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Abstract. It is shown that for 2 ≤ t ≤ n− 3, a strict t-SB(n, n− 1)

design does not exist, but for n ≥ 3, a non-strict 2-SB(n, n−1) design
exists. The concept of large sets for Steiner triple systems is extended

to SB designs and examples of a large sets for SB designs are given.

1. Introduction

Stanton [9] renamed a type of block design that was introduced in [7]
as Sarvate-Beam Triple Systems (SB Triple Systems). In addition, Stanton
obtained several interesting results and raised questions on enumeration and
existence, see [10], [11], [12] and [13]. Some of these questions are solved
by Hein and Li [5] as well as Bradford, Hein and Pace [1]. In general, an
SB design is a block design in which every pair occurs in a different number
of blocks. Below is a formal definition:

Definition 1. A Sarvate-Beam design, SB(v,k), consists of a v-set V
and a collection of k-subsets, called blocks, of V such that each distinct pair
of elements in V occurs with different frequencies i.e., in a different number
of blocks. A strict SB(v,k) design is a design where for every i, 1≤i≤

(
v
2

)
,

exactly one pair occurs exactly i times.

Example 1. A strict SB(4, 3) on {1, 2, 3, 4} consists of the following
blocks:

{1,2,4}, {1,3,4}, {1,3,4}, {2,3,4}, {2,3,4}, {2,3,4}, {2,3,4}.

Although the general existence question of strict SB block designs is
still an open question, it has been proven that the necessary conditions are
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sufficient for k = 3 by Dukes [3] except for some finite number of exceptions.
On the other hand, Ma, Chang and Feng [6] have proved that the necessary
conditions are sufficient for k = 3. Moreover, SB matrices have been studied
by Dukes, Hurd and Sarvate [4]. The following definition and result appear
in [8]:

Definition 2. A t-SB(v,k) design is a collection, B, of k-subsets of
a v-set such that each t-subset of V occurs a distinct number of times. In
a strict t-SB design, for each i, 1 ≤ i ≤

(
v
t

)
, there is exactly one t-subset

which occurs in i blocks.

Theorem 1. A strict t-SB(v,k) exists only if(
k
t

)
| (v

t)((v
t)+1)

2 .

2. Non-existence result

The following result is known [8]:

Theorem 2. For n > 4, a strict (n− 2)-SB(n, n− 1) does not exist.

We prove the following result:

Theorem 3. For n > 4, a strict t-SB(n, n − 1) does not exist for
2 ≤ t ≤ n− 3.

Proof. Let us denote the frequency of an s-subset, {a1, a2, ..., as}, in
the design by f(a1, ..., as). Let Bi = {1, 2, ..., n}−{i}, i = 1, 2, · · · , n, be the
n subsets of size n− 1 of {1, 2, · · · , n}. Let F (Bi) denotes the frequency of
the blockBi in the design if it exists. Without loss of generality, assume that
the t-subset {1, 2, .., t} appears exactly once and let Bn = {1, 2, ..., t, ..., n−
1} be the block containing {1, 2, · · · , t} that appears exactly once. Observe
that there are n−t sets, Bt+1, Bt+2, ..., Bn, among B1, B2, ..., Bn−1, Bn con-
taining {1, 2, ..., t}, and n−t+1 sets, Bt, Bt+1, ..., Bn, containing {1, 2, ..., t−
1}. As the frequency of {1, 2, ..., t} is one and F (Bn) = 1, it follows that
F (Bt+1) = F (Bt+2) = ... = F (Bn−1) = 0. Hence, there exists only one
other set, Bt, which contains {1, 2, ..., t− 1} but not {1, 2, ..., t} whose fre-
quency (say φ) may be greater than one in the design. This is the only
set other than Bn which contains {1, 2, ..., t − 1, x} and {1, 2, ..., t − 1, y},
where x, y ∈ {t, ..., n} and x 6= y. Hence f(1, 2, ..., t − 1, x) = φ + 1 =
f(1, 2, ..., t− 1, y), which is a contradiction. �

The following example is illustrative:

Example 2. A strict 3-SB(6,5) does not exist. First note that the
design parameters satisfy Theorem 1. There are 6 subsets {1, 2, 3, 4, 5},
{1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}. With-
out loss of generality, assume the 3-subset {1, 2, 3} occurs exactly once in
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the block {1, 2, 3, 4, 5}. Note that we cannot have blocks {1, 2, 3, 4, 6} and
{1, 2, 3, 5, 6} in this design since we want {1, 2, 3} to appear exactly once.
Therefore the remaining blocks must be some multiple copies of the sets
{1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, and {2, 3, 4, 5, 6}.

