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A Proof of Proposition 1

First note that Assumption 1 considerably simplifies some of the expressions
involving external risk /safety. This is because any pure strategy in 3 is either
a vector of all 0’s, or exactly one 1. For instance, in this case we have

si(apa(i), ba(i)) = 2geraty by 1), iy = 1 for some & € Pa(i),
1, if by = 0 for all k € Pa(i),
=1- Z b Qﬂ,
j€Pa(7)
so that
(aPaz bPaz Z b Qsz
j€Pa(i)
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and
bi si(apai), Pra(i)) = bi-

Also, if the IDD game has a PSNE (a*, b*), then the attacker’s payoff in it
is

+
U(a*,b") = maX(l — af) piL; + Z inj(a;aj +(1- a?))Lj — CZO

el JECh(3)

where for any real number z € R, the operator [z]" = max(z,0); in addition,
if by = 1 for some k € [n], then

(1—ap) [ Bele+ > Grjlajoy+ (1 —a}))L; | —CR >

FECh(k)
+
max (1 —a;) | pili + Z Gj(aia;+ (L—a))L; | =C| . (1)
i€fn] JECh()

The proof of the proposition is by contradiction. Consider an IDD game
that satisfies the conditions of the proposition. Let (a*, b*) be a PSNE of
the game. We need to consider two cases at the PSNE: (1) there is some
attack and (2) there is no attack.

1. If there is some attack, then b = 1 for some site k € [n], and for all
i # k, b = 0. In addition, because b* is consistent with the aggressor’s
best response to a*, we have, using condition 1 above,

(L —ap) [ Peli+ Y @jlajo;+ (1 —a})L; | >CP>0,
Jj€Ch(k)

The last condition and Assumption 3 implies a; = 0. Hence, by the
best-response condition of site k, we have

Ck + Tk (@pa)> Ppagy) Lie = DL + (1 — Di)rk(@pa ) Ppagy) Lk -

Because the attack occurs at k, the transfer risk rk(a;a(k), b;a(k)) =

Tk (al";a(k), 0) = 0 at the PSNE. Therefore, the last condition simplifies
to
Ck > prLy

which contradicts Assumption 2.



2. If there is no attack, then b* = 0. In this case, the site’s best-response
conditions imply a* = 0. From the attacker’s best-response condition
we obtain

el + Z QL <OF
j€Ch(k)

which contradicts Assumption 3.

B Proof of Proposition 2

Throughout this proof, by the hypothesis of the proposition, we assume we
are dealing with single-simultaneous-attack transfer-vulnerable IDD games.
We also use the same notation as that introduced before the statement of the
proposition in the main text.

First recall that Assumption 1, in the context of mixed strategies, implies
the probability of no attack yo = 1 — > " y;. This is because under this
assumption

yp, (bi) =y, if b; =1 for ezactly one i € [n],
y(b) = < yo, if b; =0 for all i € [n],

0, otherwise.

Recall also that, when used in combination, Assumptions 1 and 4 greatly
simplify the best-response condition of the internal players because now



5i(Xpa(i), YPF(i)) = ¥i- In particular, we have

(XPa(z) YPa(i)

1

Z Ypa(i) bPa(z) ) Si (XPa(z) ) bPa(z) )

bPa(l)
= Y ypay(bray) [ il 05)
bpa(i) jePa(i)
=lwt+ D yl|+ D weyla;l)
j€[n]—Pal(i) j€Pa(i)
={w+ D w|+ D w0 a0 -g)
j€[n]—Pal(z) jEPa(i)
=%+ Z yi | + Z yj(z; + zj) — (1 — 2;)q;:)
j€[n]—Pa(i) jePal(i)
=Y + Z yj | + Z y; (1 — 2;5)q5i)
j€[n]—Pa(i) jePa()
=lwot+ D wil|l+ D wi— > yl—z)g
j€[n]—Pal(i) jE€Pa(i) jePa(i)
—1— >yl =),
jePa(i)
so that 7;(Xpa(i), Ypa(i)) = 2 jepa(i) ¥i(1 — 253, and

f (XPa (3)

