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Abstract

We consider the computational complexity of computing a mixed-strategy Nash equilibrium (MSNE) in resource
graph games (RGGs) [Jiang, Chan, Leyton-Brown 2017], a compact representation for games with an exponential
number of strategies. In a resource graph game, there are m resources and a directed graph of the resources, and
each player’s pure strategy set consists of subsets of resources. Each player’s pure strategy is represented by a binary
vector, and the pure strategy set is represented compactly using a rational polytope defined by a set of linear inequality
constraints. Given the pure strategies of the players, each player’s utility depends on the directed resource graph and
the numbers of times the neighboring resources are used.

In this paper, we provide the first FPTAS for computing an MSNE in any symmetric multilinear RGG where
its constraint moralized resource graph (a graph formed between the moralized resource graph and the constraints
defining the strategy polytope) has bounded treewidth. Our FPTAS can be generalized to a constant number of player
types. As a consequence, our FPTAS provides the first and improved approximation results for domain specific
games such as single-attacker and single-defender security games and congestion games. Finally, leveraging the
RGG representation and our FPTAS, we obtain an FPTAS to compute an MSNE for a large class of bilinear games.

1 Introduction
There has been increasing interest in using game theory to model real-world systems, and in the computation of
game-theoretic solution concepts given such a model. For games with large numbers of agents and actions, the
standard normal form game representation requires exponential space and is thus not a practical option as a basis for
computation. Fortunately, most large games of practical interest have highly structured utility functions, and thus it is
possible to represent them compactly. A line of research thus exists to look for compact game representations that are
able to succinctly describe structured games, including work on graphical games [18], multi-agent influence diagrams
[19] and action-graph games [16]; as well as work on efficient algorithms for computing solution concepts such as
Nash equilibrium [25, 7] and (coarse) correlated equilibrium [17, 26] given compactly represented games.

In many real-world domains, each player needs to make a decision that consists of multiple sub-decisions (e.g.,
assigning a set of workers to tasks, ranking a set of options, or finding a path in a network), and hence can have
an exponential number of pure strategies. However, this space of pure strategies is often structured, meaning that
it can be represented compactly. Several classes of multi-player game models studied in the recent literature have
such structured strategy spaces, including network congestion games [7], simultaneous auctions and other multi-
item auctions [30, 27], dueling algorithms [13], integer programming games [20], Blotto games [1], and security
games [21, 29]. These authors proposed compact game representations that are suitable for their specific domains and
computation needs.

More recently, [14] proposed resource graph games (RGGs), a general compact representation for games with
structured strategy spaces that unifies and generalizes many of the existing classes of structured games mentioned
above. At a high level, an RGG consists of a graphical representation of utility functions together with a general
representation of strategy spaces as convex polytopes. In more detail, in an RGG, there are n players and a set A
of resources. A pure strategy of a player is a subset of the resources, represented by an |A|-dimensional 0-1 vector
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where 1 in the jth dimension denotes the usage of the jth resource. Each player’s set of pure strategies is represented
compactly as a polytopal strategy space: the set of integer points in a convex polytope, which are specified by a set of
linear inequality constraints. There is a resource graph, a directed graph whose vertices are the resources A, and the
graph depicts the utility structure of the game. There is a utility contribution for using each resource, specified by a
local utility function, which depends on the number of times each of its neighboring resources are used by the players.
Given the pure strategies of the players, a player’s utility is the sum of the utility contributions of the resources that the
player uses in his/her pure strategy.

In this paper we consider the problem of computing a mixed-strategy Nash equilbrium (MSNE) in RGGs. RGGs
can represent arbitrary games, as a result the PPAD-hardness of finding an MSNE in normal form games [6, 8] implies
the PPAD-hardness for finding MSNE in RGGs. In the other direction, [14] showed that for certain subclasses of
RGGs, the problem is in PPAD, which implies that the problem can be polynomially reduced to the problem of finding
a Nash equilibrium in a polynomial-sized bimatrix game.

1.1 Our Contributions
A natural question arises: are there subclasses of RGGs for which MSNE can be computed (or approximated) in
polynomial time? In this paper we provide one answer to this question by identifying a subclass of RGGs that admits a
fully polynomial time approximation scheme (FPTAs) for finding MSNE. In particular, we focus on symmetric RGGs
that satisfy a multilinearity condition (the utility functions are linear in each player’s strategy vector while keeping
others’ strategies fixed). We define constraint moralized resource graph as an undirected graph constructed by starting
from the moralized graph (also known as the primal graph) of the resource graph, then adding nodes corresponding
to the linear strategy constraints, and edges connecting each constraint with the resources that are involved in the
constraint. Our main result is summarized as follows.

Main Theorem (Informal). There is a FPTAS for computing MSNE for a symmetric multilinear RGG whose con-
straint moralized resource graph has bounded treewidth.

Our FPTAS can be extended to find specific MSNE, such as MSNE with the greatest (or lowest) social welfare.
We also generalize our FPTAS to a constant number of player types.

We then applied our FPTAS to classes of RGGs that correspond to games studied in literature, and obtained new
and improved results for these games. In particular, we show FPTAS for computing MSNE in

• generalizations to security games. Initial studies on security games focused on the case of multiple defender
units and the attacker choosing a single target. Efficient algorithms for finding Stackelberg equilibria were
proposed, and [23] showed that under mild conditions, these Stackelberg strategies are often also Nash equilib-
rium strategies. [22] studied security games in which the attacker can choose multiple targets, and presented a
polynomial-time algorithm for finding a Nash equilibrium when defender’s and attacker’s strategy sets are uni-
form matroids (i.e., a single capacity constraint that bounds the total number of resources chosen). We show that
for both the single attack model of [23] and the multiple attack model of [22] the moralized constraint resource
graphs of corresponding RGG representations have constant treewidth, and therefore our FPTAS can be applied.
Our FPTAS can be applied to more general cases of players’ strategy constraints not covered by existing results,
as long as the constraint matrices are totally unimodular and the treewidth of the resulting moralized constraint
resource graph is bounded.

• congestion games. Congestion games model the situation in which there is a set of resources, and each player
selects a subset of resources. The cost of using a resource depends on the total number of players using it.
As such, the player’s goal is to select a subset of resources that minimizes the total cost. A special type of
congestion games is those where the players’ strategy constraints are totally unimodular. Our FPTAS provides a
more general (bounded treewidth) graphical structure to cover a boarder range of this type of congestion games
than the FPTAS in [4].

• bilinear games [12], including bimatrix games. These are two-player games whose utilities are characterized
by payoff matrices A and B. When A and B are sparse matrices, the RGG representations have nontrivial
graph structure. We can apply our FPTAS when the constraint moralized resource graph has bounded treewidth.
Furthermore, due to the special structure of bilinear game utilities, we can avoid the moralization step, resulting
in further reduced treewidth.
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1.2 Main Technical Ideas
One immediate obstacle is that representing mixed strategies explicitly would require exponential space. The multi-
linearity of the game allows us to represent mixed strategies compactly using marginal vectors (marginal probabilities
that each resource is being chosen), with dimension linear in the number of resources. We thus search for approximate
MSNE in the space of marginal vectors.

The standard formulation for Nash equilibrium consists of inequality constraints for each pure strategy. For games
with exponential numbers of pure strategies, such a formulation is inconvenient as it requires reasoning about an
exponential number of constraints. Instead, we start with a more efficient formulation for MSNE, based on the primal
and dual linear programs for computing best response in RGGs. The resulting formulation for MSNE has a polynomial
number of variables (the marginal vector and the dual variables), and a polynomial number of constraints (the primal
feasibility, dual feasibility, and strong duality constraints). Our task is thus to solve this polynomial-sized (nonlinear)
feasibility problem.

We solve the feasibility problem by exploiting the independence structure among its variables and constraints. In
particular, expected utility computation (needed by e.g., the strong duality condition) only depends on neighboring
nodes, and each strategy constraint might only involve certain subset of resources. This structure is encoded as the
constraint moralized resource graph.

In a standard graph-based approach for constraint satisfaction, a moralization step is usually required, in which the
variables associated with each k-ary constraint is connected together into a clique before applying tree decomposition.
In our algorithm, we are doing the moralization for edges corresponding to the resource graph (representing utility
dependence), in order to make sure the resulting tree decomposition has enough information to carry out the expected
utility computation. On the other hand, we do not need to do moralization for the other edges between resources
and constraints. Although they correspond to k-ary constraints, those constraints are linear, as a result, instead of
moralizing and then process the k-ary constraint all at once, we could keep track of partial sums of the constraint. We
keep partial sums for various components of our primal feasibility, dual feasibility and strong duality constraints. By
avoiding moralizations we potentially reduce the treewidth of the resulting graph.

After discretizing the variables and the partial sums, we propose a message passing algorithm that operates on a
tree decomposition of the constraint moralized resource graph. Each resource node in the graph is associated with its
marginal variable and partial sum for the corresponding row in dual constraints; each constraint node in the graph is
associated with partial sum for that row of the strategy constraint and its corresponding dual variable. The algorithm
first pass messages from leaves up, ending at root, with messages containing the feasible values for variables and
partial sums that are relevant to the rest of the graph. It then pass messages from root down, ending at leaves, to
construct an ε-MSNE.

