A non-existence result and large sets for Sarvate-Beam designs

Hau Chan and Dinesh G. Sarvate

Abstract. It is shown that for $2 \leq t \leq n - 3$, a strict t-SB$(n, n - 1)$ design does not exist, but for $n \geq 3$, a non-strict 2-SB$(n, n - 1)$ design exists. The concept of large sets for Steiner triple systems is extended to SB designs and examples of a large sets for SB designs are given.

1. Introduction

Stanton [9] renamed a type of block design that was introduced in [7] as Sarvate-Beam Triple Systems (SB Triple Systems). In addition, Stanton obtained several interesting results and raised questions on enumeration and existence, see [10], [11], [12] and [13]. Some of these questions are solved by Hein and Li [5] as well as Bradford, Hein and Pace [1]. In general, an SB design is a block design in which every pair occurs in a different number of blocks. Below is a formal definition:

Definition 1. A Sarvate-Beam design, $SB(v,k)$, consists of a v-set V and a collection of k-subsets, called blocks, of V such that each distinct pair of elements in V occurs with different frequencies i.e., in a different number of blocks. A strict $SB(v,k)$ design is a design where for every i, $1 \leq i \leq (v\choose{2})$, exactly one pair occurs exactly i times.

Example 1. A strict $SB(4,3)$ on $\{1,2,3,4\}$ consists of the following blocks:

$\{1,2,4\}, \{1,3,4\}, \{1,3,4\}, \{2,3,4\}, \{2,3,4\}, \{2,3,4\}.$

Although the general existence question of strict SB block designs is still an open question, it has been proven that the necessary conditions are
sufficient for $k = 3$ by Dukes [3] except for some finite number of exceptions. On the other hand, Ma, Chang and Feng [6] have proved that the necessary conditions are sufficient for $k = 3$. Moreover, SB matrices have been studied by Dukes, Hurd and Sarvate [4]. The following definition and result appear in [8]:

Definition 2. A t-SB(v,k) design is a collection, B, of k-subsets of a v-set such that each t-subset of V occurs a distinct number of times. In a strict t-SB design, for each i, $1 \leq i \leq \binom{v}{t}$, there is exactly one t-subset which occurs in i blocks.

Theorem 1. A strict t-SB(v,k) exists only if
\[
\binom{v}{t} \mid \binom{v}{t}(\frac{v}{t}+1).
\]

2. **Non-existence result**

The following result is known [8]:

Theorem 2. For $n > 4$, a strict $(n - 2)$-SB$(n,n - 1)$ does not exist.

We prove the following result:

Theorem 3. For $n > 4$, a strict t-SB$(n,n - 1)$ does not exist for $2 \leq t \leq n - 3$.

Proof. Let us denote the frequency of an s-subset, $\{a_1, a_2, ..., a_s\}$, in the design by $f(a_1, ..., a_s)$. Let $B_i = \{1, 2, ..., n\} - \{i\}$, $i = 1, 2, \cdots, n$, be the n subsets of size $n - 1$ of $\{1, 2, \cdots, n\}$. Let $F(B_i)$ denotes the frequency of the block B_i in the design if it exists. Without loss of generality, assume that the t-subset $\{1, 2, ..., t\}$ appears exactly once and let $B_n = \{1, 2, ..., t, ..., n - 1\}$ be the block containing $\{1, 2, \cdots, t\}$ that appears exactly once. Observe that there are $n - t$ sets, $B_{t+1}, B_{t+2}, ..., B_n$, among $B_1, B_2, ..., B_{n-1}, B_n$ containing $\{1, 2, ..., t\}$, and $n - t + 1$ sets, $B_1, B_{t+1}, ..., B_n$, containing $\{1, 2, ..., t - 1\}$. As the frequency of $\{1, 2, ..., t\}$ is one and $F(B_n) = 1$, it follows that $F(B_{t+1}) = F(B_{t+2}) = ... = F(B_{n-1}) = 0$. Hence, there exists only one other set, B_t, which contains $\{1, 2, ..., t - 1\}$ but not $\{1, 2, ..., t\}$ whose frequency (say ϕ) may be greater than one in the design. This is the only set other than B_n which contains $\{1, 2, ..., t - 1, x\}$ and $\{1, 2, ..., t - 1, y\}$, where $x, y \in \{t, ..., n\}$ and $x \neq y$. Hence $f(1, 2, ..., t - 1, x) = \phi + 1 = f(1, 2, ..., t - 1, y)$, which is a contradiction. □

