

Sarvate–Beam designs: new existence results and large sets

Hau Chan, Derek W. Hein, and Dinesh G. Sarvate

ABSTRACT. A general construction for t –SB($2t - 1, 2t - 2$) designs is given. In addition, large sets of t –SB(v, k) are discussed and some examples are provided.

1. Introduction

In general, an *SB design* is a block design in which every pair of points occurs in a different number of blocks. Below is a formal definition:

DEFINITION 1. *A Sarvate–Beam design SB(v, k) consists of a v –set V (called points) and a collection of k –subsets of V (called blocks) such that each distinct pair of elements in V occurs with different frequencies (i.e. in a different number of blocks). A strict SB(v, k) is a SB design where for every i , $1 \leq i \leq \binom{v}{2}$, exactly one pair occurs i times.*

EXAMPLE 1. *A strict SB(4, 3) on $V = \{1, 2, 3, 4\}$ consists of the following blocks: $\{1, 2, 4\}$, $\{1, 3, 4\}$, $\{1, 3, 4\}$, $\{2, 3, 4\}$, $\{2, 3, 4\}$, $\{2, 3, 4\}$. \blacktriangle*

The general existence question of strict SB designs is still an open question. It is known that the necessary conditions for existence of strict SB designs are sufficient for $k = 3$ (see Dukes [2] and Ma, Chang and Feng [5]). Moreover, SB matrices have been studied by Dukes, Hurd and Sarvate [3]. The following definition appears in [7]:

DEFINITION 2. *A t –SB(v, k) design is a collection B of k –subsets of a v –set V such that each t –subset of V occurs a distinct number of times. In a strict t –SB design, for each i such that $1 \leq i \leq \binom{v}{t}$, there is exactly one t –subset which occurs in i blocks.*

2000 *Mathematics Subject Classification.* Primary 05B05.

Key words and phrases. Sarvate–Beam Designs, SB Matrices, Block designs, Large sets.

2. Existence results

Sarvate and Beam [6] showed that a non-strict $(n-2)$ - $SB(n, n-1)$ design exists for every positive integer $n \geq 3$. Recently, Chan and Sarvate [1] have proven that a non-strict 2 - $SB(n, n-1)$ design exists for every positive integer $n \geq 3$. In this paper, we want to generalize these two results and prove that a non-strict t - $SB(n, n-1)$ design exists for every positive integer n , where $n \geq 2t-1$ and $2 \leq t \leq n-2$. But first let us consider a general construction for non-strict t - $SB(2t-1, 2t-2)$ designs for $t \geq 3$.

2.1. Construction of t - $SB(2t-1, 2t-2)$ design for $t \geq 3$.

THEOREM 1. *A non-strict t - $SB(2t-1, 2t-2)$ design exists for every positive integer $t \geq 3$.*

PROOF. Let B_i be the subset $\{1, 2, \dots, 2t-1\} - \{i\}$ of the set $V = \{1, 2, \dots, 2t-1\}$, and let the frequency of B_i , denoted $f(B_i)$, be 2^{i-1} for all i 's. We claim that this construction produces a non-strict t - $SB(2t-1, 2t-2)$ design. Suppose this is not true; that is, the above construction does not produce a non-strict t - $SB(2t-1, 2t-2)$ design. It follows that there exists at least two subsets out of the $\binom{2t-1}{t}$ subsets that appear the same number of times. Let $a = \{a_1, a_2, \dots, a_t\}$ and $b = \{b_1, b_2, \dots, b_t\}$ be t -subsets such that $f(a) = f(b)$. Note that the frequency of each t -subset is determined by the sum of $\binom{2t-1}{2t-2} - t = t-1$ blocks. We have

$$f(a) = 2^{i_1} + 2^{i_2} + \dots + 2^{i_{t-1}} \quad \text{and} \quad f(b) = 2^{j_1} + 2^{j_2} + \dots + 2^{j_{t-1}}$$

Moreover, we have that

$$f(a) = 2^{i_1} + 2^{i_2} + \dots + 2^{i_{t-1}} = 2^{j_1} + 2^{j_2} + \dots + 2^{j_{t-1}} = f(b)$$

Without loss of generality, assume that $i_k \neq j_n$ for $k, n = 1, 2, \dots, t-1$ (so that the equation above would be in its simplified form) and let i_1 be the smallest power. It follows that

$$1 + 2^{i_2-i_1} + \dots + 2^{i_{t-1}-i_1} = 2^{j_1-i_1} + 2^{j_2-i_1} + \dots + 2^{j_{t-1}-i_1}$$

Since there does not exist a j_k ($k = 1, 2, \dots, t-1$) such that $j_k = i_1$, we have a contradiction. Therefore $f(a) = f(b)$ if and only if $a = b$. ■

NOTE 1. *The designs constructed here are not strict, as the size of the integer 2^{i-1} is sufficiently large. We see that there are t -subsets with frequencies greater than $2^{2t-2} = 4^{t-1}$ and it can be seen by mathematical induction that $4^{t-1} \geq \binom{2t-1}{t}$ for all positive integers t .*

