A non-existence result and large sets for Sarvate-Beam designs

Hau Chan and Dinesh G. Sarvate

ABSTRACT. It is shown that for $2 \le t \le n-3$, a strict t-SB(n, n-1) design does not exist, but for $n \ge 3$, a non-strict 2-SB(n, n-1) design exists. The concept of large sets for Steiner triple systems is extended to SB designs and examples of a large sets for SB designs are given.

1. Introduction

Stanton [9] renamed a type of block design that was introduced in [7] as Sarvate-Beam Triple Systems (SB Triple Systems). In addition, Stanton obtained several interesting results and raised questions on enumeration and existence, see [10], [11], [12] and [13]. Some of these questions are solved by Hein and Li [5] as well as Bradford, Hein and Pace [1]. In general, an SB design is a block design in which every pair occurs in a different number of blocks. Below is a formal definition:

DEFINITION 1. A Sarvate-Beam design, SB(v,k), consists of a v-set V and a collection of k-subsets, called blocks, of V such that each distinct pair of elements in V occurs with different frequencies i.e., in a different number of blocks. A strict SB(v,k) design is a design where for every $i, 1 \le i \le {v \choose 2}$, exactly one pair occurs exactly i times.

EXAMPLE 1. A strict SB(4,3) on $\{1,2,3,4\}$ consists of the following blocks:

 $\{1,2,4\}, \{1,3,4\}, \{1,3,4\}, \{2,3,4\}, \{2,3,4\}, \{2,3,4\}, \{2,3,4\}.$

Although the general existence question of strict SB block designs is still an open question, it has been proven that the necessary conditions are

²⁰⁰⁰ Mathematics Subject Classification. Primary 05B05.

 $Key\ words\ and\ phrases.$ Sarvate-Beam Triple Systems, SB Designs, Block desings, BIBDs, Large sets.

sufficient for k = 3 by Dukes [3] except for some finite number of exceptions. On the other hand, Ma, Chang and Feng [6] have proved that the necessary conditions are sufficient for k = 3. Moreover, SB matrices have been studied by Dukes, Hurd and Sarvate [4]. The following definition and result appear in [8]:

DEFINITION 2. A t-SB(v,k) design is a collection, B, of k-subsets of a v-set such that each t-subset of V occurs a distinct number of times. In a strict t-SB design, for each i, $1 \le i \le {v \choose t}$, there is exactly one t-subset which occurs in i blocks.

THEOREM 1. A strict t-SB(v,k) exists only if $\binom{k}{t} \mid \frac{\binom{v}{t}\binom{v}{t}+1}{2}.$

2. Non-existence result

The following result is known [8]:

THEOREM 2. For n > 4, a strict (n-2)-SB(n, n-1) does not exist.

We prove the following result:

THEOREM 3. For n > 4, a strict t-SB(n, n - 1) does not exist for $2 \le t \le n - 3$.

PROOF. Let us denote the frequency of an s-subset, $\{a_1, a_2, ..., a_s\}$, in the design by $f(a_1, ..., a_s)$. Let $B_i = \{1, 2, ..., n\} - \{i\}, i = 1, 2, \cdots, n$, be the n subsets of size n-1 of $\{1, 2, \dots, n\}$. Let $F(B_i)$ denotes the frequency of the block B_i in the design if it exists. Without loss of generality, assume that the t-subset $\{1, 2, ..., t\}$ appears exactly once and let $B_n = \{1, 2, ..., t, ..., n-$ 1} be the block containing $\{1, 2, \cdots, t\}$ that appears exactly once. Observe that there are n-t sets, $B_{t+1}, B_{t+2}, \dots, B_n$, among $B_1, B_2, \dots, B_{n-1}, B_n$ containing $\{1, 2, ..., t\}$, and n-t+1 sets, $B_t, B_{t+1}, ..., B_n$, containing $\{1, 2, ..., t-1\}$ 1}. As the frequency of $\{1, 2, ..., t\}$ is one and $F(B_n) = 1$, it follows that $F(B_{t+1}) = F(B_{t+2}) = \dots = F(B_{n-1}) = 0$. Hence, there exists only one other set, B_t , which contains $\{1, 2, ..., t-1\}$ but not $\{1, 2, ..., t\}$ whose frequency (say ϕ) may be greater than one in the design. This is the only set other than B_n which contains $\{1, 2, ..., t - 1, x\}$ and $\{1, 2, ..., t - 1, y\}$, where $x, y \in \{t, ..., n\}$ and $x \neq y$. Hence $f(1, 2, ..., t - 1, x) = \phi + 1 =$ f(1, 2, ..., t - 1, y), which is a contradiction.

