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Abstract. We study procurement games where each seller supplies mul-
tiple units of his item, with a cost per unit known only to him. The buyer
can purchase any number of units from each seller, values different com-
binations of the items differently, and has a budget for his total payment.
For a special class of procurement games, the bounded knapsack problem,
we show that no universally truthful budget-feasible mechanism can ap-
proximate the optimal value of the buyer within lnn, where n is the total
number of units of all items available. We then construct a polynomial-
time mechanism that gives a 4(1 + lnn)-approximation for procurement
games with concave additive valuations, which include bounded knapsack
as a special case. Our mechanism is thus optimal up to a constant fac-
tor. Moreover, for the bounded knapsack problem, given the well-known
FPTAS, our results imply there is a provable gap between the optimiza-
tion domain and the mechanism design domain. Finally, for procurement
games with sub-additive valuations, we construct a universally truthful

budget-feasible mechanism that gives an O( log2 n
log logn

)-approximation in
polynomial time with a demand oracle.

Keywords: procurement auction, budget-feasible mechanism, optimal
mechanism, approximation

1 Introduction

In a procurement game/auction, m sellers compete for providing their items
(referred to as products or services in some scenarios) to the buyer. Each seller
i has one item and can provide at most ni units of it, with a fixed cost ci
per unit which is known only to him. The buyer may purchase any number of
units from each seller. For example, a local government may buy 50 displays
from Dell, 20 laptops from Lenovo, and 30 printers from HP.1 The buyer has a
valuation function for possible combinations of the items, and a budget B for the
total payment he can make. We consider universally truthful mechanisms that
(approximately) maximize the buyer’s value subject to the budget constraint.

Procurement games with budgets have been studied in the framework of
budget-feasible mechanisms (see, e.g., [35, 19, 17, 10]). Yet most studies focus

1 In reality Dell also sells laptops and Lenovo also sells displays. But for the purpose
of this paper we consider settings where each seller has one item to supply, but has
many units of it. However, we allow cases where different sellers have the same item,
just as one can buy the same laptops from Best Buy and/or Walmart.
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on settings where each seller has only one unit of his item. Thus there are only
two possible allocations for a seller: either his item is taken or it is not.2 When a
seller has multiple units and may benefit from selling any number of them, there
are more possibilities for him to deviate into and it becomes harder to provide
incentives for him to be truthful. To the best of our knowledge, this is the first
time where multi-unit budget-feasible mechanisms are systematically studied.

Multi-unit procurements with budgets can be used to model many interesting
problems. For example, in the classic bounded knapsack problem the buyer has
a value vi for one unit of item i, and his total value is the sum of his value for
each unit he buys. In job scheduling, the planner may assign multiple jobs to
a machine, with different values for different assignments. As another example,
in the Provision-after-Wait problem in healthcare [11], the government needs to
serve n patients at m hospitals. Each patient has his own value for being served
at each hospital, and the value of the government is the social welfare.

1.1 Our main results

We present our main results in three parts. Due to lack of space, most of the
proofs are provided in the full version of this paper [14].

An impossibility result. Although budget-feasible mechanisms with constant ap-
proximation ratios have been constructed for single-unit procurements [35, 17],
our first result, formally stated and proved in Section 3, shows that this is im-
possible in multi-unit settings, even for the special case of bounded knapsack.

Theorem 1. (rephrased) No universally truthful, budget-feasible mechanism can
do better than a lnn-approximation for bounded knapsack, where n is the total
number of units of all items available.

This theorem applies to all classes of multi-unit procurement games consid-
ered in this paper, since they all contain bounded knapsack as a special case.

An optimal mechanism for concave additive valuations. A concave additive val-
uation function is specified by the buyer’s marginal values for getting the j-th
unit of each item i, vij , which are non-increasing in j. The following theorem is
formally stated in Section 4.

Theorem 2. (rephrased) There is a polynomial-time mechanism which is a 4(1+
lnn)-approximation for concave additive valuations.

Our mechanism is very simple. The central part is a greedy algorithm, which
yields a monotone allocation rule. However, one needs to be careful about how to
compute the payments, and new ideas are needed for proving budget-feasibility.

Since bounded knapsack is a special case of concave additive valuations, our
mechanism is optimal within a constant factor. More interestingly, given that
bounded knapsack has an FPTAS when there is no strategic considerations, our
results show that there is a gap between the optimization domain and the mech-
anism design domain for what one can expect when solving bounded knapsack.

2 In the coverage problem a player has a set of elements, but still the allocation is
bimodal for him: either his whole set is taken or none of the elements is taken.
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Beyond concave additive valuations. We do not know how to use greedy algo-
rithms to construct budget-feasible mechanisms for larger classes of valuations.
The reason is that they may not be monotone: if a player lowers his cost, he
might actually sell fewer units. This is demonstrated by our example in Section
5.1. Thus we turn to a different approach, random sampling [10, 24, 18, 16, 6, 7].
The following theorem is formally stated in Section 5.3.

