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Abstract. Beautifully Ordered Balanced Incomplete Block Designs,

BOBIBD(v, k, λ, k1, λ1), are defined and the proof is given to show

that necessary conditions are sufficient for the existence of BOBIBD
with block size k=3 and k1=2 and for k=4 and k1=2 except possibly

for eleven exceptions. Existence of BOBIBDs with block size k=4
and k1=3 is demonstrated for all but one infinite family and the

non-existence of BOBIBD(7, 4, 2, 3, 1), the first member of the series,

is shown.

1. Introduction

A Balanced Incomplete Block design, BIBD(v, k, λ), is a collection of
k-subsets (called blocks) of a v-set such that each pair of distinct points
occurs in exactly λ blocks where k<v. A Nested Balanced Incomplete Block
Design, (NBIBD), is a BIBD(v, k, λ) in which it is possible to subdivide
each block of the design into k

k1
sub-blocks of size k1 such that the sub-

blocks themselves form a BIBD, here k and k1 are positive integers such
that k1 divides k. For example, consider the following collection of five
blocks of a BIBD(5,4,3) on five points {1,2,3,4,5}:

{{1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}}.
Now consider the following subdivision of these five blocks in two specific
blocks of size two:

block {1,2,3,4} into blocks {1,4}, and {2,3},
block {1,2,3,5} into blocks {3,5}, and {1,2},
block {1,2,4,5} into blocks {4,2}, and {1,5},
block {1,3,4,5} into blocks {3,1}, and {4,5},
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block {2,3,4,5} into blocks {2,5}, and {3,4}.
Notice that these ten subsets of size two form a BIBD(5,2,1) and hence
above BIBD(5,4,3) is an NBIBD.
In the above example one can not arbitrarily partition each block of the
original design into two blocks to get a BIBD, of course for an NBIBD this
condition is not even required. Nested designs have been studied exten-
sively [8]. The BIBDs with ordered blocks are also studied extensively in
different context, for example see [7] and [2].

We are proposing to order the elements of the blocks of a BIBD in
such a way that for any fixed set of k1 locations, the collection of sub-
blocks with entries from the fixed set of locations from all blocks gives a
BIBD. An example will make this idea clearer: let us takes two copies of
BIBD(5, 4, 3) to get a BIBD(5, 4, 6) and order the elements of the blocks as
follows:

{{1,2,3,4},{2,3,4,5},{3,4,5,1},{4,5,1,2},{5,1,2,3},
{1,3,5,2},{3,5,2,4},{5,2,4,1},{2,4,1,3},{4,1,3,5}}.

As the block size is four, each block has four locations, first, second, third
and fourth. Choose ANY two locations, say first and fourth, and construct
blocks from the entries at these locations of each block:

{{1, 4}, {2, 5}, {3,1}, {4, 2}, {5, 3}, {1, 2}, {3, 4},{5, 1},{2, 3}, {4, 5}}.
As every pair has occurred exactly once in these (unordered) smaller blocks,
we get a BIBD(5, 2, 1). One can choose any other two distinct locations,
viz., first and second, first and third, second and third, second and fourth or
third and fourth and construct sub-blocks from the entries at these locations
of the ordered blocks and one will get a BIBD(5, 2, 1). We call such a
BIBD with ordered blocks a Beautifully Ordered Balanced Incomplete Block
Design. Formally,

Definition 1. If each of the blocks of a BIBD(v, k, λ) is ordered such
that for any k1 indices i1, i2, · · · , ik1 the sub-blocks {ai1 , ai2 , · · · , aik1

} of all
ordered blocks {a1, a2, · · · , ak} of the BIBD(v, k, λ) form a BIBD(v, k1, λ1)
then we say that the collection of ordered blocks gives a Beautifully Or-
dered Balanced Incomplete Block Design, BOBIBD(v, k, λ, k1, λ1) where 2
≤k1≤k-1.

