides%3Agetting-started-with-ipi)

Click Run Block Automation in the Design Assistance banner (the
green bar).

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-zynq-processor/run-block-automation-1.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Add a Zynq Processor to a Block Design
The Zynq7 Processing System IP represents the non-FPGA components of a Zynq chip, referred to as the Processing System, or PS. It must be used in a block design that wants
to connect anything to the processor, and to configure PS-side peripherals, clocks, and other settings.

Note: This section only applies to boards with a 7-series Zynq chip.

In the block diagram pane's toolbar, click the Add IP button ( ).

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-microblaze-processor/microblaze-20.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-zynq-processor/add-zynq.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-zynq-processor/run-block-automation-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Skip to page 27 to "Add GPIO Peripherals to a Block Design"



In the dialog that pops up, leave all settings as defaults. Apply Board Preset
should be checked.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-zynq-processor/run-block-automation-2.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The Zynq PS can generate multiple clocks that are then provided to the
FPGA fabric. These clocks are referred to as FCLKs, and can be found
in the Clock Configuration tab of the Zynq PS configuration wizard.
They are located under the PL Fabric Clocks dropdown. They can be
enabled (or disabled) with a checkbox, the hardware used to drive the
clock can be changed, and the frequency can be modified.

All board files for Digilent Zynq boards enable a single Zynq PL clock
by default, which is intended to be used with peripherals connected to
the Zynq's M_AXI_GP0 port.

Some designs may require additional clocks of specific frequencies be
added to your design. In these cases, enable a second clock and specify
the needed frequency, as seen in the image to the right.

Note: This section can always be returned to later, as the addition of an additional
clock can be performed any time before the hardware is built.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-zynq-processor/add-additional-clock.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Zynq devices can also use interrupts generated in FPGA fabric to trigger
interrupts within the Processing System. Interrupt-related settings can be
changed within the configuration wizard's interrupts tab. These
interrupts typically use the IRQ_F2P port, which can be found under the
Fabric Interrupts → IRQ_F2P dropdown. To enable this port, both the
Fabric Interrupts and IRQ_F2P ports must be enabled.

The needs of your project may require that you change some of the default settings of the Zynq PS. To edit its settings, double click on it to open the
configuration wizard.

Two specific cases are highlighted below:

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-zynq-processor/run-block-automation-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-zynq-processor/add-additional-clock.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-zynq-processor/add-zynq-interrupt.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

While interrupts can be directly connected to the IRQ_F2P port (by
clicking and dragging from one port to another), some designs may
require multiple interrupt sources. In these cases, add a Concat IP to
your block design, and manually connect it to the IRQ_F2P port.
Additional input ports can be added to a Concat block through its
configuration wizard (opened by double clicking on the IP).

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-zynq-processor/add-zynq-interrupt-concat.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the pop up, search for and double click on Zynq UltraScale+
MPSoC.

Add a Zynq UltraScale+ Processor to a Block Design
The Zynq UltraScale+ MPSoC IP represents the non-FPGA components of a Zynq UltraScale chip, referred to as the Processing System, or PS. It must be used in a block
design that wants to connect anything to the processor, and to configure PS-side peripherals, clocks, and other settings.

Note: This section only applies to boards with a Zynq UltraScale+ chip.

In the block diagram pane's toolbar, click the Add IP button ( ).

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-zynq-processor/add-zynq-interrupt.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-zynq-processor/add-zynq-interrupt-concat.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-ultrascale-zynq-processor/add-zynq-ultra.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Click Run Block Automation in the Design Assistance banner (the
green bar).

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-ultrascale-zynq-processor/run-block-automation-

1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the dialog that pops up make sure Apply Board Preset is checked. This
will apply the preset configuration from the board files to the IP, which
saves a lot of time and prevents potential issues with doing the
configuration entirely manually. Click OK to continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-ultrascale-zynq-processor/run-block-automation-

2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-ultrascale-zynq-processor/add-zynq-ultra.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-ultrascale-zynq-processor/run-block-automation-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-ultrascale-zynq-processor/run-block-automation-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


The PS can generate multiple clocks that are then provided to the FPGA
fabric. These clocks are referred to as PL clocks, and can be found in the
Clock Configuration tab of the MPSoC configuration wizard. They are
located under the Low Power Domain Clocks → PL Fabric Clocks
dropdowns. They can be enabled (or disabled) with a checkbox, the
hardware source used to drive the clock can be changed, and the
frequency can be modified.