Let a, b, and c denote the frequency of the blocks {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6},
and {2, 3, 4, 5, 6} respectively, if the design exists. Note f(1, 2, 4) = 1 + a =
f(1, 2, 5), which is a contradiction.

3. Non-strict 2-SB(n, n− 1) designs

Although strict 2-SB(n, n−1) designs do not exist for any n, non-strict
2-SB(n, n− 1) designs exist for all n ≥ 3:

Lemma 1. A non-strict t-SB(n, n−1) design is also a non-strict (t−1)-
SB(n, n− 1) design if n− 1 ≥ 2t− 2.

Proof. Suppose the block Bi = {1, 2, · · · , n} − {i} occurs fi times
in the non-strict t-SB(n, n − 1) design. A (t − 1)-set {i1, i2, · · · , it−1} oc-
curs in b-(fi1 + fi2 + · · · + fit−1) blocks, where b is the total number of
blocks of the non-strict t-SB(n, n − 1) design. If the design is not a non-
strict (t − 1)-SB(n, n − 1) design, then there exists at least two distinct
(t − 1)-sets, {a1, a2, · · · , at−1} and {b1, b2, · · · , bt−1} both occurring the
same number of times (say µ) in the design. As 2t − 2 ≤ n − 1, there ex-
ists an element a in {1, 2, · · · , n} but not in the union of {a1, a2, · · · , at−1}
and {b1, b2, · · · , bt−1}. Consider the t-sets {a, a1, a2, · · · , at−1} and {a, b1,
b2, · · · , bt−1}. Clearly both occur in µ − fa blocks of the non-strict t-
SB(n, n− 1) design which is a contradiction. �

In general a t-SB(n, k) design need not be a (t− 1)-SB(n, k) design as
shown below:

Example 3. Let V= {1, 2, 3, 4}. The collection of blocks with t copies
of {1, 2}, one copy of {1, 3}, four copies of {1, 4}, two copies of {2, 3},
three copies of {2, 4} and s copies of {3, 4} for any distinct values of s and
t different from 1, 2, 3, and 4 provides a 2-SB(4, 2) design. The design is a
strict 2-SB(4, 2) when {s, t}={5, 6}. Note that the elements 1 and 2 both
have the replication number t+ 5 and hence the design is not a 1-SB(4, 2)
design.

Theorem 4. A non-strict 2-SB(n, n−1) design exists for every positive
integer n ≥ 3.

Proof. Let the set of elements be {1, 2, · · · , n} for a design on n el-
ements. The proof is based on induction. For n = 3, a non-strict 2-
SB(3, 2) design can be easily constructed. Suppose we have a non-strict 2-
SB(n, n−1) for some value of n with b blocks. We construct a 2-SB(n+1, n)
design containing 2b blocks using the blocks of the non-strict 2-SB(n, n−1)
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design and the set {1, 2, · · · , n} as follows. First we construct b blocks by
adding the element n + 1 into each block of the non-strict 2-SB(n, n − 1)
design. Note that in these blocks each element from 1 to n occurs different
number of times, therefore the pairs {n + 1, i} occur different number of
times. We complete the construction of non-strict 2-SB(n+ 1, n) design by
including b copies of the set {1, 2, · · · , n}. The maximum number of times
a pair {n+ 1, i} may have occurred is b, and minimum number of times a
pair {i, j}, 1 ≤ i < j ≤ n, occurs in the non-strict 2-SB(n, n− 1) design is
one. Hence, all pairs occur a different number of times in these 2b blocks
of the non-strict 2-SB(n+ 1, n) design. �

4. Large sets

Definition 3. A triple system (V,B) is a set V of v elements together
with a collection B of 3-subsets (called blocks or triples) of V with the
property that every 2-subset of V occurs in exactly λ blocks. The size of V
is the order of the triple system. It is also denoted by TS(v, λ), or Steiner
triple system, STS(v), when λ = 1.

Definition 4. Let (V,B) and (V,D) be two STS(v)’s. Their intersec-
tion size is |B∩D|. They are disjoint when their intersection size is zero.
A set of (v − 2) STS(v)s, {(V,Bi) : i=1, ...,v-2}, is a large set if any two
distinct systems from the set are disjoint.

In other words, the set of all 3-subsets of a v-set is partitioned into v-2
STS(v)’s. It is known that large sets for triple systems exist for all v ≡
1,3(mod 6) except for v = 7 [2].