The following example is illustrative:

EXAMPLE 2. A strict 3-SB(6,5) does not exist. First note that the design parameters satisfy Theorem 1. There are 6 subsets $\{1, 2, 3, 4, 5\}$, $\{1, 2, 3, 4, 6\}$, $\{1, 2, 3, 5, 6\}$, $\{1, 2, 4, 5, 6\}$, $\{1, 3, 4, 5, 6\}$, $\{2, 3, 4, 5, 6\}$. Without loss of generality, assume the 3-subset $\{1, 2, 3\}$ occurs exactly once in

the block $\{1, 2, 3, 4, 5\}$. Note that we cannot have blocks $\{1, 2, 3, 4, 6\}$ and $\{1, 2, 3, 5, 6\}$ in this design since we want $\{1, 2, 3\}$ to appear exactly once. Therefore the remaining blocks must be some multiple copies of the sets $\{1, 2, 4, 5, 6\}, \{1, 3, 4, 5, 6\}, and \{2, 3, 4, 5, 6\}$.

Let a, b, and c denote the frequency of the blocks $\{1, 2, 4, 5, 6\}$, $\{1, 3, 4, 5, 6\}$, and $\{2, 3, 4, 5, 6\}$ respectively, if the design exists. Note f(1, 2, 4) = 1 + a = f(1, 2, 5), which is a contradiction.

3. Non-strict 2-SB(n, n-1) designs

Although strict 2-SB(n, n-1) designs do not exist for any n, non-strict 2-SB(n, n-1) designs exist for all $n \ge 3$:

LEMMA 1. A non-strict t-SB(n, n-1) design is also a non-strict (t-1)-SB(n, n-1) design if $n-1 \ge 2t-2$.

PROOF. Suppose the block $B_i = \{1, 2, \cdots, n\} - \{i\}$ occurs f_i times in the non-strict t-SB(n, n-1) design. A (t-1)-set $\{i_1, i_2, \cdots, i_{t-1}\}$ occurs in b- $(f_{i_1} + f_{i_2} + \cdots + f_{i_{t-1}})$ blocks, where b is the total number of blocks of the non-strict t-SB(n, n-1) design. If the design is not a nonstrict (t-1)-SB(n, n-1) design, then there exists at least two distinct (t-1)-sets, $\{a_1, a_2, \cdots, a_{t-1}\}$ and $\{b_1, b_2, \cdots, b_{t-1}\}$ both occurring the same number of times (say μ) in the design. As $2t - 2 \leq n - 1$, there exists an element a in $\{1, 2, \cdots, n\}$ but not in the union of $\{a_1, a_2, \cdots, a_{t-1}\}$ and $\{b_1, b_2, \cdots, b_{t-1}\}$. Consider the t-sets $\{a, a_1, a_2, \cdots, a_{t-1}\}$ and $\{a, b_1, b_2, \cdots, b_{t-1}\}$. Clearly both occur in $\mu - f_a$ blocks of the non-strict t-SB(n, n - 1) design which is a contradiction.

In general a t-SB(n, k) design need not be a (t - 1)-SB(n, k) design as shown below:

EXAMPLE 3. Let $V = \{1, 2, 3, 4\}$. The collection of blocks with t copies of $\{1, 2\}$, one copy of $\{1, 3\}$, four copies of $\{1, 4\}$, two copies of $\{2, 3\}$, three copies of $\{2, 4\}$ and s copies of $\{3, 4\}$ for any distinct values of s and t different from 1, 2, 3, and 4 provides a 2-SB(4, 2) design. The design is a strict 2-SB(4, 2) when $\{s, t\} = \{5, 6\}$. Note that the elements 1 and 2 both have the replication number t + 5 and hence the design is not a 1-SB(4, 2) design.

THEOREM 4. A non-strict 2-SB(n, n-1) design exists for every positive integer $n \ge 3$.

PROOF. Let the set of elements be $\{1, 2, \dots, n\}$ for a design on n elements. The proof is based on induction. For n = 3, a non-strict 2-SB(3, 2) design can be easily constructed. Suppose we have a non-strict 2-SB(n, n-1) for some value of n with b blocks. We construct a 2-SB(n+1, n) design containing 2b blocks using the blocks of the non-strict 2-SB(n, n-1)

design and the set $\{1, 2, \dots, n\}$ as follows. First we construct b blocks by adding the element n + 1 into each block of the non-strict 2-SB(n, n - 1) design. Note that in these blocks each element from 1 to n occurs different number of times, therefore the pairs $\{n + 1, i\}$ occur different number of times. We complete the construction of non-strict 2-SB(n + 1, n) design by including b copies of the set $\{1, 2, \dots, n\}$. The maximum number of times a pair $\{n + 1, i\}$ may have occurred is b, and minimum number of times a pair $\{i, j\}, 1 \leq i < j \leq n$, occurs in the non-strict 2-SB(n, n - 1) design is one. Hence, all pairs occur a different number of times in these 2b blocks of the non-strict 2-SB(n + 1, n) design.