Board files for Digilent Zynq UltraScale boards enable at least one low
power domain PL clock by default, which is intended to be used with
peripherals connected to the MPSoC's M_AXI_HPM0_LPD port.

Some designs may require additional clocks of specific frequencies be
added to your design. In these cases, enable a second clock and specify
the needed frequency, as seen in the image to the right.

Note: This section can always be returned to later, as the addition of an additional
clock can be performed any time before the hardware is built.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-ultrascale-zynq-processor/add-additional-clock.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

UltraScale devices can also use interrupts generated in FPGA fabric to
trigger interrupts within the Processing System. Interrupt-related settings
can be changed within the configuration wizard's PS-PL Configuration
tab. These interrupts can use the IRQ0 port, which can be found under
the General → Interrupts → PL to PS dropdowns. To enable this port, the
IRQ0 dropdown should be set to “1”.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-ultrascale-zynq-processor/add-interrupt.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

While interrupts can be directly connected to the pl_ps_irq0 (IRQ0) port
by clicking and dragging from one port to another, some designs may
require multiple interrupt sources. In these cases, add a Concat IP to
your block design, and manually connect it to the pl_ps_irq0 port.
Additional input ports can be added to a Concat block through its
configuration wizard (opened by double clicking on the IP).

The needs of your project may require that you change some of the default settings of the PS. To edit its settings, double click on it to open the
configuration wizard.

Two specific cases are highlighted below:

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-ultrascale-zynq-processor/add-additional-clock.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-ultrascale-zynq-processor/add-interrupt.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-ultrascale-zynq-processor/add-interrupt-concat.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Interfaces for Digilent boards supported by the board files can be found
in the Board tab. For the purposes of this guide, find the GPIO () section
of the list, right click on an LED () interface, and select the Connect
Board Interface option.

Note: If your board does not have single-color LEDs, you can use it's RGB LEDs
instead. Note that these interfaces have three pins for each LED (), for the R, G,
and B components.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/add-ip-from-board.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the dialog that pops up, choose the “GPIO ()” interface (not GPIO2)
of a new AXI GPIO () IP.

Some boards use one of their user buttons as reset sources. In these
cases, make sure to choose the Component mode that does not include the
reset button.

Click OK to continue. This will add the IP to your design, and connect it
to an external port, which will not require any further work to constrain.

This section covers the steps involved in adding a GPIO () peripheral to a block design. While an AXI GPIO () IP is used, other IPs and interfaces can potentially be added to
your design in the same ways. Two methods are presented here, one for each of the two AXI GPIO () peripherals that will be connected. The first takes advantage of board files to
automatically generate constraints, the second presents how an IP interface can be connected to chosen pins manually.

Add GPIO Peripherals to a Block Design

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-ultrascale-zynq-processor/add-interrupt-concat.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-ip-from-board.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Add GPIO Peripherals to Block Design if you want.  We will do it in Lecture 18, but not after.



(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/connect-board-
component.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, select the axi_gpio_0 block. The Block Properties pane to the left of
the Diagram and below the Board tab will allow you to view some
information about the block, and modify it in some ways, without
running through its customization wizard. For now, just change its name
to “AXI_GPIO ()_LED ()” by typing in the Name field. Pressing enter or
clicking out of the text box confirms the change. Using memorable
names in your block design makes it easier to remember which IP does
what when you are later writing software in Vitis.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/rename-ip.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, a second AXI GPIO () IP will be manually added to the block
diagram, and manually constrained with an XDC file. Click the Add IP
button ( ) and search for “AXI GPIO ()”. Double click on the only
result to add the second AXI GPIO () block to the design. Once added,
rename this IP “AXI_GPIO ()_BUTTONS”

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/add-ip.png?id=programmable-
logic%3Aguides%3Agetting-started-with-ipi)

Select the AXI_GPIO ()_BUTTONS IP's GPIO () interface by clicking
on the text “GPIO ()”, right click on the highlighted text, and select
Make External. This option creates a new external interface port that

