
Utilizing Housing Resources for Homeless Youth
Through the Lens of Multiple Multi-Dimensional Knapsacks

Hau Chan∗ and Long Tran-Thanh† and Bryan Wilder, Eric Rice, Phebe Vayanos & Milind Tambe‡

Abstract
There are over 1 million homeless youth in the U.S. each year.
To reduce homelessness, U.S. Housing and Urban Develop-
ment (HUD) and housing communities provide housing pro-
grams/services to homeless youth with the goal of improving
their long-term situation. Housing communities are facing a
difficult task of filling their housing programs, with as many
youths as possible, subject to resource constraints for meet-
ing the needs of youth. Currently, the assignment is manually
done by humans working in the housing communities.
In this paper, we consider the problem of assigning home-
less youth to housing programs subject to resource con-
straints. We provide an initial abstract model for this set-
ting and show that the problem of maximizing the total as-
signed youth to the programs under this model is APX-
hard. To solve the problem, we non-trivially formulate it as
a multiple multi-dimensional knapsack problem (MMDKP),
which is not known to have any approximation algorithm.
We provide a first interpretable and easy-to-use greedy algo-
rithm with logarithmic approximation ratio for solving gen-
eral MMDKP. We conduct experiments on random and real-
istic instances of the housing assignment settings and show
that our algorithm is efficient and effective in solving large
instances (up to 1 million youth).

1 Introduction
There are over 1 million homeless youth in the United States
each year. These are young people between the age of 13
and 24 who are homeless, unaccompanied by family, living
outdoors, in places not fit for human habitation, and in emer-
gency shelters (Toro, Lesperance, and Braciszewski 2011).
The consequences of youth homelessness are many, includ-
ing large number of preventable problems such as exposure
to violence, trauma, substance use, and sexually transmitted
disease (Toro, Lesperance, and Braciszewski 2011). A crit-
ical solution to improve long term outcomes for homeless
youth is to quickly and efficiently help the homeless youth
find safe and stable housing situations.
∗Corresponding author. University of Nebraska-Lincoln. Email:

hchan3@unl.edu.
†Corresponding author. University of Southampton. Email:

l.tran-thanh@soton.ac.uk.
‡University of Southern California. Email:

{bwilder,ericr,phebe.vayanos,tambe}@usc.edu.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many non-profit organizations and public sectors pro-
vide temporary housing programs to house eligible homeless
youth within their local communities. In almost all commu-
nities in the United States, the number of youth experiencing
homelessness exceeds the capacity of the housing resources
available to youth (Housing and Urban Development (HUD)
2015). This situation leaves communities with the terrible
predicament of trying to decide (1) who to prioritize for the
precious few spots in housing programs which are available
at any given time, and (2) how to assign prioritized youth to
these spots subject to various resource constraints.

To tackle these questions, most communities have moved
to what is referred to as a Coordinated Entry System. In
such systems, most agencies within a community pool their
housing resources in a centralized system. Persons who are
seeking housing are first assessed for eligibility for hous-
ing, which usually includes HUD-defined “chronic home-
lessness,” other criteria such as veteran status, and “vulner-
ability.” Based on these assessments, persons are prioritized
for housing and placed on waiting lists until appropriate
housing becomes available in the community (Housing and
Urban Development (HUD) 2015) (see (Chan et al. 2017)
for a more detail overview of the current system). Despite
these efforts on prioritizing youth, almost all of the housing
placement and assignment decisions of assigning homeless
youth to housing programs are made by humans manually
working in the housing communities with low efficiencies.

Against this background, this paper investigates whether
this housing assignment problem can be supported by an AI-
based decisionmaker, which can automate the process in an
efficient way, both computationally and performance-wise.
To do so, we provide an initial model of the current housing
assignment process under resource capacity constraints and
decision tools that could be of use to housing communities.

1.1 Our Contribution
This paper contributes to the state of the art as follows:

• We study the problem of utilizing the given housing re-
sources by maximizing the “value” of assigned home-
less youth to a finite number of housing programs, each
with their corresponding resource capacities. To study this
problem from a computational perspective, we provide
the first analytical model for the homeless youth housing
assignment problem (Section 2).