If the local utility functions are linear, i.e., the sum of contributions from each neighbor, then we can again apply the
above partial sum idea and avoid needing to moralize the resource graph edges as well, further reducing the treewidth.
This underlies our results for bilinear games, whose RGG representations have linear local utilities.

1.3 Related Work
As mentioned earlier, RGGs are introduced by [14] to compactly model games with an exponential number of actions.
For some RGGs that satisfy multilinearity, it has been shown that computing an exact coarse correlated equilibrium
can be computed in polynomial time and computing a mixed-strategy Nash equilibrium (MSNE) is in PPAD using the
results of [5].

A special case of RGGs is congestion games [28] where the nodes in the resource graphs have only self-edges. It is
known that every congestion game has a pure-strategy Nash equilibrium (PSNE) and even finding a PSNE in network
congestion games is PLS-complete [11]. However, there is a polynomial time to find a PSNE in symmetric network
congestion games. More recent works [4, 10] study congestion game settings where the strategy spaces of the players
can be compactly represented using polytopes defined by sets of linear inequalities. When the polytopes have totally
unimodular properties, there is a polynomial time algorithm to compute a PSNE in congestion games [10] and there is
a fully polynomial time approximation scheme (FPTAS) to compute a mixed-strategy Nash equilibrium (MSNE) [4].

Action graph games (AGGs) [16] are also special cases of RGGs in which the resources are the explicit actions
of the players. While determining whether there is a PSNE in AGGs is NP-hard [15, 9] and computing approximate
MSNE in AGGs is PPAD-hard [9], for AGGs with bounded degree and treewidth action graphs and constant number
of player types, there is an FPTAS for computing a MSNE [9].
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A bilinear game [12] is a two-player game whose utilities are characterized by payoff matricesA andB. [12] show
that there are polynomial algorithms to compute MSNE when the sum of the rank of A+ B is one and the rank of A
or B is constant and an FPTAS for computing MSNE when the rank of A+B is constant.

2 Preliminaries
Denote by Z+ the set of nonnegative integers. A rational polytope is defined by a set of inequalities with integer
coefficients; formally P = {x ∈ Rm|Dx ≤ f} is a rational polytope if D and f consist of integers.

2.1 Games, Strategies and Equilibrium
A game is specified by (N,S, u), where N = {1, . . . , n} is the set of players. Each player i ∈ N chooses from a
finite set of pure strategies Si. Denote by si ∈ Si a pure strategy of i. Then S =

∏
i Si is the set of pure-strategy

profiles. Moreover, u = (u1, . . . , un) are the utility functions of the players, where the utility function of player i is
ui : S → R.

A mixed strategy σi of player i is a probability distribution over her pure strategies. Let Σi = ∆(Si) be i’s set of
mixed strategies, where ∆(·) denotes the set of probability distributions over a finite set. Denote by σ = (σ1, . . . , σn)
a mixed strategy profile, and Σ =

∏
i Σi the set of mixed strategy profiles. Denote by σ−i the mixed strategy profile

of players other than i. σ induces a probability distribution over pure strategy profiles. Denote by ui(σ) the expected
utility of player i under σ: ui(σ) = Es∼σ[ui(s)] =

∑
s∈S ui(s)

∏
k∈N σk(sk), where σk(sk) is player k’s probability

of playing the pure strategy sk.
For ε ≥ 0, player i’s mixed strategy σi is an ε-best response to σ−i if ui(σi, σ−i) ≥ maxσ′i∈Σi ui(σ

′
i, σ−i) − ε.

An equivalent condition is ui(σi, σ−i) ≥ ui(s
′
i, σ−i) − ε ∀s′i ∈ Si. A mixed strategy profile σ is an ε-MSNE if for

each player i ∈ N , σi is an ε-best response to σ−i. A best response is a 0-best response and an MSNE is a 0-MSNE.

2.2 Resource Graph Games
A resource graph game (RGG) is specified by the tuple Γ = (N,A, {Si}i=1,...,n, G, {uα}α∈A), where:

• N = {1, 2, ..., n} is the set of n players.

• A = {1, ...,m} is the set of m resources.

• Si is a nonempty set of pure strategies for player i, and each si ∈ Si is represented by an |A|-dimensional 0-1
vector.

• Si is represented as a polytopal strategy space where Si = Pi ∩ {0, 1}|A|, Pi = {x ∈ [0, 1]|A||Dix ≤ fi},
Di ∈ Zli×|A|, and fi ∈ Zli . In other words, Pi is a rational polytope defined by li linear constraints. We let siα
to denote the component corresponds to α ∈ A.

• Given a pure-strategy profile s = (s1, ..., sn), the configuration c =
∑
i∈N si is an integer vector that denotes

the total number of players who have selected each resource.

• The resource graph G = (A, E) is a directed graph that could contain self-loops. The neighborhood of α ∈ A
is denoted by ν(α) (which could include α). We let C(α) ⊂ Zν(α)

+ to be the set of possible local configurations
over ν(α), and c(α) ∈ C(α) to be a local configuration.

• The local utility function uα : C(α) → R represents the utility contribution of using α given the configuration
over its neighborhood ν(α).

• Given the pure-strategy profile s = (s1, ..., sn), the utility of player i is defined to be

ui(s) =
∑

α:siα=1

uα(c(α)) =
∑
α∈A

siαu
α(c(α)). (1)

[14] showed that the size of this representation is polynomial in m, nI , and
∑
i li, where I is the maximum

in-degree of the resource graph.
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2.3 Multilinearity and Marginal Represntation of Mixed Strategies
When |Si| is exponential, representing a mixed strategy σi explicitly would take exponential space. Given player i’s
mixed strategy σi, the marginal vector πi that corresponds to σi is πi = Eσi [si] =

∑
si∈Si σi(si)si. In other words,

πiα is the marginal probability that resource α is chosen under the mixed-strategy σi. Thus if we represent a mixed
strategy using its marginal vector, this would only require O(m) space. However, for this representation to work, we
need to be able to express the expected utilities of the game in terms of marginal vectors. [5] showed that this can be
done if the game has the multilinear property: for all i, j ∈ N , given a fixed s−j , ui is a linear function of sj . Under
this property, each marginal vector corresponds to an infinite number of mixed strategies, all payoff-equivalent to each
other.

Not all RGGs are multilinear; the following proposition gives a sufficient condition for an RGG to be multilinear.

Proposition 1 (Proposition 7 of [14]). An RGG, Γ = (N,A, {Si}i=1,...,n, G, {uα}α∈A), is multilinear if, for each
player i, for each α ∈ A, and for each si ∈ Si,

∑
α′∈ν(α)∪{α} siα′ ≤ 1. Moreover, given an RGG, we can verify the

above condition in polynomial time.

For other RGGs, [14] showed that they can be transformed to a payoff-equivalent mutilinear game with polynomial
increase in the dimensionality of the strategy spaces. Nevertheless, for this paper we will focus on RGGs satisfying
the condition for Proposition 1.

In practice, it is often desirable to be able to recover a mixed strategy from a marginal vector representation. Since
the explicit representation of mixed strategies has exponential size, we would instead like to have the mixed strategy
specified in some implicit manner that requires less space, e.g., as a sparse vector or an efficient sampling scheme. [5]
provides one sufficient condition for the efficient recovery of mixed strategies from marginals: If the constraint matrix
Di is totally unimodular, then given a marginal vector πi, we can efficiently generate a mixed strategy σi, represented
as a sparse vector with polynomial number of nonzero entries, such that πi =

∑
si∈Si σi(si)si.

In summary, to ensure the compact representation of mixed strategies as marginal vectors, we make the following
assumptions:

Assumption 1. For all i, the constraint matrix Di is totally unimodular.

Assumption 2. For each i ∈ N , for each α ∈ A, and for each si ∈ Si,
∑
α′∈ν(α)∪{α} siα′ ≤ 1.

Given Assumption 1, we claim that without loss of generality we can assume fi ∈ [−m,m]li . To see this, we note
that entries of a totally unimodular Di must be either 0, 1, or -1. Since strategies are 0-1 vectors, Dix ∈ [−m,m]li .
Then if fij < −m, the corresponding row of the constraints is unsatisfiable, resulting in an empty polytope Pi, which
violates our assumption that Si is nonempty. If fij > m, the corresponding row of constraints is always satisfied, and
we could change fij to m without changing the polytope Pi.

Assumption 3. For all α ∈ A, the range of uα is bounded in [0, 1].

