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Optimizing object-relational database mapping (ORM) design is crucial for performance and scalability in
modern software systems. However, widely used ORM tools offer limited support for exploring performance
tradeoffs, often enforcing a single design and overlooking alternatives, which can lead to suboptimal outcomes.
While systematic tradeoff analysis can reveal Pareto-optimal designs, its high computational cost and poor
scalability hinder practical adoption. This paper presents DesignTradeoffSculptor, an extensible tool suite
for efficient, scalable tradeoff analysis in ORM database design. Leveraging advanced Transformer-based
deep learning models—trained and fine-tuned on formally analyzed database designs—and framing design
exploration as a Natural Language Processing task, DesignTradeoffSculptor efficiently identifies and
removes suboptimal designs, sharply reducing the number of candidates requiring costly tradeoff analysis.
Experiments show that DesignTradeoffSculptor uncovers optimal designs missed by leading ORM tools
and improves analysis efficiency by over 98.21%, reducing tradeoff analysis time from 15 days to just 18
minutes, demonstrating the transformative potential of integrating formal methods with deep learning.
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1 INTRODUCTION

Contemporary software systems are intrinsically reliant on the management and retrieval of exten-
sive data. Consequently, a pivotal design decision in developing such systems is how to structure
the data storage and its interaction with the software. As of August 2024, relational databases
continue to maintain their dominance in the database market [15, 49]. These databases rely on a
relational database management system (RDBMS), such as Oracle or MySQL, to store and retrieve
data. Designing a highly performant and scalable database poses a significant challenge, even
for well versed database architects. It becomes an even more daunting task when undertaken by
software engineers who are primarily trained in, and experienced with, object-oriented software de-
velopment paradigms. This challenge, often referred to as the object-relational impedance mismatch
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problem [13, 26, 27], has persisted since the emergence of object-oriented programming techniques
and continues to be a striking concern today [13].
Several object-relational mapping (ORM) middleware tools, such as SQLAlchemy [48], Hiber-

nate [18], Entity Framework [38], and Django ORM [17], aim to assist developers to bridge this
mismatch gap. These tools automate the generation of relational tables and queries tailored to the
specific RDBMS used by a software system, based on annotated software objects or configuration
files. However, they often provide limited insights into the performance implications of different
mapping strategies. Instead, they tend to lock developers into using a single mapping strategy,
without considering the available object-relational mapping options or the tradeoffs they entail.

Prior studies have demonstrated that systematic tradeoff analysis is a valuable approach for
guiding the design of object-relational database mappings, not only offering insights into optimal
design choices but also unveiling more efficient and optimized design alternatives that are often
overlooked by widely-used leading ORM design techniques [6, 7]. However, it comes with inherent
limitations. The systematic tradeoff analysis, while informative, tends to be slow and resource-
intensive. The substantial expense associated with identifying and synthesizing the space of
alternatives, despite significant research efforts [51–53, 61, 62, 66], as well as assessing them,
limits its practical scalability. Additionally, the computational overhead associated with evaluating
individual design alternatives can significantly impede the efficiency of systematic tradeoff analysis.
For example, applying a state-of-the-art tradeoff analysis technique required over 15 days on
average solely to evaluate the database design of a system under examination (cf. Section 4). These
challenges underscore the need for efficient and scalable approaches to tradeoff analysis in the
context of object-relational database design.
To address this situation, in this paper, we introduce DesignTradeoffSculptor, a novel ap-

proach and accompanying tool suite designed to enable efficient and scalable tradeoff analysis for
identifying optimal database designs in object-oriented software systems. DesignTradeoffSculp-
tor relieves developers from the burden of conducting prohibitively expensive evaluations for
every single point within the entire design space, thereby facilitating the practical application of
systematic tradeoff analysis in real-world software system development. Our approach leverages
cutting-edge deep learning (DL) methods to pin down the database designs that are most likely
to yield (Pareto-)optimal1 tradeoffs for developers, thereby excluding inferior design points from
subsequent analysis. The crux of our approach revolves around the training of a DL model using a
comprehensive dataset comprising formally analyzed database designs. This meticulously trained
model is subsequently deployed to identify (Pareto-)optimal tradeoffs within the design space,
thereby substantially curtailing the number of candidate designs necessitating dynamic evaluation.
We employ DL techniques to efficiently navigate the intricacies of the design space. Our approach
involves framing design space analysis as a Natural Language Processing (NLP) problem, utilizing
state-of-the-art Transformer-based DL models [60] to ascertain the Pareto-optimality of designs
across the entire space. Through rigorous experimentation, we explore a variety of Transformer
models and learning strategies, aiming to pinpoint the most effective approach for comprehensive
design space analysis. These curated design selections can then proceed to the evaluation and
comparative analysis phase, culminating in the presentation of the top-performing designs to the
user. This streamlined approach significantly accelerates the tradeoff analysis process in comparison
to the state-of-the-art techniques, saving remarkable time and resources.

1Pareto-optimal, a term derived from the Pareto principle, refers to solutions that cannot be improved in one aspect without
sacrificing another, thereby representing the highest degree of efficiency attainable within a specific context.
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We thoroughly evaluate DesignTradeoffSculptor across a diverse range of software database
systems originating from various domains. The experimental results strongly support the effective-
ness of tradeoff analysis in revealing Pareto-optimal design schemas that have previously gone
unnoticed by the leading ORM design tools [17, 18, 38, 48]. This underscores the competence of
DesignTradeoffSculptor to unveil more efficient and optimized design alternatives, which are
often overlooked by widely-used state-of-the-practice techniques, including SQLAlchemy [48],
Hibernate [18], Entity Framework [38], and Django ORM [17]. Furthermore, our results reveal
a remarkable enhancement in analysis efficiency, with an average improvement of over 98.21%
compared to the current state-of-the-art in tradeoff analysis. Notably, this translates to a reduction
in the time required for tradeoff analysis from the arduous 15 days, as required by the leading
method in tradespace analysis, to a mere 18 minutes, marking a substantial leap in efficiency (cf.
Section 4). These findings corroborate the significant contributions of DesignTradeoffSculptor
in revolutionizing the landscape of database design and analysis.
In summary, this paper makes the following contributions.
• Efficient Design Tradespace Analysis, Bridging Formal Methods and Machine Learning: This paper
introduces a novel approach that combines the validity of formal methods with the scalable
convenience of machine learning, resulting in a pragmatic solution for efficient database design.

