Project 1 - "Robot Motion"

Project 1 Grading

Name: _____

ltem	Grade	Points	Out of	Initials /Date	Due
Bitbucket Repo	On-Time: Late: 1Day 2Days 3Days 4+Days Zero Check Minus Check Check Plus		5		EOC 7 Mar
	 Go to www.Bitbucket.org and create a code repository named "YourLastName_CSCE_236". Make sure you make it private and share with "jfalkinburg". 				
Checkpoint 1	On-Time: Late: 1Day 2Days 3Days 4+Days Zero Check Minus Check Check Plus		5		EOC 7 Mar
Robot Assembly	- All robot parts are assembled and connected. Especially the motors, L298N, Arduino, and Power. Create a schematic of your robot parts and how you will be interfacing with you motors.				
Required Functionality	On-Time: Late: 1Day 2Days 3Days 4+Days Zero Check Minus Check Check Plus		30		EOC 12 Mar
Robot Motion	- Demonstrate movement forward, backward, a small (< 45 degree) turn left and right, and a large (> 45 degree) turn left and right. The robot should perform these movements sequentially, completely disconnected from a computer (i.e. no USB cord)?				
B Functionality	On-Time: Late: 1Day 2Days 3Days 4+Days Zero Check Minus Check Check Plus		10		EOC 14 Mar
Wall Following	 Demonstrate that your robot can follow a wall for 20 feet (i.e. staying within a foot of the wall without touching it) using your ultrasonic sensor. 				
A Functionality	On-Time: Late: 1Day 2Days 3Days 4+Days Zero Check Minus Check Check Plus		10		EOC 26 Mar
Library Files	 Create standalone library files that includes a header and implementation file and upload them to Bitbucket. You can call them motors.h (header) and motors.c/motors.cpp (implementation). Create a README.md or help file to show how to use library. 				
Code Style and Git Use	On-Time: Late: 1Day 2Days 3Days 4+Days Zero Check Minus Check Check Plus		10		EOC 26 Mar
	 Effectively commits code often and with effective commit messages Code contains headers, good comments, and good coding practices 				
Lab Report	On-Time: Late: 1Day 2Days 3Days 4+Days Zero Check Minus Check Check Plus		25		BOC 26 Mar
	- See project report template				
Competition Bonus	- Demonstrate that your robot can follow a wall for 20 feet with an obstacle (i.e. staying within a foot of the wall without touching it). Using your ultrasonic sensor and servo to avoid an obstacle against the wall.				
Total			100		