
Interdependent Defense Games: Modeling

Interdependent Security under Deliberate Attacks

(Supplementary Material)

Hau Chan
Department of Computer Science

Stony Brook University
hauchan@cs.stonybrook.edu

Michael Ceyko
Department of Computer Science

Harvard University
ceyko@fas.harvard.edu

Luis E. Ortiz
Department of Computer Science

Stony Brook University
leortiz@cs.stonybrook.edu

June 29, 2012

A Proof of Proposition 1

First note that Assumption 1 considerably simplifies some of the expressions
involving external risk/safety. This is because any pure strategy in B is either
a vector of all 0’s, or exactly one 1. For instance, in this case we have

si(aPa(i),bPa(i)) =

{∑
j∈Pa(i) bjeij(aj , 1), if bk = 1 for some k ∈ Pa(i),

1, if bk = 0 for all k ∈ Pa(i),

= 1−
∑

j∈Pa(i)

bj(1− aj)q̂ji,

so that
ri(aPa(i),bPa(i)) =

∑
j∈Pa(i)

bj(1− aj)q̂ji,
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and
bi si(aPa(i),bPa(i)) = bi.

Also, if the IDD game has a PSNE (a∗,b∗), then the attacker’s payoff in it
is

U(a∗,b∗) =

max
i∈[n]

(1− a∗i )

p̂iLi +
∑

j∈Ch(i)

q̂ij(a∗jαj + (1− a∗j ))Lj

− C0
i

+

where for any real number z ∈ R, the operator [z]+ ≡ max(z, 0); in addition,
if b∗k = 1 for some k ∈ [n], then

(1− a∗k)

p̂kLk +
∑

j∈Ch(k)

q̂kj(a∗jαj + (1− a∗j ))Lj

− C0
k ≥max

i∈[n]
(1− a∗i )

p̂iLi +
∑

j∈Ch(i)

q̂ij(a∗jαj + (1− a∗j ))Lj

− C0
i

+

. (1)

The proof of the proposition is by contradiction. Consider an IDD game
that satisfies the conditions of the proposition. Let (a∗,b∗) be a PSNE of
the game. We need to consider two cases at the PSNE: (1) there is some
attack and (2) there is no attack.

1. If there is some attack, then b∗k = 1 for some site k ∈ [n], and for all
i 6= k, b∗i = 0. In addition, because b∗ is consistent with the aggressor’s
best response to a∗, we have, using condition 1 above,

(1− a∗k)

p̂kLk +
∑

j∈Ch(k)

q̂kj(a∗jαj + (1− a∗j ))Lj

 ≥ C0
k > 0 ,

The last condition and Assumption 3 implies a∗k = 0. Hence, by the
best-response condition of site k, we have

Ck + αkrk(a∗Pa(k),b
∗
Pa(k))Lk ≥ p̂kLk + (1− p̂k)rk(a∗Pa(k),b

∗
Pa(k))Lk .

Because the attack occurs at k, the transfer risk rk(a∗Pa(k),b
∗
Pa(k)) =

rk(a∗Pa(k),0) = 0 at the PSNE. Therefore, the last condition simplifies
to

Ck ≥ p̂kLk ,

which contradicts Assumption 2.
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2. If there is no attack, then b∗ = 0. In this case, the site’s best-response
conditions imply a∗ = 0. From the attacker’s best-response condition
we obtain

p̂kLk +
∑

j∈Ch(k)

q̂kjLj ≤ C0
k ,

which contradicts Assumption 3.

B Proof of Proposition 2

Throughout this proof, by the hypothesis of the proposition, we assume we
are dealing with single-simultaneous-attack transfer-vulnerable IDD games.
We also use the same notation as that introduced before the statement of the
proposition in the main text.

First recall that Assumption 1, in the context of mixed strategies, implies
the probability of no attack y0 ≡ 1 −

∑n
i yi. This is because under this

assumption

y(b) =


yBi(bi) = yi, if bi = 1 for exactly one i ∈ [n],
y0, if bi = 0 for all i ∈ [n],
0, otherwise.