• DesignTradeoffSculptor Implementation: We develop DesignTradeoffSculptor as an exten-
sible tool, backed by training a transformer model on a dataset of formally analyzed database
designs to overcome the limitations of resource-intensive design tradeoff analysis methods, mak-
ing them practical for real-world software development in database design. We make research
artifacts and experimental data available to the research and education community [1].

• Experimental Validation:We conduct a thorough evaluation of DesignTradeoffSculptor across
various software database systems from diverse domains. The results demonstrate its effectiveness
in revealing Pareto-optimal design schemas that often go unnoticed by leading database design
tools. We achieve an average improvement of over 98.21% in analysis efficiency compared to the
current state-of-the-art, revolutionizing the landscape of database design and analysis.

2 MOTIVATING EXAMPLE

To motivate the research and illustrate our approach, we provide an example of the driving problem
tackled in this paper: assisting software designers in developing the optimal database designs
for their object-oriented software systems. We begin by briefly introducing the widely adopted
state-of-the-practice tools, i.e., object-relational mapping (ORM) tools such as Hibernate [18].
These tools typically provide limited, single-point ORM designs to developers, offering minimal
guidance in the selection of the optimal design. We then delve into the state-of-the-art techniques
aimed at aiding designers in analyzing the tradeoffs within database design. While effective in
presenting choices to developers, these methods encounter significant challenges when applied to
large, real-world software systems. Our approach, which we elaborate on in Section 3, introduces an
innovative solution to this scalability issue. Leveraging machine learning, our approach identifies
superior candidate solutions without the need for evaluating the entire tradeoff space. This not
only considerably expedites the analysis process compared to the state-of-the-art but also ensures
the quality of the results.

Database Design Challenges in Practice. The development of software systems often involves
working with data, and one common practice is to use an RDBMS for data storage and retrieval.
While there are many well-established RDBMS solutions available, they are inherently relational,
which can pose challenges for software developers who are more familiar with object-oriented (OO)
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Fig. 1. Partial design space with quality attributes (i.e., tradespace) for database designs for an E-commerce

system, comparing insert and select time and required storage space. (a)-(c) depict partial object-relational

mappings for three design alternatives, with arrows in the scatter plot indicating their positions (black dots

represent individual design alternatives). Designs with optimal tradeoffs (Pareto optimal) are indicated

by triangles. Design solutions generated by state-of-the-practice object-relational mapping tools, namely

SQLAlchemy [48], Hibernate [18], Entity Framework [38], and Django ORM [17], are represented respectively

by S , H , E , and D . Note that the designs produced by widely-used state-of-the-practice tools are

noticeably is far from optimal, and only a small fraction of designs present optimal tradeoffs. Systematic

synthesis and evalution of the entire model space is required to find the optimal tradeoffs.

paradigms. This disconnect has led to the emergence of the object-relational impedance mismatch
problem, necessitating developers to be proficient in both OO and relational concepts. To address
this issue, various object-relational mapping tools, like Hibernate and Entity Framework, have
been introduced. These ORM tools enable developers to map object-oriented data models (OODM)
onto relational tables using different mapping strategies. For instance, Figures 1(a)-(c) present three
distinct mappings for a segment of an ecommerce OODM, which includes Customer, Member, and
Order. These mappings employ varying strategies to represent the association between Customer
and Order and the inheritance relationship between Customer and Member. The data model is
represented by white boxes, with table headers highlighted in grey. Each ORM employs mapping
strategies, represented by dashed lines, to depict the association between Customer and Order, as
well as the inheritance relationship between Customer and Member, within the relational tables.

However, despite the widespread use of ORM tools, the impedance mismatch problem persists,
particularly in selecting the most suitable mapping strategies to meet a system’s non-functional
requirements, which remains a challenging task with limited assistance from the current state
of practice. While ORM tools provide relief from many runtime-related tasks, they still require
developers to define application-specific data mapping specifications. This task involves selecting
mapping strategies to transform an OODM into a relational database schema, each with varying
impacts on non-functional properties like performance and scalability. Many existing ORM solutions
adopt a one-size-fits-all approach, choosing a single mapping strategy without considering the
array of available options and the associated tradeoffs. This leaves developers with the intricate
task of choosing the best mapping strategies based on their application’s specific non-functional
requirements, necessitating a deep understanding of both object-oriented and relational paradigms,
as well as the tradeoffs involved in making these choices within the vast design space.
Challenges in State-of-the-Art Tradeoff Analysis. To address the limitations of state-of-

the-practice ORM techniques, software researchers employ systematic tradeoff approaches to
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Fig. 2. Approach Overview.

evaluate and compare various database designs, seeking optimal performance tailored to their
specific needs. A prominent state-of-the-art technique for assessing the quality of database designs
in object-oriented software systems is specification-driven tradespace synthesis [6, 7]. It takes
an OODM specification of the system to be analyzed, denoted as S, as its input. The system
specification S, along with the formally specified constraints of the generic mapping strategies,
denoted as I, collectively sets the context and constraints for the tradespace exploration. These
specifications are passed into an off-the-shelf solver/model finder (e.g., Alloy Analyzer [28]); the
solver seeks a system-specific ORM model, denoted as𝑚, that satisfies S ∧ I. Each such model is
used to generate a corresponding design variant, enriching the tradespace. Whenever a model𝑚 is
found, the system specification S is updated to exclude𝑚, and the solver is rerun on this updated
specification to find additional valid models, and consequently, more design alternatives. When
no more satisfying models can be found, the synthesis process concludes, having exhaustively
generated designs that align with the input specification. Subsequently, each generated design is
dynamically assessed to determine the values of associated design attributes, positioning it within
the tradespace. The synthesized designs are subsequently compared with each other to identify
the Pareto frontier within the tradespace. This frontier represents points where no single attribute
can be improved without compromising others, signifying a well-balanced tradeoff among design
attributes. Figure 1 illustrates an example tradespace for an E-commerce system. However, this
process is time-intensive. For instance, when applied to the E-commerce system OODM, it demands
almost 66 days of computation time in total.
This example points to one of the most challenging issues in software design tradeoff analysis,

i.e., while the state-of-the-art in the tradespace analysis can reliably produce extensive design
tradeoff spaces and their Pareto frontiers, the process is prohibitively costly and time-consuming.
In the next sections, we first provide an overview of DesignTradeoffSculptor and then delve
into more details about its approach to address this issue.