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/connect-board-component.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/rename-ip.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-ip.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Forget about the buttons for now...skip to page 33 and run connection automation on the LEDs.



does not rely on the board files. Because the board files are not used
here, a Xilinx Design Constraint (XDC) file must be added to the project
to tell Vivado which FPGA pins to connect the interface to.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/make-external.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Download and extract digilent-xdc-master.zip
(https://digilent.com/reference/lib/exe/fetch.php?
tok=a49a20&media=https%3A%2F%2Fgithub.com%2FDigilent%2Fdigilent-

xdc%2Farchive%2Fmaster.zip). This file includes all of the latest template
XDC files released for Digilent's boards, which are available on Github
in the digilent-xdc (https://github.com/Digilent/digilent-xdc) repository.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/extracted-xdc-folder.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Returning to Vivado, click the Add Sources button in the Project Manager
section of the Flow Navigator pane. This will launch a dialog that you can
use to add a variety of types of source files to the project (or create new
ones).

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/add-sources.png?

If your project doesn't contain the master Xilinx Design Constraint (XDC) file for your board, the dropdown below details how to add it. This file
contains the constraints that your board places on designs using it - specific interfaces wired up to specific pins, clock frequencies, and FPGA bank
voltages, for some examples. Click the dropdown below for a walkthrough of how to add this file to your project.

Add a Master XDC File to a Vivado Project



https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/make-external.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/lib/exe/fetch.php?tok=a49a20&media=https%3A%2F%2Fgithub.com%2FDigilent%2Fdigilent-xdc%2Farchive%2Fmaster.zip
https://github.com/Digilent/digilent-xdc
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/extracted-xdc-folder.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-sources.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

On the first screen, select Add or create constraints. Click Next to continue.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/add-constraints.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the next screen, make sure that the constraint set specified (the one
that the master XDC will be added to) is set to constrs_1, and that it is the
active set. Click the Add Files button.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/add-files.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the dialog that pops up, navigate to the folder that the digilent-xdc-
master.zip file was extracted into. Highlight the XDC file for your board,
then click OK to continue.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-sources.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-constraints.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/add-files.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/find-xdc.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Back in the Add Sources dialog, make sure that your chosen constraint file
appears in the table. Also, make sure that the Copy constraint files into project
box is checked. If this box is unchecked, the file will be linked by your
project, and any modifications made within the project will affect the
version you downloaded. Since you may need to use this file again in
other projects, copying the constraint file is recommended, so that you
can always work from a fresh copy.

Click Finish to add the constraint file to your project.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/import-constraint-file.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Once added, the XDC file will appear in the Sources tab (in the same pane
as the Board tab). Double click it to open the file.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/add-gpio-to-block-design/open-constraint.png?

id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/find-xdc.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/import-constraint-file.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/open-constraint.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


Master XDC files for Digilent boards contain pin constraints for I/O
interfaces the board offers. These constraints are sorted by interface.
Scroll down until you see constraints for the user buttons. These
constraints typically are for a bus port named “btn”. Un-comment the
button constraints by removing the single leading '#' character in each
line corresponding to the buttons, as seen in the screenshot to the right.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/uncomment-constraints.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, the names of the block design's GPIO () port for the buttons must
be determined, so that the buttons can be properly constrained. Reopen
the Diagram tab, and select the GPIO ()_0 external port that is connected
to the AXI_GPIO ()_BUTTONS block. Change the name of the
external interface to “btn” in the Properties pane.

The AXI GPIO () IP automatically uses tri-state buffers for the pins its
interfaces are connected to. The individual I, O, and T buses can be seen
when expanding the interface through the plus button ( ) next to the
interface name on the IP block. As can be seen, the individual ports that
make up the interface are named <interface>_tri_i, <interface>_tri_o,
and <interface>_tri_t. When constrained to tristate buffers, the bus that
is connected to FPGA ports is named <interface>_tri_io.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/view-interface-ports.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

With this knowledge, return to the XDC file, and change the name of
the button bus that is constrained. Specifically, change the text after the
“get_ports” call on each line of the button interface to “btn_tri_io[#]”,
where # is a decimal number, counting up from zero. When finished,
save the file.

