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ABSTRACT

SOFTWARE-DEFINED OPTICAL COMMUNICATION AND IMAGE

PROCESSING FOR UNDERWATER ROBOT SWARMS

Clifford Oppong Boakye-Mensah
Norfolk State University, 2022

Advisor: Dr. Hongzhi Guo

Underwater Wireless Communications have facilitated huge progress in the field

of oceanography. Due to the nature of the underwater environment, the employ-

ment of unmanned vehicles (robots) has become highly popular, usually requiring

highly reliable communication networks in order to facilitate real-time high-quality

image processing and video streaming. While Underwater Optical Communica-

tion Systems have the potential to assist in these tasks, they are also accompanied

by prominent challenges. Problems arising from the underwater communication

channel, robot trajectory control and scheduling, and reliability of the optical com-

munication link threaten to neutralize the high-bandwidth, low-latency nature of

underwater optical communication. In this thesis, a high performance remotely

operated vehicle is assembled and deployed for exploration. An object detection

model is also implemented to process the videos obtained from the ROV. A low-

cost, software-defined, optical communication system is proposed to tackle the

challenges mentioned above. A test-bed is set up and configured to ensure the

reliability of the communication link. Adaptive algorithms based on the charac-

teristics of the underwater communication channel are proposed to control robot

trajectory. Results from various simulations show that highly accurate object de-

tection models can be implemented and deployed. Experiment results also show

that a highly reliable yet low-cost communication system can be configured. The

proposed distributed algorithm can also reliably obtain optimal trajectories and lo-

cations for underwater robots without knowing global environmental information.
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1 INTRODUCTION

1.1 Background

The vast nature of the oceans mean that there are limitless research opportunities

in oceanography. Aside commercial purposes, the exploration of the underwater

environment has borne improvements in areas such as climate change monitoring,

marine species migration patterns, monitoring of marine litter and other targets,

and the exploration of deep-sea wreckage. Surveillance applications such as the

aforementioned have increased the need and demand for swarm robotics and high-

speed image processing and data communication. (Guo and Boakye-Mensah, 2022).

Generally, the exploration of extreme environments, especially the underwater

environment, has seen significant improvement which can be attributed largely to

two main factors.

Firstly, the introduction of AUVs has made the exploration of harsher regions in

the underwater environment more feasible. Explorations such as the one in (Bing-

ham et al., 2010) off the shores of Greece in 2005 to explore deep-sea wreckage, and

by the Japan Agency for Marine Earth Science and Technology (JAMSTEC) in 2018

to find marine litter have all extensively employed AUVs.

That aside, wireless communication technologies, by virtue of the elimination

of wired connections and the improved mobility and range of operation they pro-

vide, have helped the implementation of swarm robotics in underwater environ-

ments. These technologies have vastly improved the quality and reach of industrial,

military, and surveillance exploration in the underwater environment (Saeed et al.,

2019).

Existing wireless communication technologies include Underwater Acoustic and
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RF Communication Systems. Acoustic communication, which is extensively em-

ployed in underwater communication, enables the implementation of long-range

communication over several kilometers. However, systems based on underwater

acoustic communication suffer from high propagation delays, and communication

is affected when environmental factors such as temperature, multipath fading, pres-

sure, and water salinity also change. Another huge challenge these systems face is

the inability to provide a high data rate due to the limited bandwidth. The data

rates possible with such systems generally lie on the order of several kilobits per

second (Akyildiz, Wang, and Sun, 2015).

RF communication on the other hand provides relatively higher data transmis-

sion and is more tolerant to changes in the underwater environment itself. How-

ever, these systems are accompanied by bulky, costly, and often high energy-consuming

transceivers in order to facilitate reliable communication (Zeng et al., 2016). Also,

despite the fact that RF systems demonstrate smaller propagation delay at lower fre-

quencies, the communication range and data rate cannot satisfy high-quality video

transmission (Guo, Sun, and Wang, 2021; Guo, Sun, and Wang, 2017). This makes

it only suitable for moderately data-rate-intensive communication over shorter dis-

tances. Another point worth noting is that RF signals experience very high attenu-

ation losses as the frequency increases (Kaushal and Kaddoum, 2016).

Among the available technologies, wireless optical communication (visible light

communication) has demonstrated the potential to provide the best performance.

Some optical systems have been know to obtain several Gbps data rates (Lu et al.,

2016a; Sun et al., 2020) within several tens of meters. As the distance increases,

wireless optical communication can achieve a rates of 5Mbps at distances of about

200 m (Johnson, Green, and Leeson, 2013). Nevertheless, the communication range

is still limited to allow direct peer-to-peer communication from deep underwater

to the water surface. This presents a challenge which this work will seek to ad-

dress by employing a relay network which will extend the communication range,

as illustrated in Fig. 1.1. Such a relay network, as shall be illustrated in subsequent
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Robots

Target Target

Camera

Laser Signal

FIGURE 1.1: Illustration of the underwater multi-hop robotic network.
A swarm of multiple robots cooperatively search for underwater tar-
gets. Once a target is identified, robots form a multi-hop network us-
ing optical communication to relay real-time data to terrestrial/surface

communication networks.

chapters require scheduling and control algorithms in order to maintain an orga-

nized and reliable communication system.

There are other challenges that are faced during VLC, most notable the spatial-

temporal dynamics which affect the transmitted signal (Saeed et al., 2019; John-

son, Green, and Leeson, 2013).Despite these challenges communication under these

conditions have proven to be feasible. The attenuation of light lies around around

0.39dB/m in ocean water (Kaushal and Kaddoum, 2016). Under such situations,

reliable, power-efficient optical communication systems can be implemented.

However, existing underwater communication research are mainly based on

theoretical analysis. A few testbeds have been developed using high-cost equip-

ment that cannot be easily installed on sensors or robots. In order for such systems

to be fully exploited on a large scale, it is expedient to have low-cost implementa-

tions that can still provide reliable communication.

Another technology that has been applied to improve oceanography applica-

tions is Deep Learning. Areas such as target detection and monitoring, and image

enhancement have found extensive use for Deep Learning, specifically Computer

Vision.
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Considering the different motivations discussed, the aim of this thesis is to present

a robot-based system which incorporates a target detection model into the AUVs

and communicates over a relay network using a low-cost VLC system. The contri-

butions of this system include:

• The assembly and deployment of two underwater robots for high-speed video

streaming and data gathering in the underwater environment.

• The implementation of a Deep Learning based object detection model to sup-

port the identification of specific targets under water.

• The design of a distributed trajectory design algorithm for underwater robots

to form a relay network, which can route data from deep underwater to water

surfaces.

• The usage of a low-power low-cost laser diode to facilitate visible light com-

munication over air/water media along with a low-cost Silicon Photo Multi-

plier (SiPM) as the receiver.

1.2 Research Challenges

1.2.1 Visible Light Communication

Visible light communication in the underwater environment is generally challeng-

ing due to the following reasons:

• Spatial-Temporal Dynamics: The underwater wireless optical channel expe-

riences spatial-temporal dynamics due to the turbulence and chlorophyll con-

centration variations under water (Saeed et al., 2019) (Johnson, Green, and

Leeson, 2013). This has implications at the various layers of communication.

One major effect of these dynamics is that they result in a depth-dependent

attenuation. This has the potential to affect not only the power levels of the
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received signal but also the integrity of the bits transmitted. This makes it

expedient to attain a profile of the attenuation and its variation in order to

facilitate reliable communication.

Again, these dynamics generate problems when it comes to scheduling and

localization of swarm robots. The instability of the wireless link between any

two robots due to turbulence-induced fading leads to high levels of random-

ness during communication especially with the level of received power. In

scenarios where the optimal localization of the robots depend on the received

power, this randomness may mislead the robot to move to a sub-optimal lo-

cation.

