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Abstract. A general construction for t–SB(2t − 1, 2t − 2) designs

is given. In addition, large sets of t–SB(v, k) are discussed and some

examples are provided.

1. Introduction

In general, an SB design is a block design in which every pair of points
occurs in a different number of blocks. Below is a formal definition:

Definition 1. A Sarvate–Beam design SB(v, k) consists of a v–set V
(called points) and a collection of k–subsets of V (called blocks) such that
each distinct pair of elements in V occurs with different frequencies (i.e. in
a different number of blocks). A strict SB(v, k) is a SB design where for
every i, 1 ≤ i ≤

(
v
2

)
, exactly one pair occurs i times.

Example 1. A strict SB(4, 3) on V = {1, 2, 3, 4} consists of the fol-
lowing blocks: {1,2,4}, {1,3,4}, {1,3,4}, {2,3,4}, {2,3,4}, {2,3,4}, {2,3,4}. N

The general existence question of strict SB designs is still an open
question. It is known that the necessary conditions for existence of strict
SB designs are sufficient for k = 3 (see Dukes [2] and Ma, Chang and
Feng [5]). Moreover, SB matrices have been studied by Dukes, Hurd and
Sarvate [3]. The following definition appears in [7]:

Definition 2. A t–SB(v, k) design is a collection B of k–subsets of a
v–set V such that each t–subset of V occurs a distinct number of times. In
a strict t–SB design, for each i such that 1 ≤ i ≤

(
v
t

)
, there is exactly one

t–subset which occurs in i blocks.
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2. Existence results

Sarvate and Beam [6] showed that a non–strict (n − 2)–SB(n, n − 1)
design exists for every positive integer n ≥ 3. Recently, Chan and Sarvate
[1] have proven that a non–strict 2–SB(n, n − 1) design exists for every
positive integer n ≥ 3. In this paper, we want to generalize these two
results and prove that a non–strict t–SB(n, n − 1) design exists for every
positive integer n, where n ≥ 2t − 1 and 2 ≤ t ≤ n − 2. But first let us
consider a general construction for non–strict t–SB(2t − 1, 2t − 2) designs
for t ≥ 3.

2.1. Construction of t–SB(2t− 1, 2t− 2) design for t ≥ 3.

Theorem 1. A non–strict t–SB(2t− 1, 2t− 2) design exists for every
positive integer t ≥ 3.

Proof. Let Bi be the subset {1, 2, . . . , 2t − 1} − {i} of the set V =
{1, 2, . . . , 2t − 1}, and let the frequency of Bi, denoted f(Bi), be 2i−1 for
all i’s. We claim that this construction produces a non–strict t–SB(2t −
1, 2t − 2) design. Suppose this is not true; that is, the above construction
does not produce a non–strict t–SB(2t − 1, 2t − 2) design. It follows that
there exists at least two subsets out of the

(
2t−1

t

)
subsets that appear the

same number of times. Let a = {a1, a2, . . . , at} and b = {b1, b2, . . . , bt} be
t–subsets such that f(a) = f(b). Note that the frequency of each t–subset
is determined by the the sum of

(
2t−1
2t−2

)
− t = t− 1 blocks. We have

f(a) = 2i1 + 2i2 + . . . + 2it−1 and f(b) = 2j1 + 2j2 + . . . + 2jt−1

Moreover, we have that

f(a) = 2i1 + 2i2 + . . . + 2it−1 = 2j1 + 2j2 + . . . + 2jt−1 = f(b)

Without loss of generality, assume that ik 6= jn for k, n = 1, 2, . . . , t− 1 (so
that the equation above would be in its simplified form) and let i1 be the
smallest power. It follows that

1 + 2i2−i1 + . . . + 2it−1−i1 = 2j1−i1 + 2j2−i1 + . . . + 2jt−1−i1

Since there does not exist a jk (k = 1, 2, . . . , t − 1) such that jk = i1, we
have a contradiction. Therefore f(a) = f(b) if and only if a = b.

�

Note 1. The designs constructed here are not strict, as the size of
the integer 2i−1 is sufficiently large. We see that there are t–subsets with
frequencies greater than 22t−2 = 4t−1 and it can be seen by mathematical
induction that 4t−1 ≥

(
2t−1

t

)
for all positive integers t.
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Before we state the next theorem, recall that Chan and Sarvate [1]
proved the following lemma:

Lemma 1. A non–strict t–SB(n, n − 1) design is also a non–strict
(t− 1)–SB(n, n− 1) design if n− 1 ≥ 2t− 2.

We now use this result to prove the following:

Theorem 2. A non–strict t–SB(n, n− 1) design exists for every pos-
itive integer n, where n ≥ 2t− 1 and 2 ≤ t ≤ n− 2.

Proof. It has been proven that for t = 2 and t = n− 2, a non–strict
t–SB(n, n− 1) design exists for positive integers n ≥ 3. Now we only need
to show that a non–strict t–SB(n, n−1) design exists for 2 < t < n−2. By
Theorem 1, a non–strict t–SB(2t−1, 2t−2) design exists for every positive
integer t ≥ 3. Furthermore, Lemma 1 together with Theorem 1 extend the
existence of a non–strict t–SB(n, n − 1) to all n (for fixed t). Hence, the
result follows. �

3. Large sets of SB designs

In this section, we give examples of large sets of SB designs.

Definition 3. Let V be a v–set. A family of t–SB(v, k) designs on V ,
say B = {B1, B2, . . . , Bn}, is a large set with multiplicity s if the multiu-
nion ∪̇n

i=1Bi gives s copies of the set of all k–subsets of V for some integer
s and if there is another family of t–SB(v, k) designs C = {C1, C2, . . . , Cm}
where ∪̇m

i=1Ci gives u copies of the set of all k–subsets of V , then s ≤ u.