A fully-polynomial time approximation scheme (FPTAS) for MSNE is an algorithm that given an RGG, computes
an ε-MSNE in time poly(nI ,m, l, 1

ε ). While Nash equilibria are preserved under affine transformations of the utility
functions ui, ε-Nash equilibria are not. E.g. multiplying all ui by a constant κ would turn a ε-MSNE into a κε-
MSNE in the new game. A standard practice is to normalize the utility functions ui into the range [0, 1], by the
affine mapping ui 7→ (ui − umin)/(umax − umin), where umax = maxi,s ui(s) and umin = mini,s ui(s) are the
maximum and minimum achievable utilities of the game, respectively. Then use the normalized game to measure the
quality of approximation, i.e., ε. An ε-MSNE in the original game would correspond to an ε

(umax−umin) -MSNE in the
normalized game. While Assumption 3 implies ui(s) ∈ [0,m] for all i and s, these are in general not tight bounds on
umax and umin, and indeed umax and umin may be hard to compute given an RGG. We note that this is a common
issue with compact game representations whose utility functions are sums of other functions, e.g., polymatrix games
[3]. For our purposes, in order to ensure that our FPTAS remains an FPTAS for the normalized game, it is sufficient to
assume that (umax − umin) is lower-bounded by an inverse polynomial of the size of the game.

Assumption 4. (umax − umin) ≥ 1
poly(nI ,m,

∑
i li)

.

In practice this is a reasonable assumption for natural classes of games, as we would normally expect umax−umin
to not decrease as the size of the game grows. Indeed it can be easily verified that this holds for all example games
discussed in this paper.
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3 Computing Approximate MSNE
We begin by re-expressing and rewriting Equation 1 in terms of marginal vectors. The reformulation allows us to
derive some important properties of Nash equilibrium.

3.1 A Useful Expression of Expected Utilities

Before stating our results, we define some notations. For each α ∈ A, let Ωjα = {ω ∈ {0, 1}|ν(α)| |
∑|ν(α)|
i=1 ωi ≤ 1}

be the set of local configurations that specifies player j’s resource usage in the neighborhood of ν(α). We also let
Ω−i,α =

∏
j∈N\{i} Ωjα. For simplicity, we assume that, for α ∈ A, ν(α) is ordered lexicographically, and the kth

element in ν(α) corresponds to ωk and sjk for each ω ∈ Ωjα, for each sj ∈ Sj , and for each player j.

Proposition 2. Given a multilinear RGG that satisfies the conditions in Proposition 1, a mixed-strategy profile σ−i =
(σj)j∈N\{i} and its corresponding marginal vectors π−i = (πj)j∈N\{i}, the expected utility of i playing si ∈ Si is

ui(si, π−i) =
∑
α∈A

∑
ωα∈Ω−i,α

siαu
α

 ∑
j∈N\{i}

ωjα + s
(α)
i

 ∏
j∈N\{i}

Pr(wjα|πj),

where s(α)
i = (siα′)α′∈ν(α) is the projection of si to Zν(a)

+ .

Proof. Following from Equation (1), we can express the expected utility of player i as the sum over the configurations.
We have that

ui(si, σ−i) =
∑
α∈A

∑
s−i∈S−i

siαu
α
(
c(α)

) ∏
j∈N\{i}

σj(sj)

=
∑
α∈A

∑
s−i∈S−i

siαu
α

∑
j∈N

s
(α)
j

 ∏
j∈N\{i}

σj(sj)

=
∑
α∈A

∑
s
(α)
−i ∈S

(α)
−i

siαu
α

∑
j∈N

s
(α)
j

 ∏
j∈N\{i}

Pr
(
s

(α)
j

)
,

where the second equality is by the definition of configuration and the third equality is because we only need to keep
track of the strategies of the neighborhood of α. Our claim follows from the last equality because each player can
only use at most one resource in the neighborhood (Proposition 1 (b)). Thus, we can replace s(α)

j and S(α)
j by ωjα and

Ωjα, respectively. Finally, the probability of a player of using a particular resource in the local neighborhood is just
its marginal probability.

Our next lemma follows from the above proposition.

Lemma 1. Given a multilinear RGG that satisfies the conditions in Proposition 1, a mixed-strategy profile σ =
(σj)j∈N and its corresponding marginal vectors π = (πj)j∈N , the expected utility of i is

ui(πi, π−i) =
∑
α∈A

πiα
∑

ωα∈Ω−i,α

uα

 ∑
j∈N\{i}

ωjα + ωiα

 ∏
j∈N\{i}

Pr(wjα|πj),

where wiα is all zero and has a value of one at the α entry if α ∈ ν(α).
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Proof. From the above proposition, we have

ui(σi, π−i) =
∑
α∈A

∑
si∈Si

∑
ωα∈Ω−i,α

siαu
α

 ∑
j∈N\{i}

ωjα + s
(α)
i

 ∏
j∈N\{i}

Pr(wjα|πj)σi(si)

=
∑
α∈A

∑
s
(α)
i ∈S

(α)
i

∑
ωα∈Ω−i,α

siαu
α

 ∑
j∈N\{i}

ωjα + s
(α)
i

 ∏
j∈N\{i}

Pr(wjα|πj)Pr(s(α)
i )

=
∑
α∈A

πiα
∑

ωα∈Ω−i,α

uα

 ∑
j∈N\{i}

ωjα + ωiα

 ∏
j∈N\{i}

Pr(wjα|πj),

where the first equality is using the above proposition to compute the expected utility of player i, the second equality
is by projecting the strategies to their local neighborhood α, and the third equality is from the fact that the sum is zero
if siα = 0 and the sum is nonzero with the marginal probability of player i using α, which is πiα. Finally, depending
on whether α ∈ ν(α), we need to increment the count of the α by one in the configuration.

3.2 An Efficient Primal-Dual Definition of MSNE
From Lemma 1, we can express the expected utility of marginal vectors as πTi ∇i(π−i) = ui(π, π−i) where ∇i(π−i)
is the utility gradient of i and ∇i(π−i)α denotes the expected utility contribution of i from using the resource α and
πTi is the transpose of πi. [14] showed that given an RGG and π−i, the utility gradient ∇i(π−i) can be computed
in polynomial time. Moreover, to compute ∇i(π−i)α we only need to know (πjα′)j 6=i,α′∈ν(α), i.e., other players’
marginals projected to α’s neighborhood.

Notice that in the standard definition of MSNE, we need to enumerate all pure strategies to verify whether a mixed-
strategy profile is a MSNE. Clearly, this is not feasible for RGGs or games with exponential number of pure strategies.
Therefore, we need an alternative and efficient way of checking whether a mixed strategy profile is an MSNE.

Best-responses of the Players In particular, given the marginal vectors of other players π−i, the best-response for
player i is the solution to the following linear program.

Primal
maximize πTi ∇i(π−i)
subject to Diπi ≤ fi

πiα ≥ 0 for α ∈ A

Here we assume that the constraint πiα ≤ 1 is embedded into the constraints Diπi ≤ fi. We can formulate the
dual linear program as the following.

Dual
minimize fTi λi
subject to DT

i λi ≥ ∇i(π−i)
λij ≥ 0 for j = 1, 2, ..., li

Given that the primal LP has a solution, the primal and dual LPs solutions have the same optimal objective value. As
a result, πi is i’s best response when there exists a feasible dual vector λi such that πTi ∇i(π−i) = fTi λi. Thus, a
feasible marginal vector π̄ is an MSNE if for each player i, there exists λ′ijs ≥ 0 such that DT

i λi ≥ ∇i(π̄−i) and
π̄Ti ∇i(π̄−i) = fTi λi.

Notice that this primal-dual formulation of best responses do not tell us how to find an MSNE; in particular we
cannot simply solve the LPs to find an MSNE because these are LPs only for fixed π−i.

3.3 Symmetric Multilinear RGGs
We consider computing an optimal approximate Nash equilibrium in symmetric multilinear RGGs that satisfy As-
sumptions (1-4). This is an important class of RGGs, and it contains symmetric action graph games and (network)
congestion games. We define symmetric RGGs to be those games in which the players have the same polytopal
strategy space.
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Definition 1. An RGG, Γ = (N,A, {Si}ni=1, G, {uα}α∈A), is symmetric if and only if for all player i, Di = D,
fi = f , Si = S, and Pi = P for some D ∈ Zli×|A| and f ∈ Zli .

It turns out that every symmetric game has a symmetric MSNE in which every player plays the same (possibly
mixed) strategies [24]. As a result, we have the following.

Proposition 3. For every symmetric multilinear RGGs, there is a symmetric MSNE in which every player plays the
same strategy.

As mentioned earlier, we will focus on computing marginal vectors. The above proposition implies that there is a
marginal representation of symmetric Nash equilibrium.

Next, we show the existence of a symmetric ε-MSNE in which the marginal vector lies in a discretized grid in Pi.
This allows us to search for an ε-MSNE in this discretized space.

Lemma 2. For any δ > 0, there is a (symmetric) marginal vector ∀i qi = q = (qα)α∈A in which qα ∈ {0, 1
K ,

2
K , . . . , 1}

andK = O( logm
δ2 ), such that u(qi, q−i) = qT∇(q−i) ≥ q′T∇(q−i)−O(δdnm) for q′ ∈ [0, 1]m that satisfiesDq′ ≤ f

and d is the maximum in-degree of the resource graph G.