• Environmental Information: As mentioned earlier, the wireless optical chan-

nel is affected by the environmental factors such as chlorophyll concentra-

tion variation and turbulence. Information about these environmental factors

however, is not always available. The underwater environment can be classi-

fied into different types based on the concentration of chlorophyll (Johnson,

Green, and Leeson, 2013). This makes it impractical for robots to first identify

the exact water-type and conditions and then design their trajectory accord-

ingly.

• Control Algorithms: Robots are generally widely spread in the underwater

environment during swarming for the purposes of efficiently monitoring a

specific target or phenomenon. It is challenging to use centralized control

algorithms to plan the trajectory of all the robots, mainly because such algo-

rithms require collecting information from each robot. This leads to excessive

delay in robot control and high resource consumption.

1.2.2 Object Detection

The use of AUVs in the monitoring and detection of targets in the underwater en-

vironment is challenging due to the following reasons:
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• Image Distortion: Changes in the light and turbidity conditions in the under-

water environment increases the difficulty of vision in such environments (Lu

et al., 2016b). This makes the monitoring of targets and objects very difficult.

That aside, the light absorption and scattering characteristics of the environ-

ments generally means that images that will be obtained in the environment

will be low-contrast, blurry and have much of the colors degraded hence leav-

ing a hued representation of the actual image (Islam, Xia, and Sattar, 2020).

• Target Distortion: Over time, many objects to be identified within the under-

water environment go through a lot of changes. These objects already are of

various shapes colors and sizes. The huge challenge that arises is that all these

different objects are to be identified regardless of these variables (Fulton et al.,

2019).

There have been several studies which have addressed and approached the

above challenges from different perspectives.
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2 RELATED WORK

2.1 Related Works

2.1.1 Visible Light Communication and Robotic Networks

There have been numerous bodies of work aimed at exploring the feasibility of visi-

ble light communication not only in the underwater environment, but also through

the air-water media boundary. In (Carver et al., 2020a) a bi-directional air-water

communication system is presented. The aim of the system is to implement a

high-bandwidth communication link that is reliable after traversing the air/water

boundary. Two transceiver nodes are placed on either side of the boundary, with

one on land and the other one underwater. The modulator circuit comprises an

Field-Programmable Gate Array (FPGA), an Arduino Due, voltage converters and

a laser diode driver. These collectively work to generate a signal which is used to

modulate the light. The system employs OPPM as the modulation scheme. The

laser diode is interfaced with a MEMS mirror, triplet lens and a fisheye lens in or-

der to steer the light over a wider angle to address the spatial-temporal dynamics

mentioned earlier. That aside, ultrasonic sensors are used to predict the depth and

nature of the underwater medium in order to correctly steer the light in the direction

of the receiver. Both the transmitter and the receiver are interfaced with an optical

filter to mitigate the influence of ambient light on the communication link. The pro-

cedure yields an average throughput of 5.04 Mbps with BERs on the order of 0.01.

The study in (Chen et al., 2017) covers air-water communication using both red

laser and blue-green laser. While the red laser provides bit rates less than 110 kbps

over 1 m, the 520 nm blue-green laser provides up to 5.5 Gbps data rates over a

5 m air channel and 21 m water channel. This work uses Quadrature Amplitude

Modulation (QAM) and Orthogonal Frequency Division Multiplexing (OFDM) to
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modulate a pseudo-random sequence and steps are taken to mitigate inter-symbol

interference (ISI). At the receiver end, an Avalanche Photo Diode (APD) is inter-

faced with a lens as the front-end. A mixed signal oscilloscope is used to sample

the signal after which the signal is transmitted to a computer to be demodulated.

There have also been works aimed at improving the relay and trajectory control

methods in robotic networks. The topology employed to define the relay network

in this thesis is a 1-Dimensional (1D) topology. The 1D relay scheduling problem

has been studied in (Chattopadhyay et al., 2016). The study employs a theoretical

knowledge of the wireless channel to deploy relay nodes on-the-go along a given

path. The study also proves that, given an adequate number of nodes along the

said path, the path loss effects of the wireless channel could be circumvented. A

study exploring a distributed network connectivity-preserving trajectory control al-

gorithm for swarm robotics has been proposed in (Zavlanos, Ribeiro, and Pappas,

2012). In order to plan robots’ motion to maximize the throughput and maintain

network connectivity, the study considers the terrestrial wireless channel in tandem

with the communication rates available.

2.1.2 Image Processing

In (Islam, Xia, and Sattar, 2020), a generative adversarial network (GAN) is de-

signed to provide real-time enhancement to the images taken during underwater

exploration. The study makes use of two different datasets; one dataset contains a

collection of distorted images and the other contains enhanced versions of the im-

ages in the first dataset. The GAN is trained to learn a mapping from the distorted

images to the enhanced images by using an encoder-decoder network. The study

in (Fulton et al., 2019) investigates the implementation of different object detection

architectures towards the real-time identification/detection of plastic litter in the

underwater environment. The YOLOv2, Tiny-YOLO, Faster R-CNN and Single Shot
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Detection (SSD) architectures are compared in terms of detection ability and pro-

cessing times. The YOLO architectures were found to have lower processing times;

however their detection performances were generally inferior to the Faster R-CNN

and SSD models.



10

3 ROBOT ASSEMBLY AND DEPLOYMENT

As mentioned in earlier chapters, the usage of AUVs have borne significant im-

provement in the field of oceanography. Being largely extreme environments, the

ocean and other large water bodies very often present circumstances that make ex-

ploration by humans very difficult. Again, due to the usually vast surface areas

covered by these bodies, the usage of AUVs make it more efficient in the patrolling

of as compared to manned explorations. The main aim of this chapter is summa-

rized below:

• Assemble a robot that has the ability to cover relatively more ground within

a short while in the underwater environment, and is designed to with stand

some level of unpredictability in these environments, for example regarding

ocean/river currents.

• Establish a means of control and communication with the robot during de-

ployment.

• Monitor video feed from robot and leverage that to collect data for image pro-

cessing and object detection.

The AUV employed in this study is the BlueROV2 by Blue Robotics as it satisfies

the aims of this section. The BlueROV2 has been used in a number of explorations

in the past and has been known to to deployed up to 130m beneath sea surface. The

work in (Carver et al., 2020a) employs the use of the BlueROV2. In this chapter, the

assembly, software setup and operation, and deployment results of the BlueROV2

will be discussed.
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3.1 Assembly

The robot was delivered in its constituent parts and assembled on delivery with

assistance from the Blue Robotics online guide. The frame of the robot is made of

High Density Polyethylene (HDPE), and it comes with separate acrylic tubes and

end caps which house the electronics and the battery. The robot is equipped with

thrusters which control the direction, velocity and acceleration of motion under

water. There are lumen lights which are attached to the sides of the frames and are

used in cases of hindered visibility due to low-light conditions. These lights have

adjustable brightness and can move over a 135◦ angle. The robot is also equipped

with a 1080p digital low-light USB camera which has an 80◦ view horizontally and

spans 180◦ vertically.

FIGURE 3.1: Assembly of the BlueROV2

The robot also circuitry also comprises a depth and temperature sensor, a 3-

Degrees-Of-Freedom (3-DOF) accelerometer, gyroscope and magnetometer, an in-

ternal barometer and a leak detection system which alerts the pilot when any of

the air-tight enclosures is compromised. A portable battery is a part of the architec-

ture and the robot is connected to a Fathom-X tether interface via a tether which is
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FIGURE 3.2: A completely assembled BlueROV2 connected to a spool
via tether.

wounded on a spool. The fully assembled BlueROV2 is shown in Figure 3.2.