Before exhibiting examples of large sets of t–SB(v, k), we need the
following formula, which follows from counting in two ways the total of the
block frequencies generated by the large set of t–SB(v, k):

Theorem 3. Suppose the multiplicity for a large set for t–SB(v, k) is

s, and let the size of the large set be n. Then s ·
(

v
k

)
= n · (

v
t)[(v

t)+1]
2(k

t)

Example 2. Consider the following set of 1–SB(3, 2) (where the num-
bers in the table are block frequencies):

Blocks Design 1 Design 2
{1, 2} 0 2
{1, 3} 1 1
{2, 3} 2 0

From Theorem 3, a large set of 1–SB(3, 2) must satisfy s = n. Since there
exists a unique 1–SB(3, 2), and the largest block frequency is 2, it must be
true that s is also at least 2. Hence, this example is a large set of 1–SB(3, 2)
with minimal s = n = 2. N
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Example 3. Consider the following set of 1–SB(4, 2):

Blocks Design 1 Design 2 Design 3 Design 4 Design 5 Design 6
{1, 2} 0 1 2 2 0 0
{1, 3} 0 0 0 1 2 2
{1, 4} 1 0 0 0 2 2
{2, 3} 2 2 0 0 0 1
{2, 4} 0 0 2 2 1 0
{3, 4} 2 2 1 0 0 0

From Theorem 3, a large set of 1–SB(4, 2) must satisfy 6s = 5n. Since
6 divides n and 5 divides s, it must be true that the minimal s = 5 with
corresponding n = 6. Hence, the example is a large set of 1–SB(4, 2). N

Example 4. Consider the following set of 1–SB(7, 2):
Blocks Design 1 Design 2 Design 3
{1, 2} 0 1 1
{1, 3} 0 1 1
{1, 4} 0 1 1
{1, 5} 0 2 0
{1, 6} 0 0 2
{1, 7} 1 0 1
{2, 3} 0 1 1
{2, 4} 0 0 2
{2, 5} 0 1 1
{2, 6} 1 0 1
{2, 7} 1 0 1
{3, 4} 0 2 0
{3, 5} 1 1 0
{3, 6} 1 1 0
{3, 7} 1 1 0
{4, 5} 1 1 0
{4, 6} 1 0 1
{4, 7} 2 0 0
{5, 6} 2 0 0
{5, 7} 1 1 0
{6, 7} 1 0 1

From Theorem 3, a large set of 1–SB(7, 2) must satisfy 3s = 2n. Since
3 divides n and 2 divides s, it must be true that the minimal s = 2 with
n = 3. Hence, the example is a large set of 1–SB(7, 2). N

Example 5. The family of 2–SB(6, 3) given in [1] contains errors in
the last column, and should be replaced by the following:
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Blocks Design 1 Design 2 Design 3 Design 4 Design 5
{1, 2, 3} 0 0 2 4 4
{1, 2, 4} 0 1 1 5 3
{1, 2, 5} 1 0 3 1 5
{1, 2, 6} 0 2 3 3 2
{1, 3, 4} 0 4 0 4 2
{1, 3, 5} 1 1 2 1 5
{1, 3, 6} 1 5 1 2 1
{1, 4, 5} 2 3 0 2 3
{1, 4, 6} 1 5 0 3 1
{1, 5, 6} 2 3 3 0 2
{2, 3, 4} 1 1 1 5 2
{2, 3, 5} 2 0 4 0 4
{2, 3, 6} 2 1 5 1 1
{2, 4, 5} 3 0 2 2 3
{2, 4, 6} 3 2 2 3 0
{2, 5, 6} 3 1 5 0 1
{3, 4, 5} 5 2 1 1 1
{3, 4, 6} 4 4 0 2 0
{3, 5, 6} 4 2 4 0 0
{4, 5, 6} 5 3 1 1 0

From Theorem 3, a large set of 2–SB(6, 3) must satisfy s = 2n. Since
there exist 16,444,250 nonisomorphic 2–SB(6, 3) (see [4]) with the smallest
maximum block frequency therein being 5, it must be true that s is also
at least 5. Since s is even, we see that the smallest possible s is 6 with
corresponding n = 3. The above example was obtained by taking isomorphic
copies of a single 2–SB(6, 3) design, and we claim that (using this particular
design) the multiplicity cannot be less than 10. Hence, this example may or
may not be a large set of 2–SB(6, 3). N

Example 6. Consider the following set of 1–SB(5, 3):
Blocks Design 1 Design 2 Design 3 Design 4
{1, 2, 3} 0 0 0 2
{1, 2, 4} 0 0 0 2
{1, 2, 5} 0 1 1 0
{1, 3, 4} 0 0 2 0
{1, 3, 5} 1 0 0 1
{1, 4, 5} 0 0 2 0
{2, 3, 4} 0 2 0 0
{2, 3, 5} 0 2 0 0
{2, 4, 5} 2 0 0 0
{3, 4, 5} 2 0 0 0
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From Theorem 3, a large set of 1–SB(5, 3) must satisfy 2s = n. Since there
exist 3 nonisomorphic 1–SB(5, 3) with the smallest max block frequency
being 2, it must be true that s is also at least 2. Hence, the minimal possible
s is 2 with corresponding n = 4. Thus, this example is a large set of 1–
SB(5, 3). N

4. Conclusion

The general problem of finding large sets of SB designs may be technical
and difficult. However, producing an example of a large set of either 2–
SB(6, 3) or of a 2–SB(6, 4) may be interesting. The reader is invited to
produce such examples.
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