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Abstract. Stanton graphs Sk (in honor of professor Ralph G. Stan-

ton) are defined, and a new graph decomposition problem for Stanton

graphs is proposed. Such decompositions of λKv for all v’s with min-
imum λ’s have been obtained for S3.

1. Introduction

Let T = (V,E) be a graph with vertex set V and edge set E. A
classical problem in combinatorics is to find a decomposition of T into
isomorphic copies of a graph, say G. In other words, the problem is to
find a G–decomposition of the graph T . In such a decomposition, we can
impose further conditions on vertices or on edges. The construction of
combinatorial designs can be considered as a decomposition problem, where
the pairs of points (edges) meet certain requirements.

For example, consider λ copies of a complete graph Kv of order v (or
λKv). The question of decomposing λKv into copies of Kk for some k is
equivalent to constructing a BIBD(v, k, λ).

In 2007, a new type of design called strict SB designs were discussed
in [12, 13] and [14].

Definition 1. A Sarvate–Beam design SB(v, k) consists of a v–set V
and a collection of k–subsets (called blocks) of V such that each distinct pair
of elements in V occurs with different frequencies; i.e., different pairs occur
in a different number of blocks. A strict SB(v, k) design is a SB–design
where for every i, 1 ≤ i ≤

(
v
2

)
, exactly one pair occurs i times.

Example 1. A strict SB(4, 3) on {1, 2, 3, 4} can be given by the follow-
ing blocks:
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{1, 2, 4}, {1, 3, 4}, {1, 3, 4}, {2, 3, 4}, {2, 3, 4}, {2, 3, 4}, {2, 3, 4}

Although the general existence question of strict SB–designs is still an
open question, it has been proven that the necessary conditions are suff-
icient for k = 3 by Dukes [8] (except for some finite number of exceptions).
On the other hand, Ma, Chang and Feng [11] have proven that the necessary
conditions are sufficient for k = 3. Furthermore, Hein and Li provided
results on the number of Sarvate–Beam triple systems for v = 5 and v =
6 [10], and Bradford, Hein, and Pace provided results on Sarvate–Beam
quad systems for v = 6 [4] to answer some of the questions raised by
Stanton [15, 16, 17, 18]. Dukes, Hurd and Sarvate studied SB matrices [9],
and Chan and Sarvate studied large sets for SB designs for k = 2 as well
as 1–SB designs (see [5] and [6]).

Conversely, questions can be asked: Is it possible to decompose (for
some minimum number of) copies of a complete graph into graphs on k

vertices, where for each i = 1 to
(
k
2

)
, there is exactly one edge of multiplicity

i? If so, how? In honor of Professor Ralph G. Stanton, we call these graphs
Stanton graphs, denoted by Sk. Formally,

Definition 2. A Stanton graph of order k, Sk, is a graph on k vertices
where for each i = 1 to

(
k
2

)
, there is exactly one edge of multiplicity i.

Example 2. Let λ = 4, v = 3, and k = 3. We can decompose 4K3

into 2 S3’s

Note that the above example uses 4 copies of K3’s and we can not
decompose a smaller number of copies of K3’s into Stanton graphs.

Example 3. Given λ = 4, v = 4, and k = 3, we can decompose 4K4

into 4 S3’s as follows
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The above example does not use the minimum multiple copies of Kv.
The decomposition can be done using a smaller value of λ.

Example 4. Consider λ = 3, v = 4, and k = 3. We can decompose
3K4 into 3 S3’s as follows

Example 5. The decomposition solution of 3K5 is given by the trian-
gles:

< 1, 2, 3 >, < 2, 5, 1 >, < 3, 1, 4 >, < 4, 3, 5 > and < 5, 4, 2 >

where < a, b, c > denotes a graph on three vertices {a, b, c} with one edge
between a and b, two edges between a and c, and three edges between b and
c. This notation will be used throughout this note.