3.2 Software Setup and Operation

All the components mentioned in subsection 3.1 are connected via an electronic in-

terface. On the board of the robot, a Pixhawk flight controller is attached and this

controls the lumen lights, thrusters, camera tilt servo, power distribution, and all

other sensors. The flight controller is connected to the tether interface via a Rasp-

berry Pi companion computer. The electronic circuitry on the board is illustrated in

Figure 3.3

Communication with the robot is set-up and maintained via a software inter-

face known as QGroundControl and instructions are passed using a game con-

troller/joystick. The software requires the robot to be connected to the tether in-

terface and the tether interface then connected to a computer via a Local Area Net-

work(LAN). This can be setup in the network settings of the Operating Software

(OS) being used. Through QGroundControl, details such as the altitude, ground

speed and flight time of the robot can be monitored. The video feed is also ob-

served through the software. The firmware on the companion computer can also be

upgraded through the software.
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FIGURE 3.3: Electronic circuitry of the BlueROV2(BlueRobotics, n.d.)

Before the very first flight, all the sensors and thrusters are calibrated. The pitch

and yaw mechanism of the robot is also configured and through the software as

well as the assignment of buttons on the controller to specific actions. The software

is available on Windows, Mac and Linux platforms.

3.3 Deployment Results

The robots have been deployed twice for underwater exploration. The first deploy-

ment was in February 2022 and the second one in April 2022. Both instances have

been in different water bodies located in Chesapeake VA and Virginia Beach VA.

The main aim of these flights was to collect data to aid image processing and

the training of the object detection model. As discussed in Chapter 2, the lighting

conditions in the environment hugely impacted the quality of imagery that was

observed. In Figure 3.4, sample frames obtained from the both explorations are

displayed. The two frames above were obtained from the February flight while the

last two frames were from the flight in April.
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FIGURE 3.4: Frames obtained from the explorations in February 2022
and April 2022

The main challenge during the exploration was the difficulty in identifying dif-

ferent objects clearly due to the blurry nature of the images. Also, another difficulty

arose due to the absence of plastics in the water bodies which have been explored

so far. Future explorations will target different water bodies in order to encounter

relatively more plastic waste in these environments.
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4 OBJECT DETECTION

This chapter outlines the steps taken to perform object detection in the underwater

environment. The chapter begins with a look at the dataset used in training the ob-

ject detection model. An overview of neural networks and Convolutional Neural

Networks is also. The Resnet-50 Faster R-CNN model, which presents some mod-

ifications to a typical neural network architecture will be reviewed along with the

training process and the results of training.

4.1 Dataset

The dataset, known as the Trash-ICRA dataset, was obtained from an exploration

by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) which

was conducted from 2018-02-01 to 2018-09-15 (Fulton et al., 2019).

FIGURE 4.1: Examples of images taken from the dataset (Fulton, Hong,
and Sattar, 2020).

The data, downloaded as a zip file, contained a training set, validation set and

a test dataset. All the sets were accompanied by text files and xml files both of
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which contained labelling and bounding box information for each respective im-

age. The training set contains 5,700 images, the test set contains over a 1000 images

and the validation set contains about 700 images. All these images were sampled

from videos recorded during the exploration. The images in the dataset describe

different cases in the underwater environment, some of which are repeated espe-

cially in the training set. There are occurrences of marine life, marine litter (plastic),

ROVs, pieces of wood and some instances of metal. Specifically Table 4.1 outlines

the distribution of the 11 various classes in the dataset. The varying lighting and

color conditions makes this dataset a challenging one to work with, for the reasons

discussed in Chapter 1.

Class Number
’bio’ 1951

’plastic’ 4580
’rov’ 1799

’timestamp’ 8773
’unknown’ 147

’metal’ 48
’wood’ 54

’rubber’ 15
’cloth’ 5

’fishing’ 12
’paper’ 10

’papper’ 1

TABLE 4.1: Distribution of the various classes in the Trash ICRA
dataset.

As expected, the images in the dataset generally are hued and blurry as shown in

Figure 4.1. The images, taken from the training set, show different instances where

there are pieces of marine litter (plastics) and some aquatic life.
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4.2 CNNs and the Faster RCNN Architecture

4.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks have become a very important part of many Deep

Learning applications. In math, convolution represents an operation between two

functions in which another function is produced. This third function which is pro-

duced, usually quantifies the way in which one function modifies the other func-

tion(Choudhari, n.d.). In the most basic sense, a CNN is a network that has the

ability to learn both simple and complex features from data provided to it. As a

result of this ability, the field of Computer Vision has employed the use of CNNs

to a very large extent. Aside Computer Vision, fields such as Natural Language

Processing have employed the use of CNNs to learn concepts from text datasets.

Provided a piece of data can be represented as a set of numbers/arrays, some level

of information can be drawn from it by a CNN. Take an image for example. A typ-

ical coloured (RGB) image can be represented as 3 n × m array where the n and m

represent the dimensions of each channel of the image. One of the basic units of a

CNN is a convolutional layer. This layer is usually a c × c array of weights which

are applied directly to the input image in question. Therefore, for the input image

mentioned earlier, the layer (also known as a kernel or filter) is slid over the the im-

age and a simple convolution is performed using matrix multiplication. An output

image is obtained and this image contains characteristics of both the input image,

and the kernel used at this stage. At the beginning of convolution, basic features

such as lines, circles, and other rudimentary shapes are learnt from the image. As

the kernels begin to stack up, more complex and heirarchical features from the data

are learnt. Generally, a loss function, an optimizer, and a few other hyperparam-

eters are employed to govern the learning process. The loss function, which we

seek to minimize, provides a measure of how far away the model’s predictions are

from the ground truth. The optimizer, and hyperparameters such as the learning
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FIGURE 4.2: Resnet architecture with identity connections to solve the
exploding and vanishing gradient problems.

rate then govern how fast a model learns, and steep the steps taken in the learn-

ing process are. This way, computers are able to obtain some semblance of vision

and perform tasks such as image classification, image segmentation, object localiza-

tion, object detection, and image captioning. Object detection as task combines two

different tasks: classification and object localization.

4.2.2 Resnet-50 Architecture

As neural networks become bigger in order to handle more complex tasks such as

object detection, some problems naturally arise within architectures. Due to the

high number of layers stacked onto a neural network, problems such as vanishing

gradient and exploding gradients tend to occur. The result of these problems man-

ifests in the saturation and eventual degradation of the accuracy of such networks.

Adding more layers at this stage serves a disadvantage as the training error will

keep increasing. The ResNet architecture tries to solve the gradient problem by in-

troducing a shortcut into the network (Mukti and Biswas, 2019). As illustrated in

the Figure 4.2 below, introducing an identity at various points in the networks aids

the prevention of the vanishing and exploding gradient problems.
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4.2.3 Resnet-50 Faster RCNN Model

The Faster RCNN architecture presents an improvement on the already existing

R-CNN and Fast R-CNN architectures in order to perform the classification and

localization tasks. Region-based Convolutional Neural Networks (R-CNNs) were

introduced in (Girshick et al., 2014) to aid object detection tasks. Given an input

image, the network proposed about 2,000 various regions within the image where

an object may be located, and the CNN generated a 4096-dimensional feature map.

These maps were classified by a pre-trained Support Vector Machine (SVM). The

main challenges with the R-CNN architecture was the fact that each stage of the

network was independent, and hence the network could not be trained end-to-end.

Also, the region proposals were fed separately to the network, making it resource

intensive and almost impossible to implement in real time applications(Gad, n.d.).

This led to the introduction of the Fast R-CNN architecture in (Girshick, 2015). The

R-CNN architecture was a single-stage architecture which introduced a region of

interest (ROI) pooling layer and used a multi-task loss to train the model end-to-

end, making it faster than the R-CNN architecture.

FIGURE 4.3: Faster RCNN architecture with the Region Proposal Net-
work and RoI pooling (Ren et al., 2015)

The Faster R-CNN architecture (Ren et al., 2015) improves on this architecture



20

FIGURE 4.4: Illustration of the Resnet-50 Faster RCNN architecture
provided by Pytorch

by introducing a Region Proposal Network, a convolutional neural network which

is trained together with the CNN to find the best locations within a given image to

propose for classification. This is illustrated in Figure 4.3.

The Resnet-50 Faster RCNN model is a 50-layer architecture which follows the

Faster RCNN architecture. These layers are divided into 5 different blocks which

can be frozen during training and their weights preserved or unfrozen and assigned

new weights during training. The arrangement of these layers are described in

Figure 4.4.