Theorem 5. (rephrased) Given a demand oracle, there is a polynomial-time

mechanism which is an O( log2 n
log logn )-approximation for sub-additive valuations.

A demand oracle is a standard assumption for handling sub-additive val-
uations [19, 10, 8], since such a valuation function takes exponentially many
numbers to specify. Notice that for bounded knapsack and concave additive val-
uations our results are presented using the natural logarithm, since those are
the precise bounds we achieve; while for sub-additive valuations we present our
asymptotic bound under base-2 logarithm, to be consistent with the literature.

Our mechanism generalizes that of [10], which gives anO( logn
log logn )-approximation

for single-unit sub-additive valuations. Several new issues arise in the multi-unit
setting. For example, we must distinguish between an item and a unit of that
item, and in both our mechanism and our analysis we need to be careful about
which one to deal with. Also, we have constructed, as a sub-routine, a mecha-
nism for approximating the optimal single-item outcome: namely, an outcome
that only takes units from a single seller. We believe that this mechanism will
be a useful building block for budget-feasible mechanisms in multi-unit settings.

1.2 Related work
Various procurement games have been studied [30, 33, 32, 21, 22], but without
budget considerations. In particular, frugal mechanisms [5, 13, 20, 27, 36, 15, 28]
aim at finding mechanisms that minimize the total payment. As a “dual” prob-
lem to procurement games, auctions where the buyers have budget constraints
have also been studied [2, 23], but the models are very different from ours.

Single-unit budget-feasible mechanisms were introduced by [35], where the
author achieved a constant approximation for sub-modular valuations. In [17]
the approximation ratio was improved and variants of knapsack problems were
studied, but still in single-unit settings. In [19] the authors considered single-
unit sub-additive valuations and constructed a randomized mechanism that is
an O(log2 n)-approximation and a deterministic mechanism that is an O(log3 n)-
approximation. We notice that their randomized mechanism can be generalized
to multi-unit settings, resulting in an O(log3 n)-approximation. In [10] the au-
thors consider both prior-free and Bayesian models. For the former, they provide
a constant approximation for XOS valuations and an O( logn

log logn )-approximation
for sub-additive valuations; and for the latter, they provide a constant approx-
imation for the sub-additive case. As mentioned we generalize their prior-free
mechanism, but we need to give up a log n factor in the approximation ratio. It
is nice to see that the framework of budget-feasible mechanism design generalizes
to multi-unit settings.

In [25] the author considered settings where each seller has multiple items.
Although it was discussed why such settings are harder than single-item settings,
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no explicit upper bound on the approximation ratio was given. Instead, the focus
there was a different benchmark. The author provided a constant approximation
of his benchmark for sub-modular valuations, but the mechanism does not run in
polynomial time. Also, budget-feasible mechanisms where each seller has one unit
of an infinitely divisible item have been considered in [3], under the large-market
assumption: that is, the cost of buying each item completely is much smaller
than the budget. The authors constructed a deterministic mechanism which is
a 1 − 1/e approximation for additive valuations and which they also prove to
be optimal. In our study we do not impose any assumption about the sellers
costs, and the cost of buying all units of an item may or may not exceed the
budget. Moreover, in [9] the authors studied online procurements and provided a
randomized posted-price mechanism that is an O(log n)-approximation for sub-
modular valuations under the random ordering assumption.

Finally, knapsack auctions have been studied by [1], where the underlying
optimization problem is the knapsack problem, but a seller’s private information
is the value of his item, instead of the cost. Thus the model is very different from
ours and from those studied in the budget-feasibility framework in general.

1.3 Open problems

Many questions can be asked about multi-unit procurements with budgets and
are worth studying in the future. Below we mention a few of them.

First, it would be interesting to close the gap between the upper bound
in Theorem 1 and the lower bound in Theorem 5, even for subclasses such as
sub-modular or diminishing-return valuations, as defined in Section 2. A related
problem is whether the upper bound can be bypassed under other solution con-
cepts. For example, is there a mechanism with price of anarchy [29, 34] better
than lnn? How about a mechanism with a unique equilibrium? Solution concepts
that are not equilibrium-based are also worth considering, such as undominated
strategies and iterated elimination of dominated strategies. Another problem is
whether a better approximation can be achieved for other benchmarks, such as
the one considered in [25], by truthful mechanisms that run in polynomial time.

Second, online procurements with budget constraints have been studied in
both optimization settings [26] and strategic settings [9]. But only single-unit
scenarios are considered in the latter. It is natural to ask, what if a seller with
multiple units of the same item can show up at different time points, and the
buyer needs to decide how many units he wants to buy each time.