Clearly when k1 divides k, a BOBIBD gives a nested BIBD with (super)
block size k and sub-block size k1 but for a BOBIBD there is no restriction
on k1, hence BOBIBDs can be constructed even when k1 is not a factor of
k. Examples of BOBIBDs may be given as a b × k array where the rows
are the ordered blocks.
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The definition a BIBD(v, k, λ) requires k<v, but sometimes the nota-
tion BIBD(v, v, λ) is used to denote λ copies of the complete block {1, 2, · · · , v}.

Example 1. The following is a BOBIBD(5, 5, 10, 2, 1).
1 3 5 2 4
3 5 2 4 1
5 2 4 1 3
2 4 1 3 5
4 1 3 5 2
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

There is another combinatorial object which is quite similar to what
we have defined. It is called Perpendicular Array [3]. The formal definition
is:

Definition 2. A perpendicular array PAλ (t,k,v) is a k × λ
(
v
t

)
array

with v entries such that
(1) each column has k distinct entries, and
(2) each set of t rows contains each set of t distinct entries as a column

precisely λ times.

Clearly when t=2, the perpendicular array gives a BOBIBD with k1=2
when we consider the columns of the array as the blocks of the BIBD(v, k, λ).
Of course, for k1≥3, BOBIBD and perpendicular arrays are different com-
binatorial structures.

There are many existence results on perpendicular arrays as given in
[3], for example, using our terminology, it is given in [3] that:

• BOBIBD(v, 3, 3, 2, 1) exists for v≥3, [10]
• BOBIBD(v, 4, 6, 2, 1) exists for odd v≥5 [9], [5] and
• BOBIBD(v, 4, 12, 2, 2) exists for v≥ 4 [9]

In fact, the results proven in this paper for k1=2 can be deduced from these
results, though we give straight-forward independent proofs for general λ
with usual design theory techniques. The results for k1=3 may not be
obtained from the results in [3]. Given such close relation, one may tempt
to rewrite our definition and introduce BOBIBD as an array

Definition 3. A Beautiful Array BA(v, k, λ, k1, λ1) is a b×k array (k>
2), where b=λv(v−1)

k(k−1) =λ1v(v−1)
k1(k1−1) , the entries of which are drawn from a set of

v symbols and are disposed so that (a) the rows of the array constitute the
blocks of a BIBND(v, k, λ), and (b) if we form a b× k1 sub-array from any
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k1 columns of the array, 1<k1<k, then the rows of the sub-array constitute
the blocks of a BIBD(v, k1, λ1).

We feel that having the word BIBD in the definition is more revealing
than the word array as the underlying structure is a BIBD and substruc-
tures are also BIBDs.

1.1. Latin Square. We will need the following well known results
about Latin squares. For basic definition and notation, please see [12]. A
Latin square L of side n on symbols Q = {1, 2, · · · , n} can be considered as
a Quasigroup (Q, ◦), the rows and columns of L are labeled by the symbols
in Q and i ◦ j is the (i, j)th element of L. When (i, i)th element of L is i
for all i = 1, 2, · · · , n, L is called an idempotent Latin square. Let N(n)
denote the number of Latin squares in the largest possible set of mutually
orthogonal Latin squares of side n.

Lemma 1. ([12], page 126) There exists a set of N(n) - 1 mutually
orthogonal idempotent Latin squares of side n.

Theorem 1. ([12], page 143) There exist three mutually orthogonal
Latin squares of every side except 2, 3, 6, and possibly 10.

Corollary 1. ([12], page 145) There is a pair of orthogonal idempo-
tent Latin squares of every side except 2, 3 and 6.

2. Necessary Conditions for BOBIBDs

From definition, if a BOBIBD(v,k,λ,k1,λ1) exists, then
(1) BIBD(v,k,λ) exists, and
(2) BIBD(v,k1,λ1) exists.

Hence:

Theorem 2. Every necessary condition for the existence of BIBD(v,k,λ)
is a necessary condition for BOBIBD(v,k,λ,k1,λ1) and every necessary con-
dition for BIBD(v,k1,λ1) is a necessary condition for BOBIBD(v,k,λ,k1,λ1).