4.2.4 Training and Evaluation of Model Performance

In order to simplify the model and improve performance, the classes in the dataset

were summarized into 2 main classes. The first was ’plastics’, which covered all

instances of plastics and the second class was named ’other’ and this comprised all
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other classes except the ’timestamp’ class. The timestamp class was not considered

due to the fact that future explorations would not have any of such inscriptions in

the frame.

Model Construction Parameters:

The torchvision.models.detection.fasterrcnn_resnet50_fpn model provided by Pytorch

received certain parameters under different circumstances (Pytorch, n.d.). During

the construction of the model for training purposes, the parameters passed are:

• pre-trained: This specifies whether or not the model is pre-trained on the

Common Objects in Context (COCO) 2017 dataset. Since we did not required

only a model with a pre-trained backbone, this was set to ’false’.

• num_classes: This specifies the number of output classes including the back-

ground. This was set to 3.

• pretrained_backbone: This indicates whether a model with a backbone trained

on the Imagenet dataset is desired. This was set to be ’true’.

• trainable_backbone_layers: This indicates the number of blocks which will be

unfrozen updated during training.

Input and Ouput Parameters:

The model, when constructed, expects all inputs to be tensors whose values lie be-

tween 0 - 1. The model takes as inputs the images, bounding box coordinates, and

label for each bounding box coordinate. The model returns the losses (classification

and regression) for both the RPN and RCNN after training. During inference how-

ever, the model receives only the input image as an input. It performs calculations

and returns a dictionary containing the bounding boxes, labels, and scores for each

of the labels assigned to a bounding box.
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FIGURE 4.5: Multi-task loss over 30 epochs of training

Training Process and Results

During the training, Stochastic Gradient Descent is used as the optimizer with a

learning rate of 0.003. A learning rate scheduler is used to adjust the learning rate as

the training progresses and the model is trained for 40 epochs. After each epoch, the

model returns a summary of various metrics such as the multi-task loss, the average

precision and average recalls at various Intersection over Union (IoU) values. The

multi-task loss comprises the classifier loss, the bounding box regressor loss, the

objectness loss and the loss from the RPN. The loss is plotted as shown in Figure

4.5.

The training classifier loss at the beginning of the first epoch is 1.881, and this

forms the biggest part of the multi-task loss which is a total of 1.9624. The classi-

fier loss reduces over the epochs and plateaus to 0.0223 at the thirtieth epoch. The

bounding box regressor loss begins at a value of 0.0207 and slightly increases to

0.0436. The objectness loss at the last epoch is at a value of 0.0002, falling from an

initial value of 0.6879. The RPN loss was at an initial value of 0.0298 and falls to a

value of 0.0014. The validation loss values follow similar trajectories.
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FIGURE 4.6: Model accuracy over 30 epochs of training

The accuracy plot is illustrated in Figure 4.6.

The model’s accuracy on the training set has an initial value of 0.95 and increases

steeply and plateaus after the 15th epoch. The increase in accuracy after the 15th

epoch is slight. The validation accuracy is similar in nature to the training accuracy.

The accuracy increases until the 10th epoch and oscillates between 0.995 and 0.998.

Predictions

The test dataset was isolated from the training process. After training the model

was used to make predictions on some images from the test set. Figure 4.7 shows

the predictions from the model on the images along with their probability scores as

compared to their ground truths.
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FIGURE 4.7: Predictions from the test dataset compared to their
ground truth
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5 VLC AND TRAJECTORY CONTROL

In this chapter, the communication system design is considered in its constituent

parts.

• A low-cost software defined testbed is proposed to ascertain the feasibility of

optical communication between robots at the physical layer in the absence of

some high-cost elements. The testbed construction will be analysed and the

purpose of each part will be examined.

• When a reliable communication link is set up, the trajectory of the robots can

be planned. Two control algorithms (centralized and distributed) will be pro-

posed to solve the scheduling and relay problem. The spatial-temporal dy-

namics of the underwater environment are analysed and considered in the

design of the algorithms.

5.1 VLC between Transmitter and Receiver

To simulate the physical communication between two robots, a testbed which is a

low-cost implementation of the work in (Carver et al., 2020a), is set up. The main

difference lies in the addition of re-configurable peripherals which can be employed

interchangeably depending on the scenario. The logical flow of data from the trans-

mission to reception is illustrated in Figure 5.1.

Transmitter

The transmitted signal is generated using an FPGA, which is used interchangeably

with a function generator. The FPGA is used to generate a random sequence and

modulate it using Pulse Position Modulation (PPM). The function generator on the
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FIGURE 5.1: Summary of transmitter-receiver system design.

other hand is used to generate a simple periodic square wave signal for transmis-

sion. This data is fed to the laser diode in order to modulate the light signal.

Transmission Medium and Receiver

The signal is transmitted over two boundaries: the air/glass boundary and the

glass/water boundary. Despite potential concerns about the reflective properties

of both boundaries, the signal does not experience strong reflections. The signal is

received using a SiPM which is connected to a power amplifier.

Demodulation and Data Processing

For demodulation, two stations are used interchangeably. The first is a simple os-

cilloscope with which the signal from the power amplifier is observed. For the

analysis of the data, this is carried out using a USRP N210 with a LFRX daughter

board which is connected to a computer via a Gigabit ethernet cable and a router.

Using Simulink, a virtual model of the USRP is created and employed to read the
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FIGURE 5.2: Setup of the developed VLC testbed.

signal being received. During data processing, parameters such as the USRP gain

and threshold of detection have to be adjusted in order to maintain reliable com-

munication.

During transmission, the function generator is tuned to produce a square wave

signal at 500 kHz, 1 MHz, and 2 MHz, all with a 50% duty cycle. This signal is

connected to the LMG1020-EVM Nano-second laser driver which is populated with

a laser diode which outputs a 530 nm laser signal. The laser driver has 3 inputs: a

DC bias input that ranges from 5.5 V to 15 V, a DC input voltage directly applied

to the laser diode which ranges from 0 V to 75 V and the input port which receives

the input signal from the function generator. Both the laser diode and SiPM are

elevated slightly above ground level and are placed in a directly line of sight as

shown in Fig. 5.2.

To test the robustness of the transmission, as will be seen in Section 4, commu-

nication is attempted with the receiver shifted slightly out of the direct line of sight

of the transmitter. The positions of the receiver relative to the transmitter are illus-

trated in Fig. 5.3.

At the receiver end, the SiPM is biased using a voltage of 28 V with the max-

imum recommended voltage being 30 V. The SiPM had a spectral range ranging
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FIGURE 5.3: Receiver positions at the other end of the tank (right-hand
side of the tank). The transmitter is on the left-hand side of the tank.

from 300 nm to 950 nm and provided satisfactory performance at 530 nm. The fast

output of the SiPM was connected to a power amplifier which provided necessary

amplification of the signal from around 500 mV to as much as 1.97 V. The USRP

receives the signal from the power amplifier and is connected to a computer for sig-

nal demodulation. The connection is facilitated using a NETGEAR router and two

Gigabit ethernet cables. Each data point in all the results to be discussed was re-

peated 5 times under the same conditions to ensure consistency and investigate the

variability of the property under consideration. It is worth mentioning that these

experiments were performed generally under low ambient light conditions.

5.2 Comparison of Air/Water Communication

The output was first observed using an oscilloscope to verify the presence of the

signal at the output and the correct working of both the transmitter and receiver.

As illustrated in Fig. 5.4, the topmost signal is the signal obtained from the function

generator. The laser driver shortens the pulse width of the signal and hence, the

output signal records relatively thin spikes in the presence of a 1 bit. As seen in the

second row of the diagram, the received signal follows that characteristic. The third

row shows a signal captured from a different moment in time through MATLAB

when the output is connected through the USRP. It is noticeable that the MATLAB



29

FIGURE 5.4: Screenshots of received signals from the oscilloscope and
MATLAB sampled at different instances

signal shows more pronounced spikes in the negative direction compared to the

signal directly from the power amplifier. This is due to the internal gain of the

USRP which was increased manually to enable better analysis of the waveforms.