The following example is illustrative:

Example 2. A strict 3-SB$(6,5)$ does not exist. First note that the design parameters satisfy Theorem 1. There are 6 subsets $\{1, 2, 3, 4, 5\}, \{1, 2, 3, 4, 6\}, \{1, 2, 3, 5, 6\}, \{1, 2, 4, 5, 6\}, \{1, 3, 4, 5, 6\}, \{2, 3, 4, 5, 6\}$. Without loss of generality, assume the 3-subset $\{1, 2, 3\}$ occurs exactly once in
the block \{1, 2, 3, 4, 5\}. Note that we cannot have blocks \{1, 2, 3, 4, 6\} and \{1, 2, 3, 5, 6\} in this design since we want \{1, 2, 3\} to appear exactly once. Therefore the remaining blocks must be some multiple copies of the sets \{1, 2, 4, 5, 6\}, \{1, 3, 4, 5, 6\}, and \{2, 3, 4, 5, 6\}.

Let \(a, b,\) and \(c\) denote the frequency of the blocks \{1, 2, 4, 5, 6\}, \{1, 3, 4, 5, 6\}, and \{2, 3, 4, 5, 6\} respectively, if the design exists. Note \(f(1, 2, 4) = 1 + a = f(1, 2, 5)\), which is a contradiction.

3. Non-strict 2-SB\((n, n−1)\) designs

Although strict 2-SB\((n, n−1)\) designs do not exist for any \(n\), non-strict 2-SB\((n, n−1)\) designs exist for all \(n \geq 3\):

Lemma 1. A non-strict \(t\)-SB\((n, n−1)\) design is also a non-strict \((t−1)\)-SB\((n, n−1)\) design if \(n−1 \geq 2t−2\).

Proof. Suppose the block \(B_i = \{1, 2, \cdots, n\} - \{i\}\) occurs \(f_i\) times in the non-strict \(t\)-SB\((n, n−1)\) design. A \((t−1)\)-set \(\{i_1, i_2, \cdots, i_{t−1}\}\) occurs in \(b(\sum_{i=1}^{t−1} f_i)\) blocks, where \(b\) is the total number of blocks of the non-strict \(t\)-SB\((n, n−1)\) design. If the design is not a non-strict \((t−1)\)-SB\((n, n−1)\) design, then there exists at least two distinct \((t−1)\)-sets, \(\{a_1, a_2, \cdots, a_{t−1}\}\) and \(\{b_1, b_2, \cdots, b_{t−1}\}\) both occurring the same number of times (say \(\mu\)) in the design. As \(2t−2 = n−1\), there exists an element \(a\) in \(\{1, 2, \cdots, n\}\) but not in the union of \(\{a_1, a_2, \cdots, a_{t−1}\}\) and \(\{b_1, b_2, \cdots, b_{t−1}\}\). Consider the \(t\)-sets \(\{a, a_1, a_2, \cdots, a_{t−1}\}\) and \(\{a, b_1, b_2, \cdots, b_{t−1}\}\). Clearly both occur in \(\mu − f_a\) blocks of the non-strict \(t\)-SB\((n, n−1)\) design which is a contradiction. \(\square\)

In general a \(t\)-SB\((n, k)\) design need not be a \((t−1)\)-SB\((n, k)\) design as shown below:

Example 3. Let \(V = \{1, 2, 3, 4\}\). The collection of blocks with \(t\) copies of \(\{1, 2\}\), one copy of \(\{1, 3\}\), four copies of \(\{1, 4\}\), two copies of \(\{2, 3\}\), three copies of \(\{2, 4\}\) and \(s\) copies of \(\{3, 4\}\) for any distinct values of \(s\) and \(t\) different from 1, 2, 3, and 4 provides a 2-SB\((4, 2)\) design. The design is a strict 2-SB\((4, 2)\) when \(\{s, t\} = \{5, 6\}\). Note that the elements 1 and 2 both have the replication number \(t + 5\) and hence the design is not a 1-SB\((4, 2)\) design.

Theorem 4. A non-strict 2-SB\((n, n−1)\) design exists for every positive integer \(n \geq 3\).