……

High Risk
Disable
Mental Issues

Med. Risk
Disable
Foster

Homeless Youth

…

LBGT Center
Permanent Housing

Mental Health Center
Temporary Housing

Housing Programs
15 Units/Beds/Resources
Resource (Res.) Constraints
10 Res. for Disable Youth
5 Res. for Foster Youth

…

10 Units/Beds/Resources
Resource (Res.) Constraints
7 Res. for Mental Issue Youth

…

pi

Low Risk
Disable
Foster

pi

i

Figure 1: Assigning Homeless Youth to Housing Programs. The
figure depicts the setting of assigning homeless youth to some
housing programs. Homeless youth have different types. Each
housing program has some resource capacity on the number and
the types of homeless youth that they can accept.

• We show that this problem is APX-hard (Section 3).
Therefore, no PTAS solution for this problem exists.

• To (approximately) solve our assignment problem, we
reformulate it as a multiple multi-dimensional knapsack
problem (MMDKP) nontrivially. While the knapsack lit-
erature has been widely studied for a long time, it is quite
surprising that the MMDKP does not have approximation
algorithms with provable performance guarantees. To ad-
dress this issue, we provide the first greedy approxima-
tion algorithm for MMDKP based on the work of (Dob-
son 1982) (Section 4).

• We then evaluate our proposed method on several random
generated assignment instances (up to 1 million youth)
and demonstrate that our algorithm is efficient both in run-
ning time and maximizing the number of assigned youth
in practice (Section 5).

2 Model of Housing Assignment Under
Resource Capacity Constraints

In our setting, we have a set N of homeless youth and a set
H of housing programs. Figure 1 depicts a simple abstract
scenario of assigning homeless youth to housing programs.

Description of Homeless Youth Each homeless youth
i ∈ N has a subset of types ti ⊆ T where T de-
notes the possible types of the homeless youth (e.g.,
T = {registered disable, registered mental health,
LGBT, ..., etc}). Each youth i is characterized by a set of
conditions/types ti.

Description of the Housing Programs There are certain
housing programs available to the homeless youth. We let
H to denote the set of housing programs. There are differ-
ent types of housing programs such as the LBGT perma-
nent, mental health temporary, and LBGT rapidly housing
programs. The permanent housing program is designed for
long-term staying (> 1 year) while the temporary (6-12
months) and the rapidly (1-6 months) (rental) housing pro-
grams are short-term solutions for homeless youth that lost
their jobs or stable homes recently. The goal of the program

is to house homeless youth so that they can find stable solu-
tions afterward. Each housing program h ∈ H has ch hous-
ing units available to homeless youth.

However, not all of the homeless youth can be assigned
to the available programs/units. As limited resources are
provided by some funding agencies such as the U.S. De-
partment of Mental Health, only some homeless youth with
certain types can be placed into the units. As an example,
homeless youth with registered mental health, disability, and
foster issues can be in at most 80%, 0%, and 50% of the
available housing units, respectively. Thus, there are some
constraints and requirements on how many youth of certain
types can be assigned to each of the programs in H .

For h ∈ H , h can provide support to youth containing
some types in th ⊆ 2T . Due to the resource capacity con-
straint, for each t ∈ th, h can only support at most uth (≤ ch)
youth that have type containing t. In other words, youth con-
sume resources of their types in the housing programs.

Assigning Homeless Youth to Housing Programs A
housing program can only accommodate youth with certain
conditions. A youth i ∈ N can be assigned to housing pro-
gram h ∈ H if there is t ∈ th such that t ⊆ ti. Moreover,
there is a value pih denoting the utility of assigning i to h.
In our setting, the value pih = pi is independent of h for all
h ∈ H . In general, the value pi can be arbitrary. or based on
the probability of success (Chan et al. 2017).