= Y yprei) (bprg)

brr)

= (y0+

yPa(z

>

w)
j€[n]—PF(3)

b' 54 (XPa(i) ) bPa(i))

H eij(j, b

JEPa 7

x0x 14y + Z yj x 0 x ej(xj,1)
j€ePa(i)

Combining the last derivation above with Assumption 4 (i.e., a; = 1) leads

1Note that 6ij($j,0) =1.



to

. 1—ay
8i(Xpa(i), Ypr(i)) = fi(Xpa(i)> YPF()) + TTi(mPa(i)a Ypa(i)) = Yi »
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as claimed above. Hence, the best-response BR; of defender ¢ directly de-
pends on y; only (i.e., BR; is conditionally independent of the mixed strate-
gies Xpy(;) of its parent nodes Pa(i) of defender node i in the network given
the probability y; that the attacker’s mixed-strategy y assigns to a direct
attack to i); thus, in what follows, we abuse notation and define

{1}, ify > A,
BRi(yi) = BRi(Xpagi), ypr)) = § {0}, if i < Ay,

Next, we prove some useful properties of the MSNE. 2

Claim 1. In every MSNE (x,y), for all i € [n], if the probability of a direct
attack to a defender i is y; = 0 then the probability of investment of defender
i is x; = 0. In addition, if y; = 0 for some i € [n] then the probability of no
attack yo = 0.

Proof. By BR;, y; =0 < 31 implies x; = 0. For the second part, if y; = 0
for some defender i € [n], then, by BRy, we have

m?XMtO(xt) > M (x;) = MZ > 0,

and thus yo = 0. O

Proposition B.1. In every MSNE (x,y), an attack is always possible: yo <
1.

Proof. The proof is by contradiction. Let (x,y) be an MSNE. Suppose there
is no attack: yo = 1. Then, >_"" | y; = 1—yo = 0, so that y; = 0 for all i € [n].
Because y; = 0 for some i € [n], Claim 1 yields yo = 0, a contradiction. [J

Lemma 1. In every MSNE (x,y), the probability y; of direct attack to de-
fender i is no larger than A; < 1.

%9

2Throughout the proof, to simplify notation, we drop the superscript used in the

main text to denote MSNE.



Proof. The proof is by contradiction. Suppose there is some MSNE in which

yi > A; for some i € [n]. Then, z; = 1 and in turn M?(1) = —C? < 0.
Because the attacker can always achieve expected payoff 0 by not attacking
anyone, the last condition implies y; = 0, a contradiction. 0

Claim 2. Let y be the mixed-strategy of the attacker in some MSNE. If
the probability of no attack yg > 0, then the probability of direct attack
to defender i is equal to the cost-to-conditional expected-loss of defender i:

yi = A; for alli € [n].

Proof. The proof is by contradiction. By Lemma 1 y; < ﬁl for all i € [n].
Suppose y; < A; for some i. Then, by BR;, we have x; = 0, and by BRg,
we have 0 > M? > 0, a contradiction. O

Lemma 2. In every MSNE (x,y) of an IDD game in which the total of
cost-to-conditional expected-loss of all defenders is > | A; < 1, there may
not be an attack: yg > 0.

Proof. By Lemma 1, y; < A, for all i € [n]. Using the last statement, note

that
n n .
L—yo=> y <y A<,
i=1 i=1
from which the lemma immediately follows. O

As stated in the main text, we partition the class of IDD games into
three subclasses, based on whether " | A; is (1) less than, (2) equal to, or
(3) greater than 1. We consider each subclass in turn.

Proposition B.2. The joint mized-strategy (x,y) is an MSNE of an IDD
game in which the total cost-to-conditional expected-loss of all defenders is
Yoy Ai < 1if and only if it satisfies the following properties.

1. There may not be an attack with probability of no attack equal to one
minus the cost-to-conditional expected-loss of all defenders: for all de-
fendersi1>yo=1->"1A; >0.