Finally, the buyer may have different budgets for different sellers, a seller’s
cost for one unit of his item may decrease as he sells more, or the number of units
each seller has may not be publicly known3. However, the last two cases are not
single-parameter settings and presumably need very different approaches.

3 In many real-life scenarios the numbers of available units are public information,
including procurements of digital products, procurements of cars, some arms trades,
etc. Here procurement auctions are powerful tools and may result in big differences
in prices, just like in the car market. However, there are also scenarios where the
sellers can hide the numbers of units they have, particularly in a seller’s market. In
such cases they may manipulate the supply level, hoping to affect the prices.
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2 Procurement Games

Now let us define our model. In a procurement game there are m sellers who
are the players, and one buyer. There are m items and they may or may not
be different. Each player i can provide ni units of item i, where each unit is
indivisible. The total number of units of all the items is n ,

∑
i ni. The true

cost for providing one unit of item i is ci ≥ 0, and c = (c1, . . . , cm). The value of
ci is player i’s private information. All other information is public.

An allocation A is a profile of integers, A = (a1, . . . , am). For each i ∈ [m],
ai ∈ {0, 1, . . . , ni} and ai denotes the number of units bought from player i. An
outcome ω is a pair, ω = (A,P ), where A is an allocation and P is the payment
profile: a profile of non-negative reals with Pi being the payment to player i.
Player i’s utility at ω is ui(ω) = Pi − aici.

The buyer has a valuation function V , mapping allocations to non-negative
reals, such that V (0, . . . , 0) = 0. For allocations A = (a1, . . . , am) and A′ =
(a′1, . . . , a

′
m) with ai ≤ a′i for each i, V (A) ≤ V (A′) —namely, V is monotone.4

The buyer has a budget B and wants to implement an optimal allocation,

A∗ ∈ argmax
A:

∑
i∈[m] ciai≤B

V (A),

while keeping the total payment within the budget. An outcome ω = (A,P ) is
budget-feasible if

∑
i∈[m] Pi ≤ B.

The solution concept. A deterministic revealing mechanism is dominant-strategy
truthful (DST) if for each player i, announcing ci is a dominant strategy:

ui(ci, c
′
−i) ≥ ui(c′i, c′−i) ∀c′i, c′−i.

A deterministic mechanism is individually rational if ui(c) ≥ 0 for each i. A
randomized mechanism is universally truthful (respectively, individually rational)
if it is a probabilistic distribution over deterministic mechanisms that are DST
(respectively, individually rational).

A deterministic DST mechanism is budget-feasible if its outcome under c is
budget-feasible. A universally truthful mechanism is budget-feasible (in expecta-
tion) if the expected payment under c is at most B.

Definition 1. Let C be a class of procurement games and f(n) ≥ 0. A univer-
sally truthful mechanism is an f(n)-approximation for class C if, for any game
in C, the mechanism is individually rational and budget-feasible, and the outcome

under the true cost profile c has expected value at least V (A∗)
f(n) .

Remark 1. One can trade truthfulness for budget-feasibility: given a universally
truthful budget-feasible mechanism, by paying each player the expected payment
he would have received, we get a mechanism that is truthful in expectation and
meets the budget constraint with probability 1. As implied by Theorem 1, no uni-
versally truthful mechanism that meets the budget constraint with probability
1 can do better than a lnn-approximation. Thus there has to be some trade-off.

4 Monotonicity is a standard assumption for single-unit budget-feasible mechanisms.



6 Truthful Multi-unit Procurements with Budgets

Remark 2. We allow different players to have identical items, just like different
dealers may carry the same products, with or without the same cost. But we re-
quire the same player’s units have the same cost. In the future, one may consider
cases where one player has units of different items with different costs: that is,
a multi-parameter setting instead of single-parameter.

Below we define several classes of valuation functions for procurement games.

Concave additive valuations and the bounded knapsack problem. An impor-
tant class of valuation functions are the additive ones. For such a function V ,
there exists a value vik for each item i and each k ∈ [ni] such that, V (A) =∑

i∈[m]

∑
k∈[ai]

vik for any A = (a1, . . . , am). Indeed, vik is the marginal value
from the k-th unit of item i given that the buyer has already gotten k−1 units, no
matter how many units he has gotten for other items. V is concave if for each i,
vi1 ≥ vi2 ≥ · · · ≥ vini

; namely, the margins for the same item are non-increasing.
A special case of concave additive valuations is the bounded knapsack prob-

lem, one of the most classical problems in computational complexity. Here, all
units of an item i have the same value vi: that is, vi1 = vi2 = · · · = vini

= vi.