Proof Sketch. The proof is similar to the proof of Lemma 2 in [4]. The key idea is to compare i’s expected utility
under the symmetric marginal representation of the Nash equilibrium (from Proposition 5) and i’s expected utility
under q (its existence is guaranteed by the approximated version of the Caratheodory’s theorem (Theorem 3 of [2]))
using the formula in Lemma 1. The difference of the two expected utilities of each resource is roughly the difference
of two multinomial terms/distributions with at most d + 1 events. It can be shown that its total variation distance is
O(δdn) [9]. Since we have m resource, the total variation distance is O(δdnm). Using the total variation distance,
we can derive our claim.

The above lemma implies that if every player plays according to q, then we have an O(δdnm)-MSNE. Our next
step is to present an efficient algorithm to find such q.

3.4 An Efficient Algorithm to Compute ε-MSNE
From Lemma 2, there is a marginal vector q that lies in the m-dimensional uniform discretized grid with discretization
size 1

O(δdnm) . Thus, a brute-force approach does not yield an efficient algorithm. Our approach is based on a similar
principle of [4] where we use the definition of NE in terms of best-response and linear programming of Section 3.2 and
introduce an algorithm that run on some variant of the resource graph (will be discussed in Section 3.4.3). The idea is
to keep track of the possible partial {qα}α∈A′ for some set A′ that satisfies the linear programs and can be potentially
be used to form the ε-MSNE. At the same time, we need to keep track of the partial utility sums (i.e., primal solution),
partial constraint sums (for each of the constraints in the dual/primal LPs), and partial sums of the dual solution.

However, the possible values of the partial utility sums can grow exponentially. To make our computational task
tractable, we discretize the utility space. Such additional discretization will add a small approximation error to the
ε-MSNE from our algorithm. Below, we provide the discretization and the error bound.

3.4.1 Discretization of the Utility Space

As we mentioned earlier, we assume that the local utility values of the games are in between zero and one. Moreover,
∇i(q̄−i)α’s are all in between zero and one for any q̄−i. For each resource α and a symmetric marginal vector q̄, we
are going to project ∇i(q̄−i)α into a value in V = {vi, i = 0, 1, 2, ..., d 4m

ε e | vi = iε
4m} for some ε ∈ (0, 1]. In

particular, we let proj(u) = v to be the projection of some value u to a value v ∈ V such that u ∈ (v− ε
4m , v + ε

4m ).
Clearly, under the discretization, the error bound from Lemma 2 is going to change by some factor of ε.

Proposition 4. Given the symmetric marginal vector q defined in Proposition 2, and let proj(u) = v be the pro-
jection of some value u to a value v ∈ V such that u ∈ (v − ε

4m , v + ε
4m ). We have

∑
α∈A qαproj(∇(q−i)α) ≥∑

α∈A q
′
αproj(∇(q−i)α)− ε

2−O(δdnm), for any q′ ∈ [0, 1]m that satisfiesDq′ ≤ f and d is the maximum in-degree
of the resource graph G.

The above proposition follows from the proof of Claim 6 of [4] and our Proposition 2.
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3.4.2 Verification of ε-MSNE

As discussed in Section 3.2, we can use the primal and dual solutions of the LPs to check for NE. Under our symmetric
setting and the projection function, we can rewrite the LPs in Section 3.2 as

Primal
maximize q∗T proj(∇(q−i))
subject to Dq∗ ≤ f

q∗α ≥ 0 for α ∈ A

Dual
minimize fTλ∗

subject to DTλ∗ ≥ proj(∇(q−i))
λ∗j ≥ 0 for j = 1, 2, ..., l,

where qi is given in Proposition 2. Indeed, we can use solution of the above LPs to to verify whether q is an approxi-
mate NE.

Lemma 3. Given the symmetric marginal vector q defined in Proposition 2 and let q∗ be a best response to q−i,
we have

∑
α∈A qαproj(∇(q−i)α) ≥

∑
α∈A q

∗
αproj(∇(q−i)α) − ε

2 − O(δdnm) = fTλ∗ − ε
2 − O(δdnm), for any

q′ ∈ [0, 1]m that satisfies Dq′ ≤ f and d is the maximum in-degree of the resource graph G.

Furthermore, the above lemma states that as long as we know the value of fTλ∗ (the solution of the dual) under
the projection function, we can check for an approximate NE. The following lemma characterizes the possible values
of λ∗.

Lemma 4 (Lemma 4 of [4]). The value of λ∗ = (λ∗i )i=1,2,...,l is such that λ∗i = civi for some integer constant
0 ≤ ci ≤ m and vi ∈ V .

The above lemma allows us to search for a λ∗q̄ that corresponds to some marginal vector q̄ satisfying the conditions
in Lemma 3.

3.4.3 Message Passing Algorithms

To search for a marginal representation of ε-MSNE, we propose a two-pass message passing algorithm that runs on
a tree decomposition of the constraint moralized resource graph, which is a graph constructed based on the resource
graph and the constraints. Our algorithm is a fully polynomial approximation scheme (FPTAS) when the constraint
moralized resource graph has bounded treewidth. We introduce and define the concepts below.

Moralized Resource Graph, Constraint Moralized Resource Graph, and Tree Decomposition Recall that a
resource graph G = (A, E) is a directed graph on the resources. Let C = {1, ..., l} be the set of constraints,
corresponding to rows of the constraint matrix D. We use the notation DC,A to denote the subcomponent of D
consisting of the rows in C ⊆ C and columns in A ⊆ A. If |C| = 1 and |A| = 1, then DC,A is the value corresponds
to the row and column.

Moralized graphs (also known as primal graphs) is a standard tool used in the study of many graph-related prob-
lems, including Bayesian network inference and constraint satisfaction.

Definition 2. Given a resource graph G = (A, E), its moralized resource graph is an undirected graph MG =
(A, E ∪E′) where E is an undirected edge set of E, and E′ = {{α, α′} ∈ A×A | ∃ᾱ ∈ A s.t. (α, ᾱ), (α′, ᾱ) ∈ E}
is a set of undirected edges connecting the parents of their children.

Given the moralized resource graph, we construct a graph between the resources and the constraints.

Definition 3. The constraint moralized resource graph is an undirected graph CMG = (A∪C,E ∪E′ ∪E′′) where
E′′ = {{c, α} ∈ C ×A | Dcα 6= 0} is a set of undirected edges connecting resources and constraints.

In other words, there is an edge from the constraint to all of the resources involved in the constraint.
We perform tree decomposition on the constraint moralized resource graph. For ease of reference, we provide the

definition below.
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Table 1: Variables (Var.) and Discretization

Var. Discretization
qα Q = {qi, i = 0, ..., O( logm

δ2 ) | qi = i
|Q|}

λc Λ = {λi, i = 0, ..., 4m2

ε | λi = iε
4m}

∂Sc SC =

{
±si, i = 0, ...,mO( logm

δ2 ) | si = i

O( logm

δ2
)

}
∂λα SA = {±si, i = 0, ..., 4lm3

ε | si = iε
4m}

∂t T =

{
ti, i = 0, ...,

4m2O( logm

δ2
)

ε | ti = iε
4mO( logm

δ2
)

}
∂f F =

{
±fi, i = 0, ..., 4lm3

ε | fi = iε
4m

}

Definition 4. A tree decomposition of an undirected graph G = (V,E) is a tree T = (B,E′) where B ⊆ 2V is a
collection of subsets of V that satisfies the following: (a)

⋃
X∈B X = V , (b) for each e = {e1, e2} ∈ E, ∃X ∈ B

such that e1, e2 ∈ X , and (c) for any X,X ′, and X ′′ ∈ B, if X ′ is on the path of X and X ′′, then X ∩ X ′′ ⊆ X ′.
The width of the tree decomposition is maxX∈B(|X| − 1). The tree-width is the minimum width of all of the tree
decompositions.

We will present an algorithm that runs on the tree decomposition of the constraint moralized resource graph.
Before that, we provide some discretization bounds that will be used in the algorithm.

Discretization. As mentioned earlier, our approach is to search for the marginal representation of an ε-MSNE. To
do this, we provide discretization bounds for the existence of an ε-MSNE in the marginal and utility spaces. Here, we
provide other discretization spaces that are necessary for our algorithm. Table 1 lists the variables and their uniform
discretization that we used in the following discussion.