With the constraints for the port finished, the AXI GPIO () must be
manually configured. In particular, the width of the GPIO () interface
must match the number of buttons available on the board. Take note of
how many buttons are constrained in the XDC.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/change-port-name-
constraints.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Return to the Diagram tab, and double click on the AXI_GPIO
()_BUTTONS block. This will open a dialog that will allow you to
configure the IP's settings. Switch to the configuration wizard's IP
Configuration tab.

Only one setting need be changed for the purposes of this guide. Enter
the number of buttons you constrained into the GPIO () interface's
GPIO () Width field. When finished, click OK to save your changes.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/uncomment-constraints.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/view-interface-ports.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/change-port-name-constraints.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/change-gpio-width.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Finally, the two AXI GPIO () IP blocks need to be connected to the
processor in your design. Click the Run Connection Automation
button in the green Designer Assistance bar.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/run-connection-
automation.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the dialog that pops up, make sure that the boxes for the S_AXI
interfaces for both of the AXI GPIO () IPs are checked. Click OK to
run connection automation and connect the AXI GPIO () blocks to
your processor.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/change-gpio-width.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/run-connection-automation.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Run Connection Automation on the LEDs



(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/add-gpio-to-block-design/run-connection-automation-
dialog.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the unlikely event that Vivado fails to correctly assign addresses to
each AXI IP connected to your processor, you may need to manually set
their addresses. If this occurs, errors will pop up during validation of the
block design, and the bitstream will not be able to be generated.

The Address Editor can be accessed through its tab in the Diagram pane.
Addresses can be assigned to unmapped peripherals by typing the
desired address into the peripheral's Master Base Address column.

It should be noted that addresses must be aligned in the memory space -
for instance, an address with a range of 4K (bytes) takes up a range of
0x1000 addresses, and must have three trailing zeros. Address ranges for
different segments cannot overlap.

Assigning an segment to address 0 may result in assertions in some
software drivers and should be avoided.

After manually assigning addresses, the block design should be re-
validated. (https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/address-editor/edit-address.png?id=programmable-
logic%3Aguides%3Agetting-started-with-ipi)

Before the Vivado project can be built, the block design must be
validated. This step runs an automatic check of the block design to see if
there are any potential issues with it. Click the Validate Design button (

 (https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/validate-block-design/validate-button.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)) in the
Diagram pane's toolbar (or press the F6 key).

If the design has issues, a dialog will pop up that lists them. It should be
noted that most Warnings can be ignored, as can some Critical Warnings.
These issues can also be viewed in the Messages tab of the pane at the
bottom of the window.

If there are no issues, a dialog will pop up that will tell you so. Click OK
to continue.

Edit the Address Map

Validate a Block Design

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/add-gpio-to-block-design/run-connection-automation-dialog.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/address-editor/edit-address.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/validate-block-design/validate-button.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Shouldn't need to adjust the addresses, but you can verify the base address of the LEDs @ 0x4000_0000 and UART_Lite @0x4060_0000.

jfalkinburg2
Highlight
Validate the Block Design



Note: Some Zynq boards may produce critical warnings at this stage relating to
PCW_UIPARAM_DDR_DQS_TO_CLK_DELAY parameters. These
warnings are ignorable and will not affect the functionality of the project. See the
Hardware Errata section of your board's reference manual for more information.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/validate-block-design/validate-design.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Additionally, an HDL wrapper must be created for the block design.
This process translates the block design into a source file that can be
read by the Vivado tools, and is used to build the actual design.

Open the Sources pane and locate the block design file (.bd) under the
Design Sources dropdown. Right click on it and select Create HDL
Wrapper.

In the dialog that pops up, you can decide whether to let Vivado edit the
wrapper file itself. Let Vivado manage wrapper and auto-update is
recommended, as a user rarely needs to manually edit the wrapper file.
Click OK to continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/validate-block-design/create-hdl-wrapper.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

At this point, the Vivado Project is ready to be built, by running it
through Synthesis and Implementation, and finally generating a
bitstream. Click the Generate Bitstream button in the Program and Debug
section of the Flow Navigator pane at the left side of the window.