For ease of reference the well known necessary conditions for BIBD(v,3,λ)
and BIBD(v,4,λ), for v ≥ k, are given below:

Block size 3:
λ spectrum of λ-fold triple systems

λ≡0(mod 6) all v 6=2
λ≡1,5(mod 6) all v≡1,3(mod 6)
λ≡2,4(mod 6) all v≡0,1(mod 3)
λ≡3(mod 6) all odd v

Block size 4:
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λ spectrum of λ-fold quadruple systems
λ≡0(mod 6) all v
λ≡1,5(mod 6) all v≡1,4(mod 12)
λ≡2,4(mod 6) all v≡1(mod 3)
λ≡3(mod 6) all v≡0,1(mod 4)

Simple counting arguments give

Theorem 3. In a BOBIBD(v,k,λ,k1,λ1), λ =
( kk1)λ1

( k−2
k1−2)

.

Corollary 2. (1) For k1=2, λ=
(
k
2

)
λ1 and the number of blocks

must be a multiple of
(
v
2

)
.

(2) For k1=3, λ=
((k3)λ1)

(k−2) , hence λ= (k2)λ1

3 .

Theorem 4. If a BOBIBD(v, k, λ, 2, λ1) exists then k divides r and
in the (ordered) blocks of BOBIBD each element occurs exactly r

k times at
each location of the blocks.

Proof. Let ci denote the number of times an element a appears at the
ith location in the collection of ordered blocks of a BOBIBD(v,k,λ,2,λ1).
Consider any two locations i and j, as we have a BOBIBD with k1 = 2,
ci+cj=λ1(v − 1). Similarly for locations i and k, ci+ck=λ1(v − 1), hence
for all k 6=j ck = cj . As c1+c2+...ck=r, kcj=r, and hence k divides r.

�

Example 2. BOBIBD(4,4,6,2,1) does not exist as r=6 and 4 does not
divide 6.

The above theorem can be generalized easily as follows.

Theorem 5. If a BOBIBD(v, k, λ, k1, λ1) exists then k divides r and
in the (ordered) blocks of BOBIBD each element occurs exactly r

k times at
each location of the blocks.

As we noted earlier, if we want to construct BOBIBD(v, k, λ,2,λ1),
there are

(
k
2

)
ways we can pick up two locations in a block of BIBD(v, k, λ),

hence λ is a multiple of
(
k
2

)
and λ=

(
k
2

)
λ1.

Theorem 6. If a BOBIBD(v,k,λ,2,λ1) exists, then a BOBIBD(v,k,λ,
k1,

(
k1
2

)
λ1) exists for 2≤k1≤k.

Note that the converse is NOT true as shown below.

Example 3. A BOBIBD(4,4,4,3,2) with blocks {1,2,3,4}, {4,1,2,3},
{3,4,1,2}, {2,3,4,1} is not a BOBIBD(4,4,4,2,1).
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In view of the above theorem, all results obtained for k=4 and k1=2 ex-
tend to k=4 and k1=3 as well and all examples constructed for BOBIBD(v, 4,
λ, 2, λ1) are examples for BOBIBD(v, 4, λ, 3, 3λ1).

Theorem 7. If a BOBIBD(v,k,λ,2,λ1) exists, then a BOBIBD(v,k
′
,(

k
′

2

)
λ1,2,λ1) exists, where 2≤k′≤k.

Example 4. The BOBIBD(5, 5, 10, 2, 1) given in the introduction is
also a BOBIBD(5, 5, 10, 3, 3).

The above example has an easy generalization:

Theorem 8. A BOBIBD(v, v, λ, k1, λ1) is also a BOBIBD(v, v, λ, v-
k1, λ2), where λ2 = λ(v−k1)(v−k1−1)

v(v−1) if v-k1≥2.