To begin, recall that we want to find a marginal vector q = (qα)α∈A where qα ∈ Q = {qi, i = 0, 1, ..., O( logm
δ2 )

| qi = i

O( logm

δ2
)
} (as in Lemma 2) such that Dq ≤ f , DTλ∗q ≥ proj(∇(q−i)), and qT proj(∇(q−i)) ≥ fTλ∗q − ε

2 −

O(δdnm) for λ = (λc)c∈C where λc ∈ {λi, i = 0, ..., 4m2

ε | λi = iε
4m} (as in Lemma 4). Clearly, we are not going

to try all the possible q ∈ Q|m| directly. Instead, our approach is to find feasible (qα)α∈A′ and (λc)c∈C′ for some
ordering of A′ ⊆ A and C ′ ⊆ C induced by the tree decomposition incrementally. Thus, we need to keep track of the
partial sums of (1) Dc,Aq for each constraint c, (2) DT

α,Cλq for each resource α, (3) qT proj(∇(q−i)), and (4) fTλq
for a given q and λq . Because D is totally unimodular, its entries can only have values of 0, 1, or -1. Thus, the possible
values of the partials sums are finite and have the following discretization spaces.

For (1), the partial sum of a constraint c is bounded by fc. Since D is totally unimodular, the largest partial sum
given any q is no more than ±m (as discussed in Section 2.3) for any constraint c. Therefore, the partial sum of

the constraint c, denoted by ∂Sc, is in SC =

{
±si, i = 0, ...,mO( logm

δ2 ) | si = i

O( logm

δ2
)

}
. Such discretization is

because the step size of q is O( logm
δ2 ) and the highest and lowest values of the possible sums are ±m.

For (2), since the λc’s value is some constant times a value from V and the partial sum can add up to at most
ml, the partial sum of a resource constraint α (i.e., DT

α,C), denoted by ∂λα, is in
{
±si, i = 0, ..., 4lm2

ε | si = iε
4m

}
,

where |C| = l is the number of constraints. However, we will subtract the partial sum by its right-hand side
of the inequality when it is appropriate, as a result, we need to expand the discretization so that ∂λα ∈ Sα ={
±si, i = 0, ..., 4lm3

ε | si = iε
4m

}
.

For (3), since the possible values of a marginal is in Q, the discretized utility is in V , and the highest partial sum is

at mostm, the partial utility sum, ∂t (which is a product of elements in Q and V ), is in T = {ti, i = 0, ...,
4m2O( logm

δ2
)

ε

| ti = iε
4mO( logm

δ2
)
}.

For (4), notice that the values of f can be at most m and there are at most l constraints, we have that the partial
utility sum, ∂f , is in F =

{
±fi, i = 0, ..., 4lm3

ε | fi = iε
4m

}
(see Section 2.3).
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Finally, to ensure we have a marginal vector of ε-Nash equilibrium as in Lemma 3, we let δ = O
(

ε
dmn

)
.

The Message Passing Algorithm. Given the graph resulted from the tree decomposition of the constraint moral-
ized graph and the discretization spaces, we provide a message passing algorithm that is an FPTAS when the tree
decomposition has a bounded tree width and there is a polynomial number of constraints.

To begin, let T = (B,E) be the decomposed tree. It is clear that, for each X ∈ B, the node X consists of a
set of resources and a set of constraints, denoted by AX and CX , respectively. From the moralization and the tree
decomposition, for each α ∈ A, there is an X ∈ B such that ν(α) ⊆ AX . This allows us to compute the partial sum
of the expected utility qα · proj(∇(qν(α))α). Because of that, we preprocess the tree and designate a node of X to
compute the partial sum of the expected utility for each resource α exactly once. Of course, the designated node X
should contain the ν(α). We let A∗X ⊆ AX to denote the set of resources where we compute the expected utility at
X ∈ B. Such preprocessing can be done using standard depth-first search or breath-first search.

For clarity, when first present the algorithm when the tree T is a line. Then, we show how we can generalize the
algorithm to a tree. Without loss of generality, we assume all of the graphs/trees are connected, otherwise we can just
form a new tree by joining the connected components together.

The Line Case. Suppose that the resulted tree decomposition is a line, say L = (B,E). We relabel the nodes of L so
thatB = {1, 2, ..., n}where 1 is the leftmost node and n is the right most node. Thus, the edge setE = {{i, i+1}, i =
1, ..., n− 1} is the adjacent neighbors.

At a high level, the message passing algorithm has an upstream pass and a downstream pass. The upstream pass
starts passing messages/tables sequentially from 1 to 2, 2 to 3, ..., n-1 to n. After n has received the messages, the
downstream pass begins and starts with n passing message to n-1, n-1 to n-2, so on and so forth until 1 received the
message/table from 2, sequentially. The idea of the upstream pass is to keep track of the potential ε-MSNE, and the
goal of downstream pass is to construct a feasible ε-MSNE.

Upstream pass. For each node i ∈ B, we construct a set fi containing tuples ofQ|Ai|×S|Ci|C ×Λ|Ci|×S|Ai|A ×T×F
based on Mi−1→i which is the message i− 1 sends to i (which will be discussed below). More specifically,

fi = {(qα)α∈Ai ,(∂Sc)c∈Ci , (λc)c∈Ci , (∂λα)α∈Ai , ∂t, ∂f) ∈ Q|Ai| × S|Ci|C × Λ|Ci| × S|Ai|A × T × F |∂t =
∑
α∈A∗i

qαproj(∇(qν(α))α) + ∂t

 (1)

&
[
∀c ∈ Ci ∩ Ci+1, ∂Sc = Dc,Ai\Ai+1

qAi\Ai+1
+ 1[c∈Ci−1]∂Sc

]
(2)

&
[
∀c ∈ Ci \ Ci+1, ∂Sc = Dc,AiqAi + 1[c∈Ci−1]∂Sc

]
(3)

&
[
∀α ∈ (Ai \ A∗i ) ∩ Ai+1, ∂λα = DT

α,Ci\Ci+1
λCi\Ci+1

+ 1[α∈Ai−1]∂λα

]
(4)

&
[
∀α ∈ (Ai \ A∗i ) \ Ai+1, ∂λα = DT

α,CiλCi + 1[α∈Ai−1]∂λα
]

(5)

&
[
∀α ∈ A∗i ∩ Ai+1, ∂λα = DT

α,Ci\Ci+1
λCi\Ci+1

+ 1[α∈Ai−1]∂λα − proj(∇(qν(α))α)
]

(6)

&
[
∀α ∈ A∗i \ Ai+1, ∂λα = DT

α,CiλCi + 1[α∈Ai−1]∂λα − proj(∇(qν(α))α)
]

(7)

&
[
∂f = fTCi\Ci+1

λCi\Ci+1
+ ∂f

]
(8)

&[((qα)α∈Ai∩Ai−1 , (∂Sc)c∈Ci∩Ci−1 , (λc)c∈Ci∩Ci−1 , (∂λα)α∈Ai∩Ai−1 , ∂t, ∂f) ∈Mi−1→i](9)},

where & denotes the regular “and” condition.
The (1) condition keeps track of the partial sums of the expected utilities of the resources in A∗j , j = 1 to i-1, and

add the expected utilities of resources in A∗i . The (2) and (3) conditions accumulate the partial sum of the constraints
in Ci (i.e., we are keeping track of the Ci constraints of D to ensure DCi,Ai qAi ≤ fCi ). This boils down to two cases
given a c ∈ Ci, either c appears in Ci+1 (condition (2)) or c does not appear in Ci+1 (condition (3)). If c appears
in Ci+1 (condition (2)), then we keep track of the partial sum of the resources together with c that will not appear
in Ci+1, otherwise we will just include all of the resources in Ci if c doesn’t appear in Ci+1 (condition (3)) since c
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will not appear again in the later nodes (due to the property of the tree decomposition). In either case, we need to the
include the (possible) existing partial sum ∂Sc for c that appears in the previous j = i− 1, ... nodes.

For conditions (4), (5), (6), and (7), they are similar to conditions (2) and (3) but instead, we want to keep track
of partial sums of the dual constraints (i.e., DT

Ai,CiλCi ≥ proj(∇(qν(Ai))Ai)). Clearly, we can only compute the
projected expected utility for the resources in A∗i . Therefore, we have cases (6) and (7) for which we can compute
the expected utilities and cases (4) and (5) for which we cannot. For (4) and (5), we just want to keep track of the
partial constraints of Dα,CiλCi ; either we include all of the constraints in Ci in the partial sum (condition (5)) or
the constraints that do not appear in Ci+1. For (6) and (7), this is similar except that we subtract from the projected
expected utilities for α in A∗i . The reason we are doing this is because we will not able to compute the projected
expected utilities after this, therefore we subtract from the partial sum. In all of these cases, we need to include the
existing partial sum of α.

For condition (8), we keep track of the partial sum of fTCiλCi . We only need to add the partial sum for those
constraints that will not appear again in the tree. Finally (9) ensures that our tuples are consistent with the messages
that i− 1 send to i. We observe that the resulting set fi has cardinality bounded by poly(n,m, l, 1/ε), if the width of
the tree decomposition is bounded by a constant.

Message Table. Given the set of tuples fi, we are ready to discuss the message Mi→i+1 i sends to i + 1. We
first define and construct an auxiliary set Mfi that will facilitate the constructing of the message and also make the
downstream pass more clear.