Create an HDL Wrapper

Build a Vivado Project

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/validate-block-design/validate-design.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/validate-block-design/create-hdl-wrapper.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/generate-bitstream/generate-bitstream-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight

jfalkinburg2
Highlight
Generate Bitstream



(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/generate-bitstream/generate-bitstream-1.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

A dialog will pop up with several options for how Synthesis and
Implementation should be run. Most should be left as defaults. Of
particular importance is the Number of jobs dropdown, which is used to
specify how much of the resources of your computer should be
dedicated to the build. A larger number of jobs will dedicate more
resources, which will allow the build to be completed faster. It is
recommended to choose the highest available number.

Note: Critical warnings about how IPs included within another IP were packaged
with a different board value can be safely ignored. The same is true for warnings
related to negative CK-to-DQS delays seen on some Zynq boards.

Depending on the complexity of the design, the board used, and the
strength of your computer, the process of building the project can take
between 5 and 60 minutes.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/generate-bitstream/generate-bitstream-2.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

When complete, a dialog will pop up that presents several options for
what to do next:

Open Implemented Design can be used to view the actual hardware
design that has been implemented and will be placed onto the
chip.
View Reports can be used to view additional information about the
design, including how much of the resources of the FPGA will be
used by the design.
Open Hardware Manager can be used to go directly to Vivado's
Hardware Manager, which can be used to program a hardware
design onto a board. This is typically used for designs that do not
involve a software component.
Generate Memory Configuration File can be used to create a file for
programming an FPGA-only design into flash memory.

If none of these options are desired, click Cancel to continue. (https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/generate-bitstream/generate-bitstream-3.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

To export the hardware design, click Export → Export Hardware in
the File menu.

Once the project has been built, the design must be exported from Vivado so that Vitis has access to information about the hardware that a software
application is being developed for. This includes the set of IP connected to the processor, their drivers, their addresses, and more. Exporting hardware
after the bitstream has been generated allows you to program your board directly from within Vitis.

Export a Fixed Post-Synthesis Hardware Platform

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/generate-bitstream/generate-bitstream-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/generate-bitstream/generate-bitstream-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/generate-bitstream/generate-bitstream-3.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Export Hardware.



(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/export-fixed-hardware/export-hardware.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The wizard that pops up guides you through the options available for
hardware export. The first screen allows you to select a Fixed or
Expandable platform. In this case, choose a Fixed platform and click
Next to continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/export-fixed-hardware/export-hardware-fixed-1.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The Output screen allows you to select whether only the hardware
specification (Pre-synthesis) should be exported, or whether the bitstream
should be included. Since the bitstream has already been generated, it
should be included in the platform so that Vitis can automatically figure
out where it is when programming a board. Select Include bitstream and
click Next to continue.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/export-fixed-hardware/export-hardware.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/export-fixed-hardware/export-hardware-fixed-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/export-fixed-hardware/export-hardware-fixed-2.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The Files screen gives you the option to choose a name for the Xilinx
Shell Architecture (XSA) file, and provide a path to a folder that the file
will be placed within. Give your XSA file a name, and choose a
memorable location to place it in. This file will later be imported into
Vitis, so take a note of where it is placed and what it is called.

Important: Do not use spaces in the file name or export path. Underscores or 
camelCase (https://en.wikipedia.org/wiki/Camel_case) are recommended instead.

Click Next to continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/export-fixed-hardware/export-hardware-fixed-3.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The final screen of the wizard summarizes the options you selected.
Click Finish.



https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/export-fixed-hardware/export-hardware-fixed-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://en.wikipedia.org/wiki/Camel_case
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/export-fixed-hardware/export-hardware-fixed-3.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/export-fixed-hardware/export-hardware-fixed-4.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Open Vitis through the start menu or desktop shortcut created during
the installation process.

(https://digilent.com/reference/_detail/learn/programmable-

logic/tutorials/2020.1/launch-vitis/windows.png?id=programmable-

logic%3Aguides%3Agetting-started-with-ipi)

Upon launching Vitis, a dialog will appear where a workspace must be
chosen. The workspace is the directory where all of the projects and files
for the application being developed will live. If a folder that does not
currently exist is chosen, it will be created. Choose a workspace and click
Launch to finish launching Vitis.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/launch-vitis/open-vitis-2.png?id=programmable-
logic%3Aguides%3Agetting-started-with-ipi)

Select the dropdown corresponding to your operating system, below.