The USRP model in Simulink was employed in the sampling of the received

data. The model, which originally had sampling rate of 100 MSamples/second was

configured to obtain 2000 samples per data frame. This configuration provided a

data typically of size 50001 × 2000. This data comprised some leading zeros which

were filtered out of the data set during analysis. The SiPM, by nature, comes with

a recovery time which follows a rise in current triggered by a photon interacting

with the photo multiplier. Thus, some bits were lost in transmission and were only

partially received. Such instances were also filtered out in order to ascertain the

true "fully on" performance of the SiPM. The detection of a 1 bit or a 0 bit was de-

termined by the presence or absence of a rising edge within a given cycle. This

threshold, alongside the number of 1 and 0 to be expected per frame, were cho-

sen from continual observation of the signal waveforms in MATLAB. Using this

threshold, the number of bits received were calculated and the bit error rate was

calculated by comparing a current bit to the next incoming bit. For each frame con-

taining 2000 samples, the BER is calculated and the average BER is taken for over

all the available frames.
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FIGURE 5.5: BER performance through air (Left) and through water
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5.2.1 BER: Air vs Water

The performance of the set up in through-air communication was first investigated.

The receiver was placed in direct line-of-sight (LOS) at a distance of 1m away from

the transmitter. In Fig. 5.6, the BER is analysed at different frequencies. The set

up was repeated with transmission being carried out through water. The BERs in

both scenarios were on the order of 10−3. In air, communication at 1 MHz recorded

the lowest average BER of the three transmissions, with little variation over the

transmissions. During transmission through water at 2MHz, 2 bits were transmit-

ted during each cycle thus providing a bit rate of 4 Mbps with an average BER of

5.5 × 10−3.

5.2.2 BER: Communication over various distances and relative po-

sitioning.

The communication link through air was set up over varying distances. The BER

performance was analysed when the distance between the transmitter and receiver

were 1 m, 2 m, and 4 m, respectively. At a distance of 2 m, the gain variable in

the Simulink model was increased in order to improve the detection performance.
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When the distance was 4 m, not only was the gain increased, but the detection

threshold was reduced in order to maintain reliable communication.

As seen in Fig. 5.6, the BER slightly rises and also experiences more variance

with increasing distances. Generally, optical communication heavily depends on

the maintenance and integrity of a direct line-of-sight between transmitter and re-

ceiver. During the communication through water, to ascertain the behavior of the

system under non-optimal LOS conditions, the receiver was shifted away from the

direct LOS of the transmitter as illustrated in Fig. ??. The results show a slight raise

in the average BER as the receiver deviates from the direct LOS of the transmitter.

However, the system still maintains a high level of reliability under those condi-

tions.

5.3 Relay and Trajectory Control

Communication using the testbed in Section 5.1 is a very simple implementation

of the case scenario. In the ocean, the problem becomes more complex. Before
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the trajectory control problem is addressed, this study introduces the underwater

optical channel with turbulence-induced fading and the spatial heterogeneity of

the attenuation loss. These factors make the underwater wireless channel a more

complex problem to analyse. A centralized trajectory control algorithm is designed

to obtain robots’ optimal locations to maximize the network throughput by having

global knowledge of all the robots within the given network. The inefficiencies

of the centralized algorithm leads to the proposal of a simpler and more efficient

distributed trajectory control algorithm. The key feature of the developed algorithm

is that it is adaptive to changes in the environment and it does not require any global

information about the robots within the network or the environment itself.

5.3.1 Underwater Optical Communication Channel

In a typical scenario as illustrated in Figure 1.1, data communication starts from

the anchor robot, i.e., the robot at the lowest depth, monitoring the target. There

are nr robots, and for the ith robot its location is xi ∈ R3. Robots communicate via

the underwater optical communication channel to set up the network and transmit

pertinent information. The ith robot sends data to the (i + 1)th robot using optical

communication, as shown in Fig. 1.1.

In this thesis, it is considered that robots can exchange their location information

with their neighbors using acoustic-based communication. Although high-speed

data communication uses optical communications, robots can use acoustic signals

for motion coordination and other critical low-speed data communication.

The wireless optical communication channel is affected by multiple complicated

factors. Some works (Johnson, Green, and Leeson, 2013) have been dedicated to

studying the relationship between water (ocean) composition and the attenuation

that underwater optical links encounter. Aside attenuation, optical communication

is also affected by turbulence-induced fading. In order to correctly address the chal-

lenges and make the best use of the underwater channel, it becomes necessary to
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model the underwater environment.

Attenuation

The attenuation loss in the underwater environment comprises two wavelength-

dependent factors: absorption and scattering. Absorption occurs when a part of

the light energy is changed into another form as a result of its interaction with the

environment. Scattering on the other hand occurs when a part of the light beam is

redirected due to reflection, refraction, or diffraction of the light beam. Aside the

wavelength dependence, the attenuation loss can be modeled as a function of the

depth −z. The relationship between attenuation, absorption, and scattering can be

expressed as (Johnson, Green, and Leeson, 2013)

c(λ, z) = a(λ) + b(λ, z), (5.1)

where c(λ) represents the attenuation coefficient, a(λ) is the absorption coefficient,

b(λ) represents the scattering coefficient, and λ is the wavelength.

Absorption

As mentioned earlier, absorption is dependent on the wavelength of operation.

Aside that, environmental conditions such as the type of water, the amount of

chlorophyll, and the concentrations of fulvic and humic acids play an important

role in determining the absorption coefficient. The absorption coefficient can be

written as (Haltrin, 1999)

a(λ) = aw(λ) + a0
f C f e−k f λ

+ a0
hChe−khλ + a0

c(λ)
(

Cc/C0
c

)0.602
, (5.2)

where aw(λ) is the absorption coefficient of pure water in m−1, a0
f is the absorption

coefficient of fulvic acid, a0
h is the absorption coefficient of humic acid, constants k f
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and kh are the exponential coefficients of fulvic and humic acids, respectively, and

a0
c(λ) represents the chlorophyll-a absorption coefficient of living phytoplankton.

The value of a0
c(λ) can be derived from the expression (Johnson, Green, and Leeson,

2013)

a0
c(λ) = A(λ)Cc

−B(λ), (5.3)

where A and B are wavelength-dependent constants. At 530nm, A = 0.0117 and

B = 0.139 (Bricaud et al., 1995). Cc is the concentration of chlorophyll-a and Cc
0 = 1

mg/m3. C f and Ch are the concentrations of fulvic acid and humic acids respec-

tively and are computed as below (Johnson, Green, and Leeson, 2013):

C f = 1.74098Cce0.12327Cc (5.4)

Ch = 0.19334Cce0.12343Cc (5.5)

Scattering

Generally, scattering occurs due to the particles in water. The scattering coefficient

is determined according to (Haltrin, 1999):

b(λ, z) = bw(λ) + b0
s (λ)Cs + b0

l (λ)Cl (5.6)

The pure water scattering coefficient is bw(λ), and the variables bs
0(λ) and bl

0(λ)

represent the scattering coefficients for small and large particles respectively. Cs

and Cl are the concentrations of small and large particles within the underwater

environment, respectively. The values for the variables can be calculated according

to the following expressions (Johnson, Green, and Leeson, 2013)

bw(λ) = 0.005826(400/λ)4.322 (5.7)

bs
0(λ) = 1.1513(400/λ)1.7 (5.8)
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bl
0(λ) = 0.3411(400/λ)0.3 (5.9)

Cs = 0.01739Cce0.11631Cc (5.10)

Cl = 0.76284Cce0.0309Cc (5.11)

The chlorophyll concentration Cc can be defined over depth z and as a function of

the background chlorophyll concentration B0, the vertical gradient of concentration