Objective and Goal: Our goal is to assign homeless youth
to housing programs that maximizes the overall value of the
assignment subject to the housing program resource capacity
constraints. To present our optimization objective more for-
mally, we define the following terms. We let C = {(i, h) ∈
N × H : ∃t ∈ th such that t ⊆ ti} to be the set of
feasible assignment pairs. We let x(i,h) ∈ {0, 1} to denote
whether i ∈ N is assigned to housing program h ∈ H for
all (i, h) ∈ C. Our problem of assigning homeless youth to
housing programs can be formulated as the following opti-
mization problem:

max
x

∑
(i,h)∈C

pix(i,h) (1)

subject to
∑

i:(i,h)∈C

x(i,h) ≤ ch ∀h ∈ H (2)

∑
i,t⊆ti:(i,h)∈C

x(i,h) ≤ uth ∀t ∈ th, h ∈ H

(3)∑
h:(i,h)∈C

x(i,h) ≤ 1 ∀i ∈ N (4)

x(i,h) ∈ {0, 1} ∀(i, h) ∈ C. (5)

Notice that the above optimization problem is a natural
instance of integer programming (IP), and we solve it using
techniques for solving IP. However, solving IP in general is
not scalable for large problem instances (≥ 50k youth) as
we show in the experimental section. Thus, we need an effi-
cient approximation algorithm that works well in practice.

Definition 1. An assignment {x(i,h)}(i,h)∈C is feasible if
and only if it satisfies Constraints (2) - (5). It is optimal if
and only it is a feasible assignment obtaining the maximum
value of the objective function (1).

3 Computing an Optimal Assignment
It turns out that, even if the value pi = 1 for all i ∈ N ,
it is unlikely that we will be able to solve our problem in
an efficient manner. In fact, it is hard to get within some
constant factor of the optimal solution.
Theorem 1. It is APX-hard to compute an optimal assign-
ment even with one program h and uth = 1 for t ∈ th.

Proof (Sketch). We reduce from the 3-dimensional match-
ing (3DM) problem, which is known to be APX-hard
(Ausiello et al. 1999). In an instance of the 3DM, we are
given sets A, B, and C (A ∩ B ∩ C = ∅) of the same size
and D ⊆ A × B × C, and we want to find a set M ⊆ D
of maximum size such that ∀{a1, b1, c1}, {a2, b2, c2} ∈ M ,
a1 6= a2, b1 6= b2, and c1 6= c2.

Given an instance of the 3DM, we reduce it to our prob-
lem. We let T = A ∪ B ∪ C. For each (ai, bi, ci) ∈ D, we
create a youth i ∈ N such that ti = {ai, bi, ci}. Thus, |N | =
|D|. For i ∈ N , pih = 1 and pi⊥ = 0. There is one (non-
dummy) program h with ch = |N |, t⊥ = th = A ∪ B ∪ C
such that, for each t ∈ th, uth = 1 and ut⊥ = ch. We can
show that M is maximum size if and only if the assignment
is optimal since their objective values are the same.

Despite this hardness result, it is still worth to investigate
whether we have an efficient approximation algorithm with
good performance guarantees. In Section 4, we present an
efficient approximation algorithm for solving the problem.

4 Approximation Algorithm for Computing
an Optimal Assignment

To provide an approximate algorithm for computing an op-
timal assignment, we first reformulate it as a multiple multi-
dimensional knapsack problem (MMDKP). We then derive
an approximation algorithm for our problem by introduc-
ing a new approximation algorithm to solve any MMDKP.
The approximation algorithm for the MMDKP is based on
the basic greedy principle by selecting a single MDKP at a
time and packs the single MDKP using existing (approxima-
tion) algorithm for a single MDKP. The approximation ratio
largely depends on the approximation ratio of the algorithm
for the single MDKP. The best known ratio for MDKP that
runs in polynomial time with respect to the input size is the
algorithm of (Dobson 1982) that depends on the logarithmic
of the sum of the “weights” of the items.

We begin by first discussing the single MDKP and then
present our approximation algorithm for MMDKP.

4.1 Multi-Dimensional Knapsack Problem
In the multi-dimensional knapsack problem (MDKP), we
are given a set of items L = {1, ..., l} and a d-dimensional
knapsack with non-negative integer capacities c1, ..., cd for
the d dimensions. For each item i ∈ L, there a value vi for
packing the item into the knapsack and weights wi1, ..., wid

for the d dimensions. The goal is to find a subset of items
S ⊆ L such that the overall value of the items is maxi-
mized without exceeding the capacities of the d dimensions.
More specifically, S ∈ argmaxS′∈F (L)