2. Every defender has non-zero chance of being attacked directly, and this
probability equals the respective defender’s cost-to-conditional expected-
loss of defender: for all defenders i € [n], y; = A; > 0.

3. Every defender invests some but none does fully, and in particular, the
probability a defender does not invest equals the respective cost-to-loss
ratio to the attacker: for all defendersi € [n], 0 <z;=1—n) < 1.



Proof. Suppose the joint mixed-strategy (x,y) satisfies the properties above.
Then, every defender is indifferent (i.e., for all i € [n], BR;(y;) = [0,1],
because y; = A;), as is also the attacker (i.e., BRo(x) equals the set of
all probability distributions over n + 1 events because M?(x;) = 0 for all
i € [n]). Hence, (x,y) is an MSNE.

Now suppose (x,y) is an MSNE of the game. By Lemma 2, yo > 0.
Hence, for all i € [n], we have y; = A; > 0 by Claim 2. Both of the previous
sentences together imply M (x;) = 0 for all i € [n], because of BR. Simple
algebra yields that x; =1 — 7]? . Finally, because yo + Y ;- ¥; = 1, we have

Yo = 1—2;11 Al OJ

Proposition B.3. The joint mized-strategy (x,y) is an MSNE of an IDD
game in which > | A; = 1 if and only if it satisfies the following properties.

1. There is always an attack: yo = 0.

2. Every defender has non-zero chance of being attacked directly, and this
probability equals the respective defender’s cost-to-conditional expected-
loss of defender i: for all defenders i € [n], y; = A; > 0.

3. No defender invests fully, and the possible investment probabilities are
connected by a 1-d line segment in R™:

0
a:izl—vtocl for all i € [n]
L.

with 0 < v < minep, M.

(2
Proof. Suppose the joint mixed-strategy (x,y) satisfies the properties above.
Then, every defender is indifferent: for all ¢ € [n], BR;(y;) = [0, 1], because
yi = A;. To test y € BRo(x), note 0 < (1 — xi)f? —CY = MP(z;) =
maxX;e|p] MP(x) for all i € [n], and

Z-Mio T;) = s max M (z;) =
> wMO(a:) = 3 i M o)

ten]

(Z yz‘) max M (a¢) = max My ().
=1

Let the joint mixed-strategy (x,y) be an MSNE of the game. Let I =
I(y) ={i € [n] | y; > 0}. Note that y = 0 for all &k ¢ I. We first prove the
following lemma.



Lemma 3. I = [n].

Proof. The proof is by contradiction. Suppose I # [n]. By Proposition B.1,
yo < 1=yo+ >,y so that y; > 0 for some ¢ € [n], and therefore I # (.
Also, there exists some k € [n] — I, for which y; = 0. By Claim 1, we then
have for all k ¢ I, x;, = 0. By BR( and Assumption 3, for all i,¢t € T # ()
and k ¢ 1,

MY (@) = M{(x1) > M.

The condition above yields the following upper bound on the mixed strate-
gies of the defenders in i € I, after applying simple algebraic manipulations:
forallie I,k ¢ 1,
-0
M+ C?
o<1 e

7

<1

By BR;, this implies that y; < A; foralli € 1. Putting all of the above
together, we have

n

1=Zyizzyizzyiéz&'§z&=1-
i=0 i=1

i€l i€l =1

Now, because I # [n] (by the hypothesis assumed to obtain a contradiction),
we have } o, Ag > 0, and

n
Zyi = Z&' = Zﬁﬁ-zﬁk > Zﬁi > Zyz‘,
iel i=1 iel k¢l iel iel

a contradiction. ]

By the last lemma and BRg, we have

(1-2)I—Ci==(1—an)lo—Cy>0

Let v = (1—21)L} — C1. Then, 1—2; = X% > 0. If v > 0 then

Yo = 0. Because z; < 1, we have y; < A; for ali\i € [n]. Thus, we have
y; = A; for all i € [n] because otherwise if y; < A; for some t € [n], then
L=yo+uye+ D0 iz ¥i < iy A = 1, a contradiction. If, instead, v = 0,
for all i, we have z; = 1 — ?7? > 0, which implies y; = 31 Therefore,
Yo = 1_2?:1%: 1_2?:131' = 0.