Proof. Let the set of elements be \(\{1, 2, \cdots, n\}\) for a design on \(n\) elements. The proof is based on induction. For \(n = 3\), a non-strict 2-SB\((3, 2)\) design can be easily constructed. Suppose we have a non-strict 2-SB\((n, n−1)\) for some value of \(n\) with \(b\) blocks. We construct a 2-SB\((n+1, n)\) design containing \(2b\) blocks using the blocks of the non-strict 2-SB\((n, n−1)\)
design and the set \(\{1, 2, \cdots, n\} \) as follows. First we construct \(b \) blocks by adding the element \(n+1 \) into each block of the non-strict 2-SB\((n, n-1)\) design. Note that in these blocks each element from 1 to \(n \) occurs different number of times, therefore the pairs \(\{n+1, i\} \) occur different number of times. We complete the construction of non-strict 2-SB\((n+1, n)\) design by including \(b \) copies of the set \(\{1, 2, \cdots, n\} \). The maximum number of times a pair \(\{n+1, i\} \) may have occurred is \(b \), and minimum number of times a pair \(\{i, j\} \), \(1 \leq i < j \leq n \), occurs in the non-strict 2-SB\((n, n-1)\) design is one. Hence, all pairs occur a different number of times in these \(2b \) blocks of the non-strict 2-SB\((n+1, n)\) design. \(\square \)

4. Large sets

Definition 3. A triple system \((V, B)\) is a set \(V \) of \(v \) elements together with a collection \(B \) of 3-subsets (called blocks or triples) of \(V \) with the property that every 2-subset of \(V \) occurs in exactly \(\lambda \) blocks. The size of \(V \) is the order of the triple system. It is also denoted by \(TS(v, \lambda) \), or Steiner triple system, \(STS(v) \), when \(\lambda = 1 \).

Definition 4. Let \((V, B)\) and \((V, D)\) be two \(STS(v) \)’s. Their intersection size is \(|B \cap D| \). They are disjoint when their intersection size is zero. A set of \((v-2) \) \(STS(v) \)’s, \(\{(V, B_i) : i=1, \ldots, v-2\} \), is a large set if any two distinct systems from the set are disjoint.

In other words, the set of all 3-subsets of a \(v \)-set is partitioned into \(v-2 \) \(STS(v) \)’s. It is known that large sets for triple systems exist for all \(v \equiv 1,3 \pmod{6} \) except for \(v = 7 \) [2].

The analogous question to the large set for triple system with respect to SB triple systems can be formulated using the following definition:

Definition 5. Let \(V \) be a \(v \)-set. A family of SB\((v, k)\) designs on \(V \), say \(B=\{B_1, B_2, \ldots, B_n\} \), is a large set with multiplicity \(s \) if \(\bigcup_{i=1}^{n} B_i \) gives \(s \) copies of the set of all \(k \)-subsets of \(V \) for some integer \(s \) and if there is another family of SB\((v, k)\) designs \(C=\{C_1, C_2, \ldots, C_m\} \) where \(\bigcup_{i=1}^{m} C_i \) contains \(t \) copies of all \(k \)-subsets of \(V \), then \(s \leq t \).

Simple counting gives the following result:

Theorem 5. Suppose the multiplicity for the large set for a \(SB(v, k) \) is \(s \) and let the size of the large set be \(n \). Then \(s(v) = \frac{\binom{v}{k} \left(\frac{\binom{v}{k}+1}{2} \right)}{s_k} \times n \); hence a necessary condition for the existence of a large set for strict \(SB(v, k) \) is \(\frac{\binom{v}{k} \left(\frac{\binom{v}{k}+1}{2} \right)}{s_k} \). \(\frac{\binom{v}{k} \left(\frac{\binom{v}{k}+1}{2} \right)}{s_k} \)

Corollary 1. For \(k = 3 \), \(\frac{\binom{v}{3} \left(\frac{\binom{v}{3}+1}{6} \right)}{s_3} \).
The following example will clarify the definition:

Example 4. Consider the set \(V = \{1, 2, 3, 4\} \). We have the following 4 strict SB\((4, 3)\)'s.