Sub-additive valuations. A much larger class is the sub-additive valuations. Here
a valuation V is such that, for any A = (a1, . . . , am) and A′ = (a′1, . . . , a

′
m),

V (A ∨A′) ≤ V (A) + V (A′),

where ∨ is the item-wise max operation:A∨A′ = (max{a1, a′1}, . . . ,max{am, a′m}).
Notice that the requirement of sub-additivity is imposed only across different

players, and values can change arbitrarily across units of the same player. Indeed,
when A and A′ differ at a single player, sub-additivity does not impose any
constraint on V (A) and V (A′), not even that there are decreasing margins. Thus
this definition is more general than requiring sub-additivity also across units of
the same player. Following the literature, we stick to the more general notion.

Between concave additivity and sub-additivity, two classes of valuations have
been defined, as recalled below.5 To the best of our knowledge, no budget-feasible
mechanisms were considered for either of them in multi-unit settings.

– Diminishing return: for any A and A′ such that ai ≤ a′i for each i, and for
any item j, V (A + ej) − V (A) ≥ V (A′ + ej) − V (A′), where A + ej means
adding one extra unit of item j to A unless aj = nj , in which case A+ej = A.

– Sub-modularity: for any A and A′, V (A ∨A′) + V (A ∧A′) ≤ V (A) + V (A′),
where ∧ is the item-wise min operation.6

5 The literature of multi-unit procurements has been particularly interested in valua-
tions with some forms of “non-increasing margins”, thus has considered classes that
contain all concave additive valuations but not necessarily all additive ones.

6 The item-wise max and min operations when defining sub-additivity and sub-
modularity follow directly from the set-union and set-intersection operations when
defining them in general settings, and have been widely adopted in the literature
(see, e.g., [12] and [26]). One may consider alternative definitions where, for exam-
ple, ∨ represents item-wise sum rather than item-wise max. However, we are not
aware of existing studies where the alternative definitions are used.
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Diminishing return implies sub-modularity, and both collapse to sub-modularity
in single-unit settings. The reason for diminishing return to be considered sepa-
rately is that multi-unit sub-modularity is a very weak condition: when A and
A′ differ at a single player, it does not impose any constraint, as sub-additivity.
Diminishing return better reflects the idea behind single-unit sub-modularity:
the buyer’s value for one extra unit of any item gets smaller as he buys more.

Since the valuation classes defined above are nested:

bounded knapsack ⊆ concave additivity ⊆ diminishing return

⊆ sub-modularity ⊆ sub-additivity,

any impossibility result for one class applies to all classes above it, and any
positive result for one class applies to all classes below it. Moreover, since sub-
additivity contains additivity, any positive result for the former also applies to
the latter.

Demand oracle. A sub-additive valuation function V may take exponentially
many numbers to specify. Thus following the studies of single-unit sub-additive
valuations [35, 10], we consider a demand oracle, which takes as input a set of
players {1, . . . ,m}, a profile of costs (p1, . . . , pm) and a profile of numbers of
units (n1, . . . , nm),7 and returns, regardless of the budget, an allocation

Â ∈ argmax
A=(a1,...,am):ai≤ni∀i

V (A)−
∑
i∈[m]

aipi.

It is well known that a demand oracle can simulate in polynomial time a value
oracle, which returns V (A) given A. Thus we also have access to a value oracle.

Our goal. We shall construct universally truthful mechanisms that are individ-
ually rational, budget-feasible, and approximate the optimal value of the buyer.
Our mechanisms run in polynomial time for concave additive valuations, and in
polynomial time given the demand oracle for sub-additive valuations.

Single-parameter settings with budgets. Since the cost ci is player i’s only private
information, we are considering single-parameter settings [4]. Following Myer-
son’s lemma [31] or the characterization in [4], the only truthful mechanisms are
those with a monotone allocation rule and threshold payments. In multi-unit
settings, each unit of an item i has its own threshold and the total payment to
i will be the sum of the thresholds for all of his units bought by the mechanism.

With a budget constraint, this characterization still holds, but the problem
becomes harder: the monotone allocation rule must be such that, not only (1) it
provides good approximation to the optimal value, but also (2) the unique total
payment that it induces must satisfy the budget constraint. Therefore, similar to
single-unit budget-feasible mechanisms, we shall construct monotone allocation
rules while keeping an eye on the structure of the threshold payments. We need
to make sure that when the two are combined, both (1) and (2) are satisfied.

7 In single-unit settings a demand oracle takes as input a set of players and the costs.
For multi-unit settings it is natural to also include the numbers of units.
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3 Impossibility results for bounded knapsack

The following observation for bounded knapsack is immediate.

Observation 1. No deterministic DST budget-feasible mechanism can be an
n-approximation for bounded knapsack.

Proof. When m = 1, n1 = n, v1 = 1 and c1 = B, a DST mechanism, being
an n-approximation, must buy 1 unit and pay the player B. When c1 = B/n,
the mechanism must still buy 1 unit and pay B, otherwise the player will bid B
instead. Thus the mechanism’s value is 1, while the optimal value is n. �

Clearly, buying 1 unit from a player i ∈ argmaxj vj and paying him B is an
n-approximation. For randomized mechanisms we have the following.