Recall also that, when used in combination, Assumptions 1 and 4 greatly
simplify the best-response condition of the internal players because now
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ŝi(xPa(i), yPF(i)) = yi. In particular, we have 1

si(xPa(i), yPa(i)) ≡
∑

bPa(i)

yPa(i)(bPa(i))si(xPa(i),bPa(i))

=
∑

bPa(i)

yPa(i)(bPa(i))
∏

j∈Pa(i)

eij(xj , bj)

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yjeij(xj , 1)

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yj(xj + (1− xj)(1− q̂ji))

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yj(xj + (1− xj)− (1− xj)q̂ji)

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yj(1− (1− xj)q̂ji)

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yj −
∑

j∈Pa(i)

yj(1− xj)q̂ji

= 1−
∑

j∈Pa(i)

yj(1− xj)q̂ji ,

so that ri(xPa(i), yPa(i)) =
∑

j∈Pa(i) yj(1− xj)q̂ji, and

fi(xPa(i), yPa(i)) ≡
∑

bPF(i)

yPF(i)(bPF(i)) bi si(xPa(i),bPa(i))

=
∑

bPF(i)

yPF(i)(bPF(i)) bi
∏

j∈Pa(i)

eij(xj , bj)

=

y0 +
∑

j∈[n]−PF(i)

yj

× 0× 1 + yi +
∑

j∈Pa(i)

yj × 0× eij(xj , 1)

= yi .

Combining the last derivation above with Assumption 4 (i.e., αi = 1) leads
1Note that eij(xj , 0) = 1.
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to

ŝi(xPa(i), yPF(i)) ≡ fi(xPa(i), yPF(i)) +
1− αi

p̂i
ri(xPa(i), yPa(i)) = yi ,

as claimed above. Hence, the best-response BRi of defender i directly de-
pends on yi only (i.e., BRi is conditionally independent of the mixed strate-
gies xPa(i) of its parent nodes Pa(i) of defender node i in the network given
the probability yi that the attacker’s mixed-strategy y assigns to a direct
attack to i); thus, in what follows, we abuse notation and define

BRi(yi) ≡ BRi(xPa(i), yPF(i)) =


{1}, if yi > ∆̂i,
{0}, if yi < ∆̂i,
[0, 1], if yi = ∆̂i.

Next, we prove some useful properties of the MSNE. 2

Claim 1. In every MSNE (x, y), for all i ∈ [n], if the probability of a direct
attack to a defender i is yi = 0 then the probability of investment of defender
i is xi = 0. In addition, if yi = 0 for some i ∈ [n] then the probability of no
attack y0 = 0.

Proof. By BRi, yi = 0 < ∆̂i implies xi = 0. For the second part, if yi = 0
for some defender i ∈ [n], then, by BR0, we have

max
t
M0

t (xt) ≥M0
i (xi) = M

0
k > 0,

and thus y0 = 0.

Proposition B.1. In every MSNE (x, y), an attack is always possible: y0 <
1.

Proof. The proof is by contradiction. Let (x, y) be an MSNE. Suppose there
is no attack: y0 = 1. Then,

∑n
i=1 yi = 1−y0 = 0, so that yi = 0 for all i ∈ [n].

Because yi = 0 for some i ∈ [n], Claim 1 yields y0 = 0, a contradiction.

Lemma 1. In every MSNE (x, y), the probability yi of direct attack to de-
fender i is no larger than ∆̂i < 1.

2Throughout the proof, to simplify notation, we drop the ’*’ superscript used in the
main text to denote MSNE.

5



Proof. The proof is by contradiction. Suppose there is some MSNE in which
yi > ∆̂i for some i ∈ [n]. Then, xi = 1 and in turn M0

i (1) = −C0
i < 0.

Because the attacker can always achieve expected payoff 0 by not attacking
anyone, the last condition implies yi = 0, a contradiction.

Claim 2. Let y be the mixed-strategy of the attacker in some MSNE. If
the probability of no attack y0 > 0, then the probability of direct attack
to defender i is equal to the cost-to-conditional expected-loss of defender i:
yi = ∆̂i for all i ∈ [n].