Proof. As we know that entries from any k1 locations is a BIBD(v, k1,
λ1), and hence the compliments of the blocks is a BIBD(v, v − k1, λ2) for
some λ2. Note that the number of blocks and the replication number for
the design is λ and as for a BOBIBD, at each location every element occurs
λ
v , the replication number for BIBD(v, v-k1, λ2) is (v − k1)(λv ). Using the
usual parametric relationships between design parameters, λ2 is as given in
the statement of the theorem. �

3. k= 3, k1=2

For k=3 the only possible value of k1 is 2. As λ=
( k
2λ1

)
( k−2
k1−2)

, for a BOBIBD

(v,3,λ,2,λ1), λ=3λ1 and hence λ has to be a multiple of 3.
There are two cases to consider: λ=6t+3 or λ=6t. It is well known that
for block size k = 3 and λ=6t + 3, v has to be odd. On the other hand,
BIBD(v, 3, 6t) exists for any v. In other words, the necessary conditions for
the existence of a BOBIBD(v,3,λ,2,λ1) are:

λ spectrum of BOBIBD(v,3,λ,2,λ1)’s
λ≡1, 2(mod 3) none
λ≡3(mod 6) odd v
λ≡0(mod 6) all v

Table 1
We might write a block {a,b,c} as abc and the context will indicate

when the block is ordered.

Subcase λ=6t+ 3

For this case, v must be odd, so v≡1, 3, 5(mod 6).
For v≡1,3(mod 6), a BIBD(v, 3, 1) exists. Arrange 3 copies of each

block {a,b,c} of the BIBD(v, 3, 1) as {a,b,c}, {c,a,b}, and {b,c,a} to get a
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BOBIBD(v, 3, 3, 2, 1). A BOBIBD(v, 3, 6t+ 3, 2, 2t+ 1) can be obtained by
taking (2t+ 1) copies of a BOBIBD(v, 3, 3, 2, 1).

For v≡5(mod 6). Recall one can construct a PBD on v=6t+5 points
with exactly one block, say {1,2,3,4,5}, and all other blocks of size 3 [6]. Or-
der 3 copies of each of the triples as in the above paragraph. Combining with
triples 123,412,251,314,531,154,235,342,425,543 of a BOBIBD(5, 3, 2, 2, 1)
we get a BOBIBD(v, 3, 3, 2, 1). Here again, (2t + 1) copies yield the re-
quired BOBIBD(v, 3, 6t+ 3, 2, 2t+ 1).

Subcase λ=6t

There is no restriction on v for λ=6t.
Even though one can use similar arguments again for v odd, a general

construction gives the required designs for λ=6t automatically.
Recall that one can construct a BIBD(v, 3, 6) by an idempotent Quasi-

group (Q,◦) of order v which exists for all order v ≥ 3 where the collection
of triples of the BIBD(v, 3, 6) is {{a,b,a◦b} where a 6=b∈Q}. Keeping the
ordering of the elements in triples as it is, the properties of the Latin square
guarantee that each pair {a,b} occurs at the location i, j, 1 ≤ i < j ≤ 3
in the triples exactly twice as required. Taking t copies of the design gives
BOBIBD(v, 3, 6t, 2, 2t). Hence we have:

Theorem 9. Necessary conditions given in Table 1 for the existence
of BOBIBD with k=3 and k1=2 are sufficient.

4. k=4, k1=2

From Theorem 3 and Theorem 4, we have the following corollary.

Corollary 3. For k=4, k1=2,
(1) λ1=λ

6 , therefore λ=6t for some positive integer t.
(2) If λ=6(2n+ 1) for some nonnegative integer n, then v is odd.

If λ=6(2n) for some nonnegative integer n, then there is no con-
dition on v.

Hence, the necessary condition for the existence of BOBIBD(v, 4, λ, 2, λ1)
are:

λ spectrum of BOBIBD(v, 4, λ, 2, λ1)’s
λ≡6(mod 12) all odd v ≥5
λ≡0(mod 12) no condition on v

4.1. BOBIBD(v, 4, 6, 2, 1) for odd v ≥ 5.

Example 5. One can construct a BOBIBD(5, 4, 6, 2, 1) by deleting the
first entries of all the blocks of Example 1, BOBIBD(5, 5, 10, 2, 1).
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Using the above example and as BIBD(v, 5, 1) exists for all v≡1,5(mod
20), we have

Theorem 10. A BOBIBD(v, 4, 6, 2, 1) exists for all v≡1,5(mod 20).

Example 6. A BOBIBD(7, 4, 6, 2, 1) can be constructed with ordered
difference sets {7,1,2,4}, {7,2,4,1}, {7,4,1,2}.