Before we state the next theorem, recall that Chan and Sarvate [1] proved the following lemma:

LEMMA 1. *A non-strict t -SB($n, n - 1$) design is also a non-strict $(t - 1)$ -SB($n, n - 1$) design if $n - 1 \geq 2t - 2$.*

We now use this result to prove the following:

THEOREM 2. *A non-strict t -SB($n, n - 1$) design exists for every positive integer n , where $n \geq 2t - 1$ and $2 \leq t \leq n - 2$.*

PROOF. It has been proven that for $t = 2$ and $t = n - 2$, a non-strict t -SB($n, n - 1$) design exists for positive integers $n \geq 3$. Now we only need to show that a non-strict t -SB($n, n - 1$) design exists for $2 < t < n - 2$. By Theorem 1, a non-strict t -SB($2t - 1, 2t - 2$) design exists for every positive integer $t \geq 3$. Furthermore, Lemma 1 together with Theorem 1 extend the existence of a non-strict t -SB($n, n - 1$) to all n (for fixed t). Hence, the result follows. \blacksquare

3. Large sets of SB designs

In this section, we give examples of large sets of SB designs.

DEFINITION 3. *Let V be a v -set. A family of t -SB(v, k) designs on V , say $B = \{B_1, B_2, \dots, B_n\}$, is a large set with multiplicity s if the multiunion $\bigcup_{i=1}^n B_i$ gives s copies of the set of all k -subsets of V for some integer s and if there is another family of t -SB(v, k) designs $C = \{C_1, C_2, \dots, C_m\}$ where $\bigcup_{i=1}^m C_i$ gives u copies of the set of all k -subsets of V , then $s \leq u$.*

Before exhibiting examples of large sets of t -SB(v, k), we need the following formula, which follows from counting in two ways the total of the block frequencies generated by the large set of t -SB(v, k):

THEOREM 3. *Suppose the multiplicity for a large set for t -SB(v, k) is s , and let the size of the large set be n . Then*
$$s \cdot \binom{v}{k} = n \cdot \frac{\binom{v}{t}[\binom{v}{t}+1]}{2^{\binom{k}{t}}}$$

EXAMPLE 2. *Consider the following set of 1-SB($3, 2$) (where the numbers in the table are block frequencies):*

Blocks	Design 1	Design 2
$\{1, 2\}$	0	2
$\{1, 3\}$	1	1
$\{2, 3\}$	2	0

From Theorem 3, a large set of 1-SB($3, 2$) must satisfy $s = n$. Since there exists a unique 1-SB($3, 2$), and the largest block frequency is 2, it must be true that s is also at least 2. Hence, this example is a large set of 1-SB($3, 2$) with minimal $s = n = 2$. \blacktriangle

EXAMPLE 3. Consider the following set of 1-SB(4, 2):

Blocks	Design 1	Design 2	Design 3	Design 4	Design 5	Design 6
$\{1, 2\}$	0	1	2	2	0	0
$\{1, 3\}$	0	0	0	1	2	2
$\{1, 4\}$	1	0	0	0	2	2
$\{2, 3\}$	2	2	0	0	0	1
$\{2, 4\}$	0	0	2	2	1	0
$\{3, 4\}$	2	2	1	0	0	0

From Theorem 3, a large set of 1-SB(4, 2) must satisfy $6s = 5n$. Since 6 divides n and 5 divides s , it must be true that the minimal $s = 5$ with corresponding $n = 6$. Hence, the example is a large set of 1-SB(4, 2). \blacktriangle

EXAMPLE 4. Consider the following set of 1-SB(7, 2):

Blocks	Design 1	Design 2	Design 3
$\{1, 2\}$	0	1	1
$\{1, 3\}$	0	1	1
$\{1, 4\}$	0	1	1
$\{1, 5\}$	0	2	0
$\{1, 6\}$	0	0	2
$\{1, 7\}$	1	0	1
$\{2, 3\}$	0	1	1
$\{2, 4\}$	0	0	2
$\{2, 5\}$	0	1	1
$\{2, 6\}$	1	0	1
$\{2, 7\}$	1	0	1
$\{3, 4\}$	0	2	0
$\{3, 5\}$	1	1	0
$\{3, 6\}$	1	1	0
$\{3, 7\}$	1	1	0
$\{4, 5\}$	1	1	0
$\{4, 6\}$	1	0	1
$\{4, 7\}$	2	0	0
$\{5, 6\}$	2	0	0
$\{5, 7\}$	1	1	0
$\{6, 7\}$	1	0	1

From Theorem 3, a large set of 1-SB(7, 2) must satisfy $3s = 2n$. Since 3 divides n and 2 divides s , it must be true that the minimal $s = 2$ with $n = 3$. Hence, the example is a large set of 1-SB(7, 2). \blacktriangle