∑
i∈S′ vi where

F (L) = {S ⊆ L |
∑
i∈S wij ≤ cj , ∀j = 1, ..., d} consists

of the feasible subsets of L.
The best known approximation algorithm for MDKP (that

runs in polynomial time) is to greedily add items with the
best bang-for-bucks without exceeding the capacity (Dobson
1982; Kellerer, Pferschy, and Pisinger 2004). Hereafter we
refer to this algorithm as BfB (bang-for-bucks), and it can be
described as follows: Defining the bang-for-buck of item i ∈
L to be ei = vi∑d

j=1 wij
, the greedy algorithm that sorts items

according to the e′is and packs the current highest bang-for-
bucks items, one by one, into the knapsack without violating
the capacity constraints yields the following approximation.
Theorem 2 ((Dobson 1982)). The BfB algorithm gives

1
O(H(maxi∈L

∑d
j=1 wij))

-approximation to the MDKP where

H(n) is the first n terms of the harmonic series.
The above theorem states that the approximation ratio de-

pends on the logarithmic of the weights of the items.

4.2 Multiple Multi-Dimensional Knapsack
Problem

In the typical multiple knapsack setting, each knapsack
is only one dimension. We can further extend this no-
tion to multiple multi-dimensional knapsack where each
knapsack is now multi-dimension. More formally, we are
given a set of items L with value vi for each i ∈
L and a set of d-dimensional knapsacks K where for
each k ∈ K, there is a capacity cjk for each dimen-
sion j = 1, ..., d. The goal is to find (S1, ..., Sk) such
that (S1, ..., Sk) ∈ argmax(S′

1,...,S
′
k)∈Fk(L)

∑
i∈

⋃
k∈K S′

k
vi

where F k(L) = {(S1, ..., Sk) ⊆ Lk | (a)
⋂
k∈K Sk =

∅ and (b)
∑
i∈Sk

wij ≤ cjk, ∀j = 1, ..., d, k ∈ K} and
Sk is the set of items packed to knapsack k ∈ K.

Given an instance of MMDKP, it turns out that a sim-
ple approach that greedily select a single multi-dimensional
knapsack to pack until all of the knapsacks are filled
works very well. In particular, suppose that we a f(W)-
approximation for the MDKP (i.e., the multi-dimensional
knapsack problem), where f is some function parametrized
by W with f(W) > 1. Then by using this approximation
algorithm to fill each multi-dimensional knapsack, we can
provide a O(1

2f(W))-approximation in total to the MMDKP.

Theorem 3. Given any 1
O(f(W)) -approximation to the

MDKP, the greedy algorithm that sequentially packs
each multi-dimensional knapsack in the MMDKP yields

1
O(2f(W)) -approximation.

The above proof follows from (Kellerer, Pferschy, and
Pisinger 2004; Chekuri and Khanna 2000). Combining the
above and Theorem 2, we have the following result.
Theorem 4. By applying BfB to the abovementioned
greedy approach we achieve 1

O(2H(maxi∈L

∑d
j=1 wij))

-

approximation to the MMDKP where H(n) is the first n
terms of the harmonic series.

Algorithm 1 The greedyMMD Algorithm

1: Inputs:
2: MDKPs - ∀k ∈ K, j = 1 . . . d: cjk ≥ 0;
3: List of items L - ∀i ∈ L: value vi, weight wi =<
wi1, . . . , wid >

4: Main part:
5: ∀i ∈ L′: calculate ei = vi∑d

j=1 wij

6: K ′ = K //list of remaining unused knapsacks
7: L′ = L //set of remaining unpacked items
8: while unused knapsack exists do
9: choose arbitrary k ∈ K ′

10: while packing k is feasible do
11: Pack item I := argmaxi∈L′ ei into k
12: Remove I from L′

13: end while
14: Remove k from K ′

15: end while

For the sake of simplicity, hereafter we refer to the ap-
proach (used and described in Theorem 5) as greedyMMD
(for greedy multiple multi-dimensional knapsack). The
pseudo code of this algorithm is depicted in Algorithm 1.

Finally, notice that Theorem 2 is the best known approxi-
mation algorithm based on the weights of the items, and we
use it to establish the main result of Theorem 5. In general,
we can plug-in the fixed dimension PTAS result of (Caprara
et al. 2000) and obtain approximation ratio of (1−ε)

2 for some
ε > 0 with running time exponential in O

(
d
ε

)
. Such algo-

rithms might not be feasible for large problem instances and
not as easy to use as BfB.