Proof. The proof is by contradiction. By Lemma 1 yi ≤ ∆̂i for all i ∈ [n].
Suppose yi < ∆̂i for some i. Then, by BRi, we have xi = 0, and by BR0,
we have 0 ≥M0

i > 0, a contradiction.

Lemma 2. In every MSNE (x, y) of an IDD game in which the total of
cost-to-conditional expected-loss of all defenders is

∑n
i=1 ∆̂i < 1, there may

not be an attack: y0 > 0.

Proof. By Lemma 1, yi ≤ ∆̂i for all i ∈ [n]. Using the last statement, note
that

1− y0 =
n∑

i=1

yi ≤
n∑

i=1

∆̂i < 1,

from which the lemma immediately follows.

As stated in the main text, we partition the class of IDD games into
three subclasses, based on whether

∑n
i=1 ∆̂i is (1) less than, (2) equal to, or

(3) greater than 1. We consider each subclass in turn.

Proposition B.2. The joint mixed-strategy (x, y) is an MSNE of an IDD
game in which the total cost-to-conditional expected-loss of all defenders is∑n

i=1 ∆̂i < 1 if and only if it satisfies the following properties.

1. There may not be an attack with probability of no attack equal to one
minus the cost-to-conditional expected-loss of all defenders: for all de-
fenders i 1 > y0 = 1−

∑n
i=1 ∆̂i > 0.

2. Every defender has non-zero chance of being attacked directly, and this
probability equals the respective defender’s cost-to-conditional expected-
loss of defender: for all defenders i ∈ [n], yi = ∆̂i > 0.

3. Every defender invests some but none does fully, and in particular, the
probability a defender does not invest equals the respective cost-to-loss
ratio to the attacker: for all defenders i ∈ [n], 0 < xi = 1− η0

i < 1.
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Proof. Suppose the joint mixed-strategy (x, y) satisfies the properties above.
Then, every defender is indifferent (i.e., for all i ∈ [n], BRi(yi) = [0, 1],
because yi = ∆̂i), as is also the attacker (i.e., BR0(x) equals the set of
all probability distributions over n + 1 events because M0

i (xi) = 0 for all
i ∈ [n]). Hence, (x, y) is an MSNE.

Now suppose (x, y) is an MSNE of the game. By Lemma 2, y0 > 0.
Hence, for all i ∈ [n], we have yi = ∆̂i > 0 by Claim 2. Both of the previous
sentences together imply M0

i (xi) = 0 for all i ∈ [n], because of BR0. Simple
algebra yields that xi = 1− η0

i . Finally, because y0 +
∑n

i=1 yi = 1, we have
y0 = 1−

∑n
i=1 ∆̂i.

Proposition B.3. The joint mixed-strategy (x, y) is an MSNE of an IDD
game in which

∑n
i=1 ∆̂i = 1 if and only if it satisfies the following properties.

1. There is always an attack: y0 = 0.

2. Every defender has non-zero chance of being attacked directly, and this
probability equals the respective defender’s cost-to-conditional expected-
loss of defender i: for all defenders i ∈ [n], yi = ∆̂i > 0.

3. No defender invests fully, and the possible investment probabilities are
connected by a 1-d line segment in Rn:

xi = 1− v + C0
i

L
0
i

for all i ∈ [n]

with 0 ≤ v ≤ mini∈[n]M
0
i .

Proof. Suppose the joint mixed-strategy (x, y) satisfies the properties above.
Then, every defender is indifferent: for all i ∈ [n], BRi(yi) = [0, 1], because
yi = ∆̂i. To test y ∈ BR0(x), note 0 ≤ (1 − xi)L

0
i − C0

i = M0
i (xi) =

maxt∈[n]M
0
t (xt) for all i ∈ [n], and

n∑
i=1

yiM
0
i (xi) =

n∑
i=1

yi max
t∈[n]

M0
t (xt) =

(
n∑

i=1

yi

)
max
t∈[n]

M0
t (xt) = max

t∈[n]
M0

t (xt).