EXAMPLE 5. The family of 2-SB(6, 3) given in [1] contains errors in the last column, and should be replaced by the following:

Blocks	Design 1	Design 2	Design 3	Design 4	Design 5
$\{1, 2, 3\}$	0	0	2	4	4
$\{1, 2, 4\}$	0	1	1	5	3
$\{1, 2, 5\}$	1	0	3	1	5
$\{1, 2, 6\}$	0	2	3	3	2
$\{1, 3, 4\}$	0	4	0	4	2
$\{1, 3, 5\}$	1	1	2	1	5
$\{1, 3, 6\}$	1	5	1	2	1
$\{1, 4, 5\}$	2	3	0	2	3
$\{1, 4, 6\}$	1	5	0	3	1
$\{1, 5, 6\}$	2	3	3	0	2
$\{2, 3, 4\}$	1	1	1	5	2
$\{2, 3, 5\}$	2	0	4	0	4
$\{2, 3, 6\}$	2	1	5	1	1
$\{2, 4, 5\}$	3	0	2	2	3
$\{2, 4, 6\}$	3	2	2	3	0
$\{2, 5, 6\}$	3	1	5	0	1
$\{3, 4, 5\}$	5	2	1	1	1
$\{3, 4, 6\}$	4	4	0	2	0
$\{3, 5, 6\}$	4	2	4	0	0
$\{4, 5, 6\}$	5	3	1	1	0

From Theorem 3, a large set of 2-SB(6,3) must satisfy $s = 2n$. Since there exist 16,444,250 nonisomorphic 2-SB(6,3) (see [4]) with the smallest maximum block frequency therein being 5, it must be true that s is also at least 5. Since s is even, we see that the smallest possible s is 6 with corresponding $n = 3$. The above example was obtained by taking isomorphic copies of a single 2-SB(6,3) design, and we claim that (using this particular design) the multiplicity cannot be less than 10. Hence, this example may or may not be a large set of 2-SB(6,3). \blacktriangle

EXAMPLE 6. Consider the following set of 1-SB(5,3):

Blocks	Design 1	Design 2	Design 3	Design 4
$\{1, 2, 3\}$	0	0	0	2
$\{1, 2, 4\}$	0	0	0	2
$\{1, 2, 5\}$	0	1	1	0
$\{1, 3, 4\}$	0	0	2	0
$\{1, 3, 5\}$	1	0	0	1
$\{1, 4, 5\}$	0	0	2	0
$\{2, 3, 4\}$	0	2	0	0
$\{2, 3, 5\}$	0	2	0	0
$\{2, 4, 5\}$	2	0	0	0
$\{3, 4, 5\}$	2	0	0	0

From Theorem 3, a large set of 1–SB(5, 3) must satisfy $2s = n$. Since there exist 3 nonisomorphic 1–SB(5, 3) with the smallest max block frequency being 2, it must be true that s is also at least 2. Hence, the minimal possible s is 2 with corresponding $n = 4$. Thus, this example is a large set of 1–SB(5, 3). ▲

4. Conclusion

The general problem of finding large sets of SB designs may be technical and difficult. However, producing an example of a large set of either 2–SB(6, 3) or of a 2–SB(6, 4) may be interesting. The reader is invited to produce such examples.

References

- [1] H. Chan and D. G. Sarvate, A non–existence result and large sets for Sarvate–Beam designs, *Ars Combinatoria* **95** (2010) 193–199.
- [2] P. Dukes, PBD–closure for adesigns and asymptotic existence of Sarvate–Beam triple systems, *Bulletin of the ICA* **54** (2008), 5–10.
- [3] P. Dukes, S. Hurd, and D. G. Sarvate, It’s Hard to be Different, *Bulletin of the ICA* **60** (2010), 86–90.
- [4] D. W. Hein and P. C. Li, Sarvate–Beam triple systems for $v = 5$ and $v = 6$, *JCMCC* **78** (2011), 161–168.
- [5] Z. Ma, Y. Chang, and T. Feng, The spectrum of strictly pairwise distinct triple systems, *Bulletin of The ICA* **56** (2009), 62–72.
- [6] D. G. Sarvate and W. Beam, A new type of block design, *Bulletin of the ICA* **50** (2007), 26–28.
- [7] D. G. Sarvate and W. Beam, The Non–existence of $(n - 2)$ –SB($n, n - 1$) adesigns and some existence results, *Bulletin of the ICA* **51** (2007), 73–79.

(A. One) STONY BROOK UNIVERSITY, DEPT. OF C. S., STONY BROOK, NY, 11794
E-mail address: hauchan@cs.stonybrook.edu

(A. Two) SOUTHERN UTAH UNIVERSITY, DEPT. OF MATH., CEDAR CITY, UT, 84720
E-mail address: hein@suu.edu

(A. Three) COLLEGE OF CHARLESTON, DEPT. OF MATH., CHARLESTON, SC, 29424
E-mail address: sarvated@cofc.edu