Theorem 1. No universally truthful mechanism can be an f(n)-approximation
for bounded knapsack with f(n) < lnn.

Proof. Consider the case where m = 1, n1 = n, and v1 = 1. For any b, c ∈ [0, B],
let u1(b; c) be the player’s expected utility by bidding b when c1 = c. For each
k ∈ [n], consider the bid B

k : let P k be the expected payment and, for each j ∈ [n],

let pkj be the probability for the mechanism to buy j units. When c1 = B
k , the

optimal value is k and ∑
j∈[n]

pkj · j ≥
k

f(n)
∀k ∈ [n], (1)

as the mechanism is an f(n)-approximation. By universal truthfulness and indi-
vidual rationality, u1(B

k ; B
k ) ≥ u1( B

k−1 ; B
k ) ∀k > 1 and u1(B;B) ≥ 0. Namely,

P k − B

k

∑
j∈[n]

pkj · j ≥ P k−1 − B

k

∑
j∈[n]

pk−1j · j ∀k > 1, and

P 1 −B
∑
j∈[n]

p1j · j ≥ 0.

Summing up these n inequalities, we have∑
k∈[n]

P k −
∑
k∈[n]

B

k

∑
j∈[n]

pkj · j ≥
∑

1≤k<n

P k −
∑

1≤k<n

B

k + 1

∑
j∈[n]

pkj · j,

which implies

Pn ≥ B

n

∑
j∈[n]

pnj · j +
∑

1≤k<n

B

k(k + 1)

∑
j∈[n]

pkj · j.

By Equation 1, we have

Pn ≥ B

f(n)
+

∑
1≤k<n

B

(k + 1)f(n)
=

B

f(n)

∑
k∈[n]

1

k
≥ B lnn

f(n)
.

By budget-feasibility, Pn ≤ B. Thus f(n) ≥ lnn, implying Theorem 1. �
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Remark 3. Notice that as long as the mechanism is truthful in expectation and
individually rational in expectation (namely, with respect to the players’ expected
utilities), the analysis of Theorem 1 implies that it cannot do better than a lnn-
approximation. Also notice that the impossibility result does not impose any
constraint on the running time of the mechanism.

Remark 4. When there is a single player, that player has a monopoly and it is
not too surprising that no mechanism can do better than a lnn-approximation.
For example, in frugality mechanism design in procurement games, it has been
explicitly assumed that there is no monopoly. However, when monopoly might
actually exist, it is interesting to see that there is a tight bound (by Theorems
1 and 2) on the power of budget-feasible mechanisms in multi-unit settings.

4 An optimal mechanism for concave additive valuations

We construct a polynomial-time universally truthful mechanism MAdd that is a
4(1 + lnn)-approximation for procurement games with concave additive valua-
tions. Our mechanism is very simple, and the basic idea is a greedy algorithm
with proportional cost sharing, as has been used for single-unit settings [17, 35].
However, the key here is to understand the structure of the threshold payments
and to show that the mechanism is budget-feasible, which requires ideas not seen
before. Moreover, given our impossibility result, this mechanism is optimal up to
a constant factor. In particular, it achieves the optimal approximation ratio for
bounded knapsack. The simplicity and the optimality of our mechanism make it
attractive to be actually implemented in real-life scenarios.

Notations and Conventions. Without loss of generality, we assume vij > 0 for
each item i and j ∈ [ni], since otherwise the mechanism can first remove the units
with value 0 from consideration. Because we shall show that MAdd is universally
truthful, we describe it only with respect to the truthful bid (c1, . . . , cn). Also, we
describe the allocation rule only, since it uniquely determines the threshold pay-
ments. An algorithm for computing the thresholds will be given in the analysis.
Finally, let i∗ ∈ argmaxi vi1 be the player with the highest marginal value, ei∗

be the allocation with 1 unit of item i∗ and 0 unit of others, and A⊥ = (0, . . . , 0)
be the allocation where nothing is bought. We have the following.

Theorem 2. Mechanism MAdd runs in polynomial time, is universally truthful,
and is a 4(1 + lnn)-approximation for procurement games with concave additive
valuations.

Combining Theorems 1 and 2 we immediately have the following.

Corollary 1. Mechanism MAdd is optimal up to a constant factor among all
universally truthful, individually rational, and budget-feasible mechanisms for
multi-unit procurement games with concave additive valuations.
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Mechanism MAdd for Concave Additive Valuations

1. With probability 1
2(1+lnn)

, go to Step 2; with probability 1
2
, output ei∗ and stop;

and with the remaining probability, output A⊥ and stop.
2. For each i ∈ [m] and j ∈ [ni], let the value-rate rij = vij/ci.