4. Large sets

DEFINITION 3. A triple system (V, \mathbf{B}) is a set V of v elements together with a collection \mathbf{B} of 3-subsets (called blocks or triples) of V with the property that every 2-subset of V occurs in exactly λ blocks. The size of V is the order of the triple system. It is also denoted by $TS(v, \lambda)$, or Steiner triple system, STS(v), when $\lambda = 1$.

DEFINITION 4. Let (V,B) and (V,D) be two STS(v)'s. Their intersection size is $|B \cap D|$. They are disjoint when their intersection size is zero. A set of (v-2) STS(v)s, $\{(V,B_i) : i=1,...,v-2\}$, is a large set if any two distinct systems from the set are disjoint.

In other words, the set of all 3-subsets of a v-set is partitioned into v-2 STS(v)'s. It is known that large sets for triple systems exist for all $v \equiv 1,3 \pmod{6}$ except for v = 7 [2].

The analogous question to the large set for triple system with respect to SB triple systems can be formulated using the following definition:

DEFINITION 5. Let V be a v-set. A family of SB(v,k) designs on V, say $B = \{B_1, B_2, ..., B_n\}$, is a large set with multiplicity s if $\bigcup_{i=1}^n B_i$ gives s copies of the set of all k-subsets of V for some integer s and if there is another family of SB(v,k) designs $C = \{C_1, C_2, ..., C_m\}$ where $\bigcup_{i=1}^m C_i$ contains t copies of all k-subsets of V, then $s \le t$.

Simple counting gives the following result:

THEOREM 5. Suppose the multiplicity for the large set for a SB(v,k) is s and let the size of the large set be n. Then $s\binom{v}{k} = \frac{\binom{v}{2}\binom{v}{2}+1}{2\binom{k}{2}} \times n$; hence a necessary condition for the existence of a large set for strict SB(v,k) is $\frac{\binom{v}{2}\binom{v}{2}+1}{2\binom{k}{2}} \mid s\binom{v}{k}$.

Corollary 1. For k = 3, $\frac{\binom{v}{2}\binom{v}{2}+1}{6} \mid s\binom{v}{3}$.

The following example will clarify the definition:

EXAMPLE 4. Consider the set $V = \{1, 2, 3, 4\}$. We have the following 4 strict SB(4, 3)'s.

- $B_1 = \{\{1,2,4\}, \{1,3,4\}, \{1,3,4\}, \{2,3,4\}, \{2,3,4\}, \{2,3,4\}, \{2,3,4\}\}$
- $B_2 = \{\{1,2,3\}, \{1,2,3\}, \{1,2,3\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{2,3,4\}\}$
- $B_3 = \{\{1,2,3\}, \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \{1,2,4\}, \{1,2,4\}, \{1,2,4\}, \{2,3,4\}\}$
- $B_4 = \{\{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \{1,3,4\}, \{1,3,4\}, \{1,3,4\}, \{1,3,4\}\}\}.$

When we take the multi-union $B_1 \dot{\cup} B_2 \dot{\cup} B_3 \dot{\cup} B_4$, we get a multi-set where each of the blocks $\{1, 2, 3\}$, $\{1, 2, 4\}$, $\{1, 3, 4\}$, and $\{2, 3, 4\}$ occurs 7 times. Indeed 7 is the multiplicity for SB(4, 3), because there are only 4 distinct blocks and SB(4, 3) has 7 blocks, if the multiplicity is s, then $4 \times s = 7 \times n$ for some integer n. Therefore $\{B_1, B_2, B_3, B_4\}$ is the large set for SB(4, 3), and as the SB(4, 3) is unique, the large set is unique up to isomorphism.

EXAMPLE 5. A set of SB(6,3) designs such that the multi-union of the collections of blocks has multiplicity t = 10 is given below, however this may not be a large set. The reason is that we obtained these designs by taking isomorphic copies of a single SB(6,3) design, but according to [5], there are 48,843 non-isomorphic restricted SB(6,3), and a total of 16,444,250 (restricted and non-restricted) SB(6,3) designs. What we can claim is that using this particular design, the multiplicity cannot be less than 5.