Windows

Linux
Open a terminal and run the following commands. The install path is /opt/Xilinx by default.

source <install_path>/Vitis/2020.1/settings64.sh

vitis

Note: Regardless of OS (), if Vivado is open, Vitis can also be launched through the Tools → Launch Vitis toolbar option.

Launch Vitis

Create a New Application Project

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/export-fixed-hardware/export-hardware-fixed-4.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/launch-vitis/windows.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/launch-vitis/open-vitis-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Launch Vitis

jfalkinburg2
Highlight
Select your workspace directory as the sim folder in your current project folder (e.g., Lecture_18.sim).




On Vitis' welcome screen, click Create Application Project. The
wizard that launches will be used to create and configure a new
application.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-application-project/vitis-new-application-project-
1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The first screen of the wizard is a welcome page, which summarizes
what each of the components of a software design are. Click Next to
continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-application-project/vitis-new-app-summary.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, the platform that the application targets must be created. Open
the Create a new platform… tab.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-application-project/vitis-new-app-1.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

With Vitis open, an application project must be created to hold your source files. In creating an application project, a hardware platform will also be
created from an XSA file previously exported from Vivado.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-application-project-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-app-summary.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-app-1.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


Browse your file system to find the Xilinx Shell Architecture previously
exported from Vivado. With the XSA file highlighted, click Open to
select it and return to the Platform screen of the wizard.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-application-project/vitis-new-app-2.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Once you have found the XSA file and opened it, make sure that it is
selected in the Hardware Specification list. Give your platform a name (the
default uses whatever the name of the XSA file is and will work fine).
The Generate boot components box can be used to automatically build all of
the additional components necessary to boot the application from flash
memory or an SD card. Leaving this box checked is recommended. Click
Next to continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-application-project/vitis-new-app-4.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

The next screen is used to set some options for the application project
and the system project. The names of both projects can be set, as well as
which processor core will be used to run the application. All settings can
be left as defaults. Click Next to continue.

Note: A system project can contain multiple application projects, which can all be
run at once.

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-app-2.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-app-4.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-app-5.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-application-project/vitis-new-app-5.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Next, the domain that the application project operates in will be defined.
In this case all default settings will be used. Click Next to continue.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-application-project/vitis-new-app-6.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Lastly, a template project will be chosen. Each template pre-configures
the application project for a different purpose. Depending on the
whether your application will be written in C or C++, choose Empty
Application or Empty Application (C++). You will be adding an
example main source file later, as opposed to working from and editing
an example.

Click Finish to finish creating the project.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-application-project/vitis-new-app-7.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In Vitis' Explorer pane, find the application projects “src” directory. Right
click on it and select New → File.

An application needs source files to define its behavior. This step will show how to create a new source file for the application, and provide some example code.

Create a Main C Source to Control AXI GPIO Peripherals

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-app-5.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-app-6.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-application-project/vitis-new-app-7.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
jfalkinburg2
Highlight
Choose Hello World if you want to use the sample code from course website.  Hello World creates the platform.c and platform.h files needed.

jfalkinburg2
Highlight
Rename the helloworld.c to Lec_18.c. and copy Lec18_v2.c code from course website.




(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-blinky-software-example/software-new-source-
file.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

In the dialog that pops up, name the file “main.c”. The parent folder can
be specified as well, but through the use of the right click in the previous
step, the correct folder has already been chosen.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/create-blinky-software-example/name-source-file.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

Copy and paste the code to the right into the empty main.c file that has
now been opened. Change the BTN_MASK and LED ()_MASK macros
so that they contain a number of '1's equal to the number of buttons and
leds connected to the GPIO () peripherals in the hardware design.