The analogous question to the large set for triple system with respect
to SB triple systems can be formulated using the following definition:

Definition 5. Let V be a v-set. A family of SB(v, k) designs on V ,
say B={B1, B2, ..., Bn}, is a large set with multiplicity s if

⋃̇n

i=1Bi gives
s copies of the set of all k-subsets of V for some integer s and if there
is another family of SB(v, k) designs C={C1, C2, ..., Cm} where

⋃̇m

i=1Ci

contains t copies of all k-subsets of V , then s≤t.

Simple counting gives the following result:

Theorem 5. Suppose the multiplicity for the large set for a SB(v, k)

is s and let the size of the large set be n. Then s
(

v
k

)
= (v

2)((v
2)+1)

2(k
2)

×n; hence

a necessary condition for the existence of a large set for strict SB(v, k) is
(v
2)((v

2)+1)

2(k
2)

| s
(

v
k

)
.

Corollary 1. For k = 3, (v
2)((v

2)+1)

6 | s
(
v
3

)
.
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The following example will clarify the definition:

Example 4. Consider the set V = {1, 2, 3, 4}. We have the following
4 strict SB(4, 3)’s.

• B1 = {{1,2,4}, {1,3,4}, {1,3,4}, {2,3,4}, {2,3,4}, {2,3,4}, {2,3,4}}
• B2 = {{1,2,3}, {1,2,3}, {1,2,3}, {1,2,3}, {1,3,4}, {2,3,4}, {2,3,4}}
• B3 = {{1,2,3}, {1,2,3}, {1,2,4}, {1,2,4}, {1,2,4}, {1,2,4}, {2,3,4}}
• B4 = {{1,2,3}, {1,2,4}, {1,2,4}, {1,3,4}, {1,3,4}, {1,3,4}, {1,3,4}}.

When we take the multi-union B1∪̇B2∪̇B3∪̇B4, we get a multi-set where
each of the blocks {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4} occurs 7 times.
Indeed 7 is the multiplicity for SB(4, 3), because there are only 4 distinct
blocks and SB(4, 3) has 7 blocks, if the multiplicity is s, then 4× s = 7× n
for some integer n. Therefore {B1, B2, B3, B4} is the large set for SB(4, 3),
and as the SB(4, 3) is unique, the large set is unique up to isomorphism.

Example 5. A set of SB(6, 3) designs such that the multi-union of the
collections of blocks has multiplicity t = 10 is given below, however this may
not be a large set. The reason is that we obtained these designs by taking
isomorphic copies of a single SB(6, 3) design, but according to [5], there
are 48, 843 non-isomorphic restricted SB(6, 3), and a total of 16, 444, 250
(restricted and non-restricted) SB(6, 3) designs. What we can claim is that
using this particular design, the multiplicity cannot be less than 5.

Blocks Design 1 Design 2 Design 3 Design 4 Design 5
{1,2,3} 0 0 2 4 4
{1,2,4} 0 1 1 5 3
{1,2,5} 1 0 3 1 5
{1,2,6} 0 2 3 3 2
{1,3,4} 0 4 0 4 2
{1,3,5} 1 1 2 1 5
{1,3,6} 1 5 1 2 1
{1,4,5} 2 3 0 2 3
{1,4,6} 1 5 0 3 2
{1,5,6} 2 3 3 0 2
{2,3,4} 1 1 1 5 2
{2,3,5} 2 0 4 0 4
{2,3,6} 2 1 5 1 1
{2,4,5} 3 0 2 2 3
{2,4,6} 3 2 2 3 0
{2,5,6} 3 1 5 0 1
{3,4,5} 5 2 1 1 1
{3,4,6} 4 4 0 2 0
{3,5,6} 4 2 4 0 0
{4,5,6} 5 3 1 1 1
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4.1. Large sets for k = 2. Let us consider the following two exam-
ples:

Example 6. A strict SB(3, 2) design with blocks {{1, 2}, {1, 3}, {1, 3},
{2, 3}, {2, 3}, {2, 3}}.

Example 7. Another strict SB(3, 2) design with blocks {{1, 2}, {1, 2},
{1, 2}, {1, 3}, {1, 3}, {2, 3}}.

The union of these designs is a multi-set that contains each 2-subset
with a multiplicity of 4. In fact, these designs form a large set. This simple
observation leads to the following result:

Theorem 6. Large sets with multiplicity
(
v
2

)
+1 containing exactly two

SB(v, 2)′s exist for all v ≥ 2.

Proof. Let the 2-subsets of a v-set V be {b1, b2, ..., b(v
2)}. Without

loss of generality, let the first SB(v, 2), B1, contain blocks bi with frequency
i. Now construct a second SB(v, 2), B2, where bi occurs with frequency

(
v
2

)
+1- i. It follows that we have a partition {B1, B2} of the collection of the
2-subsets of V with multiplicity

(
v
2

)
+1. �
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