0	1	5	,	1 0		
ſ	Blocks	Design 1	Design 2	Design 3	Design 4	Design 5
ĺ	$\{1,2,3\}$	0	0	2	4	4
Ī	$\{1,2,4\}$	0	1	1	5	3
Ī	$\{1,2,5\}$	1	0	3	1	5
	$\{1,2,6\}$	0	2	3	3	2
	$\{1,3,4\}$	0	4	0	4	2
		1	1	2	1	5
	$\{1,3,6\}$	1	5	1	2	1
	$\{1,4,5\}$	2	3	0	2	3
	$ {1,4,6} {1,5,6} $	1	5	0	3	2
	$\{1,\!5,\!6\}$	2	3	3	0	2
		1	1	1	5	2
	$\{2,3,5\}$	2	0	4	0	4
	$\{2,3,6\}$	2	1	5	1	1
	$\{2,4,5\}$	3	0	2	2	3
	$\{2,4,6\}$	3	2	2	3	0
	$\{2,5,6\}$	3	1	5	0	1
	$\{3,4,5\}$	5	2	1	1	1
	$\{3,4,6\}$	4	4	0	2	0
	$\{3,5,6\}$	4	2	4	0	0
	$\{4,5,6\}$	5	3	1	1	1

4.1. Large sets for k = 2. Let us consider the following two examples:

EXAMPLE 6. A strict SB(3,2) design with blocks $\{\{1,2\},\{1,3\},\{1,3\},\{2,3\},\{2,3\},\{2,3\}\}$.

EXAMPLE 7. Another strict SB(3,2) design with blocks $\{\{1,2\},\{1,2\},\{1,2\},\{1,2\},\{1,3\},\{1,3\},\{2,3\}\}$.

The union of these designs is a multi-set that contains each 2-subset with a multiplicity of 4. In fact, these designs form a large set. This simple observation leads to the following result:

THEOREM 6. Large sets with multiplicity $\binom{v}{2}+1$ containing exactly two SB(v,2)'s exist for all $v \geq 2$.

PROOF. Let the 2-subsets of a v-set V be $\{b_1, b_2, ..., b_{\binom{v}{2}}\}$. Without loss of generality, let the first SB(v, 2), B_1 , contain blocks b_i with frequency i. Now construct a second SB(v, 2), B_2 , where b_i occurs with frequency $\binom{v}{2}$ +1- i. It follows that we have a partition $\{B_1, B_2\}$ of the collection of the 2-subsets of V with multiplicity $\binom{v}{2}$ +1.

ACKNOWLEDGEMENT 1. The authors wish to thank the referee and Dr. Derek Hein for useful suggestions and careful reading of the manuscript.

References

- [1] B. Bradford, D. W. Hein, and J. Pace, Sarvate-Beam Quad systems for v = 6, JCMCC, to appear.
- [2] C. J. Colbourn, *Triple Systems*, The Handbook of Combinatorial Designs, second edition, edited by C. J. Colbourn and J. H. Dinitz, Chapman/CRC Press, Boca Raton, Fl., 2007, 59-71.
- [3] P. Dukes, PBD-closure for adesigns and asymptotic existence of Sarvate-Beam triple systems. Bulletin of the ICA 54 (2008), 5-10.
- [4] P. Dukes, S. Hurd, and D. G. Sarvate, It's hard to be different, *Bulletin of the ICA*, to appear.
- [5] D. W. Hein and P. C. Li, Sarvate-Beam triple systems for v = 5 and v = 6, to be submitted.
- [6] Z. Ma, Y. Chang, and T. Feng, The spectrum of strictly pairwise distinct triple systems, Bulletin of The ICA, 56, (2009), 62-72.
- [7] D. G. Sarvate and W. Beam, A new type of block design, Bulletin of the ICA 50 (2007), 26-28.
- [8] D. G. Sarvate and W. Beam, The Non-existence of (n-2)-SB(n,n-1) adesigns and some existence results, *Bulletin of the ICA* 51 (2007), 73-79.
- [9] R. G. Stanton, A Note on Sarvate-Beam Triple Systems, Bulletion of the ICA 50 (2007), 61-66.
- [10] R. G. Stanton, A restricted Sarvate-Beam triple system for v = 8, JCMCC 63 (2007) 33-35.
- [11] R. G. Stanton, On Sarvate-Beam quad systems, Bulletin of the ICA 51 (2007) 31-33.

A NON-EXISTENCE RESULT AND LARGE SETS FOR SARVATE-BEAM DESIGNS 7

[12] R. G. Stanton, Restricted Sarvate-Beam triple systems, JCMCC **62** (2007) 217-219. [13] R. G. Stanton, Sarvate-Beam triple systems for $v \equiv 2 \pmod{3}$, JCMCC **61** (2007) 129-134.

(A. One) College of Charleston, Dept. of Math., Charleston, SC, 29424 $E\text{-}mail\ address: \texttt{sarvated@cofc.edu}$

(A. Two) COLLEGE OF CHARLESTON, DEPT. OF MATH., CHARLESTON, SC, 29424 *E-mail address*: hchan@edisto.cofc.edu