(a) Order the n pairs (i, j) according to rij decreasingly, with ties broken lexico-
graphically, first by i and then by j.
For any ` ∈ [n], denote by (i`, j`) the `-th pair in the ordered list.

(b) Let k be the largest number in [n] satisfying
cik
vikjk

≤ B∑
`≤k vi`j`

.

(c) Pick up the first k pairs in the list: that is, output allocation A = (a1, . . . , an)
where ai = |{` : ` ≤ k and i` = i}|.

Remark 5. Theorems 1 and 2 show that multi-unit settings are very different
from single-unit settings. In single-unit settings various constant-approximation
mechanisms have been constructed, while in multi-unit settings an O(log n)-
approximation is the best, and our mechanism provides such an approximation.

Furthermore, for bounded knapsack, without strategic considerations there is
an FPTAS, while with strategic considerations the best is a lnn-approximation.
Thus we have shown that bound knapsack is a problem for which provably there
is a gap between the optimization domain and the mechanism design domain.

Finally, it would be interesting to see how the constant gap between Theorems
1 and 2 can be closed, and whether there is a mechanism that meets the budget
constraint with probability 1 and achieves an O(log n)-approximation.

An optimal mechanism for symmetric valuations. A closely related class of valu-
ations are the symmetric ones: there exists v1, . . . , vn such that, for any allocation
A with k units, V (A) =

∑
`≤k v`. In general, symmetric valuations are not con-

cave additive, nor are concave additive valuations necessarily symmetric. But
they are equivalent with a single seller. Thus the proof of Theorem 1 implies no
mechanism can do better than a lnn-approximation for symmetric valuations, as
stated in the first part of the theorem below. Similar to our analysis of Theorem
2, one can verify that the following mechanism is a 4(1+lnn)-approximation for
symmetric valuations: it is the same as MAdd except in Step 2, where k is set to
be the largest number in [n] satisfying cik ≤ B

k . We omit the analysis since it is
very similar to that of MAdd, and only present the following theorem.

Theorem 3. For symmetric valuations, no universally truthful mechanism can
be an f(n)-approximation with f(n) < lnn, and there exists a polynomial-time
universally truthful mechanism which is a 4(1 + lnn)-approximation.

5 Truthful mechanisms for sub-additive valuations

5.1 The non-monotonicity of the greedy algorithm

Although the greedy algorithm with proportional cost-sharing played an im-
portant role in budget-feasible mechanisms, we do not know how to use it for
multi-unit sub-additive valuations, since it is not monotone. Indeed, by lowering
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his cost, a player i will still sell his first unit as in the old allocation. But once
the rank of his first unit changes, all units after that will be re-ranked according
to their new marginal value-rates. Under the new ordering there is no guarantee
whether player i will sell any of his remaining units. Below we give an example
demonstrating this phenomenon in settings with diminishing returns.

Example 1. There are 3 players, n1 = 1, n2 = n3 = 2, c1 = c3 = 1, c2 = 1 + ε for
some arbitrarily small ε > 0, and B = 3 + 2ε. To highlight the non-monotonicity
of the greedy algorithm, we work through the algorithm and define the marginal
values on the way. The valuation function will be defined accordingly.

Given any allocation A and player i, denote by V (i|A) the marginal value of
item i, namely, V (A+ ei)− V (A). The greedy algorithm works as follows.

– At the beginning, the allocation is A0 = (0, 0, 0).
– V (1|A0) = 10, V (2|A0) = 10 + ε, and V (3|A0) = 10 − ε. Item 1 has the

largest marginal value-rate, thus A1 = (1, 0, 0).
– V (1|A1) = 0 (item 1 is unavailable now), V (2|A1) = 5 + 5ε, and V (3|A1) =

5− ε. Item 2 has the largest marginal value-rate, thus A2 = (1, 1, 0).
– V (1|A2) = 0, V (2|A2) = 1 + ε, and V (3|A2) = 1− ε. Item 2 has the largest

marginal value-rate, thus A3 = (1, 2, 0).
– The budget is used up, the final allocation is A3, and player 2 sells 2 units.

Now let c′2 = 1− ε < c2. The greedy algorithm works as follows.
– A0 = (0, 0, 0).
– V (1|A0) = 10, V (2|A0) = 10 + ε, and V (3|A0) = 10 − ε. Item 2 has the

largest marginal value-rate, thus A′1 = (0, 1, 0).
Notice that player 2 sells his first unit earlier than before.

– V (1|A′1) = 5 + 4ε, V (2|A′1) = 5− 5ε, and V (3|A′1) = 5 + 5ε. Item 3 has the
largest marginal value-rate, thus A′2 = (0, 1, 1).