Example 7. A BOBIBD(9, 4, 6, 2, 1) is constructed below:
7 1 2 3
8 2 3 1
9 3 1 2
1 4 5 6
2 5 6 4
3 6 4 5
4 7 8 9
5 8 9 7
6 9 7 8

6 1 4 7
9 4 7 1
3 7 1 4
4 2 5 8
7 5 8 2
1 8 2 5
5 3 6 9
8 6 9 3
2 9 3 6

3 1 5 9
4 5 9 1
8 9 1 5
1 2 6 7
5 6 7 2
9 7 2 6
2 3 4 8
6 4 8 3
7 8 3 4

9 1 6 8
2 6 8 1
4 8 1 6
7 2 4 9
3 4 9 2
5 9 2 4
8 3 5 7
1 5 7 3
6 7 3 5

Theorem 11. The necessary conditions (v ≥5 and v odd) are sufficient
for the existence of a BOBIBD(v, 4, 6t, 2, t) except possibly for 15, 27, 33,
39, 51, 75, 87, 95, 99, 111, and 115.

Proof. A BOBIBD(v, 4, 6, 2, 1) exists for {5,7,9} and hence for v≡1(mod
2) except possibly for (11-19), 23, (27-33), 39, 43, 51, 59, 71, 75, 83, 87,
95, 99, 107, 111, 113, 115, 119, 139, 179 [1]. Excluding the eleven ex-
ceptions listed in the theorem, one can construct BOBIBDs using Theo-
rem 12 given below. Take t copies of BOBIBD(v, 4, 6, 2, 1) to construct
BOBIBD(v, 4, 6t, 2, t) �

Theorem 12. For any prime p, ordered difference sets {0,i,p-i,2i},
i = 1, 2, · · · ,p−1

2 give BOBIBD(v, 4, 6, 2, 1).

Proof. Differences from the ordered difference set {0,i,p-i,2i} are i,
2i, 3i, i, i, 2i and as i runs through 1 to p−1

2 every difference from 1 to p−1
2

occurs exactly once for each pair of locations. �

4.2. BOBIBD(v,4,12,2,2) for all v ≥ 4..

Example 8. BOBIBD(4,4,12,2,2)
1 2 3 4
1 4 2 3
1 3 4 2
2 1 3 4
2 4 1 3
2 3 4 1

3 1 2 4
3 4 1 2
3 2 4 1
4 1 2 3
4 3 1 2
4 2 3 1



BEAUTIFULLY ORDERED BALANCED INCOMPLETE BLOCK DESIGNS 9

Note for v≡1,4(mod 12), a BOBIBD can be constructed by rearranging
the blocks of a BIBD(v, 4, 1) according to the above example. Hence we
have:

Theorem 13. BOBIBD(v, 4, 12, 2, 2) exist for all v≡1,4(mod 12).

We need a BOBIBD(6, 4, 12, 2, 2) which is given below:
1 2 6 4
1 3 2 6
1 4 5 2
1 5 3 4
1 6 4 2
2 1 4 5
2 3 6 5
2 4 3 6
2 5 1 3
2 6 5 3

3 1 2 4
3 2 5 1
3 4 6 1
3 5 4 6
3 6 1 4
4 1 5 6
4 2 3 5
4 3 1 2
4 5 6 2
4 6 2 5

5 1 6 3
5 2 1 6
5 3 4 1
5 4 2 3
5 6 3 1
6 1 3 2
6 2 4 3
6 3 5 4
6 4 1 5
6 5 2 1

To construct BOBIBD(v, 4, 12, 2, 2) for all values of v≥4, we can extend
the construction for BIBD(v, 3, 6) by an idempotent Quasigroup of order v
which exist for all required values of v’s.

Theorem 14. Let L1=(Q, ◦1), L2=(Q, ◦2) be two mutually orthogonal
idempotent Latin squares of order v. Then the set of blocks T={{a,b,a◦1b,a◦2b}
: a6=b a,b∈Q} gives a BOBIBD(v, 4, 12, 2, 2).