S, and the Deep Chlorophyll Maximum (DCM) zmax. The DCM is the subsurface

region, generally, between 20 and 120 m (Johnson, Green, and Leeson, 2013), where

the chlorophyll concentration is at its maximum due to a balance of light and nu-

trients. σchl is the standard deviation of the chlorophyll concentration. They are

related by (Kameda and Matsumura, 1998):

Cc(z) = B0 + Sz +
h

σchl
√

2π
exp

[
−(z − zmax)2

2σchl
2

]
(5.12)

The standard deviation of the chlorophyll is a function of the total chlorophyll

above the background levels h, the depth of the DCM, and the chlorophyll level Cchl

at the DCM, which is

σchl =
h√

2π [Cchl(zmax)− B0 − Szmax]
(5.13)

Considering the definition of the attenuation coefficient c(λ, z) as a function of

the wavelength and depth beneath the water surface, given a wavelength λ of 530

nm, the variation of the attenuation against the depth can be plotted. Assuming that

the change in the absorption and scattering coefficients over a horizontal distance

in the open ocean environment is negligible (Johnson, Green, and Leeson, 2013),

the attenuation profiles for four different chlorophyll vertical gradients S1, S2, S3,

and S4 are shown in Fig. 5.7. The vertical gradients represent different chlorophyll

profiles with regard to their concentration. S1 represents a region where the chloro-

phyll concentration is generally less than 0.04 mg/m3 and S2 represents the profile



36

0 0.1 0.2 0.3 0.4 0.5

Attenuation coefficient (m -1 )

-250

-200

-150

-100

-50

0

D
ep

th
 (

m
)

S1
S2
S3
S4

FIGURE 5.7: Variation of attenuation coefficient with increasing depth
over 250 m, calculated over four vertical gradients of chlorophyll. The
environmental parameters for S1, S2, S3, and S4 are from (Johnson,

Green, and Leeson, 2013).

within which the chlorophyll concentration lies between 0.04 − 0.08 mg/m3. The

detailed parameters of S1 and S4 are from (Johnson, Green, and Leeson, 2013). The

attenuation coefficient is calculated over a depth of 250 m below the surface of the

ocean. From Fig. 5.7, the attenuation coefficient gradually increases within the first

50 m below the surface of the ocean. As the depth increases, the attenuation coef-

ficient experiences a sharp increase in value, followed by a sharp decrease after it

reaches its peak value. For different underwater environments, the largest attenua-

tion coefficient appears at different depths. Not having thorough knowledge of all

the possible factors makes it challenging to obtain an accurate channel model.

Water Turbulence

The water turbulence is modeled as stochastic fading, which is another environ-

mental effect on signal propagation. During propagation, the optical signal expe-

riences intensity fluctuations, known as scintillation, which eventually results in

optical turbulence. These fluctuations are best characterized using the scintillation

index σ which is proportional to the Rytov’s variance σr
2. The Rytov’s variance is
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given by

σr
2 = 37.3K3

(
2π

λ

)7/6

L11/6, (5.14)

where K3 is the constant that determines the turbulence strength and L is the migra-

tion length (distance) of the light beam (Liu, Xu, and Yang, 2015). The scintillation

index can also be derived from the expression

σ2 = exp
[

0.49σr
2

(1 + 1.11σr12/5)7/6 +
0.51σr

2

(1 + 0.69σr12/5)5/6

]
− 1 (5.15)

The fading variable is dependent on the scintillation index, and it satisfies the log-

normal probability distribution function (Hill and Frehlich, 1997; Liu, Xu, and Yang,

2015)

f (I) =
1

Iσ
√

2π/I0
exp

(
− (ln(I/I0)− u)2

2σ2

)
, (5.16)

where I is the received light intensity, I0 is the mean received light intensity, and

u = −σ2/2. The light intensity is defined as the power per unit area of the optical

transmitter or receiver.

Therefore, for a transmit robot at xi and a receive robot at xj, the mean received

optical power is P̃r(xi, xj), which can be written as (Saeed, Al-Naffouri, and Alouini,

2018; Arnon and Kedar, 2009; Saeed et al., 2019):

P̃r(xi, xj) = Ptρiρje

−
∫ zj

zi
c(λ,z)zdz

cosθij


·

Brcosθij

2πd2
ij(1 − cosθ0)

(5.17)

= Ptρiρj

zj

∏
zi+nd∆z

e

(
−c(λ,zi+nd∆z)∆z

cosθij

)
·

Brcosθij

2πd2
ij(1 − cosθ0)

(5.18)

where , nd ∈ Z, Pt is the optical transmit power, which is a constant for all the

robots, and ρi and ρj are the optical efficiencies of the transmitter and receiver, re-

spectively. c(λ) represents the total attenuation and dij is the vertical distance be-

tween the nodes. θij is the trajectory angle between xi and xj. θij is the angle between

the perpendicular to the receiver plane and the transmitter-receiver trajectory. θ0 is
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FIGURE 5.8: CDF of received power in presence of water turbulence.
The considered water type is S1. The depth of the receiver is 10 m and
60 m and the transmitter is placed at 5 m, 35 m and 65 m under the

receiver.

the divergence angle of the transmitter, and Br is the receiver aperture area.

To obtain the received power with turbulence fading, we use a lognormal ran-

dom number generator with µ and σ to generate a random variable F. Then, the

received power with fading can be written as

Pr(xi, xj) = F · P̃r(xi, xj) (5.19)

In Fig. 5.8, we numerically evaluate the impact of distance and depth on the

received power. The receiver depth is 10 m and 60 m. The transmitter is under

the receiver with distances 5 m, 35 m, and 65 m. As shown in the figure, when

distance is small, the variance of the received power is small, which indicates a

reliable wireless optical channel. However, as the distance increases, the variance of

the received power increases and the channel becomes more unpredictable. Despite

the level of randomness that accompanies the turbulence-induced fading, the plot

clearly shows that the received power can be expected to be smaller in magnitude
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with increasing transmission distance. Also, at 60 m, the attenuation loss is large,

as shown in Fig. 5.7, and the received power is small. This is not obvious when the

distance is small. It is because within a short range the variation of attenuation loss

is small and the exponential attenuation loss is small.

The results indicate that as robots’ distance increases, the wireless optical chan-

nel becomes unreliable. This now presents a challenge when coordinating the mo-

tion of the robots because the received power do not accurately reflect their dis-

tance from each other. Note that, data-driven approaches, such as the reinforcement

learning and graph neural networks (Ruiz, Gama, and Ribeiro, 2021; Gama, Bruna,

and Ribeiro, 2020) may not perform well in such environments since the data (re-

ceived power) are highly stochastic and noisy. It is challenging to learn a control

policy based on collected data.

Multi-Robot Relay Network Modeling

Wireless optical communication using lasers or LEDs is highly directional and there

exists the chance that the signal may be blocked by objects. The 1D relay scheduling

in (Chattopadhyay et al., 2016) uses RF signals and due to its broadcasting nature,

the interference was considered therein. As shown in Fig. 5.9, due to the block-

age, the interference in the considered relay network can be neglected provided

that robots only move in the interference-free cone. Despite no interference, the

problem is still challenging due to the spatial change of the attenuation loss. Next,

we first introduce a centralized control policy with knowledge of the wireless op-

tical channel model. Then, we design a distributed control policy, which only uses

robots’ local observations.
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FIGURE 5.9: Illustration of the interference-free region between differ-
ent robots with optical communication

5.3.2 Optimal Trajectory Design

Centralized Trajectory Design

In this section, an optimization-based solution is introduced, where each robot has

perfect knowledge of the wireless optical channel. The optimal controller has rich

information to plan the trajectory of each robot.

To obtain the trajectory of each robot, we solve the following problem

max min{Pr(zi, zi+1)} for i = 1, · · · , nr − 1 (5.20)

s.t. z1 < z2 < · · · < znr = 0 (5.21)

Equation (5.19). (5.22)

Note that, since robots only move vertically, we only use their vertical location zi

instead of the 3D location xi, i.e., Pr(xi, xj) is replaced with Pr(zi, zj). Also, for the

centralized trajectory control, we consider the accurate channel model is available.