Let the joint mixed-strategy (x, y) be an MSNE of the game. Let I ≡
I(y) ≡ {i ∈ [n] | yi > 0}. Note that yk = 0 for all k /∈ I. We first prove the
following lemma.
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Lemma 3. I = [n].

Proof. The proof is by contradiction. Suppose I 6= [n]. By Proposition B.1,
y0 < 1 = y0 +

∑n
i=1 yi so that yi > 0 for some i ∈ [n], and therefore I 6= ∅.

Also, there exists some k ∈ [n]− I, for which yk = 0. By Claim 1, we then
have for all k /∈ I, xk = 0. By BR0 and Assumption 3, for all i, t ∈ I 6= ∅
and k /∈ I,

M0
i (xi) = M0

t (xt) ≥M
0
k.

The condition above yields the following upper bound on the mixed strate-
gies of the defenders in i ∈ I, after applying simple algebraic manipulations:
for all i ∈ I, k /∈ I,

xi ≤ 1− M
0
k + C0

i

L
0
i

< 1.

By BRi, this implies that yi ≤ ∆̂i for all i ∈ I. Putting all of the above
together, we have

1 =
n∑

i=0

yi =
n∑

i=1

yi =
∑
i∈I

yi ≤
∑
i∈I

∆̂i ≤
n∑

i=1

∆̂i = 1.

Now, because I 6= [n] (by the hypothesis assumed to obtain a contradiction),
we have

∑
k/∈I ∆̂k > 0, and

∑
i∈I

yi =
n∑

i=1

∆̂i =
∑
i∈I

∆̂i +
∑
k/∈I

∆̂k >
∑
i∈I

∆̂i ≥
∑
i∈I

yi,

a contradiction.

By the last lemma and BR0, we have

(1− x1)L0
1 − C1 = · · · = (1− xn)L0

n − Cn ≥ 0

Let v ≡ (1 − x1)L0
1 − C1. Then, 1 − xi = v+C0

i

L
0
i

> 0. If v > 0 then

y0 = 0. Because xi < 1, we have yi ≤ ∆̂i for all i ∈ [n]. Thus, we have
yi = ∆̂i for all i ∈ [n] because otherwise if yt < ∆̂t for some t ∈ [n], then
1 = y0 + yt +

∑n
i=1,i 6=t yi <

∑n
i=1 ∆̂i = 1, a contradiction. If, instead, v = 0,

for all i, we have xi = 1 − η0
i > 0, which implies yi = ∆̂i. Therefore,

y0 = 1−
∑n

i=1 yi = 1−
∑n

i=1 ∆̂i = 0.
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Lemma 4. In every MSNE (x, y) of an IDD game in which
∑n

i=1 ∆̂i > 1,
the probability of no attack y0 = 0.

Proof. The proof is by contradiction. Suppose y0 > 0. Then, by Claim 2,
we have yi = ∆̂i for all i ∈ [n], and 1 =

∑n
i=0 yi =

∑n
i=1 ∆̂i > 1, a

contradiction.

Proposition B.4. In every MSNE (x, y) of an IDD game, the probability
of no attack y0 > 0 if and only if the game has the property

∑n
i=1 ∆̂i < 1.

Proof. The “if” part is Lemma 2. For the “only if” part, the case in which∑n
i=1 ∆̂i = 1 follows from Proposition B.3; the case in which

∑n
i=1 ∆̂i > 1

follows from Lemma 4.

Proposition B.5. In every MSNE (x, y) of an IDD game in which
∑n

i=1 ∆̂i >
1, no defender is fully investing and some defender is not investing at all
(i.e., xi = 0 for some i ∈ [n]).

Proof. The proof is by contradiction. Proposition B.4 yields y0 = 0. Sup-
pose xi = 1 for some i ∈ [n]. Then, by BRi, yi ≥ ∆̂i, and by BR0 and the
fact that y0 = 0, we have 0 > −C0

i = Mi(xi) ≥ 0, which implies yi = 0, a
contradiction.

Now suppose 0 < xi < 1 for all i ∈ [n]. Then, by BRi, we have yi = ∆̂i

for all i ∈ [n]. Thus we have 1 =
∑n

i=1 yi =
∑n

i=1 ∆̂i > 1, a contradiction.