Proof. Let L1=(Q, ◦1), L2=(Q, ◦2) be two mutually orthogonal idem-
potent Latin squares of order v which exist for all values of v except 2,3,
and 6, (see Theorem 1).

Note that this construction generates 2
(
n
2

)
=n(n-1) blocks of size four

which is the required number of blocks for a BIBD(v, 4, 12).

For any a6=b, we know that pair {a,b} and pair {b,a} occurs in the first
two locations of the blocks at least twice.

Now consider the occurrences of the pair {a,b} at the first and third
location or second and third location. The third location entry is a◦1b.
It is clear that for some x, y∈Q, a◦1x=b and y◦1a=b. Similarly, for some
w, z∈Q, b◦1w=a and z◦1b=a. Therefore the count of occurrences of the
pair {a,b} until now is at least 2+4=6.

Next we consider the occurrences of the pair {a,b} at first and fourth
or second and fourth locations. The fourth location entry is a◦2b. Same ar-
gument can be used again in this case. Hence {a,b} occurs at least 6+4=10
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times.

Now since L1 and L2 are idempotent MOLS, there exists p, q∈Q, such
that p◦1q=a and p◦2q=b, and for some r,s∈Q such that r◦1s=b, r◦2s=a.
Hence {a,b} occurs at least 10+2=12 times.

As the number of blocks is exactly the number of blocks needed for the
design, λ=12.

The above counting for the index λ also shows that the construction
produces BOBIBD(v, 4, 12, 2, 2). �

Theorem 14 gives the construction of BOBIBD(v, 4, 12t, 2, 2t) except
for v=2,3, and 6. However, BOBIBD(6,4,12,2,2) is given above and as k=4
is bigger than 2 and 3, we have

Theorem 15. Necssary condition that v≥4 is sufficient for the exis-
tence of a BOBIBD(v, 4, 12t, 2, 2t).

5. Block size k=4, k1=3

Theorem 16. Necessary conditions for the existence of BOBIBD(v, 4, λ,
3, λ1) are λ=2λ1 (hence λ is even), and

λ λ spectrum
λ≡0(mod 12) all v
λ≡2,10(mod 12) v≡1(mod 6)
λ≡6(mod 12) all odd v
λ≡4,8(mod 12) v≡1(mod 3)

Proof. Necesscary conditions for BIBD(v, 4, λ) imply λ(v−1)=3r and
λ(v)(v−1)

12 =b. �

5.1. λ≡0,6(mod 12). We have proved for BOBIBD(v, 4, 6, 12t+6, 2, 2t+
1) exists for all odd v and BOBIBD(v, 4, 12t, 2, 2t) exists for any v≥4 and
hence we have the following result.

Theorem 17. Necessary conditions are sufficient for BOBIBD(v, 4, 12t+6,
3, 6t+3).

Theorem 18. Necessary conditions are sufficient for BOBIBD(v, 4, 12t, 3, 6t).

Example 9. Using the Self-Orthogonal Latin squares of order 7 given
in [4] , we can construct the following BOBIBD(7,4,6,3,3):
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1 2 7 6
1 3 6 4
1 4 5 2
2 3 1 7
2 4 7 5
2 5 6 3
3 4 2 1
3 5 1 6
3 6 7 4
4 5 3 2
4 6 2 7

4 7 1 5
5 6 4 3
5 7 3 1
5 1 2 6
6 7 5 4
6 1 4 2
6 2 3 7
7 1 6 5
7 2 5 3
7 3 4 1

5.2. λ≡2,10(mod 12).

Theorem 19. BOBIBD(7,4,2,3,1) does not exist.

Proof. Assume the design exists. Without loss of generality, let the
first column and first row be:

2 3 4 1
2
3
4
5
6
7

.

Since 1 is already paired with 2, 3, 4 once and due to the facts that one
already appears in the fourth column, without loss of generality, assume
one is distributed diagonal from row 5 to row 7 as shown below,

2 3 4 1
2
3
4

1 5
1 6

1 7
.