In this note we affirmatively answer the question:

“Can we decompose λ copies of of Kv (for the minimum λ) into Stanton
graphs of k vertices ?”

for k = 3 after finding the minimal values of λ for a given v.
We need some basic definitions and well–known results from design

theory; for example, see [1, 2, 7].

Definition 3. A Balanced Incomplete Block Design BIBD(v, k, λ) is
a collection of k–subsets (called blocks) of a v–set such that each pair of
distinct points occurs in exactly λ blocks (where k < v).
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The definition of a BIBD(v, k, λ) requires k < v, but sometimes the
notation BIBD(v, v, λ) is used to denote λ copies of the complete block
{1, 2, · · · , v}.

Definition 4. A parallel class (or a resolution class) in a design is a
set of blocks that partitions the point set.

Definition 5. A resolvable balanced incomplete block design RBIBD(v,
k, λ) is a BIBD(v, k, λ) whose blocks can be partitioned into parallel classes.

Theorem 1. Necessary conditions for the existence of a RBIBD(v, k, λ)
are λ(v − 1) ≡ 0 (mod (k − 1)) and v ≡ 0 (mod k).

Theorem 2. There exists a RBIBD(v, 3, 1) if and only if v ≡ 3 (mod 6).

Let B = {b1, . . . , bk} be a subset of an additive group G. The list of
differences from B is the multiset ∆B = {bi − bj |i, j = 1, . . . , k; i 6= j}.

Definition 6. Let G be a group of order v. A collection {B1, . . . , Bt}
of k–subsets of G form a (v, k, λ) difference family (or difference system) if
every nonidentity element of G occurs λ times in the multiset ∆B1 ∪ . . . ∪
∆Bt. The sets Bi are called base blocks.

Theorem 3. There exists a (v, 3, 1) difference family for every v ≡ 1, 3
(mod 6).

For ease of reference, we state Agrawal’s theorem [3] and its associated
lemma:

Lemma 1. Given positive integers v, b, r and k such that bk = vr,
v > k and a set V of v points, there exists a collection of k-subsets of V
such that each point of V is in exactly r subsets: such a collection is called
an equi–replicate binary incomplete block design.

Theorem 4. Given any binary equi–replicate design of constant block
size k with bk = vr and b = mv, the treatments can be rearranged into
blocks written as columns, such that every treatment occurs in each row m
times.

2. Minimum Multiplicity for k = 3

Lemma 2. The graph λKv can be Sk–decomposed only if (k
2)((k

2)+1)

2

divides λ
(
v
2

)
.

Proof. In λKv, there are a total of λ
(
v
2

)
edges. As the graph Sk has

(k
2)((k

2)+1)

2 edges. The result follows immediately. �

In particular, for k = 3, we have:
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Corollary 1. The graph λKv can be S3–decomposed only if 12 divides
λv(v − 1).

From Corollary 1, we have

Theorem 5. The minimum λ for
• v ≡ 2, 11 (mod 12) is 6,
• v ≡ 3, 6, 7, 10 (mod 12) is 4,
• v ≡ 0, 1, 4, 5, 8, 9 (mod 12) is 3.

In the next section we prove that for all pairs of v’s and minimum λ’s,
S3–decompositions of λKv exist for all v ≥ 3.

3. S3–Decompositions

In this section, we assume that v ≥ 3.
Construction 1: Let B be the collection of blocks of a BIBD(v, 3, 1).

For each block {a, b, c} in B, construct two S3’s: < a, b, c > and < c, b, a >.
Hence

Theorem 6. If a BIBD(v, 3, 1) exists, then a S3–decomposition exists
for 4Kv.

In particular, since a BIBD(v, 3, 1) exists for v ≡ 1, 3 (mod 6), we have

Corollary 2. A S3–decomposition of λKv exists with minimum λ = 4
for v ≡ 3, 7 (mod 12).