Mfi = {(qα)α∈Ai , (∂Sc)c∈Ci , (λc)c∈Ci , (∂λα)α∈Ai , ∂t, ∂f) ∈ fi |
[∀c ∈ Ci \ Ci+1, ∂Sc ≤ fc] & [∀α ∈ Ai \ Ai+1, ∂λα ≥ 0] &[(i = n) =⇒ ∂t ≥ ∂f − ε]},

and the message from i to i+ 1 is

Mi→i+1 = {((qα)Ai∩Ai+1
, (∂Sc)c∈Ci∩Ci+1

, (λc)c∈Ci∩Ci+1
, (∂λα)α∈Ai∩Ai+1

, ∂t, ∂f) |
∃((qα)α∈Ai , (∂Sc)c∈Ci , (λc)c∈Ci , (∂λα)α∈Ai , ∂t, ∂f) ∈Mfi}.

When i = 0, C0 = A0 = Cn+1 = An+1 = ∅ and M0→1 = {∅, ∅, ∅, ∅, 0, 0}. When i = n, Cn+1 = An+1 = ∅ and n
does not send message from n to n+ 1 but still construct the table Mfn .

Downstream Pass. Now that we have completed the upstream pass, we have enough information to construct an
ε-MSNE. We will do this by starting selecting partial ε-MSNE for n, n-1, ..., 1, sequentially. In particular, given the
selected partial ε-MSNE at node i, i will send node i − 1 the feasible strategies that i − 1 should select to ensure
ε-MSNE. In particular, i will construct a return feasible set

Ri = {((qα)α∈Ai ,(∂Sc)c∈Ci\Ci+1
, (∂Sc)c∈Ci∩Ci+1

, (λc)c∈Ci , (∂λα)α∈Ai\Ai+1
, (∂λα)α∈Ai∩Ai+1

, ∂t, ∂f) ∈Mfi |
((qα)α∈Ai∩Ai+1

, (∂Sc)c∈Ci∩Ci+1
, (λc)c∈Ci∩Ci+1

, (∂λα)α∈Ai∩Ai+1
, ∂t, ∂f)

∈ Ri+1→i[(qα)α∈Ai+1
, (∂Sc)c∈Ci+1

, (λc)c∈Ci+1
, (∂λα)α∈Ai+1

, ∂t, ∂f ]},

and after selecting a tuple ((qα)α∈Ai , (∂Sc)c∈Ci , (λc)c∈Ci , (∂λα)α∈Ai , ∂t, ∂f) ∈ Ri, i send the following to i− 1

Ri→i−1[(qα)α∈Ai , (∂Sc)c∈Ci , (λc)c∈Ci , (∂λα)α∈Ai , ∂t, ∂f ] =

{((qα)Ai∩Ai−1
, (∂Sc)c∈Ci∩Ci−1

, (λc)c∈Ci∩Ci−1
, (∂λα)α∈Ai∩Ai−1

, ∂t, ∂f) ∈Mi−1→i |
the tuples satisfy conditions (1) - (8)}.

When i = n, Rn = Mfn . At each node i, i constructs Ri based on message from i + 1, selects a tuple from Ri, and
send messages to i− 1 based on the selected tuple.

Generalization to Trees. Our message-passing algorithm can be generalized easily to trees. It has been shown that
given a tree decomposition, we can modify it in polynomial time to a nice tree decomposition with the same treewidth
and a polynomial increase in the number of nodes, where each node of the nice tree has at most two children (say left
and right). Thus, we can construct the sets fi, Mfi , Mi→parent, Ri, Ri→left, and Ri→right based on the messages
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from the two children, with only polynomial increase in the computation and space requirements. For the upstream
pass, a node i with a left child and a right child will construct fi based on the messages from its left child and right
child. The equations (1)-(8) will include partial sums from the left and right children (as opposed to just based on
i−1) and i+1 will be replaced by the parent of i. The tablesMfi andMi→parent will be constructed the same way as
before by replacing the index i+ 1 with the parent of i. For the downstream pass, the Ri can be constructed similarly
using the message from the parent of i. The messages Ri→left and Ri→right can be constructed the same way but
based on the messages Mleft→i and Mright→i that satisfy the conditions (1)-(8).

Theorem 1. There is an FPTAS for computing MSNE in RGGs whose constraint moralized resource graphs have
bounded tree width. In particular, the algorithm finds an ε-MSNE in time poly(n,m, l, 1

ε ).

Proof. (Again, we present the proof for the line case for notational clarity. The arguments for the tree case is the
same.) To prove that our message-passing algorithm is an FPTAS, we need to show the downstream pass/assignment
provides an ε-MSNE and the algorithm runs in poly(n,m, l, 1

ε ).
We begin to show the selected tuples of the nodes form an ε-MSNE. We let

((qiα)α∈Ai , (∂S
i
c)c∈Ci , (λ

i
c)c∈Ci , (∂λ

i
α)α∈Ai , ∂t

i, ∂f i)

to be the selected tuples by each node i. For clarity, we use the superscript i to specify the selected tuple of node i.
By construction, for each node i, if α ∈ Ai ∩ Ai−1 and c ∈ Ci ∩ Ci−1, qiα = qi−1

α and λic = λi−1
c , respectively. This

construction allows us to maintain consistency in the assignment.
Given these tuples, we need to show that (1)Dq ≤ f , (2)DTλ ≥ proj(∇(q−i)), and (3)

∑
α∈A qα·proj(∇(q−i)α) ≥

fTλ− ε.
(1) For each constraint c ∈ C, let sc ∈ [n] and tc ∈ [n] (sc ≤ tc) be the indices of the nodes in which c appears

first and last in the tree decomposition, respectively. From the properties of the tree decomposition, c must appear in
the nodes of the paths from Xsc to Xtc . Thus, we have

fc ≥ ∂Stcc = Dc,Atc q
tc
Atc

+ 1[c∈Ctc−1]∂S
tc−1
c

= Dc,Atc q
tc
Atc

+

tc−1∑
i=sc

Dc,Ai\Ai+1
qiAi\Ai+1

= Dcq,

where the first inequality is by construction in which tc selects a tuple with a feasible fc ≥ ∂Stcc from Rtc , the first
equality is from our construction where ∂Stcc is its current sum plus the previous partial sum, the second equality is
from decomposing each partial sum term, and the last equality is by the property of the tree decomposition of our
moralized constraint graph where the resources (and their q′αs) in the constraint c must be in one of the nodes from the
path of sc to tc.

(2) We can use a similar arguments as in (1) to show that λ is feasible. For each resource α ∈ A, let sα ∈ [n],
a∗α ∈ [n], and tα ∈ [n] to be the indices of the nodes in which α appears first, designated to compute its expected
utility, and last in the tree decomposition, respectively. It is not hard to see that sα ≤ a∗α ≤ tα and α appears in the
path from Xsα to Xtα . Thus, we have

0 ≤ ∂λtαα = DT
α,Ctα

λtαCtα + 1[α∈Atα−1]∂λ
tα−1
α − 1[a∗α=tα]q

a∗α
α proj(∇(q

a∗α
ν(α))α

=

tα−1∑
i=a∗α+1

DT
α,Ci\Ci+1

λiCi\Ci+1
+ 1[a∗α 6=tα]D

T
α,Ca∗α\Ca∗α+1

λ
a∗α
Ca∗α\Ca∗α+1

− qa
∗
α
α proj(∇(q

a∗α
ν(α))α)

+

a∗α−1∑
i=sc

DT
α,Ci\Ci+1

λiCi\Ci+1
+DT

α,Ctα
λtαCtα

=

tα−1∑
i=sα

1[i 6=a∗α or i=a∗α 6=tα]D
T
α,Ci\Ci+1

λiCi\Ci+1
+DT

α,Ctα
λtαCtα − q

a∗α
α proj(∇(q

a∗α
ν(α))α) = DT

αλ− q
a∗α
α proj(∇(q

a∗α
ν(α))α),

where the first inequality is by construction in which tα selects a tuple with a feasible 0 ≤ ∂λtαα from Rtα , the first
equality is from decomposing each partial sum term, the second equality is from combining the sums, and the third
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equality is by the property of the tree decomposition of our moralized constraint graph where the constraints (and
their λ′cs) in the resource α must be in one of the nodes from the path of sα to tα. If a∗α = tα or a∗α = sα, then the
corresponding sum is zero.

Now, we need to argue (3). From Rn, we select a tuple such that ∂tn ≥ ∂fn − ε. Expanding,

∂tn =
∑
α∈A∗n

qαproj(∇(qν(α))α) + ∂tn−1 =
∑
α∈A

qαproj(∇(qν(α))α),

∂fn = fTCnλ
n
Cn + ∂fn−1 =

n−1∑
i=1

fTCi\Ci+1
λiCi\Ci+1

+ fTCnλCn = fTλ,

which proves (3).
Finally, the running time of the algorithm can be reasoned as follows. The size of fi, Ri, Mi→i+1, and Ri→i−1 is

at most poly(n,m, l, 1
ε ) when the treewidth is bounded, and it takes poly(n,m, l, 1

ε ) time to construct.