4.3 Assignment Problem to MMDKP Reduction
Given an instance (N,H, T) of our homeless youth as-
signment problem, we can reduce it to an instance of the
MMDKP. A straight forward reduction is to represent the
homeless youth as items and create a MDKP for each
program with appropriate capacity constraints and (binary)
weights for the homeless youth. However, this direct ap-
proach has a main drawback: the overall dimension of the
MDKP can be exponential in |T |. Beyond the representa-
tion and computational issues, the approximation guarantee
in Theorem 5 becomes quite useless (i.e., also exponential
in |T | in the worst case)!

It turns out that we can have a more compact MDKP for
each program h ∈ H by creating one with dimension |th|+1
instead of the overall dimension 2|T | + 1 and considering
the items/homes youth that can be assigned to h. Previously,
we would have to explicitly represent each homeless youth
type regardless of whether it can be assigned to a particular
housing under the direct reduction. This formulation makes
the problem much more compact.

More precisely, for h ∈ H , we create a MDKP with
Lh = {i ∈ N | ∃t ∈ th, t ⊆ ti} and a d = |th| + 1 di-
mensional knapsack where each dimension corresponds to
a subset of type in th and the additional dimension corre-
sponds to the overall capacity constraint. Furthermore, let
ct = uth for each t ∈ th and cd = ch. For i ∈ Lh, vi = pi

and wit = 1 if t ⊆ ti and wit = 0 otherwise for t ∈ th
and wid = 1. Applying greedyMMD (Algorithm 1) to the
size-variant MMDKP, we can obtain a better approximation.
Theorem 5. The greedy algorithm greedyMMD com-
putes an assignment that gives 1

O(2 log(maxh∈H |th|+1)) -
approximation to the optimal assignment social welfare.

Proof (sketch). The key to prove this theorem is to show that
the optimal solution values optsv , opt, and opta of the size-
variant MMDKP, the original MMDKP, and the optimal as-
signment social welfare are the same, respectively.

We begin by showing the equivalence of the first two.
Let (Sh)h∈H and (Ssvh)h∈H be any feasible sets of of items
packed into the MMDKP under the original and size-variant
settings, respectively. We need to show that (Sh)h∈H (
(Ssvh)h∈H) is also a feasible solution of the size-variant set-
ting (original setting). For any h ∈ H , Sh ⊆ Lh and
items in Sh must satisfy the capacity constraints of the
size-variant MMDKP (since they are the same as the orig-
inal MDKP minus the items that cannot be packed to h).
Since also

⋂
h∈H Sh = ∅, (Sh)h∈H is feasible solution of

the size-variant setting. Similar argument holds for showing
(Ssvh)h∈H is a feasible solution of the original setting. Thus,
their feasible solution sets are equivalent and optsv = opt.

Applying BfB for the single MDKP to the original MDKP
and the size-variant MDKP instances for a program h, we
obtain the same feasible solution (as the bang-per-buck of
the items that can be packed to the knapsack are the same
for the two instances) where the latter case has a better ap-
proximation bound due to a more compact representation.
Thus, greedyMMD for our size-variant instance yields the
approximation that depends on the maximum size of the th.

Finally, let (Ssvh)h∈H be a feasible solution of the size-
variant MMDKP. We can construct a feasible assignment by
setting xih = 1 for i ∈ Ssvh for all i ∈ N and h ∈ H and
xih = 0 for i ∈ N \

⋃
h∈H S

sv
h . Indeed, any feasible assign-

ment is also a feasible solution of the size-variant MMDKP.
Hence, optsv = opta and we obtain our claimed result.

4.4 Practical Implication of Our Approach
A strong advantage of our algorithm greedyMMD is that
it is very simple and intuitive, even for non-technical audi-
ences in the housing community. It is also fairly straight for-
ward to explain and implement (i.e., assign youth that con-
sume the least amount of resources).