Note that the element 2 cannot be placed in row 5 and column 1. In
addition, 5 has to occur in row 6 or row 7, but 5 cannot be in the first
column. Hence we have two cases to consider because we can place 2 into
row 6 and place 5 into row 7 or place 5 into row 6 and place 2 into row 7,
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for both cases, 2 or 5 has to be placed directly next to 1 in the 3rd or the
2nd column

2 3 4 1
2
3
4

1 5
1 2/5 6

5/2 1 7
.

Consider Case 1: where 2 and 5 are placed in row 6 and row 7 respectively.

2 3 4 1
2
3
4

1 5
1 2 6
5 1 7

As we can see from above, 7 is forced to be placed into row 6, 4 and 6 are
placed into row 5 and finally 3 is placed into row 7

2 3 4 1
2
3
4

1 4 6 5
7 1 2 6
3 5 1 7

.

Back to row 2, 7 and 3 are placed as follow

2 3 4 1
7 3 2

3
4

1 4 6 5
7 1 2 6
3 5 1 7

.

In row 3, 6, 2, and 5 are forced to be placed as shown below,
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2 3 4 1
7 3 2

3
6 2 5 4
1 4 6 5
7 1 2 6
3 5 1 7

.

In the final configuration shown below, zero denotes the locations where
the conflict occurs,

2 3 4 1
5 7 3 2
4 0 0 3
6 2 5 4
1 4 6 5
7 1 2 6
3 5 1 7

.

Case 1

The final configuration with conflict for case 2 is shown below as in Case 1,

2 3 4 1
5 4 6 2
7 5 2 3
0 0 0 4
1 7 3 5
4 1 5 6
6 2 1 7

Case 2

.

�

Theorem 20. The blocks of a BIBD(v,4,2) can not be ordered to con-
truct a BOBIBD(v,4,2,3,1) if there exists two identical or two blocks with 3
common points.

Proof. Suppose the intersection number of two blocks is 4, i.e. two
blocks are identical. Let b1={a,b,c,d}= b2 be two blocks of the BIBD(v,4,2).
Without loss of generality, we only rearrange b2, and hence we have the fol-
lowing four cases to consider:
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(1) Consider configuration below:

a b c d
a

where we placed a in the first location, no matter which way we
rearrange b,c,d, for some locations (i1,i2,i3) a pair appears more
than once.

(2) Consider b in the first location of second block, the same argument
we can use as in Case 1.

(3) Consider c in the first location as displayed below:

a b c d
c d

The only possible entry at the second location is d, and no matter
how we place a and b, there exist three locations of b1 and b2
where a pair appears twice.

(4) Consider d in the first location and c in the second location. The
same argument can be made as in Case 3.

Similarly one can show that if two blocks have 3 common element then it
is impossible to order the blocks to get a BOBIBD(v,4,2,3,1). �

5.3. λ≡4,8(mod 12). Construction for k=3, λ=2, v=3n+1

The 3n+1 Construction. See for example [6] Let (Q, ◦) be an
idempotent (not necessarily commutative) quasigroup of order n and set
S={∞}∪(Q×{1,2,3}). Define a collection of triples T as follows:

Type 1: The four triples {∞,(x,1),(x,2)}, {∞,(x,2),(x,3)}, {∞,(x,1),(x,3)},
{(x,1),(x,2),(x,3)} belong to T for every x∈Q (note: these
4 triples form a 2-fold triple system of order 4) and

Type 2: If x 6=y, the six triples {(x,1),(y,1),(x◦y,2)},
{(y,1),(x,1),(y◦x,2)}, {(x,2),(y,2),(x◦y,3)}, {(y,2),(x,2),(y◦x,3)},
{(x,3),(y,3),(x◦y,1)}, {(y,3),(x,3),(y◦x,2)} belong to T.

Then (S,T ) is a 2-fold triple system of order 3n+ 1.

The above construction can be generalized easily to obtain a BO-
BIBD(v,4,4,3,2).