Thus, the fading is not considered; only the mean received power is used. The ob-

jective of the above problem is to maximize the minimum received power between
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any two adjacent robots. For a relay network without any network congestion,

the overall data rate is limited by the link with the minimum data rate. Also, the

data rate is determined by the received power and noise power. In this paper, we

consider the noise power is uniform which is not affected by the spatial change.

Although underwater ambient noise has different power at different depths, the

bandpass filter can effectively reduce the ambient noise (Carver et al., 2020b). Thus,

the dominant factor is the received power. By maximizing the minimum received

power, we can obtain the maximum data rate of the relay network.

The constraints in (5.21) ensures that the nrth robot will move to the surface. The

robot at z1 does not move and keeps monitoring the target. All other robots relay

the data to the surface robot. The received power is obtained by using (5.19), which

is complicated due to the spatial change of the attenuation coefficient.

To solve the max-min problem, we equivalently solve the following problem

min−P0

s.t. P0 − Pr(zi, zi+1) ≤ 0, for i = 1, · · · , nr − 1

z1 < z2 < · · · < znr = 0, Equation (5.19)

By minimizing −P0, we equivalently obtain the maximized minimum received power.

To find the optimal z∗ = [z∗2 , · · · , z∗nr−1]
t, we use the primal-dual approach to find

the saddle point of the Lagrangian associated with the above problem. Since znr = 0

in the end, we do not optimize znr, but gradually increase it. In other word, the lead

robot gradually moves to the water surface. The Lagrangian is

L(z, ϵ, µ) =− P0 +
nr−1

∑
i=1

ϵi(P0 − Pr(zi, zi+1))

+
nr−1

∑
i=1

µi(zi − zi+1), (5.23)

where ϵ = [ϵ1, · · · , ϵnr−1]
t and µ = [µ1, · · · , µnr−1]

t are Lagrangian multipliers,
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which are nonnegative numbers. The saddle point (z∗, ϵ∗, µ∗) satisfies the following

relation

L(z, ϵ∗, µ∗) ≤ L(z∗, ϵ∗, µ∗) ≤ L(z∗, ϵ, µ). (5.24)

The optimal primal and dual variables can be obtained by alternating the max-

imization of L(z, ϵ∗, µ∗) and minimization of L(z∗, ϵ, µ). Next, we use gradient

ascent and gradient decent methods to obtain the optimal values iteratively.

The derivative of the dual variables are

dL(z, ϵ, µ)

dϵi
= P0 − Pr(zi, zi+1), for i = 1, 2, · · · , nr − 1

dL(z, ϵ, µ)

dµi
= zi − zi+1, for i = 1, 2, · · · , nr − 1 (5.25)

Then, we can iteratively update ϵi and µi by

ϵk+1
i = ϵk

i − (P0 − Pr(zi, zi+1))∆ϵ, for i = 1, 2, · · · , nr − 1

µk+1
i = µk

i − (zi − zi+1)∆µ, for i = 1, 2, · · · , nr − 1 (5.26)

where ∆ϵ and ∆µ are step values, the superscript k indicates the iteration step num-

ber. Next, by using updated dual variables, the robot location will be updated.

Note that, P0 = min({Pr(zi, zi+1), for i = 1, 2, · · · , nr − 1}), which is a function

of zi. Thus, the derivative of zi is

dL(z, ϵ, µ)

dzi
= (ϵi − 1)

[
1P0=Pr(zi,zi+1)

dPr(zi, zi+1)

dzi

+1P0=Pr(zi−1,zi)
dPr(zi−1, zi)

dzi

]
− ϵi

dPr(zi, zi+1)

dzi

− ϵi+1
dPr(zi−1, zi)

dzi
+ µi − µi+1, for i = 2, · · · , nr − 1 (5.27)

where 1xa=xb is an indicator function which is 1 if xa = xb is satisfied. The derivative

of the received power cannot be analytically obtained due to the spatial dependent
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attenuation coefficient. This study employs a numerical approach to obtain approx-

imations of the derivative. The derivative can be extremely large or small and the

robot cannot update its location simply based on derivative. We consider at each

time step, the robot move ∆z and the direction is dL(z,ϵ,µ)
dzi

/∥ dL(z,ϵ,µ)
dzi

∥. Thus, the

location of each robot can be updated as

zk+1
i = zk

i +
dL(z, ϵ, µ)

dzi
/∥dL(z, ϵ, µ)

dzi
∥∆z. (5.28)

Once robots obtain new locations, the received power and P0 will be updated and a

new round starts by updating ϵ and µ. This process continues until the variance of

robots’ locations changes or the received power variance is smaller than a threshold.

Although this centralized optimization approach is rigorous and comprehen-

sive, it demonstrates the following drawbacks for real implementation.

• First, the solution may be trapped in a local optimal value and a globally op-

timal solution cannot be guaranteed. The obtained solution is suboptimal.

• The derivative is based on numerical approximations, which may have ap-

proximation errors. Also, without the knowledge of the underwater opti-

cal channel model, we cannot obtain it. As discussed in the preceding sec-

tions, the underwater environment is highly dynamic and an accurate channel

model usually is not available.

• The scalability of the approach is not guaranteed, i.e., as the number of robots

increases, the dimension of the solution increases, and the solution may not

converge.

In general, the centralized optimization method requires the knowledge of the

wireless optical channel and the solution is suboptimal due to the complexity of the

wireless optical channel. Next, we provide a distributed solution based on (5.27)

and (5.28) to address the above issues.
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Distributed Trajectory Design

The distributed trajectory design for multi-robot relay has been studied in (Za-

vlanos, Ribeiro, and Pappas, 2012; Jackson et al., 2020). The difference compared

to this study is that the wireless channel is modeled based on distance without

considering fading issues, and the wireless channel model is also available. Our

distributed control solution is different from existing works because it only uses the

received power from neighbors to adjust robot locations without global knowledge.

Also, we do not require a wireless channel model to plan robot trajectories. Since

the robot does not have an accurate channel model for distributed trajectory control,

we will consider turbulence and fading in this subsection.

From (5.28), we learn that the robot updates its location based on the derivative

of the Lagrangian function. In (5.27), if dPr(zi,zi+1)
dzi

> 0 due to the increase of zi,

the ith robot and the (i + 1)th robot get close and the received power by the (i +

1)th robot increases. If this term is dominant, i.e., the received power by the (i +

1)th robot increases dramatically, dL(z,ϵ,µ)
dzi

is negative since ϵi ≥ 0. Then, according

to (5.28), the robot will move downwards and get away from the (i + 1)th robot.

Similarly, if dPr(zi−1,zi)
dzi

< 0 due to the increase of zi, the received power of the ith

robot decreases. If dPr(zi−1,zi)
dzi

is a dominant term, dL(z,ϵ,µ)
dzi

is nonnegative. According

to (5.28), the robot moves upward to get away from the (i − 1)th robot. Finally,

when zi converges to the optimal location z∗i , dL(z,ϵ,µ)
dzi

= 0. Under the optimal

condition, all the received power are equivalent. This is trivial to prove because

increase any of the received power will decrease another one which reduces P0.

Thus, in (5.27) both of the two indicator functions are valid and we need

dPr(zi, zi+1)

dzi
+

dPr(zi−1, zi)

dzi
= 0, (5.29)

where we implicitly assume µi ≪ ϵi. Generally, if the received power of a wireless

link increases, the transmitter moves downward and the receiver moves upward.

When we consider fading, dPr(zi,zi+1)
dzi

and dPr(zi−1,zi)
dzi

are random numbers, we can use
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their expectations.

Our distributed solution is based on this observation: the robot moves towards

the opposite direction of the change of received power. The challenge is how to

analytically develop the relationship between the robot motion and the change of

received power to ensure that robots can move to the optimal locations.