- \(B_1 = \{\{1,2,4\}, \{1,3,4\}, \{1,3,4\}, \{2,3,4\}, \{2,3,4\}, \{2,3,4\}\} \)
- \(B_2 = \{\{1,2,3\}, \{1,2,3\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{2,3,4\}\} \)
- \(B_3 = \{\{1,2,3\}, \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \{1,2,4\}, \{2,3,4\}\} \)
- \(B_4 = \{\{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \{1,3,4\}, \{1,3,4\}, \{1,3,4\}\} \).

When we take the multi-union \(B_1 \cup B_2 \cup B_3 \cup B_4 \), we get a multi-set where each of the blocks \(\{1, 2, 3\} \), \(\{1, 2, 4\} \), \(\{1, 3, 4\} \), and \(\{2, 3, 4\} \) occurs 7 times. Indeed 7 is the multiplicity for SB\((4, 3)\), because there are only 4 distinct blocks and SB\((4, 3)\) has 7 blocks, if the multiplicity is \(s \), then \(4 \times s = 7 \times n \) for some integer \(n \). Therefore \(\{B_1, B_2, B_3, B_4\} \) is the large set for SB\((4, 3)\), and as the SB\((4, 3)\) is unique, the large set is unique up to isomorphism.

Example 5. A set of SB\((6, 3)\) designs such that the multi-union of the collections of blocks has multiplicity \(t = 10 \) is given below, however this may not be a large set. The reason is that we obtained these designs by taking isomorphic copies of a single SB\((6, 3)\) design, but according to [5], there are 48,843 non-isomorphic restricted SB\((6, 3)\), and a total of 16, 444, 250 (restricted and non-restricted) SB\((6, 3)\) designs. What we can claim is that using this particular design, the multiplicity cannot be less than 5.

<table>
<thead>
<tr>
<th>Blocks</th>
<th>Design 1</th>
<th>Design 2</th>
<th>Design 3</th>
<th>Design 4</th>
<th>Design 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2,3}</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>{1,2,4}</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>{1,2,5}</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>{1,2,6}</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>{1,3,4}</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>{1,3,5}</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>{1,3,6}</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>{1,4,5}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>{1,4,6}</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>{1,5,6}</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>{2,3,4}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>{2,3,5}</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>{2,3,6}</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{2,4,5}</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>{2,4,6}</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>{2,5,6}</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{3,4,5}</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{3,4,6}</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>{3,5,6}</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{4,5,6}</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
4.1. Large sets for $k = 2$. Let us consider the following two examples:

Example 6. A strict SB(3, 2) design with blocks \{\{1, 2\}, \{1, 3\}, \{1, 3\}, \{2, 3\}, \{2, 3\}, \{2, 3\}\}.

Example 7. Another strict SB(3, 2) design with blocks \{\{1, 2\}, \{1, 2\}, \{1, 2\}, \{1, 3\}, \{1, 3\}, \{2, 3\}\}.

The union of these designs is a multi-set that contains each 2-subset with a multiplicity of 4. In fact, these designs form a large set. This simple observation leads to the following result:

Theorem 6. Large sets with multiplicity \(\binom{v}{2} + 1\) containing exactly two SB\(v, 2\)'s exist for all \(v \geq 2\).

Proof. Let the 2-subsets of a v-set \(V\) be \(\{b_1, b_2, ..., b_{\binom{v}{2}}\}\). Without loss of generality, let the first SB\(v, 2\), \(B_1\), contain blocks \(b_i\) with frequency \(i\). Now construct a second SB\(v, 2\), \(B_2\), where \(b_i\) occurs with frequency \(\binom{\binom{v}{2}}{i} + 1 - i\). It follows that we have a partition \(\{B_1, B_2\}\) of the collection of the 2-subsets of \(V\) with multiplicity \(\binom{\binom{v}{2}}{i} + 1\). \(\square\)

Acknowledgement 1. The authors wish to thank the referee and Dr. Derek Hein for useful suggestions and careful reading of the manuscript.

References

[5] D. W. Hein and P. C. Li, Sarvate-Beam triple systems for \(v = 5\) and \(v = 6\), to be submitted.

(A. One) College of Charleston, Dept. of Math., Charleston, SC, 29424
E-mail address: sarvated@cofc.edu

(A. Two) College of Charleston, Dept. of Math., Charleston, SC, 29424
E-mail address: hchan@edisto.cofc.edu