Construction 2: Let B be the collection of blocks of a BIBD(v, 3, 3).
Each block {a, b, c} gives a set of three pairs {{a, b}, {b, c}, {a, c}}; therefore
the collection of all blocks can be considered as a 1–design of

(
v
2

)
pairs with

r = 3. Therefore by Agrawal’s theorem, this 1–design can be arranged so
that each pair occur at first, second, and third location. Each block of B
gives a S3, where the multiplicity of an edge is the position of that edge in
the corresponding set of 1–design of pairs. Hence we have

Theorem 7. A S3–decomposition of 6Kv exists for odd v’s.

Corollary 3. A S3–decomposition of λKv exists with minimum λ = 6
for v ≡ 11 (mod 12).

Construction 3: Let B be the collection of blocks of a BIBD(v, 4, 1).
For each block {a, b, c, d} in B, use the S3–decomposition of 3K4 with ver-
tices {a, b, c, d} from example 4.

We have

Theorem 8. If a BIBD(v, 4, 1) exists, then a S3–decomposition exists
for 3Kv.

As BIBD(v, 4, 1) exists for v ≡ 0, 1 (mod 12), we have
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Corollary 4. An S3–decomposition of λKv exists with minimum λ =
3 for v ≡ 0, 1 (mod 12).

Suppose v ≡ 1 (mod 4) and v = 4t+1 for some integer t ≥ 1. Consider
a family of t sets: {{1, 2, t+3}, {1, 3, t+5}, . . . , {1, t+1, 3t+1}}. Note that in
this family the differences 1, . . . , t occur once as the differences between the
first and the second elements of difference sets, and differences t+ 1, . . . , 2t
occur twice: first they occur as the differences between the second and
the third elements of the difference sets and then again they occur as the
differences between the first and the second elements of difference sets as
t+ 2, . . . , 2t+ 1 = 2t, 2t− 2, . . . , 3t = t+ 1.

Construction 4: Let B be the collection of ordered blocks generated
by the family of t sets: {{1, 2, t+ 3}, {1, 3, t+ 5}, . . . , {1, t+ 1, 3t+ 1}}. For
each block {a, b, c} in B, construct S3 :< a, c, b > to obtain the following
theorem.

Theorem 9. For v ≡ 1 (mod 4), a S3–decomposition exists for 3Kv.

Corollary 5. A S3–decomposition of λKv exists with minimum λ = 3
for v ≡ 5, 9 (mod 12).

Suppose v ≡ 0 (mod 4) and let v = 4(t + 1) for some integer t ≥ 1.
Consider a family of t sets: {{1, 2, t+ 4}, {1, 3, t+ 6}, . . . , {1, t+ 1, 3t+ 2}}.
Note that in this family the differences 1, . . . , t occur once as the differences
between the first and the second elements of difference sets, differences
t + 2, . . . , 2t + 1 occur twice: first they occur as the differences between
the second and the third elements of the difference sets and then again
they occur as the differences between the first and the third elements of
the difference sets as t+ 3, t+ 5, . . . , 2t+ 1 = 2t+ 2, . . . , t+ 2, whereas the
difference of t+ 1 does not appear anywhere.

Construction 5: Let B be the collection of blocks generated by the
family of t sets: {{1, 2, t + 4}, {1, 3, t + 6}, . . . , {1, t + 1, 3t + 2}} on 4t − 1
elements and let C be the collection of blocks generated by the difference
family {∞, 1, t + 2} on 4t − 1 elements. For each block {a, b, c} in B,
construct S3 :< a, c, b >. For each block {∞, a, b} in C, construct S3 :<
a,∞, b >. We are using the common convention while generating blocks
from a difference set containing the element∞, the infinity element remains
fixed while other elements cycle through mod 4t− 1 to give 4t− 1 distinct
blocks.

The S3’s constructed above give a S3–decomposition. Hence along with
Example 4 we have:

Theorem 10. For v ≡ 0 (mod 4), a S3–decomposition exists for 3Kv.