3 APPROACH

This section provides an in-depth presentation of DesignTradeoffSculptor, which automates the
identification of optimal database designs in object-oriented software systems. Figure 2 depicts a
high-level overview of the approach, which consists of two primary phases: training and prediction.
(1) Training Phase: The approach commences with the formal and precise synthesis and exhaustive
evaluation of all database designs for a given set of training object data models, utilizing state-of-
the-art tradespace analysis techniques. These rigorously constructed design tradespaces, including
associated values for relevant design attributes, serve as training data for a transformer model.
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(2) Prediction Phase: When presented with a novel object data model, DesignTradeoffSculptor
synthesizes its design space but bypasses the exhaustive and costly evaluation. Instead, the design
space is fed into the previously trained Transformer-based DL model. This model efficiently
identifies potential Pareto-optimal candidates, which are then dynamically evaluated. This process
significantly reduces the number of design candidates requiring further assessment, allowing for the
determination of final Pareto-optimal designs without the need for expensive exhaustive analysis.
The approach culminates in presenting these Pareto-optimal designs to the end-user, offering
efficient and optimized database design solutions for new object models.
3.1 Design Tradespace Synthesis

The initial phase of DesignTradeoffSculptor involves collecting database design tradeoff spaces
as training data. To clarify our methodology, we define several key terms. The object model
specification is a formal description of the subject system’s structure, detailing classes, attributes,
relationships, and constraints. Design attributes are quantifiable performance metrics used to
evaluate each database design and include query selection time (the duration required to execute
queries), memory usage (the storage space consumed by the database), and insertion time (the time
taken to add new records). A database design tradeoff space refers to the set of possible database
designs for a given object model, along with their associated performance metrics.

To ensure the quality of our investigation, we took inspiration from the state-of-the-art solution
called Trademaker [7], known for its ability to formally synthesize exhaustive database designs for
a given object model. Using a similar procedure, DesignTradeoffSculptor generates an extensive
set of database designs, which form the basis for our analysis. Specifically, it translates the provided
object model specification into Alloy’s relational formula [29], and then employs an off-the-shelf
SAT solver to produce satisfying design models. Once a database design model is discovered, it is
added to the design space. It then negates each discovered model and incorporates these negations
back into the relational formula. It subsequently iterates through this process of design model
synthesis, aiming to identify models for the updated formula. This process guarantees exploration
of the entire design space while excluding models that have already been identified. This synthesis
process exhaustively generates the design space, representing the full range of possible database
configurations, encompassing all potential combinations and tradeoffs among design attributes.

To identify the actual Pareto-optimal subset of solutions for training purposes, the entire design
space undergoes dynamic evaluation, resulting in values for each design attribute across all designs.
This design space, along with its associated attribute values, is referred to as the ‘tradespace.’
More specifically, it performs dynamic analysis, measuring performance based on parameters like
insertion time, query selection time, and memory usage. In particular, it generates dynamic test
suites for each of these designs. Each test suite consists of two components: (a) The SQL statements
necessary to create a database that matches the specific design being tested; (b) A set of SQL
statements that serve as a test load, designed to evaluate the insertion time, retrieval time, and
storage space requirements for that particular database design. These three metrics are meticulously
measured for each design, effectively defining the ‘tradespace’ and associating each design in the
design space with corresponding values for each design attribute.
3.2 Exploring Design Space to Identify Superior Designs

In the subsequent phase, it navigates the tradespace, aiming to locate the Pareto frontier defined by
designs that excel in various metrics. These Pareto-optimal designs are classified as preferred, while
the remainder is designated as non-preferred. Nonetheless, relying solely on Pareto-optimal designs
for the preferred category presents a substantial class imbalance issue, potentially undermining
the learning model’s effectiveness. Specifically, in practical scenarios, the number of dominated

, Vol. 2, No. FSE, Article FSE074. Publication date: July 2025.



Unlocking Optimal ORM Database Designs: Accelerated Tradeoff Analysis with Transformers FSE074:7

design solutions (i.e., inferior solutions) often largely surpasses the number of superior design
solutions (i.e., Pareto-optimal solutions), leading to class imbalance issue. Take, for instance, the
E-commerce system outlined in Section 2. Figure 1 visualizes the distribution of dominated and
Pareto-optimal design solutions within a real E-commerce design tradespace. Pareto-optimal
solutions are denoted by triangles, while other dominated solutions are represented by black dots.
The figure clearly illustrates that the number of superior design solutions is significantly smaller,
constituting approximately 4% of the total, compared to the number of inferior design solutions.

Data augmentation has become a widely adopted technique in machine learning to combat data
imbalance during model training. It involves applying various transformations or modifications to
existing data, such as rotation, cropping, flipping, or adding noise. The objective of data augmenta-
tion is to generate new training examples that closely resemble the original ones but exhibit slight
variations. This process enhances the overall performance and generalization capacity of machine
learning models by providing them with a more diverse and resilient training dataset. However,
in the context of tradespace analysis, where the solution space already comprehensively covers
all potential design solutions, generating additional valid designs is not feasible. Previous studies
have demonstrated that resampling techniques outperform undersampling methods, as the latter
leads to the loss of valuable information [22]. Therefore, based on the aforementioned analysis and
to rectify this imbalance, we employ minority resampling. This strategy involves augmenting the
training data by replicating examples from the minority class.

Since the optimal sampling distribution is unknown in our problem, we empirically determine it
by creating seven datasets with varying sampling distributions. These datasets involve successively
oversampling from 20% to 80% of instances from class P (Pareto-optimal design solutions) with
a 10% increment at each step. An optimal model in this context achieves higher recall for class P
and higher precision for class NP (non-Pareto-optimal design solutions). In our learning-powered
database design tradespace analysis, it is crucial to limit the omission of Pareto-optimal solutions.

3.3 Transformer-based DL Approach for Design Space Analysis

We conceptualize the design space analysis, particularly the determination of Pareto optimality,
as an NLP problem. Our primary goal is to assess the quality of a design space using natural
language text sequences representing triplets composed of object-oriented data models, relational
database schemas, and object-relational mapping design strategies. To accomplish this, we employ a
Transformer-based DL approach, leveraging its ability to process sequential data, including natural
language text sequences [60]. Given the array of Transformer architectures and learning algorithms
available, our focus is on identifying the most effective method for design space analysis.
Our exploration of Transformer models revolves around two primary dimensions: the incor-

poration (or absence) of prior knowledge and architectural diversity. A Transformer DL model
acquires prior knowledge about linguistic patterns and semantics through parameter adjustments
during extensive training on large natural language text corpora, such as Wikipedia [60]. These
pre-trained models, commonly known as language models (LMs), excel in predicting missing text
within training data. Recent Transformer-based pre-trained LMs have exhibited impressive general
knowledge and reasoning capabilities [41], [59], [45], [46], [12], [65], [10], [16], demonstrating
versatility not only in traditional natural language processing tasks but also in diverse domain
tasks when fine-tuned for specific objectives [24], [45].