– V (1|A′2) = 1− 2ε, V (2|A′2) = 1− ε, and V (3|A′2) = 1 + ε, thus A′3 = (0, 1, 2).
– The remaining budget is 3ε, no further unit can be added, and the final

allocation is A′3. But player 2 only sells one unit, violating monotonicity.

Given the marginal values, the valuation function is defined as follows:

V (0, 0, 0) = 0, V (1, 0, 0) = 10, V (0, 1, 0) = 10 + ε, V (0, 0, 1) = 10− ε,
V (1, 1, 0) = 15 + 5ε, V (1, 0, 1) = 15− ε, V (0, 2, 0) = 15− 4ε, V (0, 1, 1) = 15 + 6ε,

V (0, 0, 2) = 15,

V (1, 2, 0) = 16 + 6ε, V (1, 1, 1) = 16 + 4ε, V (1, 0, 2) = 16, V (0, 2, 1) = 16 + 5ε,

V (0, 1, 2) = 16 + 7ε,

V (0, 2, 2) = V (1, 2, 1) = V (1, 1, 2) = 16 + 7ε, V (1, 2, 2) = 16 + 7ε.

One can verify that V is consistent with the marginal values and has diminishing
returns. Indeed, for any allocation with k units for k from 0 to 4, the marginal
value of adding 1 more unit is roughly 10, 5, 1, ε, 0, and thus diminishing.

Given the non-monotonicity of the greedy algorithm, we turn to another
approach for constructing truthful mechanisms, namely, random sampling. We
provide our main mechanism in Section 5.3. In Section 5.2 we first construct a
mechanism that will be used as a subroutine.
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5.2 Approximating the optimal single-item allocation

From the analysis of Theorem 1, we notice that part of the hardness in designing
mechanisms for multi-unit settings comes from cases where a single player’s item
contributes a lot to the optimal solution. In order to obtain a good approxima-
tion, we need to identify such a player and buy as many units as possible from
him. More precisely, given the true cost profile (c1, . . . , cn), let

i∗∗ ∈ argmax
i

V (min{ni, b
B

ci
c} · ei),

where for any λ ∈ [ni], λei is the allocation with λ units of item i and 0 unit of
others. Ideally we want to buy λ∗∗ , min{ni∗∗ , b B

ci∗∗
c} units from i∗∗ and pay

him (at most) B. We shall refer to (i∗∗, λ∗∗) as the optimal single-item allocation.
Notice that a similar scenario occurs in single-unit settings: part of the value

approximation comes from a single player i∗ with the highest marginal value. The
problem is, although the identity of player i∗ is publicly known, both i∗∗ and λ∗∗

depend on the players’ true costs and have to be solved from their bids. Below
we construct a universally truthful mechanism, MOne, which is budget-feasible
and approximates V (λ∗∗ei∗∗) within a 1 + lnn factor. We have the following
theorem.

Mechanism MOne for Approximating the Optimal Single-item Allocation

With probability 1
1+lnn

, do the following.

1. Let vi = V (min{ni, bBci c} · ei) and order the players according to the vi’s decreas-
ingly, with ties broken lexicographically.
Let i∗∗ be the first player in the list and λ∗∗ = min{ni∗∗ , b B

ci∗∗
c}.

2. Let k ∈ [λ∗∗] be the smallest number such that player i∗∗ is still ordered the first
with cost c′i∗∗ = B

k
.

3. Set θ` = B
k

for each ` ≤ k and θ` = B
`

for each k + 1 ≤ ` ≤ λ∗∗.
4. Output allocation λ∗∗ei∗∗ and pay

∑
`≤λ∗∗ θ` to player i∗∗.

Theorem 4. Mechanism MOne is universally truthful, individually rational, budget-
feasible, and is a (1 + lnn)-approximation for V (λ∗∗ei∗∗).

Since the impossibility result in Theorem 1 applies to settings with a single
item, we have the following corollary.

Corollary 2. Mechanism MOne is optimal for approximating V (λ∗∗ei∗∗) among
all universally truthful, individually rational, and budget-feasible mechanisms.

Remark 6. As it will become clear from the analysis, MOne does not require the
valuation to be sub-additive. The only thing it requires is that, for each player i,
V (λei) is non-decreasing in λ. Thus it can be used for valuations that are not
even monotone, as long as they are monotone across units of the same item.
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Furthermore, given that (i∗∗, λ∗∗) is the multi-unit counterpart of player i∗

in single-unit settings, and given the important role i∗ has played in single-unit
budget-feasible mechanisms, we believe mechanism MOne will be a useful build-
ing block in the design of budget-feasible mechanisms for multi-unit settings.