Corollary 6. A S3–decomposition of λKv exists with minimum λ = 3
for v ≡ 0, 4, 8 (mod 12).
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Construction 6: Suppose v ≡ 2 (mod 12) and let v = 12t + 2 for
some integer t ≥ 1. Since 12t + 1 ≡ 1 (mod 6), a difference family with
(t + 1) base blocks exists for BIBD(12t + 1, 3, 1) (by Theorem 3). Let B
be the collection of ordered blocks generated by any t base blocks. For
each block {a, b, c} in B, construct three S3’s: < a, b, c >, < c, a, b >, and
< b, c, a >. Replace block {a, b, c} generated by the remaining base block
by four S3’s with a new point ∞: < b, c, a >, < a, c, b >, < b,∞, c >, and
< c,∞, a >.

This construction gives:

Theorem 11. For v ≡ 1 (mod 6) (v > 6), a S3–decomposition exists
for 6Kv+1.

Corollary 7. A S3–decomposition of λKv exists with minimum λ = 6
for v ≡ 2 (mod 12).

Construction 7: Suppose v ≡ 6 (mod 12) and let v = 12t+6 for some
integer t ≥ 1. Since 12t + 3 ≡ 3 (mod 6), a resolvable BIBD(v − 3, 3, 1)
exists. Note that there are at least r ≥ 4 parallel classes. Let Bi be the
collection of blocks given by the first three parallel classes Pi, i = 1, 2, 3,
respectively. Let C be the collection of blocks given by the parallel classes
Pj where j = 4, . . . , r. For each block {a, b, c} in Bi, construct S3 :<
a, b, c > and also using the same block and ∞i, construct three S3’s: <
b,∞i, a >, < ∞i, c, b >, and < c, a,∞i >. For each block {a, b, c} in C,
construct two S3’s: < a, b, c > and < a, c, b >. Finally decompose 4K3 with
vertices {∞1,∞2,∞3} as in Example 2.

These S3’s we constructed give a S3–decomposition of 4K12t+6, and we
have:

Theorem 12. If a resolvable BIBD(v, 3, 1) exists, then a S3–decomposi-
tion exists for 4Kv+3.

Example 6. The decomposition of 4K6 is given by the triangles
< 3, 1, 2 >, < 2, 1, 4 >, < 4, 1, 5 >, < 5, 1, 6 >, < 6, 1, 3 >,

< 4, 6, 2 >, < 2, 5, 3 >, < 5, 3, 4 >, < 6, 2, 5 >, and < 3, 4, 6 >

Along with example 6, we have

Corollary 8. A S3–decomposition of λKv exists with minimum λ = 4
for v ≡ 6 (mod 12).

Construction 8: Suppose v ≡ 10 (mod 12) and let v = 12t + 10 for
some integer t ≥ 1. Since 12t+9 ≡ 3 (mod 6), a resolvable BIBD(v−1, 3, 1)
exists. Let B be the collection of blocks given by the first parallel class P1.
Let C be the collection of blocks given by the remaining parallel classes.
For each block {a, b, c} in B, construct S3 :< a, b, c > and using the same
block with ∞1, construct three S3’s: < b,∞1, a >, < ∞1, c, b >, and



8 HAU CHAN AND DINESH G. SARVATE

< c, a,∞1 >. For each block {a, b, c} in C, construct two S3’s: < a, b, c >
and < a, c, b >.

We have

Theorem 13. If a resolvable BIBD(v, 3, 1) exists, then a S3–decomposi-
tion exists for 4Kv+1.

Corollary 9. A S3–decomposition of λKv exists with minimum λ = 4
for v ≡ 10 (mod 12).

4. Summary

In the above section, we have shown that for all v’s ≥ 3, the minimum
copies of Kv’s can be S3–decomposed. Below is a table that summarizes
the results:

Table 1. Results

v minimum λ Construction
0, 1 (mod 12) 3 Corollary 4

2 (mod 12) 6 Corollary 7
3, 7 (mod 12) 4 Corollary 2
4, 8 (mod 12) 3 Corollary 6
5, 9 (mod 12) 3 Corollary 5

6 (mod 12) 4 Corollary 8
10 (mod 12) 4 Corollary 9
11 (mod 12) 6 Corollary 3
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