Header Files - Additional Information

https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-blinky-software-example/software-new-source-file.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/create-blinky-software-example/name-source-file.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


This code pulls in several headers that are automatically pulled into the
Vitis workspace:

xparameters.h is a file generated during the process of exporting a
platform from Vivado. It includes information on the hardware design,
including addresses and some configuration parameters for AXI IPs.
This is used by the example code to find the device IDs that must be
passed to the GPIO () drivers, so that they can look up the driver
configuration required to correctly initialize the GPIO () devices.

xil_printf.h gives access to the xil_printf function, which can be used to
print to standard output, and requires less memory space than the stdio
library.

xgpio.h gives access to the XGpio drivers, which are used to provide a
standard API () for controlling AXI GPIO () peripherals. Several
functions from this API () are used in the example, including the GPIO
() reads, writes, and direction-setting calls.

xil_types.h contains a variety of different C types. In this case, it is only
used to get access to the “u32” (unsigned 32-bit int) type, which is used
in arguments to XGpio function calls.

What the Example Code Does

When the example is started, the message “Entered function main” is
printed to a connected serial console. After that, the AXI GPIO () IPs
and drivers are initialized, and the application constantly loops, checking
whether any button is pressed, and if they are, setting the LEDs high.
When no buttons are pressed, the LEDs are held low.

#include "xparameters.h"

#include "xil_printf.h"

#include "xgpio.h"

#include "xil_types.h"

 

// Get device IDs from xparameters.h

#define BTN_ID XPAR_AXI_GPIO_BUTTONS_DEVICE_ID

#define LED_ID XPAR_AXI_GPIO_LED_DEVICE_ID

#define BTN_CHANNEL 1

#define LED_CHANNEL 1

#define BTN_MASK 0b1111

#define LED_MASK 0b1111

 

int main() {

	 XGpio_Config *cfg_ptr;

	 XGpio led_device, btn_device;

	 u32 data;

 

	 xil_printf("Entered function main\r\n");

 

	 // Initialize LED Device

	 cfg_ptr = XGpio_LookupConfig(LED_ID);

	 XGpio_CfgInitialize(&led_device, cfg_ptr, cfg_ptr
 

	 // Initialize Button Device

	 cfg_ptr = XGpio_LookupConfig(BTN_ID);

	 XGpio_CfgInitialize(&btn_device, cfg_ptr, cfg_ptr
 

	 // Set Button Tristate

	 XGpio_SetDataDirection(&btn_device, BTN_CHANNEL, 
 

	 // Set Led Tristate

	 XGpio_SetDataDirection(&led_device, LED_CHANNEL, 
 

	 while (1) {

	 	 data = XGpio_DiscreteRead(&btn_device, BT
	 	 data &= BTN_MASK;

	 	 if (data != 0) {

	 	 	 data = LED_MASK;

	 	 } else {

	 	 	 data = 0;

	 	 }

	 	 XGpio_DiscreteWrite(&led_device, LED_CHAN
	 }

}

Once an application project has been set up and includes all necessary
sources, it should be built. To build the project and all of its
dependencies, select the system project in the Assistant pane, and either
click the Build button ( ), or press Ctrl-B on your keyboard.

Note: There are three types of build targets in the Assistant pane, Platforms,
Systems, and Applications. Building the application will not trigger any other
applications in the system to be built, but will build the wrapper as a dependency.
Building the platform will only build the platform, as it has no dependencies. Building
the system causes each application in the system, as well as the platform, to be built.

This process may take several minutes to complete. When done, the
Console tab at the bottom of the window will display a “Build Finished”
message.

Build a Vitis Application

jfalkinburg2
Highlight
Build Application



(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/build-software/build-system.png?id=programmable-
logic%3Aguides%3Agetting-started-with-ipi)

First, many applications require that a serial console is connected to the
board, so that standard output (from print statements) can be viewed.
For this purpose, a serial terminal should be used. Use a serial terminal
application to connect to the board's serial port. Unless otherwise stated,
Zynq designs use a baud rate of 115200 and Microblaze designs with an
AXI UART Lite IP use a baud rate of 9600.