Another advantage of greedyMMD is that it is invariant
to the order of the knapsacks. As such, when it comes to
the application to the homeless youth housing assignment
domain, the algorithm, as well as the management of each
housing program, only needs to care about the assignment
of their own program, independently from what have hap-
pened with the other programs (or will happen with the fu-
ture ones). This significantly simplifies the administrative
overhead work needs to be done between different housing
programs. In addition, this advantage allows the algorithm
to be deployed in a distributed manner in each program, and
thus, can act as an autonomous intelligent agent on the be-
half of the management of each particular housing program.

Finally, our algorithm can also work in online settings
where new knapsacks sequentially arrive to the system (i.e.,

we do not have access to all the knapsacks at the begin-
ning). This directly follows from the proof of Theorem 3.
This property is especially important for application do-
mains such as the homeless youth housing assignment prob-
lem, where many new programs are launched time-by-time.

5 Experiment
In this section, our main goal is to evaluate the running time
and performance of greedyMMD for various instances of
our homeless youth assignment problems. The IP program
presented earlier would be used as a benchmark to compare
to the solution generated by greedyMMD.

For this purpose, we consider two main instances of hous-
ing assignment problems based on (1) “hard” and (2) “real-
istic” instances of the problems. The “hard” instances are
the 3-dimensional matching (3DM) instances in our APX-
hard proof. We believe these instances will most likely the
hardest instances we will encounters and would be a good
test of concept to show the efficiency and effectiveness of
greedyMMD. The “realistic” instances of the problems are
based on the current housing matching criteria and the ap-
proximate number of programs/capacities available in a sin-
gle snapshot of a 3-month period. In both cases, we generate
them randomly according to some parameter settings.

We will begin by presenting our experimental setups and
results on the 3DM instances and then we will move on to
discuss the realistic instances.

5.1 Experiments on Solving Hard 3DM Instances
Recall that in a 3DM housing assignment instance, there is
only one program h with th = T = A ∪B ∪ C and uth = 1
for t ∈ T where A, B, and C are disjoint sets of types of
equal sizes (i.e.,A∩B∩C = ∅ and |A| = |B| = |C|). Each
youth i ∈ N has types (ai, bi, ci) ∈ A×B ×C and pi = 1.
The goal is to find a maximum set of youth of disjoint types
without violating the resource capacity constraints.

As such, in our experiments, we consider different num-
bers of youth in {100, 500, 1000, 5000, 10000} and different
sizes of the set of types in {5, 10, 15, 20, 25, 30, 35, 40} (i.e.,
the size of A, B, and C and the number of types is three
times the set size). The youth’s type is generated randomly
by selecting an element from each set (out of the three) of a
given set size. For each possible combination of number of
youth and set size, we generate 100 different instances and
report the running time of the IP and greedyMMD measured
in seconds. The performance of greedyMMD is computed
as the ratio of the solution generated by greedyMMD di-
vided by the optimal solution (OPT) generated by the IP. We
report the average and the minimum ratio values of the 100
instances for different parameter settings.

Figure 2 shows the running time of the IP and
greedyMMD, and greedyMMD’s performance ratio for a
fix number of youth (top plot) and a fix number of set size
(bottom plot). From the top plot, we observe that the run-
ning time of the IP grows exponentially as the number of
set size (types) increase (as indicated by the linear growth
in the logarithmic y-axis scale) while the running time of
our greedyMMD grows linearly. The performance ratio is
quite high (≥ .90) but it seems to decrease as the num-
ber of set size increases. However, the bottom plot suggests

0 5 10 15 20 25 30 35 40 45
Set Size (= 3*Number of Types)

10-2

10-1

100

101

102

103

R
un

ni
ng

 T
im

e
(S

ec
on

ds
, L

og
ar

ith
m

ic
 S

ca
le

)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Pe
rfo

rm
an

ce
 R

at
io

 (G
re

ed
yM

M
D

/O
PT

)

Running Time and Performance Ratio (5000 Youth)

IP:H2 IP:H1 G:H2 G:H1 Average Min:H2 Min:H1

0 2000 4000 6000 8000 10000 12000
Number of Youth

10-4

10-2

100

102

104

R
un

ni
ng

 T
im

e
(S

ec
on

ds
, L

og
ar

ith
m

ic
 S

ca
le

)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pe
rfo

rm
an

ce
 R

at
io

 (G
re

ed
yM

M
D

/O
PT

)

Running Time and Performance Ratio (30 Set Size)