Proposition B.6. The joint mixed-strategy (x, y) is an MSNE of an IDD
game in which

∑n
i=1 ∆̂i > 1 if and only if it satisfies the following properties.

1. There is always an attack: y0 = 0.

2. There exists a non-singleton, non-empty subset I ⊂ [n], such that
mini∈I M

0
i ≥ maxk/∈I M

0
k, if I 6= [n], and the following holds.

(a) No defender outside I invests or is attacked directly: xk = 0 and
yk = 0 for all k /∈ I.

(b) Let J ≡ arg min
i∈I

M
0
i . No defender in J invests and the probability

of that defender being attacked directly is at most the defender’s
cost-to-expected-loss ratio: for all i ∈ J , xi = 0 and 0 ≤ yi ≤ ∆̂i;
in addition,

∑
i∈J yi = 1−

∑
t∈I−J ∆̂i.
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(c) Every defender in I − J partially invests and has positive prob-
ability of being attacked directly equal to the defender’s cost-to-
expected-loss ratio: for all i ∈ I − J , yi = ∆̂i and

0 < xi = 1− mint∈I M
0
t + C0

i

L
0
i

< 1.

Proof. For the “if” part, we need to show (x, y) form mutual best-responses.
For all k /∈ I, xk = 0 ∈ BRk(y) because yk = 0 < ∆̂k. For all j ∈ J , xj =
0 ∈ BRj(y) because yj ≤ ∆̂j . Finally, for all i ∈ I − J , xi ∈ BRi(yi) = [0, 1]
because yi = ∆̂i. Hence, we have xi ∈ BRi(yi) for all i ∈ [n]. For the
attacker, let v ≡ v(I) ≡ mini∈I M

0
i . We have for all k /∈ I, Mk(xk) = M

0
k ≤

maxl /∈I M
0
l ≤ mini∈I M

0
i = v, where the first equality holds because xk = 0

and the second inequality by the properties of I. We also have for all j ∈ J ,
Mj(xj) = M

0
j = mini∈I M

0
i = v, where the first equality holds because

xj = 0 and the second follows from the definition of J . Finally, using simple
algebra, we also have for all i ∈ I − J ,

Mi(xi) = (1− xi)L
0
i − C0

i

=

(
mint∈I M

0
t + C0

i

L
0
i

)
L

0
i − C0

i

= min
t∈I

M
0
t + C0

i − C0
i = min

t∈I
M

0
t = v.

Hence, we have for all i ∈ [n], Mi(xi) ≤ v. The expected payoff of the
attacker under the given joint mixed-strategy is

n∑
i=1

yiMi(xi) =
∑
j∈J

yjMj(xj) +
∑

i∈I−J

yiMi(xi)

=
∑
j∈J

yjv +
∑

i∈I−J

yiv

= v

∑
j∈J

yj +
∑

i∈I−J

yi


= v

(
n∑

i=1

yi

)
= v ≥Mi(xi),

for all i ∈ [n]. Hence, we also have y ∈ BR0(x), and the joint mixed-strategy
(x, y) is an MSNE.
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We now consider the “only if” part of the proposition. Let (x, y) be
an MSNE and let I ≡ I(y) ≡ {i ∈ [n] | yi > 0} be the support of the
aggressor’s mixed strategy. We now show that I is a non-singleton and
non-empty subset of [n].

Claim 3. 1 < |I| ≤ n.

Proof. From Proposition B.1, we have I 6= ∅. That I is not a singleton set
follows from Lemma 1.

By Proposition B.4, we have y0 = 0. Applying Proposition B.5, let
t ∈ [n] be such that xt = 0. Also by Proposition B.5, the aggressor achieves
a positive expected payoff:

∑n
i=1 yiM

0
i (xi) = maxn

l=1M
0
l (xl) ≥ M0

t (xt) =
M

0
t > 0. For all k /∈ I, because yk = 0, Claim 1 implies xk = 0.
By BR0, if I is a strict, non-empty and non-singleton subset of [n], we

have, for all i ∈ I and k /∈ I,

M
0
i ≥M0

i (xi) = max
l∈I

M0
l (xl) ≥M

0
k > 0;

otherwise, if I = [n], we have, for all i ∈ [n],

M0
i (xi) = max

l∈[n]
M0

l (xl) = M0
t (xt) = M

0
t > 0.