Our research aims to compare the effectiveness of fine-tuning pre-trained LMs against training
non-LM Transformer models that lack prior knowledge. Unlike pre-trained LMs, which leverage
extensive training on large corpora, non-LM Transformer models start with random weights
and lack the inherent understanding of linguistic patterns present in pre-trained models. This
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comparison enables us to evaluate the impact of prior knowledge on model performance and
effectiveness across various tasks. Furthermore, our objective extends to identifying the most
effective Transformer architecture, encompassing both encoder-decoder and encoder-only models.

To explore the diverse combinations of prior knowledge and architectural diversity in our Trans-
former models, we structure our domain data into natural language text sequences incorporating the
triplet of object-oriented data models, relational database schemas, and object-relational mapping
design strategies. We begin by fine-tuning pre-trained LMs with natural language text sequences. In
contrast, for training non-LM Transformers, we adopt a dual approach. Initially, we utilize natural
language text sequences. However, recognizing the challenge posed by the large variability of
text tokens stemming from problem-specific definitions of object models and database schemas,
we hypothesize (Hypothesis 1) that non-LMs may not effectively learn from such sequences. To
mitigate this, we also employ standardized natural language text sequences for training non-LM
Transformers. Standardization involves replacing user-defined identifiers with reusable identifiers,
thereby reducing text token variability and aiming to enhance the learning process for these models.
An important consideration is whether the problem should be modeled as a classification task,

where encoder-only BERT-type models predict a class token, or as a language/text generation task,
where classification is reformulated as text generation by appending the class tag to the output
sequence. The extent to which the prior knowledge and linguistic capability of pretrained large
language models (LLMs) contribute to classification tasks depends on whether a pretrained LLM
can infer the class tag (P/NP) in a zero-shot setting or if fine-tuning provides a significant advantage
[43] [35] [46] [12].

By addressing these factors, we aim to gain deeper insights into the role of pretrained language
models in structured classification tasks and their adaptability to problem-specific text sequences.

3.3.1 Problem Formulation. We present a formal description of the learning problem for encoder-
decoder, encoder-only, and decoder-only models.

Encoder-Decoder Transformer. An encoder-decoder model transforms a space-separated
lexical token-based input sequence 𝑋 ∈ (𝑥1, 𝑥2, ..., 𝑥𝑙 ) into an output sequence 𝑌 ∈ (𝑦1, 𝑦2, ..., 𝑦𝑚).
The model is trained via the backpropagation algorithm to minimize the loss between the predicted
output sequence 𝑌 and the true output sequence 𝑌 .
In our problem, 𝑋 represents the triplet of object-oriented data models, relational database

schemas, and object-relational mapping design strategies, while 𝑌 represents the same triplet
with an additional token representing the quality of the design (i.e., Pareto-optimal or not). Our
hypothesis (Hypothesis 2) is that by constraining the model to reproduce the input sequence, we
enhance its ability to comprehend the design solution effectively.

The encoder-decoder Transformer [60] employs an attention mechanism [8] to learn a context-
aware representation of the input tokens. It consists of two architectural components: an encoder
and a decoder. The encoder 𝑓𝐸 (·) maps the input sequence (𝑥1, 𝑥2, ..., 𝑥𝑙 ) to an intermediate latent
embedding sequence (𝑧1, 𝑧2, ..., 𝑧𝑙 ), where 𝜃𝐸 represents the encoder weights.

𝑧 = 𝑓𝐸 (𝑥1, 𝑥2, ..., 𝑥𝑙 ;𝜃𝐸) (1)

The decoder 𝑓𝐷 (·) utilizes the latent embeddings (𝑧1, 𝑧2, ..., 𝑧𝑙 ) to generate an output sequence
(𝑦1, 𝑦2, ..., 𝑦𝑚) in an auto-regressive manner. During prediction, it employs a neural attention
mechanism to identify the tokens in the encoded input sentence 𝑧 most relevant to the target token
it is currently predicting. The probability of generating the𝑚-th token 𝑦𝑚 is given by

𝑝 (𝑦𝑚 |𝑦<𝑚 ; 𝑧1, 𝑧2, ..., 𝑧𝑙 ) = softmax(𝑓𝐷 (𝑦<𝑚 ; 𝑧1, 𝑧2, ..., 𝑧𝑙 ;𝜃𝐷 )) (2)
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where 𝜃𝐷 denotes the decoder weights. For training an encoder-decoder model, the multi-class
cross-entropy loss function is utilized. The number of classes in the loss function is determined by
the total number of tokens in the vocabulary. For a batch size 𝐵, the loss function is defined as:

L = −
𝐵∑︁
𝑏=1

𝑀∑︁
𝑚=1

𝑦𝑏𝑚 log𝑦𝑏𝑚 (3)

Encoder-only Transformer. In contrast to the encoder-decoder model used for token genera-
tion, the encoder-only model is employed solely for learning a representation of the input sequence,
thus eliminating the need for a decoder. Similar to the encoder in the encoder-decoder model, the
encoder-only Transformer creates a contextual representation 𝑍 of the input sequence 𝑋 using
the attention mechanism [8]. During inference, the encoded representations 𝑍 can be utilized for
various downstream tasks, such as text classification or named entity recognition.

Here, the input sequence is defined as 𝑋 ∈ (𝑥1, 𝑥2, . . . , 𝑥𝑙 ), where 𝑋 represents the triplet of
object-oriented data models, relational database schemas, and ORM design strategies. The output
sequence is given by𝑌 ∈ (𝑦1, 𝑦2, . . . , 𝑦𝑚), where𝑌 consists of only the additional token representing
the design quality, without reconstructing the original input. This formulation makes encoder-only
models particularly suitable for classification-based tasks.
We utilize the encoder-only model as a text classifier to determine the binary label (Pareto-

optimal or not) of an input sequence representing the triplet. We apply the softmax function to the
final representation followed by a cross-entropy loss function.