O]



Lemma 4. In every MSNE (x,y) of an IDD game in which Y ; A >1,
the probability of no attack yo = 0.

Proof. The proof is by contradiction. Suppose yo > 0. Then, by Claim 2,
we have y; = A; for all i € [n], and 1 = > jys = > A > 1, a
contradiction. O

Proposition B.4. In every MSNE (x,y) of an IDD game, the probability
of no attack yo > 0 if and only if the game has the property > 7" | A; < 1.

Proof. The “it” part is Lemma 2. For the “only if” part, the case in which
Yo 1A = 1 follows from Proposition B.3; the case in which > ;" 1A > 1
follows from Lemma 4. O

Proposition B.5. In every MSNE (x,y) of an IDD game in which » ", A; >
1, no defender is fully investing and some defender is not investing at all
(i.e., x; = 0 for some i € [n]).

Proof. The proof is by contradiction. Proposition B.4 yields yo = 0. Sup-
pose x; = 1 for some i € [n|. Then, by BR;, y; > A;, and by BR( and the
fact that yo = 0, we have 0 > C’O M;(x;) > 0, which implies y; = 0, a

contradiction.
Now suppose 0 < z; < 1 for all i € [n|. Then, by BR;, we have y; = A;
for all ¢ € [n]. Thus we have 1 = >"7" [y = Y iy A; > 1, a contradiction.
O

Proposition B.6. The joint mized-strategy (x,y) is an MSNE of an IDD
game in which > | A; > 1 if and only if it satisfies the following properties.

1. There is always an attack: yo = 0.

2. There exists a non-singleton, non-empty subset I C [n], such that
min;e;y M? > maxygs Mi, if I # [n], and the following holds.
(a) No defender outside I invests or is attacked directly: x, =0 and
ykzoforallkgél
(b) Let J = arg mlnM No defender in J invests and the probability

of that defender being attacked directly is at most the defender’s
cost-to-expected-loss ratio: for alli € J, x; =0 and 0 < y; < Al,

i addition, ZieJ yi=1-— ZteIfJ A



(c) Every defender in I — J partially invests and has positive prob-
ability of being attacked directly equal to the defender’s cost-to-
expected-loss ratio: for alli € I — J, y; = A; and

. —0
minger M, + C’ZQ

L

O0<z;=1-— < 1.

Proof. For the “if” part, we need to show (x,y) form mutual best-responses.
For all k ¢ I, z;; = 0 € BRy(y) because yr = 0 < Ay. For all j € J, z; =
0 € BR;(y) because y; < ﬁj. Finally, for alli € I — J, x; € BR;(y;) = [0, 1]
because y; = ﬁl Hence, we have z; € BR;(y;) for all i € [n]. For the
attacker, let v = v(I) = min;e;s H?. We have for all k ¢ I, My(zx) = Mﬁ <
max;¢ s M? < min;ey H? = v, where the first equality holds because zj = 0
and the second inequality by the properties of I. We also have for all j € J,
M;(z;) = H(; = min;er M? = v, where the first equality holds because
x; = 0 and the second follows from the definition of J. Finally, using simple
algebra, we also have for all t € T — J,

Mz(xl) = (1 — .’L‘Z)Z? — CZO

. 0
minge; My +C? \ —o 0
Li
= minﬁ? +CY - Y = minM? = .
tel tel

Hence, we have for all i € [n], M;(z;) < v. The expected payoff of the
attacker under the given joint mixed-strategy is

Do uiMi(wi) =Y yiMj(y) + Y M)
=1

jedJ i€l—J

:=§:%W+>§: Yiv

jeJ iel—J

=v j{:yj-F j{: Yi

jeJ iel—J
n

=v (Z%) =v > M;(z),
=1

for all i € [n]. Hence, we also have y € BR(x), and the joint mixed-strategy
(x,y) is an MSNE.