Let v ≡ v(I) ≡ maxl∈I M
0
l (xl). Then, the above expressions imply that for

all i ∈ I, we have

0 < xi = 1− v + C0
i

L
0
i

< 1.

In addition, we have that if I is a strict, non-empty and non-singleton subset
of [n], we have,

v = M
0
t ≥ min

i∈I
M

0
i ≥ v ≥ max

k/∈I
M

0
k;

and if, instead, I = [n], then

v = M
0
t = min

i∈[n]
M

0
i .

Hence, we have v = mini∈I M
0
i .

Let J ≡ J(I) ≡ arg min
i∈I

M
0
i . For all i ∈ J , we have M0

i = v, and thus

xi = 1− v + C0
i

L
0
i

= 1− M
0
i + C0

i

L
0
i

= 1− L
0
i − C0

i + C0
i

L
0
i

= 0,
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and by BRi, we have 0 ≤ yi ≤ ∆̂i.
For all i ∈ I − J , we have M0

i > v, and thus

0 = 1− M
0
i + C0

i

L
0
i

< xi = 1− v + C0
i

L
0
i

< 1,

and by BRi, we have yi = ∆̂i.
Finally, we have

∑
i∈J yi = 1−

∑
i∈I−J ∆̂i, because y is a mixed strategy

(i.e, a probability distribution).

Hence, from the proof of the last proposition we can infer that if the
M

0
l ’s form a complete order, then the last condition allows us to search for

an MSNE by exploring only n− 2 sets, as opposed to 2n−2 if done naively.
It turns out a complete order is not necessary. The following claim allows

us to safely move all the defenders with the same value of M0
i in a group as

a whole inside or outside I.

Claim 4. Let I ⊂ [n], such that I ′ ⊂ I, |I ′| < |I| < n − 1. Suppose we
find an MSNE (x, y) such that I ′ = {i | yi > 0}, with the property that
minl∈I′ M

0
l = maxk/∈I′ M

0
k. In addition, suppose I satisfies minl∈I′ M

0
l =

minl∈I M
0
l ≥ maxk/∈I M

0
k. Then, we can also find (x, y) using partition I.

Proof. To simplify the notation, let v ≡ minl∈I M
0
l = minl∈I′ M

0
l , J ′ ≡

arg min
l∈I′

M
0
l and J ≡ arg min

i∈I
M

0
i . The hypothesis implies that (x, y) satis-

fies the following properties.

for all i /∈ I ′: xi = yi = 0

for all i ∈ J ′: xi = 0 and 0 ≤ yi ≤ ∆̂i;

also
∑
i∈J ′

yi = 1−
∑

i∈I′−J ′

∆̂i

for all i ∈ I ′ − J ′: xi = 1− v + C0
i

L
0
i

and yi = ∆̂i

We now show that (x, y) also satisfies the constraints when using I with
the properties stated in the claim. For that, it needs to satisfy the same
expressions as above, but with I ′ and J ′ replaced by I and J , respectively.

The first condition holds because I ′ ⊂ I. The second condition holds for
all i ∈ J − I ′, because i /∈ I ′ satisfies xi = 0 and 0 ≤ yi = 0 ≤ ∆̂i. It also
holds for all i ∈ J ∩ I ′ because i ∈ J implies M0

i = v, and because i ∈ I ′ and
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i ∈ J ′. For the third condition, note that I − J ⊂ I ′ − J ′ because i ∈ I − J
implies the inequality M0

i > v = maxk/∈I′ M
0
k; hence, the first inequality in

the last expression implies i /∈ J ′, while the equality implies i ∈ I ′.

Proposition 2 stated in the main text follows by combining Proposi-
tions B.2, B.3 and B.6.
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