3.4.4 RGGs with Constant Number of Player Types

So far, we have been discussing the case where the players have the same (single) type (i.e., polytope). In fact, we can
generalize our message passing algorithms to cases where the players have a constant number of types.

Definition 5. An RGG, Γ = (N,A, {Si}ni=1, G, {uα}α∈A), is k-symmetric if and only if the players are partitioned
into k classes, and for any player i in class j ∈ {1, ..., k}, Di = Dj , fi = f j for some Dj ∈ Zl

j
i×|A| and f j ∈ Zl

j
i

(and therefore Si = Sj , and Pi = P j).

Proposition 5. For every k-symmetric multilinear RGGs, there is a k-symmetric Nash equilibrium in which every
player in the same class plays the same strategy.

It can be verified our results (Lemmas 2, 3, and 4) and tools (constrained moralized resource graph and message-
passing algorithm) for computing symmetric approximate MSNE in symmetric multilinear RGGs can be used to
compute k-symmetric approximate MSNE in k-symmetric multilinear RGGs by considering k different symmetric
strategies for the k classes of players.

More specifically, we construct the constrained moralized resource graph from the resources and the constraints
from the polytopes of the k-classes and perform a tree decomposition (with bounded treewidth) on the resulting graph.
In the construction of tables/sets for each node i in the tree decomposition, we need to keep track of (qjα)α∈Ai ,
(∂Sc)c∈Cji

, (λc)c∈Cji
, (∂λjα)α∈Ai , ∂t

j , and ∂f j for each class j = 1, ..., k. This results in running time and table size
exponential in k and the treewidth.

Proposition 6. There is an FPTAS for computing a k-symmetric Nash equilibrium in a k-symmetric RGG whose
constraint moralized resource graph has constant treewidth, when k is a constant.

4 Applications to Specific Game Classes
Many classes of games studied previously can be captured and modeled using mulitlinear RGGs. These include
security games, congestion games, and bilinear games. Below we will show how our algorithmic results can be
applied to compute approximate Nash equilibrium in these games.

4.1 Security Games
In a typical security game [29] between a defender (d) and an attacker (a), there is a set T of targets, the defender
can only protect m of the targets and attacker can attack one target. The defender and attacker’s utilities depend on
whether the attacked target is covered. One thus only need to store 4 numbers per target, for both players’ utilities
when that target is attacked and covered and when it is attacked and not covered.

We can represent security games as RGGs. For each target t ∈ T , we have a resource node at for the attacker
and two resource nodes b0t and b1t for the defender. Let A =

⋃
t∈T {at, b0t, b1t} be the set of resource nodes. Then,

the strategy set of the attacker is Sa = {x ∈ {0, 1}3|T | |
∑
at
xat = 1, xb0t = xb1t = 0∀t ∈ T}. For the defender,
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(a) (b) (c)

Figure 1: T -target Security Games. (a) RGG representation of Security Games, (b) Constraint Moralized Resource
Graph, and (c) a tree decomposition of the Constraint Moralized Resource Graph. Note that the unary constraints are
not shown in (b) and (c)

we construct a constraint matrix Db of size 2|T | + 1 by 3|T |. In particular, the first row of Db is db = (dbα)α∈A
where dbα = 1 at α = b1t for every t ∈ T ; and then for each t ∈ T , there is a row of dt = (dtα)α∈A such that
dtα = 1 only at b0t and b1t and a row of dt = (dtα)α∈A such that dtα = 1 only at at. Thus, the strategy set of a
defender is Sb = {x ∈ {0, 1}3|T | | Dbx = (m, 1, ..., 1, 0, ..., 0)T }. In other words, the constraint matrix ensures that
the defender can protect m targets and can either protect a target or not protect a target (but never both). Figure 1(a)
illustrates the resource graph. This graph is constructed so that for every t ∈ T , there is an edge from b1t to at, an
edge from at to b1t, and an edge from at to b0t. The utilities of uat , ub1t , and ub0t , can be defined appropriately for
each target t ∈ T . In particular, given a strategy of the attacker sa ∈ Sa and a strategy of the defender sd ∈ Sd,
ua(sa, sd) =

∑
at
sa,atu

at(sd,b0t) and ud(sd, sa) =
∑
b0t
sd,b0tu

b0t(sa,at) +
∑
b1t
sd,b1tsd,b1tu

b1t(sa,at). It is not
hard to see that the constraint matrices of the attacker and the defender are totally unimodular, and the strategies of the
players satisfy condition (b) of Proposition 1.

Given the RGG representation of the security game, we can proceed to construct its moralized constraint resource
graph, as shown in Figure 1(b). We then can perform a tree decomposition of the moralized constraint resource graph.
We provide a tree decomposition in Figure 1(c). For any number of targets, each node of this tree decomposition
has six nodes of the moralized constraint resource graph plus the three missing unary constraint nodes, and therefore
has width eight. Since we have only two classes of players (an attacker and a defender) and constant treewidth, our
message passing algorithm yields an FPTAS to computing an approximate Nash equilibrium in this games.

Moreover, our result holds for more general classes of security games in which the attacker can have any number
of attacks, arbitrary strategy constraints for the attacker and defender as long as their constraint matrices are totally
unimodular and the treewidth of the moralized constraint resource graph is bounded.

Proposition 7. Given a security game, if the strategy constraint matrices for the attacker and defender are totally
unimodular, and treewidth of the moralized constraint resource graph is bounded, there is an FPTAS for computing
MSNE.

Example 1. Consider a security game as defined above, but with a more complex attacker strategy space. In particular
the targets correspond to edges in a network with a source and a destination, and the attacker can choose a path from
source to destination, thereby attacking all edges on the path chosen. It is known that the set of valid paths can be
encoded compactly as linear constraints with a totally unimodular constraint matrix. If the network has constant
treewidth, the constraint moralized resource graph also has constant treewidth, and Proposition 7 applies.

4.2 Congestion Games
Congestion games model the situation in which there is a set of resources, and each player selects a subset of resources.
The cost of using a resource depends on the total number of agents using it. As such, the agent’s goal is to select a
subset of resources that minimizes the total cost. More specifically, we have a set of player N and a set of resources
R. The pure-strategy set of player i is Si, and each si ∈ Si is represented by a binary vector of size |R|.

Each resource in the congestion game corresponds to a resource node in the RGG representation. The resource
graph contains only self-edges. Each pure strategy is a subset of resources; in the RGG this is represented as an
indicator vector si for the subset. For each player i, Si = Pi ∩ {0, 1}|R| where Pi = {x ∈ R|R| | Dix ≤ fi} is the
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convex hull of the set of pure strategies Si. The utility ur of a resource corresponds to the congestion cost function for
resource r ∈ R.

When the constraint matrix Di of Pi of each player i is totally unimodular, then we have totally unimodular
congestion games [4, 10], which have been introduced and studied recently. The totally unimodular congestion games
include network congestion games. Indeed, our result applies to this type of congestion games and generalized the
results of [4]. In particular, their FPTAS to compute an approximate MSNE for totally unimodular congestion games
requires each resource to only be involved in a constant number of constraints and each constraint can only involve
a small/bounded number of resources. Our result lifts these restrictions and applies as long as the treewidth of the
moralized constraint graph is bounded.

Proposition 8. Given a totally unimodular congestion game with k player types where the strategy constraint matrices
for the k player types are totally unimodular, if the treewidth of the moralized constraint resource graph is bounded,
there is an FPTAS for computing k-symmetric MSNE for constant k.

Example 2 (Network Congestion). Consider network congestion games [11], where resources correspond to edges
in a network, and each player chooses a path from a source to a destination in the network. [4] provided an FPTAS
when the network has constant treewidth and constant degree. Our result provides an FPTAS when the network has
constant treewidth, without restriction on the degree.

Example 3 (Security Game with Multiple Attackers). Consider the following generalization to security games, now
with na attackers. Each attacker can attack K targets. Payoffs for defender and attackers are sums of contributions
from each target, which depend on (a) the number of attackers choosing to attack that target, and (b) whether defender
protects that target. The attackers are interchangeable so this is a 2-symmetric game. This game combines the utility
structure of congestion games (among the attackers) and security games (between defender and attackers). The RGG
representation has resource graph similar to Figure 1(a), except now there are self-loops on each attacker node at for
each target. It can be verified that Assumption 2 remains satisfied, and Figure 1(c) remains a tree decomposition for
the new constraint moralized resource graph. Thus our result applies to yield an FPTAS.

4.3 Bilinear Games
A bilinear game [12] is played between two players 1 and 2. The strategy spaces of the players are described using
compact polytopes where X = {x ∈ RM | Ex = e, x ≥ 0} is player 1’s strategy space and Y = {y ∈ RN | Fy =
f, y ≥ 0} is player 2’s strategy space for some E ∈ Rk1×M and e ∈ Rk1 and F ∈ Rk2×N and f ∈ Rk2 . Player
1 and player 2 have payoff matrices A ∈ RM×N and B ∈ RM×N , respectively, describing their payoffs when the
players play the actions in X and Y . In particular, given (pure) strategies x ∈ X and y ∈ Y , u1(x, y) = xTAy and
u2(y, x) = xTBy.