𝑝 (𝑦𝑘 |𝑋 ) = softmax(𝑓classifier (𝑧;𝜃classifier)) (4)
where 𝑦𝑘 represents the class probabilities, 𝜃classifier denotes the classifier parameters, and

𝑓classifier (·) is the classifier function.
The cross-entropy loss for training an encoder-only model with batch size 𝐵 is defined as:

L = −
𝐵∑︁
𝑏=1

𝐾∑︁
𝑘=1

𝑦𝑏
𝑘
log(𝑝 (𝑦𝑏

𝑘
|𝑋𝑏)) (5)

where 𝐾 is the number of classes, 𝑦𝑏
𝑘
is the true label for the 𝑏-th example, and 𝑝 (𝑦𝑏

𝑘
|𝑋𝑏) is the

predicted probability of class 𝑘 for the 𝑏-th example.
Decoder-Only Transformer. A decoder-only Transformer generates an output sequence in an

autoregressive manner, modeling the probability distribution of the next token given the sequence of
preceding tokens. Unlike the encoder-decoder model, it does not employ a separate encoder module;
instead, the decoder itself processes the input. The input sequence is defined as 𝑋 ∈ (𝑥1, 𝑥2, . . . , 𝑥𝑙 ),
where 𝑋 represents a triplet consisting of object-oriented data models, relational database schemas,
and ORM design strategies. The model generates an output sequence 𝑌 ∈ (𝑦1, 𝑦2, . . . , 𝑦𝑚), which
reconstructs the input triplet and appends an additional token indicating design quality.

The decoder-only Transformer uses an attention mechanism [8] to focus on relevant portions of
the input sequence while generating each token in the output. At each decoding step, the probability
of generating the𝑚-th token 𝑦𝑚 is determined by:

𝑝 (𝑦𝑚 |𝑦<𝑚 ;𝑋 ) = softmax(𝑓𝐷 (𝑦<𝑚 ;𝑋 ;𝜃𝐷 )), (6)
where 𝑓𝐷 (·) is the decoder function, 𝑦<𝑚 represents the sequence of previously generated tokens,

and 𝜃𝐷 denotes the weights of the decoder.
Unlike the encoder-decoder model, the decoder-only Transformer leverages self-attention to

compute the representations of both the input tokens and the intermediate outputs during genera-
tion. This architecture eliminates the need for a separate encoder, reducing computational overhead
while maintaining contextual awareness.
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The cross-entropy loss function to minimize the difference between the predicted sequence 𝑌
and the true sequence 𝑌 . The loss function for a batch size 𝐵 is defined as:

L = −
𝐵∑︁
𝑏=1

𝑀∑︁
𝑚=1

𝑦𝑏𝑚 log(𝑦𝑏𝑚), (7)

where𝑦𝑏𝑚 is the true label and𝑦𝑏𝑚 the predicted probability for the𝑚-th token in the 𝑏-th example.

3.4 Data Preparation for Transformer Models

To structure our domain data into natural language text sequences, suitable for training and
fine-tuning the Transformer models, we employ a systematic approach based on the input triplet
⟨𝑂, 𝐷, 𝑆⟩, where𝑂 represents object-oriented data models,𝐷 represents relational database schemas,
and 𝑆 represents object-relational mapping (ORM) design strategies.

Standardized 
Identifiers

Standardized 
Identifiers

Standardized 
Identifiers

Fig. 3. Standardization: Transforming the user-

defined identifiers in the OM, RDS, and ORM strategy

by reusable standardized identifiers.

The process of converting this triplet into text
sequences involves the following steps: We per-
form the following steps: (1) Tokenization: We
tokenize each component of the triplet (𝑂 , 𝐷 ,
and 𝑆) into a series of lexical tokens that repre-
sent the structure and elements of the models,
schemas, and ORM strategies. (2) Sequence Con-
struction:We concatenate these tokens into a sin-
gle space-separated sequence, maintaining the
order of 𝑂 , 𝐷 , and 𝑆 . This sequence forms our
natural language text representation. (3) Stan-
dardization (for standardized natural language
text only): We replace user-defined identifiers
with expert-defined reusable identifiers to reduce variability in the token space. We utilize two types
of text sequences: (1) Natural language text: This retains the original tokens from the ⟨𝑂,𝐷, 𝑆⟩ triplet.
(2) Standardized natural language text: This replaces user-defined identifiers with standardized ones.

The standardization process involves transforming three lexical data structures: OM, RDS, and
the ORM strategy into vectors of space-separated lexical tokens. During this transformation, we
utilize reusable identifiers to replace user-defined entities (e.g., module/class names, types, variable
names, and string literals) from the data structures.
Figure 3 illustrates this process. The user-defined module identifier e-commerce in the OM

source code is replaced by OM_name_O in the standardized version. Similarly, in the OM source code,
the user-defined class name Customer is replaced in the standardized OM by class_1. We append
the general term type to the replaced identifier while representing common data types (class or
variable), such as Integer, String, and Boolean. The class attributes are transformed in a similar
fashion. Standardization of the RDS and ORM follows the same process. For example, user-defined
schema and table names of the original RDS code are replaced by standardized identifiers. This
standardization process helps reduce learning complexity while maintaining the syntactic structure
of the original models [21].

For encoder-decoder and decoder-only models, we append a label (𝑃 or 𝑁𝑃 ) to the input sequence
𝑋 to create the output sequence 𝑌 . For encoder-only models, we use the same input sequence 𝑋 ,
with a binary label𝑌 ∈ {0, 1} representing 𝑁𝑃 and 𝑃 , respectively. This structured approach ensures
that our domain data are consistently transformed into text sequences suitable for processing by
various Transformer architectures, while maintaining the essential information from the original
object-oriented data models, relational database schemas, and ORM strategies.
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4 EXPERIMENTAL EVALUATION

In this section, we focus on evaluating the performance of DesignTradeoffSculptor by answering
the following research questions:

• RQ1. Does tradespace analysis enable identification of Pareto-optimal design schemas that are
entirely overlooked by the state of the practice ORM design tools?

• RQ2. How effectively does our learning-based approach identify Pareto-optimal solutions com-
pared to state-of-the-art specification-driven tradespace analysis techniques?

• RQ3.What is the performance improvement achieved by our learning-based approach compared
to state-of-the-art in tradespace analysis?

• RQ4.Which Transformer-based approach most effectively identifies Pareto-optimal solutions?