IP:H2 IP:H1 G:H2 G:H1 Average Min:H2 Min:H1

Figure 2: Running Time and Performance Ratio of IP and
greedyMMD. The top plot shows the running time (left y-axis) of
IP and greedyMMDwith one (H1) and two (H2) programs along
with the performance ratio (right y-axis) for 5000 youth and var-
ious set size (x-axis). The bottom plot shows the same except the
number of youth varies (x-axis) and 30 set size. Other plots of dif-
ferent settings are similar.

that as the number of youth increases, the performance ratio
increases as well. Finally, the running times of the IP and
greedyMMD grow linearly with the number of youth for a
fixed set size. These suggests that our greedyMMD is effi-
cient (much more than the IP) and obtains good performance
when we have a large number of youth, which is generally
the case in the homeless youth setting.

5.2 Experiments on Solving Realistic Instances
In the realistic instance setting, we consider the current
housing matching criteria as types such as the one below.

Except the first question for acuity, which has three possi-
ble answers, all of the other questions are binary. Roughly
speaking, acuity is a measure of risk level (low, medium,
and high) (Chan et al. 2017). As a result, the type set
T = {LowAcuity,HighAcuity,, NoMentalHealth,
Y esMentalHealth, ...} and the youth’s types are the sub-
sets of T of size 8 and the answers to these questions.
Each program h in this setting has th ⊆ T , resource
capacity of uth ∼ uniform[1, 25], and the overall ca-
pacity of ch ∼ uniform[1, 50] drawn from the uniform
distribution of the given supports. We initial the pi ∈
[0, 1] for all i to be some random value in between 0
and 1. For the running time and performance ratio com-

0 2000 4000 6000 8000 10000 12000 14000
Number of Youth

10-2

10-1

100

101

102

103

R
un

ni
ng

 T
im

e
(S

ec
on

ds
, L

og
ar

ith
m

ic
 S

ca
le

)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Pe
rfo

rm
an

ce
 R

at
io

 (G
re

ed
yM

M
D

/O
PT

)

Running Time and Performance Ratio

IP:H20 IP:H10 G:H20 G:H10 Average Min:H20 Min:H10

Figure 3: Running Time and Performance Ratio of IP and
greedyMMD. The plot shows the running time (left y-axis) of IP
and greedyMMDwith 10 (H10) and 20 (H20) programs along with
the performance ratio (right y-axis) for different number of youth.

parisons with the IP, we consider smaller instances set-
ting of the number of youth in {1500, 300, 600, 12000}
and the number of programs in {10, 20} due to feasibil-
ity. For the in-house comparison without the IP, we con-
sider much larger instances with the number of youth
in {5000, 10000, 50000, 100000, 500000, 1000000} and the
number of programs in {10, 20, 30}. We consider 50 ran-
domly generated instances for each possible combination.

Benchmarking with IP As in earlier experiments, we
consider the running time and performance ratio of the
greedyMMD. In this setting, the running time of the IP
grows drastically as the number of youth and the number of
program increase (Figure 3). As a result, it is infeasible for
us to run the IP on the larger instances. Figure 3 shows that
the average performance ratio stays around .9 with the worst
performance ratio (of the single instance) at around .7 and .5
for the 20-program and 10-program settings, respectively.

Interestingly enough, as the number of youth (number of
programs) increase, the worst case performance decreases
(increases) while maintaining similar average performance
ratio. While the worst case performance does not look too
pessimistic, we expect our greedyMMD to perform better
on average (∼.9).

Solving Large Instances with greedyMMD We consider
the running time of greedyMMD and its performance rel-
ative to other simple heuristics on large instances up to
one million youth. We consider random (Rand) and prior-
itize (Prio) heuristics where random youth and prioritized
youth (by various factors such as low, medium, high acuity)
are added into the programs, respectively, under the same
greedy method (instead of the bang-for-bucks).

Figure 4 shows the running time and performance of
greedyMMD on large instances. It is no surprise that the
running time of greedyMMD grows linearly in the number
of youth even with different numbers of programs (top of
Figure 4). Moreover, as observe in Figure 4 (bottom plot),
the random and prioritization heuristics obtain only 50% of
the social welfare generated by greedyMMD. These provide
additional evidence that our greedyMMD is effective and
efficiently in solving large instances of our homeless youth
housing assignment problems.