It turns out that we can represent a variant of bilinear games using multilinear RGGs and compute approximate
MSNE using our message passing algorithm efficiently when the resource graphs of the bilinear games have bounded
treewidth.

4.3.1 RGG Representations of a Large Class of Bilinear Games

Notice that in the general definition of bilinear games, the polytopes of the players are not restricted to the extreme
points of 0 and 1. Here, we consider the case in which the polytopes of the players are (binary) integer vectors
as in the definition of RGGs, and when the matrices E and F are totally unimodular. For the RGG representa-
tion, we create the games with M + N resources. In particular, player 1’s polytopal strategy space is S1 = {x ∈
[0, 1]M+N |

[
Ek1×M |0k1×N
0N×M |IN×N

]
x = [e|01×N ]} ∩ {0, 1}M+N , player 2’s polytopal strategy space is S2 = {y ∈

[0, 1]N+M |
[
Fk2×N |0k2×M
0M×N |IM×M

]
y = [f |01×M ]} ∩ {0, 1}N+M where I is the identity matrix and 0 is the all zero matrix,

and these constraint matrices are totally unimodular if E and F are totally unimodular. Let R = {r1, ...., rM} and
C = {c1, ..., cN} denote the columns and the rows of the payoff matrices A and B, respectively.

The resource graph is a bipartite graph G = (R ∪ C,EA ∪ EB) where EA = {(c, r) ∈ C × R | Ac,r 6= 0} and
EB = {(r, c) ∈ R × C | Br,c 6= 0} are edge sets specifying the payoff contributions of the entries in the matrices.
For each resource ri ∈ R and any strategy s2 ∈ S2, uri(cri) =

∑
cj∈Pa(ri)

s2,cjAi,j , and for each resource ci ∈ C
and any strategy s1 ∈ S1, uci(cci) =

∑
rj∈Pa(ci)

s1,rjBj,i. It is also easy to see that the RGG representation satisfies
condition 1(b) of Proposition 1.
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Clearly, if we follow our earlier step and construct the constraint moralized graph, we can apply our algorithm
directly if the graph has bounded treewidth.

Proposition 9. Given a bilinear game, if the strategy constraint matrices for both players are totally unimodular, and
treewidth of the moralized constraint resource graph is bounded, there is an FPTAS for computing MSNE.

In fact, we can do better for bilinear games, and we do not need to moralize the resource graph at all. Moreover,
we can perform a tree decomposition on a variant of the (undirected) resource graph and obtain an FPTAS to compute
MSNE.

Theorem 2. Given a bilinear game, if the strategy constraint matrices for both players are totally unimodular, and
treewidth of the constraint resource graph (without moralization) is bounded, there is an FPTAS for computing MSNE.

Proof. (Sketch) First, we define a different but utility equivalence RGGs G of the original RGGs G with more con-
straints and resources. In particular, G = (R ∪ C ∪ R ∪ C,EA ∪ EB) where R = {rij , j ∈ Pa(ri) | ∀ri ∈ R},
C = {cij , j ∈ Pa(ci) | ∀ci ∈ C}, EA = {(ci, rjci) | ∀(ci, rj) ∈ EA}, and EB = {(ri, cjri) | ∀(ri, cj) ∈ EA}
where Pa(i) is the set of parents of node i under the graphG. We need to extend the strategies of the players to include
the added resources R and C. In particular, to construct the polytopes for the new strategies S1 and S2, we need to (1)
extend the size of dimensional of the polytopes S1 and S2 to |R| + |C| + |R| + |C| ≤ M + N + dmax(M + N) =
(dmax+ 1)(M +N) with bounded degree dmax of the original graph, (2) add in the unary constraints to S1 and S2 so
that player 1 and player 2 do not use the resources in C and R, respectively, and (3) add (binary) constraints to ensure
that, for each ri ∈ R, ri is used together with each ricj ∈ R for cj ∈ Pa(ri) and for each ci ∈ C, ci is used together
with each cirj ∈ C for rj ∈ Pa(ci). For resource α ∈ R ∪ C and for any strategy, uα = 0 since α does not depend
on any other resources directly. For resource ricj ∈ R and s2 ∈ S2, uricj (s2,cj ) = s2,cjAi,j . For resource cirj ∈ C
and s1 ∈ S1, ucirj (s1,rj ) = s1,rjBj,i.

Next, we show that we can map any strategy of the original game to the strategy of the new games and vice versa
such that they have the same payoffs. Given s1 ∈ S1 and s2 ∈ S2, we construct s1 ∈ S1 so that s1ri = 1 if s1ri = 1
for all ri ∈ R and s1ricj

= 1 if s1ri = 1 for all ricj ∈ R and cj ∈ Pa(ri) and s2ci = 1 if s2ci = 1 for all ci ∈ C and
s2cirj

= 1 if s2ci = 1 for all cirj ∈ C and rj ∈ Pa(ci) (all other entries are zero). The utility of player 1 is

u1(s1, s2) =
∑
ri∈R

(s1riu
ri +

∑
cj∈Pa(ri)

s1ricj
uricj (cricj ))

=
∑
ri∈R

(s1riu
ri +

∑
cj∈Pa(ri)

s1ricj
s2,cjAi,j)

=
∑
ri∈R

s1ri

∑
cj∈Pa(ri)

s1ricj
s2,cjAi,j

=
∑
ri∈R

s1ri

∑
cj∈Pa(ri)

s2,cjAi,j ,

which obtains the same values as u1(s1, s2) =
∑
ri∈R s1riu

ri(cri) =
∑
ri∈R s1ri

∑
cj∈Pa(ri)

s2,cjAi,j . This is
similar for u2.

On the other hand, given s1 ∈ S1 and s2 ∈ S2, we can construct s1 ∈ S1 and s2 ∈ S2 by setting the corresponding
resources in R ∪ C to be the same values as those in s1 and s2. The payoff-equivalence can be shown easily.

Next, we perform tree decomposition on the constraint graph of the original RGG and show that if the tree decom-
position of the original RGG is bounded, we can use it to construct a bounded tree decomposition of the new RGG.
Let T = (B,E) be the (nice) tree decomposition of the original RGG. The new tree composition T = (B,E) is a
copy of T where each node X ∈ B is a union of X ∈ B and some nodes in R and C. In particular, to obtain X , we
add all of the elements in X ∈ B to X , and for each ci, rj ∈ X such that (1) (ci, rj) ∈ EA or (2) (rj , ci) ∈ EB , we
add rjci and the binary constraint between rjci and rj and the unary constraint that player 2 cannot use rjci for (1) and
add cirj and the binary constraint between cirj and ci and the unary constraint that player 1 cannot use cirj for (2) to
X . The construction will result in a tree decomposition for the new RGG with polynomial increase in the treewidth.

We now need to show it is a proper tree decomposition. That is (a)
⋃
X∈B X = V , (b) for each e = {e1, e2} ∈ E,

∃X ∈ B such that e1, e2 ∈ X , and (c) for any X,X ′, and X ′′ ∈ B, if X ′ is on the path of X and X ′′, then
X ∩X ′′ ⊆ X ′.
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(a) First, need to show that
⋃
X∈B X = R ∪C ∪R ∪C ∪Const1 ∪Const2 ∪Const1 ∪Const2 where Const1

(Const1) and Const2 (Const2) are the original (new) constraints of player 1 and player 2, respectively. Clearly, R,
C, Const1, and Const2 are in the tree decomposition since they are in the tree decomposition of T . Note that the
Const1 and Const2 remain the same in the new polytopes. For each ri ∈ R, and cj ∈ Pa(ri) appear together at least
once in some X of B, by our construction ricj , the unary and binary constraints appear in the new tree B. (similarly
for other) Thus, the new tree decomposition consists of all of the nodes of the new RGG.

(b) Second, we need to show that all of the edges in the new RGG is also in some X together. (1) The edges
between the old resources and the old constraints are already in the new tree decomposition. (2) The edges between
the old resources and the new resources are in the new tree decomposition from our construction by add new resource
when we see a pair of old resource connection. (3) The edges between the old resources and the new constraints are
in the new tree decomposition because add the constraints when we add the new resources (this also add in edges of
the new resources of the new constraints).

(c) The original resource nodes and the constraint nodes already satisfy the intersection property. The new resource
nodes and (unary and binary) constraint nodes only appear when two original resources appear together, which also
satisfy the intersection property.

Example 4. Security games (Section 4.1) are special cases of bilinear games. Suppose now an attack on each target t
will also spread to neighboring targets, with the attacker receiving the sum of utilities from targets in the neighborhood
of t. The resource graph will be similar to Fig. 1(a), with additional edges to attacker node at target t from defender
nodes from neighboring targets. The game is bilinear. If the neighbor relationship graph has constant treewidth, the
constraint resource graph also has constant treewidth, and hence Theorem 2 applies.
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