Tool Implementation. We have implemented our approach in a tool called DesignTradeoffS-
culptor. We made research artifacts and experimental data available [1]. The specifications were
created in Alloy [29] and executed with Trademaker [7], the Java API of Alloy 5, along with the
Kodkod model finder [58], which powers that particular version of the Alloy Analyzer. Addition-
ally, the SAT4J SAT solver [9] was employed. The translation of the input models into the Alloy
language is implemented using Apache FreeMarker template engine [3]. We have implemented
DesignTradeoffSculptor ’s data abstraction in Python 3. Notably, the prototype implementation
of DesignTradeoffSculptor doesn’t require end-users, such as software developers and database
designers, to possess formal specification or machine learning knowledge.
Transformer Models. Our study incorporated both language model (LM) and non-LM Trans-

former architectures. We employed T5 (Text-to-Text Transfer Transformer) [45] and CodeT5 [64] as
our encoder-decoder pre-trained LMs. T5 was chosen for its versatility and exceptional performance
across various natural language processing tasks, with a context window of 512 tokens. CodeT5,
which follows the architecture of T5, was specifically utilized for its pre-training on code-related
tasks. We utilized the Large variants of both T5 and CodeT5 models, each equipped with 770 million
pre-trained parameters.

For the encoder-only pre-trained LM, we utilized both BERT (Bidirectional Encoder Representa-
tions from Transformers) and CodeBERT. We selected BERT for its ability to capture bidirectional
context and semantic representations, making it ideal for efficient textual information encoding[16].
Specifically, we experimented with the BERT base model, which contains 110 million pre-trained
parameters. Additionally, we incorporated the CodeBERT base model, which extends BERT’s ar-
chitecture to enhance code understanding and representation learning[19]. Pre-trained on both
natural and programming language data, CodeBERT comprises 125 million parameters, offering
specialized capabilities for code-related tasks.

For our decoder model, we employed Llama [59], specifically Llama 3.1 [37], which has 8 billion
parameters. For the non-LM Transformer, we implemented a bespoke encoder-decoder model with
attention mechanisms for context-aware token representation. This model comprises 20,205,976
trainable parameters, initialized with random weights. Both the encoder and decoder consist of a
single layer. We trained the model using a dataset of 13,269 instances, incorporating both natural
language text sequences and their standardized versions.
Deep Learning Experimental Setup. Language Models T5, CodeT5, BERT, and CodeBERT

were fine-tuned using the AdamW optimizer [34] with a learning rate of 2 × 10−5. For T5 and
CodeT5 models, experiments used a batch size of 4 over 12 epochs. BERT and CodeBERT models
used a batch size of 16 over 5 epochs. Batch sizes were constrained by memory limitations during
fine-tuning. The Llama 3.1 model was fine-tuned using AdamW with a learning rate of 2 × 10−4.
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Experiments used a training batch size of 1 and an evaluation batch size of 2, over 8 epochs. Gradient
accumulation with six steps simulated larger batch sizes, mitigating memory constraints.

The non-LM encoder-decoder Transformer underwent training for 120 epochs. The selection of
epoch numbers was guided by empirical considerations, including training accuracy, loss, validation
accuracy, and loss. We experimented with various optimizer choices and ultimately selected the
Adam optimizer [32] due to its superior performance. The hyperparameters employed for the
Transformer model include a learning rate of 0.001, weight decay of 1.0 × 10−5, a batch size of 64, a
vocabulary size of 15,000, and a sequence length of 500. We utilized NVIDIA A100 and NVIDIA
Tesla V100 GPUs for distributed training, completing the fine-tuning (LM) and training (non-LM)
processes for each model in under an hour.

Subject Systems. Our experimental subjects encompass nine distinct database-driven software
systems. Five of these subject systems were directly sourced from prior studies [6, 7, 33], while
the other four were adapted from publicly-available open-source systems. These selected subjects
offer a diverse range of system sizes and complexities, carefully matched to the scales used for
evaluating state-of-the-art tradespace analysis techniques.
The five systems obtained from prior studies [6, 7, 33] are as follows: (1) A software system

developed to support decision-making through design space exploration. (2) an E-commerce system
adopted from Lau and Czarnecki [33]. It represents a common architecture for open-source and
commercial E-commerce systems. (3) A cyber-social operating system (CSOS) intended to aid in
coordinating people and tasks. (4) A straightforward CRM system designed for tracking customers
and orders. (5) Flagship, a system created for tracking revisions to shared documents.
Additionally, we incorporated four more systems from publicly-available open-source systems

into our study: (1) A BankManagement System that handles customer data, accounts, and loans [25].
(2) A Merit Badge Tracker that manages badge awards and camping activities [56]. (3) A streamlined
Online Store System with core e-commerce functionality [40]. (4) A Library Management System
that coordinates book loans and library operations [14].

Baselines and Measures. To address RQ1, we used four widely-used object-relational database
mapping techniques, namely SQL-Alchemy [48], Hibernate [18], Entity Framework [38], and
Django ORM [17], as our baseline. These techniques represent the current state-of-the-practice in
ORM database design. We synthesized and evaluated solutions for our target object data models,
splitting the dataset into a training set (85%) and a testing set (15%) to train and evaluate our
transformer model. Within the 85% training data, we further allocated a portion for validation,
resulting in 70% for training, 15% for validation, and 15% for testing. This three-way split structure
allowed us to provide the model with sufficient data for learning while preventing overfitting. We
used the validation set for real-time performance monitoring, early stopping, and hyperparameter
tuning. To further mitigate overfitting, we employed appropriate regularization techniques and
hyperparameter optimization using the validation data. The separate test set was maintained for
the final, unbiased evaluation of the model’s performance. This approach promises that our model
generalized well to unseen data while maintaining robust performance. Furthermore, we conducted
nine other experiments, each involving training the transformer model on the tradespace of eight
subject systems and testing it on the remaining subject system not included in the training set.

To address RQ2, we employed several evaluationmetrics. The first metric is Generational Distance
(GD) [67], which assesses the distance between the Pareto front generated by DesignTradeoffS-
culptor, the baselines, and a reference frame. It measures the closeness of the designs produced
by each technique to the true Pareto frontier, which represents the set of non-dominated (optimal)
ORM designs. In GD calculation, for each design identified by our approach and the baseline
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techniques, the distance to the nearest point on the Pareto frontier is computed. The GD value is
then determined as the average of these distances. Smaller GD values indicate that the designs
are closer to the Pareto frontier and, thus, are of higher quality in terms of Pareto optimality. The
second metric is Hypervolume (HV) [68], which gauges the proximity of our obtained Pareto front
to a reference frame and the diversity of its points. A higher diversity is considered better. HV
measures the volume enclosed by these points. We compare the hypervolume of the Pareto front
estimated by our ML-based approach with the hypervolume of the solution obtained using all four
leading ORM design techniques.

