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ABSTRACT. A general construction for t—-SB(2t — 1,2t — 2) designs
is given. In addition, large sets of t—~SB(v, k) are discussed and some
examples are provided.

1. Introduction

In general, an SB design is a block design in which every pair of points
occurs in a different number of blocks. Below is a formal definition:

DEFINITION 1. A Sarvate-Beam design SB(v, k) consists of a v—set V
(called points) and a collection of k—subsets of V' (called blocks) such that
each distinct pair of elements in V' occurs with different frequencies (i.e. in
a different number of blocks). A strict SB(v,k) is a SB design where for
every i, 1 <1 < (g), exactly one pair occurs i times.

EXAMPLE 1. A strict SB(4,3) on V = {1,2,3,4} consists of the fol-
lowing blocks: {1,2,4}, {1,3,4}, {1,3,4}, {2,3,4}, {2,3,4}, {2,3,4}, {2,3.4}. A

The general existence question of strict SB designs is still an open
question. It is known that the necessary conditions for existence of strict
SB designs are sufficient for k¥ = 3 (see Dukes [2] and Ma, Chang and
Feng [5]). Moreover, SB matrices have been studied by Dukes, Hurd and
Sarvate [3]. The following definition appears in [7]:

DEFINITION 2. A t-SB(v, k) design is a collection B of k—subsets of a
v=set V such that each t—subset of V' occurs a distinct number of times. In
a strict t—-SB design, for each i such that 1 < i < (2), there s exactly one
t—subset which occurs in i blocks.
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2. Existence results

Sarvate and Beam [6] showed that a non-strict (n — 2)-SB(n,n — 1)
design exists for every positive integer n > 3. Recently, Chan and Sarvate
[1] have proven that a non—strict 2-SB(n,n — 1) design exists for every
positive integer n > 3. In this paper, we want to generalize these two
results and prove that a non—strict t-SB(n,n — 1) design exists for every
positive integer n, where n > 2t — 1 and 2 < ¢t < n — 2. But first let us
consider a general construction for non-strict t-SB(2t — 1,2t — 2) designs
for t > 3.

2.1. Construction of t—SB(2t — 1,2t — 2) design for ¢ > 3.

THEOREM 1. A non-strict t-SB(2t — 1,2t — 2) design exists for every
positive integer t > 3.

PROOF. Let B; be the subset {1,2,...,2t — 1} — {i} of the set V =
{1,2,...,2t — 1}, and let the frequency of B;, denoted f(B;), be 2¢=1 for
all i’s. We claim that this construction produces a non—strict t-SB(2t —
1,2t — 2) design. Suppose this is not true; that is, the above construction
does not produce a non-strict t-SB(2t — 1,2t — 2) design. It follows that
there exists at least two subsets out of the (Qtt_l) subsets that appear the
same number of times. Let a = {a1,as9,...,a;} and b = {by,bo,...,b;} be
t-subsets such that f(a) = f(b). Note that the frequency of each t—subset

is determined by the the sum of (3:°) — ¢ =¢ — 1 blocks. We have

fla) =21 422 4 4201 and  f(b) =2 4272 4. 4201
Moreover, we have that
fla) = i g2 gy Qh-1 i1 4 9J2 4 4 Q-1 — f(b)

Without loss of generality, assume that i, # j, for k,n=1,2,...,t—1 (so
that the equation above would be in its simplified form) and let iy be the
smallest power. It follows that

14 9%~ 1y gh-1—h _ofi—in 4 9fa—ihi 4 910

Since there does not exist a ji (k = 1,2,...,t — 1) such that ji = i1, we
have a contradiction. Therefore f(a) = f(b) if and only if a = b.
|

NoOTE 1. The designs constructed here are mot strict, as the size of
the integer 271 is sufficiently large. We see that there are t—subsets with
frequencies greater than 2272 = 4'=! and it can be seen by mathematical

induction that 4'=1 > (2’5;1) for all positive integers t.
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Before we state the next theorem, recall that Chan and Sarvate [1]
proved the following lemma.:

LEMMA 1. A non-strict t-SB(n,n — 1) design is also a non-strict
(t—1)-SB(n,n—1) design if n —1 > 2t — 2.

We now use this result to prove the following:

THEOREM 2. A non-strict t-SB(n,n — 1) design exists for every pos-
itive integer n, wheren > 2t —1 and 2 <t <n — 2.

PRrooF. It has been proven that for t = 2 and ¢ = n — 2, a non—strict
t-SB(n,n — 1) design exists for positive integers n > 3. Now we only need
to show that a non-strict t-—SB(n,n— 1) design exists for 2 < ¢t < n—2. By
Theorem 1, a non-strict t-SB(2t — 1, 2¢t —2) design exists for every positive
integer ¢t > 3. Furthermore, Lemma 1 together with Theorem 1 extend the
existence of a non-strict t--SB(n,n — 1) to all n (for fixed ¢). Hence, the
result follows. ]

3. Large sets of SB designs
In this section, we give examples of large sets of SB designs.
DEFINITION 3. Let V be a v—set. A family of t-SB(v, k) designs on V,
say B ={B1,Ba,...,B,}, is a large set with multiplicity s if the multiu-
nion U, B; gives s copies of the set of all k-subsets of V' for some integer
s and if there is another family of t-SB(v, k) designs C = {C1,C4,...,Cp}
where U, C; gives u copies of the set of all k-subsets of V, then s < u.