10



We now consider the “only if” part of the proposition. Let (x,y) be
an MSNE and let I = I(y) = {¢ € [n] | yi > 0} be the support of the
aggressor’s mixed strategy. We now show that [ is a non-singleton and
non-empty subset of [n].

Claim 3. 1 < |I| <n.

Proof. From Proposition B.1, we have I # (). That I is not a singleton set
follows from Lemma 1. O

By Proposition B.4, we have yo = 0. Applying Proposition B.5, let
t € [n] be such that z; = 0. Also by Proposition B.5, the aggressor achieves
a positive expected payoff: Y | y; M (z;) = maxi, MP(z;) > M (z;) =
MS > 0. For all k ¢ I, because y; = 0, Claim 1 implies zj; = 0.

By BRy, if I is a strict, non-empty and non-singleton subset of [n], we
have, for alli € [ and k ¢ I,

M? > M (z;) = nlnaIXMlO(ml) > M2 > 05
€
otherwise, if I = [n], we have, for all i € [n],

=0
M} () = max Mp () = M (x,) = My > 0.
n

Let v = v(I) = maxje; M (z;). Then, the above expressions imply that for

all ¢ € I, we have

v+ CY
I

(2

O<z;=1-— < 1.

In addition, we have that if [ is a strict, non-empty and non-singleton subset
of [n], we have,
v = MS > minﬂg >v > maxﬁg;

icl k¢l
and if, instead, I = [n], then
v = M? = min M?.
i€[n]

. -—0
Hence, we have v = min;c; M.

Let J=J(I) = arg minﬂg. For all ¢ € J, we have M? = v, and thus
icl

u+c$:1_M§+09:1_f?—09+c?:
I I I

7

.%'Z'Zl— O7

11



and by BR,;, we have 0 < y; < ﬁ,
For all i € I — J, we have M? > v, and thus
—0
M, +C? c?
T T

7 7

0=1 <1,

and by BR,;, we have y; = 32
Finally, we have >, ;y; = 1 -,/ ; Ay, because y is a mixed strategy
(i.e, a probability distribution). O

Hence, from the proof of the last proposition we can infer that if the
M?’s form a complete order, then the last condition allows us to search for
an MSNE by exploring only n — 2 sets, as opposed to 22 if done naively.

It turns out a complete order is not necessary. The following claim allows
us to safely move all the defenders with the same value of M? in a group as
a whole inside or outside I.

Claim 4. Let I C [n], such that I' C I, |I'| < |I| < n— 1. Suppose we
find an MSNE (x,y) such that I' = {i | y; > 0}, with the property that
minep My = maxggp Mz. In addition, suppose I satisfies minlepﬁ? =
mingey M? > maxpgr MZ. Then, we can also find (x,y) using partition I.

Proof. To simplify the notation, let v = ming; M? = minep M?, J =

arg min M? and J = arg min M? . The hypothesis implies that (x,y) satis-
ler iel
fies the following properties.

foralli ¢ I': x; =y; =0
for all i € J': a:i:()andogyig&;

also Zyi: 1-— Z 31
icJ! iel'—J!

Co ~
forallie I — J" xizl—HTZandyi:Ai
L;

We now show that (x,y) also satisfies the constraints when using I with
the properties stated in the claim. For that, it needs to satisfy the same
expressions as above, but with I’ and J’ replaced by I and J, respectively.

The first condition holds because I’ C I. The second condition holds for
all i € J — I, because i ¢ I’ satisfies x; =0 and 0 < y; = 0 < A;. Tt also

holds for all 7 € J NI’ because ¢ € J implies M? = v, and because ¢ € I’ and

12



i € J'. For the third condition, note that I —J C I’ — J because i € I — J
implies the inequality M? > U = maXggy Mﬁ; hence, the first inequality in
the last expression implies ¢ ¢ J', while the equality implies ¢ € I'. O

Proposition 2 stated in the main text follows by combining Proposi-
tions B.2, B.3 and B.6.
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