Fig. 4. Tradespace (Dynamic Tradeoff analysis) for the

subject systems’ database designs. Each black dot rep-

resents the performance of a design schema. Design

solutions generated by state-of-the-practice object-

relational mapping tools, namely SQLAlchemy [48],

Hibernate [18], Entity Framework [38], and Django

ORM [17], are represented respectively by S , H , E ,

and D . The designs produced by widely-used state-

of-the-practice tools are noticeably far from the Pareto-

optimal solutions, denoted by triangles, in terms of

performance.

To address RQ3, we adopted the original
version of TradeMaker [7] as our baseline,
representing the current state-of-the-art in
tradespace analysis for database design. We
quantified the total time, in seconds, and mem-
ory usage required by TradeMaker to conduct
dynamic analysis for tradespace computation
and identify the Pareto frontier for each subject
system.We then compared these time andmem-
ory usage metrics with those taken by Design-
TradeoffSculptor for identifying the Pareto
frontier for the same set of subject systems.
To address RQ4, we conducted experiments

with both LM and non-LM models using two
types of datasets (𝑋,𝑌 ): natural language text
sequences and standardized natural language
text sequences, respectively (refer to Section
3.4). These datasets were constructed from nine
database-driven software applications. The pri-
mary challenge with these datasets is their
significant skew towards 𝑁𝑃 instances. This
skew is attributed to three large applications
(E-commerce, Library Management, and CSOS),
where the number of Pareto-optimal ORM
strategies is notably smaller. To ensure a bal-
anced distribution of 𝑃 and 𝑁𝑃 instances, we
utilized the random sampling technique [22], in-
volving undersampling from the majority class
and oversampling from the minority class [23].
For an unbiased evaluation of the Trans-

former models, we ensure that each model is
trained or fine-tuned using instances from eight
software systems and subsequently tested using the data from the remaining system. This process
entails conducting nine experiments for each model, where it is trained on data from eight systems
and then evaluated on the remaining application. In each iteration, a new test set from the remaining
system is utilized to assess the model’s performance.
In the analysis of design tradeoffs, we focus on two crucial metrics: precision for class 𝑁𝑃 and

recall for class 𝑃 . Recall assesses the model’s ability to correctly identify instances of a particular
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class, while precision measures the accuracy of such identifications. We consider a model to be
optimal if it achieves higher precision for class 𝑁𝑃 and higher recall for class 𝑃 . A perfect recall for
class 𝑃 (i.e., 1) indicates that the model accurately identifies all instances of class 𝑃 . Conversely,
perfect precision for class 𝑁𝑃 (i.e., 1) suggests that the model does not classify any 𝑃 instances as
𝑁𝑃 , resulting in zero false positives.

4.1 Results for RQ1: Impacts of Tradespace Analysis

Figure 4 illustrates tradeoff space plots for eight distinct subject systems, complementing the
one showcased in Figure 1 for the E-commerce system. These plots project the results into 3-D
tradeoff plots. Each plot illustrates tradeoff information in three dimensions: insertion time, retrieval
time, and storage space consumption. In these plots, each dot represents the analysis result of
one database design. The hollow triangles represent Pareto-optimal designs identified through
tradespace analysis in their respective tradeoff spaces, showcasing the Pareto-optimal solutions
in each plot. To assess the effectiveness of tradespace analysis in discovering superior designs,
we compare the results with those produced by widely-used industrial database design tools.
The design solutions generated by state-of-the-practice object-relational mapping tools, namely
SQLAlchemy [48], Hibernate [18], Entity Framework [38], and Django ORM [17], are respectively
denoted as S , H , E , and D . These tools, in contrast to our approach which relies on tradespace
analysis, follow a single-point strategy and produce only a single design. This limited approach fails
to offer decision-makers comprehensive insights into available design solutions or the tradeoffs
associated with time and space performance.
The results in Figure 4, reveal that out of the 128 Pareto-optimal solutions generated across

the nine systems, the state-of-the-practice tools were only able to produce one in the online store
experiment. For the other eight experiments, these tools failed to generate any of the Pareto-optimal
solutions. The design solutions generated by the baseline tools are distant from the Pareto fronts.

The results indicate that systematic tradespace analysis enables uncovering superior design
solutions that are often overlooked by the existing techniques widely used by developers.

4.2 Results for RQ2: DesignTradeoffSculptor in Practice

Table 1. Comparative Generational Distance Analysis of DesignTrade-

offSculptor Against Popular ORMs: Assessing Pareto Frontier Proximity

Object Tradeoff Hibernate Django SQL Entity

Model Sculptor Alchemy Fwk.

Customer-Order 0.02 0.54 0.71 0.69 0.50
Online Store 0.00 0.73 0.15 0.00 0.03
Bank 0.01 0.18 0.09 0.09 0.13
Camping 0.06 0.00 0.07 0.11 0.24
Flagship 0.01 0.01 0.02 0.12 0.13
Decider 0.00 0.48 0.27 0.16 0.45
Library Mgmt. 0.01 0.01 0.03 0.08 0.04
CSOS 0.03 0.34 0.17 0.08 0.42
E-commerce 0.06 0.33 0.64 0.37 0.58
Average 0.02 0.29 0.24 0.19 0.28

To assess the effectiveness
and accuracy of our learning-
powered technique in iden-
tifying Pareto-optimal data-
base designs, we employed
two Pareto front quality met-
rics, i.e., Generational Dis-
tance (GD) and Hypervolume
(HV). These metrics were used
to compare the quality of De-
signTradeoffSculptor’s de-
sign solutions with those gen-
erated by widely-used base-
line tools across nine subject
systems.
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Table 1 presents the results of a comparative Generational Distance (GD) analysis [67], which
assesses the proximity of DesignTradeoffSculptor’s solutions to the Pareto frontier across nine
subject systems. We compared DesignTradeoffSculptor with four state-of-the-art, commonly
used database design tools. The GD metric measures the average Euclidean distance between the
solutions generated by each technique and the true Pareto frontier. A smaller GD value indicates
closer proximity to the Pareto frontier, representing better performance in terms of Pareto optimality.
DesignTradeoffSculptor achieves an average GD of 0.02 across the nine subject systems,

indicating that its solutions closely approximate the Pareto frontier. In contrast, Hibernate, Django,
SQLAlchemy, and Entity Framework have average GD results ranging from 0.19 to 0.29. This
suggests that their solutions deviate more significantly from the optimal trade-offs represented by
the Pareto frontier. While the absolute GD values do not translate directly to specific percentages of
optimality, they provide a relative measure of each tool’s ability to generate Pareto-optimal designs.
The lower GD value of DesignTradeoffSculptor implies that it consistently recommends designs
that are very close to the Pareto frontier compared to the other tools evaluated.