Note: While Vitis has a built in serial terminal included in its Debug view, it sends
characters to a board on a line-by-line basis. Some software examples require the use
of character-by-character reception of data. Tera Term
(https://ttssh2.osdn.jp/index.html.en) or PuTTY
(https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html) are recommended if
you are not sure what will work.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/launch-vitis-application/set-baud.png?id=programmable-
logic%3Aguides%3Agetting-started-with-ipi)

In the Explorer pane at the left side of the screen, right click on the
application or system project that is to be run, and select Run as → 1
Launch on Hardware (Single Application Debug). The FPGA will be
programmed with the bitstream, the ELF file created by the software
build is loaded into system memory, and the application project will
begin to run. You will need to click back over to the Vitis Serial Terminal
from the Console tab.

Note: Once the project has been run at least once, you can use the green run button (
) in the toolbar at the top of the screen to program the board instead.

(https://digilent.com/reference/_detail/learn/programmable-
logic/tutorials/2020.1/launch-vitis-application/launch-on-hardware.png?
id=programmable-logic%3Aguides%3Agetting-started-with-ipi)

It's time to program the application project onto your board! Plug your board into your computer through its USB programming and USB UART
port/s, connect an external power supply (if necessary), and turn on the board.

Launch a Vitis Baremetal Software Application




https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/build-software/build-system.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://ttssh2.osdn.jp/index.html.en
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/launch-vitis-application/set-baud.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi
https://digilent.com/reference/_detail/learn/programmable-logic/tutorials/2020.1/launch-vitis-application/launch-on-hardware.png?id=programmable-logic%3Aguides%3Agetting-started-with-ipi


At this point, your application is running, and printed messages can be seen. Congratulations, you have finished this guide!!!

The hardware project and application created here can be used as a basis for future work. See instructions found in Update an Existing Vitis Platform's
Hardware Specification (https://digilent.com/reference/programmable-logic/guides/vitis-update-hardware-specification) for additional information on how the
hardware design can be switched out later.

For more guides and demos for your board, return to the device's resource center, linked from the Programmable Logic
(https://digilent.com/reference/programmable-logic/start) page of this wiki.

For technical support, please visit the FPGA (https://forum.digilentinc.com/forum/4-fpga/) section of the Digilent Forums.

Next Steps



About Us (https://digilent.com/company/#about-digilent)
FAQs (https://digilent.com/company/#faqs)
Shipping & Returns (https://digilent.com/shipping-returns/)
Jobs (https://digilent.com/company/#jobs)
Legal & Privacy (https://digilent.com/legal-privacy/)

Company (https://digilent.com/company/)

Blog (https://digilent.com/blog/)
Newsletter (https://digilent.com/news/#newsletter)
Events (https://digilent.com/news/#events)

News (https://digilent.com/news/)

List of Distributors (https://digilent.com/affiliations/#distributors)
Technology Partners (https://digilent.com/affiliations/#partners)

Affiliations (https://digilent.com/affiliations/)

Get the latest updates on new products and upcoming sales

Your email address

Submit

Subscribe to our newsletter

Support Channels (https://digilent.com/support/#channels)

Digilent

1300 NE Henley Ct. Suite 3

Pullman, WA 99163

United States of America

Contact Us


(http://twitter.com/DigilentInc)

(http://facebook.com/Digilent)

(https://www.youtube.com/user/DigilentInc)

(https://github.com/digilent)

(https://instagram.com/digilentinc)

(https://www.linkedin.com/company/1454013)

(https://www.flickr.com/photos/127815101@N07)

https://digilent.com/reference/programmable-logic/guides/vitis-update-hardware-specification
https://digilent.com/reference/programmable-logic/start
https://forum.digilentinc.com/forum/4-fpga/
https://digilent.com/company/#about-digilent
https://digilent.com/company/#faqs
https://digilent.com/shipping-returns/
https://digilent.com/company/#jobs
https://digilent.com/legal-privacy/
https://digilent.com/company/
https://digilent.com/blog/
https://digilent.com/news/#newsletter
https://digilent.com/news/#events
https://digilent.com/news/
https://digilent.com/affiliations/#distributors
https://digilent.com/affiliations/#partners
https://digilent.com/affiliations/
https://digilent.com/support/#channels
http://twitter.com/DigilentInc
http://facebook.com/Digilent
https://www.youtube.com/user/DigilentInc
https://github.com/digilent
https://instagram.com/digilentinc
https://www.linkedin.com/company/1454013
https://www.flickr.com/photos/127815101@N07