-2 0 2 4 6 8 10 12
Number of Youth (Up to 1 Million) #105

0

5

10

15

20

25

30

35

40

45

50

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

GreedyMMD Running Time

H30
H20
H10

5000 10000 50000 100000 500000 1000000
Number of Youth (Up to 1 Million)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rfo

rm
an

ce
 R

at
io

 (O
th

er
s/

G
re

ed
yM

M
D

)

Performance Ratio (w.r.t. GreedyMMD)

Prio:H10
--:H20
--:H30
Rand:H10
--:H20
--:H30

Figure 4: greedyMMD Running Time and Performance Ratio.
The top plot shows the running time (y-axis) of greedyMMD with
ten (H10), twenty (H20), and thirty (H30) programs for different
number of youth up to one million. The bottom plot shows the rel-
atively performance ratio of random and prioritization heuristics
w.r.t. greedyMMD.

6 Related Work
A related problem is the display ads setting (Mehta 2013).
The display ads setting is essentially the bipartite matching
problem in which there is a packing capacity constraint for
each node in a bipartition specifying the number of times it
can be matched.

Our problem is an instance of the widely studied knap-
sack literature (Kellerer, Pferschy, and Pisinger 2004). While
there are many existing heuristics for these knapsacks, sur-
prisingly (to our best knowledge) there are no heuristics with
theoretical guarantees for the MMDKP. Notice that (Song,
Zhang, and Fang 2008) claim that they have a greedy based
solution with 1

2 ratio. However, their work does not con-
tain any detailed proof. In addition, their result contradicts
to many of the other well known theoretical results in the lit-
erature (e.g., the work of (Dobson 1982; Kellerer, Pferschy,
and Pisinger 2004)).

7 Conclusions
In this paper we investigated the problem of housing assig-
ment for homeless youth. In particular, we have proved that
it is APX-hard. We have also proposed greedyMMD, and
efficient greedy algorithm with provable performance guar-
antees, which makes it first of its kind in both the multi-
ple multidimensional knapsack and homeless youth hous-
ing assignment literature. This algorithm has several advan-
tagous properties which together make it practical, and thus,
deployable as a core algorithm for an intelligent agent to
autonomously and efficiently manage the homeless youth
housing assignment programs.

References
Ausiello, G.; Crescenzi, P.; Gambosi, G.; Kann, V.;
Marchetti-Spaccamela, A.; and Protasi, M. 1999. Complex-
ity and Approximation. Springer-Verlag Berlin Heidelberg.
Caprara, A.; Kellerer, H.; Pferschy, U.; and Pisinger, D.
2000. Approximation algorithms for knapsack problems
with cardinality constraints. European Journal of Opera-
tional Research 123(2):333 – 345.
Chan, H.; Rice, E.; Vayanos, P.; Tambe, M.; and Morton, M.
2017. Evidence from the past: Ai decision aids to improve
housing systems for homeless youth. In AAAI Fall Sympo-
sium Series.
Chekuri, C., and Khanna, S. 2000. A ptas for the multiple
knapsack problem. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’00,
213–222. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics.
Dobson, G. 1982. Worst-case analysis of greedy heuristics
for integer programming with nonnegative data. Mathemat-
ics of Operations Research 7(4):515–531.
Housing and Urban Development (HUD).
2015. Coordinated Entry Policy Brief.
https://www.hudexchange.info/resources/documents/
Coordinated-Entry-Policy-Brief.pdf.
Kellerer, H.; Pferschy, U.; and Pisinger, D. 2004. Knapsack
Problems. Springer, Berlin, Heidelberg.
Mehta, A. 2013. Online matching and ad allocation. Found.
Trends Theor. Comput. Sci. 8(4):265–368.
Song, Y.; Zhang, C.; and Fang, Y. 2008. Multiple multidi-
mensional knapsack problem and its applications in cogni-
tive radio networks. In MILCOM 2008 - 2008 IEEE Military
Communications Conference, 1–7.
Toro, P. A.; Lesperance, T. M.; and Braciszewski, J. M.
2011. The heterogeneity of homeless youth in America: Ex-
amining typologies. National Alliance to End Homeless-
ness: Washington, DC.