Theorem 21. If two idempotent MOLS of order n exist, then BOBIBD(v=3n+1
,4,4,3,2) exists. Therefore necessary condition for λ≡4(mod 12) hold except
possibly for v=7,10,19.
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Proof. Let L1=(X, ◦1) and L2=(X, ◦2) be two idempotent MOLS,
and set S={∞}∪(X×{1,2,3}). Define a collection of quadruples T as fol-
lows:

Type 1: Four copies of the quadruple {∞,(x,1),(x,2),(x,3)}
belong to T for every x∈X,and

Type 2: If x 6=y, the quadruples {(x,1),(y,1),(x◦1y,2),(x◦2y,2)},
{(y,1),(x,1),(y◦1x,2),(y◦2x,2)}, {(x,2),(y,2),(x◦1y,3),(x◦2y,3)},
{(y,2),(x,2),(y◦1x,3),(y◦2x,3)}, {(x,3),(y,3),(x◦1y,1),(x◦2y,1)},
{(y,3),(x,3),(y◦1x,1),(y◦2x,1)} belong to T.

It is easy to see that k=4, since all the blocks are quadruple. Moreover,
there are 4n blocks of type 1 and 6

(
n
2

)
blocks of type 2. Therefore we have

a total of (3n+1)n blocks, equal to the total numbers of blocks required for
a BIBD(3n+ 1, 4, 4). Next we want to show that each pair occurs at least
4 times. Let (x, i), (y, j) be any pairs. There are three cases to consider.

• Suppose that x=y, i6=j. Then four copies of Type 1 quadruples
{∞,(x,1),(x,2),(x,3)} contain (x, i) and (x, j) four times.

• Suppose that i=j. Then x 6=y whence, {(x,i),(y,i),(x◦1y,(i+1)(mod
3),(x◦2y,(i+1)(mod 3)},{(y,i),(x,i),(y◦2x,(i+1)(mod 3)},{(y◦2x,(i+
1)(mod 3)} ∈T are two blocks containing (x,i) and (y,i). Now
we will use orthogonality of latin squares, there are r, s, u, w in
X such that r◦1s=x, r◦2s=y, u◦1w=y, and u◦2w=x. Therefore
{(r,(i-1)(mod 3), (s,(i-1)(mod 3)), (x,i), (y,i)}, {(u,(i-1)(mod 3),
(w,(i-1)(mod 3)), (y,i), (x,i)} are the other two blocks containing
(x,i) and (y,i).

• Finally suppose that x 6=y and i 6=j. Without loss of generality,
assume that i=1 and j=2. since (L1, ◦1) and (L2, ◦2) are Latin
square, x◦1a=y and x◦2b=y for some a,b∈X. Since L1 and L2 are
idempotent MOLS and x 6=y, it must be that a6=x and b 6=x. There-
fore {(x,1),(a,1),(x◦1a=y,2),(x◦2a,2)} and {(x,1),(b,1),(x◦1b,2),(x◦2b=y,2)}
are Type 2 quadruple in T and contains (x,i) and (y,j).

Each Type 1 quadruple appears four times, hence we can rearrange those
same blocks as those in BOBIBD(4,4,4,3,2). For Type 2 quadruple, we
have four cases to consider. Suppose {(x,i),(y,i),(x◦1y,j),(x◦2y,j)}, where
j=(i+1)(mod 3). From the (3n+1) construction for triple system the set
of subblocks {(x,i),(y,i),(x◦1y,j)} is a BIBD(3n + 1, 3, 2). Similarly if we
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select 1st,2nd,and 4th location elements of each ordered block, BIBD(3n+
1, 3, 2) will follow. Now suppose we select 1st,3rd,and 4th then we have
{(x,i),(x◦1y,j),(x◦2y,j)}, by the properties of Idempotent MOLS, we get a
BIBD(3n+1, 3, 2). Same result will follows if we select 2nd,3rd,and 4th. �

Theorem 22. Necessary Conditions are sufficient for BOBIBD(3n +
1, 4, 8, 3, 4).

Proof. BIBD(3n+ 1, 4, 2) exists and BOBIBD(4, 4, 4, 3, 2) exists. So
take four copies of each block and arrange as BOBIBD(4, 4, 4, 3, 2). �

Corollary 4. Necessary conditions are sufficient for BOBIBD(3n+
1, 4, 12t+ 8, 3, 6t+ 4).
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