Before exhibiting examples of large sets of t-SB(v, k), we need the

following formula, which follows from counting in two ways the total of the
block frequencies generated by the large set of t-SB(v, k):

THEOREM 3. Suppose the multiplicity for a large set for t-SB(v, k) is
o _ o @)+
o () = G
EXAMPLE 2. Consider the following set of 1-SB(3,2) (where the num-
bers in the table are block frequencies):

’ Blocks H Design 1 \ Design 2 ‘

s, and let the size of the large set be n. Then

11,2} 0 2
{1,3} 1 1
2,3} 2 0

From Theorem 3, a large set of 1-SB(3,2) must satisfy s = n. Since there
exists a unique 1-SB(3,2), and the largest block frequency is 2, it must be
true that s is also at least 2. Hence, this example is a large set of 1-SB(3,2)
with minimal s = n = 2. A
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EXAMPLE 3. Consider the following set of 1-SB(4,2):

’ Blocks H Design 1 ‘ Design 2 ‘ Design 3 ‘ Design 4 ‘ Design 5 ‘ Design 6 ‘

{12} 0 1 2 2 0 0
{1,3} 0 0 0 1 2 2
(1,4} 1 0 0 0 2 2
2.3} 2 2 0 0 0 1
(2,4} 0 0 2 2 1 0
(3,4} 2 2 1 0 0 0

From Theorem 3, a large set of 1-SB(4,2) must satisfy 6s = bn. Since
6 divides n and 5 divides s, it must be true that the minimal s = 5 with
corresponding n = 6. Hence, the example is a large set of 1-SB(4,2). A

EXAMPLE 4. Consider the following set of 1-SB(7,2):
Blocks H Design 1 \ Design 2 \ Design 3 ‘
{1,2} 0 1 1
{1,3}
{1,4}
{1,5}
{1,6}
{1,7}
{2,3}
{2,4}
{2,5}
{2,6}
{2,7}
{3,4}
{3,5}
{3,6}
{3, 7}
{4,5}
{4,6}
{4,7}
{5,6}
{5, 7}
{6, 7}
From Theorem 3, a large set of 1-SB(7,2) must satisfy 3s = 2n. Since
3 divides n and 2 divides s, it must be true that the minimal s = 2 with
n = 3. Hence, the example is a large set of 1-SB(7,2). A
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EXAMPLE 5. The family of 2-SB(6,3) given in [1] contains errors in
the last column, and should be replaced by the following:
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’ Blocks H Design 1 \ Design 2 \ Design 3 \ Design 4 \ Design 5 ‘

L23) ] 0 0 2 i ]
{1,2,4} 0 1 1 5 3
{1,2,5} 1 0 3 1 5
{1,2,6} 0 2 3 3 2
{1,3,4} 0 ] 0 J 2
{1,3,5} 1 1 2 1 5
{1,3,6} 1 5 1 2 1
{1,4,5} 2 3 0 2 3
{1,4,6} 1 5 0 3 1
{1,5,6} 2 3 3 0 2
{2,3,4} 1 1 1 5 2
12,35} 2 0 7 0 J
{2,3,6} 2 1 5 1 1
{2,4,5} 3 0 2 2 3
{2,4,6} 3 2 2 3 0
{2,5,6} 3 1 5 0 1
{3,4,5} 5 2 1 1 1
{3,4,6} ] ] 0 2 0
{3,5,6} ] 2 ] 0 0
{4,5,6} 5 3 1 1 0

From Theorem 3, a large set of 2-SB(6,3) must satisfy s = 2n. Since
there exist 16,444,250 nonisomorphic 2-SB(6,3) (see [4]) with the smallest
mazimum block frequency therein being 5, it must be true that s is also
at least 5. Since s is even, we see that the smallest possible s is 6 with
corresponding n = 3. The above example was obtained by taking isomorphic
copies of a single 2-SB(6, 3) design, and we claim that (using this particular
design) the multiplicity cannot be less than 10. Hence, this example may or
may not be a large set of 2-SB(6,3). A

EXAMPLE 6. Consider the following set of 1-SB(5,3):
’ Blocks H Design 1 ‘ Design 2 ‘ Design 3 ‘ Design 4 ‘

{1,2,3} 0 0 0 2
{1,2,4} 0 0 0 2
{1,2,5} 0 1 1 0
{1,3,4} 0 0 2 0
{1,3,5} 1 0 0 1
{1,4,5} 0 0 2 0
{2,3,4} 0 2 0 0
{2,3,5} 0 2 0 0
{2,4,5} 2 0 0 0
13,4,5} 2 0 0 0
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From Theorem 3, a large set of 1-SB(5,3) must satisfy 2s = n. Since there
exist 3 nonisomorphic 1-SB(5,3) with the smallest max block frequency
being 2, it must be true that s is also at least 2. Hence, the minimal possible

S 18

2 with corresponding n = 4. Thus, this example is a large set of 1—

SB(5,3). A

and

4. Conclusion

The general problem of finding large sets of SB designs may be technical

difficult. However, producing an example of a large set of either 2—

SB(6,3) or of a 2-SB(6,4) may be interesting. The reader is invited to
produce such examples.

(1]
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