5.3 A truthful mechanism for sub-additive valuations

Our mechanism for sub-additive valuations generalizes that of [10]. In particular,
the algorithm AMax and the mechanism MRand below are respectively variants
of their algorithm SA-alg-max and mechanism SA-random-sample. Several
new issues arise in multi-unit settings. For example, we must now distinguish
between an item and a unit of that item. In the mechanism and its analysis,
we sometimes deal with an item —thus all of its units at the same time— and
sometimes deal with a single unit. Also, as discussed in Section 5.2, the role of
player i∗ with the highest marginal value is replaced by player i∗∗, and the way
i∗∗ contributes to the value approximation has changed a lot —this is where the
extra log n factor comes. Indeed, to construct and analyze our mechanism one
need good understanding of the problem in multi-unit settings. Our mechanism
MSub is a uniform distribution between MRand and the mechanism MOne of
Section 5.2. We have the following theorem.

Algorithm AMax

Since this algorithm will be used multiple times with different inputs, we specify the in-
puts explicitly to avoid confusion. Given players 1, . . . ,m, numbers of units n1, . . . , nm,
costs c1, . . . , cm, budget B, and a demand oracle for the valuation function V , do the
following.

1. Let n′i = min{ni, bBci c} for each i, i∗∗ = argmaxi V (n′iei), v
∗ = V (n′i∗∗ei∗∗), and

V = {v∗, 2v∗, . . . ,mv∗}.
2. For v ∈ V from mv∗ to v∗,

(a) Set pi = v
2B
· ci for each player i. Query the oracle with m players, number of

units n′i and cost pi for each i, to find
S = (s1, . . . , sm) ∈ arg maxA=(a1,...,am):ai≤n′i∀i

V (A)−
∑
i∈[m] aipi.

(When there are multiple optimal solutions, the oracle always returns the same
one whenever queried with the same instance.)

(b) Set allocation Sv = A⊥. (Recall A⊥ = (0, . . . , 0) represents buying nothing.)
(c) If V (S) < v

2
, then continue to the next v.

(d) Else, order the players according to sici decreasingly with ties broken lexico-
graphically, and denote them by i1, . . . , im.
Let k be the largest number in [m] satisfying

∑
`≤k si`ci` ≤ B, and let Sv be

S projected on {i1, . . . , ik}: Sv =
∨
`≤k si`ei` , namely, Sv consists of taking si`

units of item i` for each ` ≤ k, and taking 0 unit of others.
3. Output SMax ∈ argmaxv∈V V (Sv).

(When there are several choices, the algorithm chooses one arbitrarily, but always
outputs the same one when executed multiple times with the same input.)
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Mechanism MRand

1. Put each player independently at random with probability 1/2 into group T , and
let T ′ = [m] \ T .

2. Run AMax with the set of players T , number of units ni and cost ci for each i ∈ T ,
budget B, and the demand oracle for valuation function V . Let v be the value of
the returned allocation.

3. For k from 1 to
∑
i∈T ′ ni,

(a) Run AMax with the set of players Tk = {i : i ∈ T ′, ci ≤ B
k
}, number of units

ni and cost B
k

for each i ∈ Tk, budget B, and the demand oracle for V . Denote
the returned allocation by X = (x1, . . . , xm), where xi = 0 for each i /∈ Tk.

(b) If V (X) ≥ log logn
64 logn

· v, then output allocation X, pay xi · Bk to each player i,
and stop.

4. Output A⊥ and pay 0 to each player.

Theorem 5. Mechanism MSub runs in polynomial time, is universally truthful,

and is an O( (logn)2

log logn )-approximation for procurement games with sub-additive
valuations.

Since diminishing return, sub-modularity, and additivity all imply sub-additivity,
we immediately have the following.

Corollary 3. MSub is an O( (logn)2

log logn )-approximation for procurement games with
diminishing returns, those with sub-modular valuations, and those with additive
valuations.

Remark 7. The worst case of the approximation above comes from cases where
V (λ∗∗ei∗∗) (and thus MOne) is the main contribution to the final value. Unlike
single-unit settings, we need an additional log n factor because the optimal ap-
proximation ratio for V (λ∗∗ei∗∗) is O(log n). For scenarios where the players’
costs are very small, in particular, where nici ≤ B for each i, the optimal single-
item allocation (i∗∗, λ∗∗) is publicly known, just as the player i∗ in single-unit
settings. In such a small-cost setting, which is very similar to the large-market
setting considered by [3] except that the items here are not infinitely divisi-
ble, the subroutine MOne in MSub can be replaced by “allocating ni∗∗ units of
item i∗∗ and paying him B”, and the log n factor is avoided, resulting in an
O( logn

log logn )-approximation.
A small-cost setting is possible in some markets, but it is not realistic in many

others. For example, in the Provision-after-Wait problem in healthcare [11], it
is very unlikely that all patients can be served at the most expensive hospital
within the government’s budget. Also, in many procurement games, a seller, as
the manufacture of his product, can be considered as having infinite supply, and
the total cost of all units he has will always exceed the buyer’s budget. Thus one
need to be careful about where the small-cost condition applies.
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