Consider that a robot is at zi and its upper neighbor is at zi+1 and lower neighbor

is at zi−1. We assume the ith robot has the information about zi+1 and zi−1 by using

underwater localization, which is usually obtained by using acoustic signals. The

received power by the ith robot is Pr(zi−1, zi), and the received power by the (i +

1)th robot is Pr(zi, zi+1), which will be feedback to the ith robot. Then, the ith robot

uses a simple channel model to estimate the attenuation loss, which is

exp(−c1(zi+1 − zi)) = E (Pr(zi, zi+1)) (5.30)

exp(−c2(zi − zi−1)) = E (Pr(zi−1, zi)) , (5.31)

where E(·) is the expectation which can be obtained by collecting multiple samples

and find the mean received power. The estimated attenuation loss is

c1 =
log E (Pr(zi, zi+1))

zi − zi+1
c2 =

log E (Pr(zi−1, zi))

zi−1 − zi
. (5.32)

Next, using c1 and c2, we need to obtain an updated zi to satisfy the requirement in

(5.29). Therefore, we have

dE (Pr(zi, zi+1))

dzi
+

dE (Pr(zi−1, zi))

dzi
= c1(zi+1 − zi)

− c2(zi − zi−1) = 0. (5.33)

The optimal zi is

z∗i =
c1zi+1 + c2zi−1

c1 + c2
. (5.34)
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If the current location is zi and the next time step location is z∗i , then the ith robot

updates its location based on

zk+1
i = zk

i +
log E (Pr(zi−1, zi))− log E (Pr(zi, zi+1))

c1 + c2
. (5.35)

The above design can converge to the optimal location since when the two links

have the same received power, the numerator in the second term of (5.35) becomes

zero and the robot does not move if its neighbors do not move. Since c1 and c2 are

positive numbers, if the lower received power is higher, the robot moves upward,

and if the upper received power is higher, the robot moves downward.

Compared to the centralized solution, the above approach only requires local

observation of the received power and the robot locations without knowing any

global channel model or robot status. Since the algorithm is fully distributed, it is

scalable.

5.4 Trajectory Control Simulation

In this section, we numerically evaluate the performance of the proposed central-

ized and distributed algorithms. We mainly focus on two aspects: the improvement

of data rate by using multiple robots and the adaptability of the algorithms in dif-

ferent underwater environments.

5.4.1 Number of Robots

We consider the water type as S1, and the parameters are given in (Johnson, Green,

and Leeson, 2013). The depth of the target is dt = 150 m. First, we consider 5 robots

and compare the performance of the centralized and distributed algorithms. The

initial location of the ith robot is [−dt + 5(i − 1)]. The 1st robot is the anchor robot,

which does not move, and the last robot is the lead robot, which moves toward

the surface with a constant step zstep. The laser transmission power is 0.1 W, the
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FIGURE 5.10: Robot vertical trajectory using distributed algorithm.
The final locations of robots are [-150.0, -116.8, -89.0, -43.4, 0.0] m. The

received power is [-44.8, -43.6, -46.9, -46.2] dBm.

divergence angle is π/10, and the receiver aperture area is 0.005 m2. Note that,

robots only move upward and downward to find their optimal depth. Moving

towards any other direction may increase interference.

First, we consider zstep = 0.5 m. The distributed algorithm is shown in Fig. 5.10

and the centralized algorithm is shown in Fig. 5.11. As shown in the figures, both

the distributed and the centralized algorithms can guide robots to locations with

similar received power for each relay link. The variance of the received power using

the distributed algorithm is smaller than that using the centralized algorithm. This

is mainly due to the value of zstep and the approximation of the received power

derivative.

In Fig. 5.12, the zstep is reduced from 0.5 m to 0.1 m. As we can see from the

figure, the received power variance is slightly reduced with minor location changes.

In Fig. 5.13, we increase the robot number from 5 to 15 with a step of 5. We run

each scenario 10 times and show the mean and standard deviation in the figure.

Since the distributed algorithm performs better in terms of computing efficiency

and results, we only evaluate it here. As we can see, as the robot number increases

the received power also increases and the variance of the received power becomes
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FIGURE 5.11: Robot vertical trajectory using centralized algorithm
with step 0.5 m. The final locations of robots are [-150.0, -114.0, -75.5,

-38.2, 0.0] m. The received power is [-49.1, -48.0, -41.0, -41.7] dBm.
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FIGURE 5.12: Robot vertical trajectory using centralized algorithm
with step 0.1 m. The final locations of robots are [-150.0, -114.8, -78.6,

-39.4, 0.0] m. The received power is [-47.9, -47.5, -42.0, -42.4] dBm.
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FIGURE 5.13: Impact of robot number on final received power when
robots moved to their optimal locations.

smaller. More relay robots reduce the distance between two robots and increase the

received power. However, the gain of using more robots gradually decreases, i.e.,

the gain is not linear.

5.4.2 Dynamic Underwater Environment

The main motivation to develop a simple distributed algorithm is to adapt to dy-

namic underwater environments. Next, we evaluated the distributed algorithm

without environment knowledge and the centralized algorithm in different under-

water environments, i.e., the S1, S2, S3, and S4 defined in (Johnson, Green, and

Leeson, 2013). We obtain the mean value and the standard deviation of the received

power of the 4 links between 5 robots. For the distributed algorithm in Fig. 5.14,

we observe that the performances in different underwater environments are similar

without dramatic change. Since the distributed algorithm only uses locale observa-

tions, it does not require global environmental information nor the channel model.

Its performance is robust in dynamic underwater environments. For the central-

ized algorithm, we consider the S1 channel model is available, but the other three



50

1 2 3 4
Water type

10-9

10-8

10-7

R
ec

ei
ve

d 
po

w
er

 (
W

)

FIGURE 5.14: Final received power of the relay network with 5 robots
using distributed algorithm in S1, S2, S3, and S4 underwater environ-
ment. The parameters of underwater environment are from (Johnson,

Green, and Leeson, 2013).
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FIGURE 5.15: Final received power of the relay network with 5 robots
using centralized algorithm in S1, S2, S3, and S4 underwater environ-
ment. The parameters of underwater environment are from (Johnson,

Green, and Leeson, 2013).
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environments are unknown, i.e., the centralized controller considers a static S1 envi-

ronment. As shown in Fig. 5.15, the received power of all the relay links has a large

variance in S2, S3, and S4 environments. Those links with a small received power

will limit the overall data rate. Thus, without the channel and environmental infor-

mation, the centralized algorithm cannot be adaptive to the dynamic underwater

environment.
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6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

Applications such as climate change monitoring, target monitoring, and species mi-

gration monitoring can only benefit from the application of high-speed image pro-

cessing and video streaming. This work considers a holistic approach to bridging

these very important fields together. The study begins by considering the assembly

and operation of an underwater robot which has the ability to travel up to 130m

deep under water. The next section analyses the implementation of an underwater

target detection model, followed by an optical testbed which has the potential to

support high-speed video streaming. A distributed trajectory control algorithm is

also proposed to organize and maintain the trajectory of robots during swarming.

6.2 Future Work

6.2.1 Further Exploration

One of the main challenges faced during the explorations was the absence of any

plastics in all the underwater environments. Further exploration of different water

bodies will be required in order to find more instances of plastics.

6.2.2 Object Detection and Image Enhancement

The nature of the dataset and the images collected during the exploration present

a slightly more difficult learning process than many other object detection tasks.

Using image enhancement techniques in MATLAB, the quality and nature of the

images can be improved as well as the learning process. Again, metrics such as the
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precision and recall of the model shall be investigated into greater detail. The aim of

this process will be to improve the model’s ability to more accurately detect plastics

in the underwater environment.

6.2.3 Deployment of Model on Robot

Another step to be taken will be to deploy the object detection model on the com-

panion computer embedded within the robot’s architecture. This will serve the

purpose of real-time object detection.
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