Fig. 5. Comparative Hypervolume Indicator Heatmap

of DesignTradeoffSculptor Against SQLAlchemy [48],

Hibernate [18], Django [17], and Entity Framework [38].

The heatmap in Figure 5 illustrates the re-
sults of a comparative analysis using the Hy-
pervolume indicator [68], which measures
the volume of the portion of the design space
that is dominated by the solutions produced
by each technique across nine subject sys-
tems. We compared DesignTradeoffSculp-
tor with four state-of-the-art, commonly-
used database design tools. The HV results
offer insights into the performance of each
technique in terms of Pareto dominance and
coverage of the design space. Specifically, it
calculates the space covered by the solutions
of each approach. A higher Hypervolume
value signifies superior Pareto dominance.
The approach with the higher hypervolume
demonstrates that the solutions in the set
cover a larger portion of the design space
while remaining as close as possible to the
Pareto frontier. The average Hypervolume
result of 0.85 across nine subject systems for
DesignTradeoffSculptor indicates that it
dominates a substantial portion of the de-
sign space while maintaining proximity to
the Pareto frontier. In contrast, the average Hypervolume results for Hibernate (0.22), Django (0.12),
SQLAlchemy (0.27), and Entity Framework (0.10) suggest that these techniques cover significantly
smaller portions of the design space and do not perform as well in terms of Pareto dominance.
According to the results, the solutions produced by existing Database design tools are less diverse
and do not reach as far towards the Pareto frontier, suggesting that they may not perform as
effectively in finding a wide range of design solutions that balance various design attributes.
We include HV measurements for all approaches, including baseline ORM tools that generate

single-point solutions, to ensure a consistent comparison. For single-point solutions, HV quantifies
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the solution’s dominance in the multi-objective space, calculated relative to a reference point
representing the worst possible values for each objective. This application of HV to single points
provides crucial information about a solution’s overall quality across multiple criteria. Using HV
uniformly allows direct comparison between single-point ORM methods and multi-point solutions
from DesignTradeoffSculptor and Trademaker. This analysis showcases the advantages of exploring
a broader ORM design solution space, evidencing the benefits of considering diverse solution sets.

The data suggests that DesignTradeoffSculptor consistently outperforms common
database design tools, as evidenced by smaller GD values and higher HV results, indicating
closer proximity and greater diversity of solutions to the Pareto frontier in database design.

4.3 Results for RQ3: Performance Improvement

Table 2. Time is measured in seconds and memory usage in KB for the

comparison between TradeMaker [7] and DesignTradeoffSculptor for

identifying Pareto frontiers.

Trademaker [7] DesignTradeoffSculptor

Object Model Time Memory Time Memory

Customer-Order 7,056 67,168 14 61
Online Store 1,004 10,589 24 31
Decider 63,465 601,680 20 134
Flagship 63,971 538,496 98 423
E-Commerce 5,697,328 156,952,992 6,054 40,800
CSOS 5,071,169 177,032,670 2,566 20,000
Bank 1,923 27,021 20 134
Library Mgmt. 915,642 1,600,742 1,055 13,700
Camping 1,808 30,208 24 118
Average 1,313,707 37,429,063 1,097 8,378

Table 2 depicts the results of
our performance comparison
between TradeMaker and De-
signTradeoffSculptor. On av-
erage, TradeMaker takes ap-
proximately 1,313,707 seconds
(about 15.2 days) for analysis,
while our approach completes
the analysis in just 1,097 sec-
onds (about 18 minutes). This
demonstrates a substantial re-
duction in analysis time. In
terms ofmemory usage, Trade-
Maker consumes an average
of 35.7 GB, while our approach for the same subject systems uses an average of around 8.2 MB.

It is important to note that TradeMaker’s performance is due to its exhaustive algorithm design
rather than implementation issues. TradeMaker formally synthesizes the entire solution space,
covering all Pareto-optimal solutions without approximation. Consequently, TradeMaker’s Gen-
erational Distance (GD) is always 0.0, and its Hypervolume (HV) is always 1.0, representing the
ground truth for these metrics. In comparison, DesignTradeoffSculptor achieves near-optimal
results with substantially reduced computational resources. Our approach yields an average GD of
0.02 and an average HV of 0.85 across all test cases, demonstrating its ability to closely approximate
the Pareto-optimal solutions identified by TradeMaker.

This comparison illustrates the trade-off between exhaustive exploration and efficient
approximation in tradespace analysis. TradeMaker finds all Pareto-optimal solutions but
is computationally expensive. DesignTradeoffSculptor balances solution quality and
efficiency, making it practical for real-world scenarios with time and resource constraints.

4.4 Results for RQ4: Identifying the Effective Transformer-based learning approach

Figure 6 illustrates the results obtained from experiments conducted with each Transformer model.
To ensure reliability, each experiment was repeated three times. We report the average and standard
deviation values of precision, recall, and accuracy for all experiments conducted with each model
(nine experiments per model). Our findings indicate that both the decoder-only language model
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(Llama 3.1) and the encoder-decoder non-LM model achieve superior performance compared to
other Transformer-based models. The decoder-only model (Llama 3.1) achieved a recall of 0.84 for
class 𝑃 and a precision of 0.96 for class 𝑁𝑃 , leveraging its extensive prior knowledge and linguistic
capabilities. The encoder-decoder non-LM model, trained from scratch with random initial weights,
performed strongly when trained on standardized text, achieving a recall of 0.85 for class 𝑃 and a
precision of 0.96 for class 𝑁𝑃 . However, its performance declined when trained on raw data, with a
recall of 0.75 for class 𝑃 and a precision of 0.91 for class 𝑁𝑃 .
These results support Hypothesis 1 and Hypothesis 2 (refer to 3.3). Hypothesis 1, which posits

that reducing variability in token space through standardized text improves model performance,
is validated by the superior results of the encoder-decoder non-LM model on standardized data.
Hypothesis 2, which suggests that structured input processing enhances comprehension of design
solutions, is supported by the strong recall and precision demonstrated by both the encoder-decoder
non-LM and decoder-only LM models.

General-purpose language models, such as T5 and BERT, and domain-specialized models, such
as CodeT5 and CodeBERT, exhibit limitations in evaluating design quality due to challenges in
balancing precision and recall when distinguishing Pareto-optimal (𝑃 ) from non-optimal (𝑁𝑃 )
design alternatives. For example, T5 achieves an accuracy of 63% but suffers from low precision
(0.20) for class 𝑃 . Similarly, BERT achieves high recall for class 𝑃 (0.77) but low recall for class 𝑁𝑃
(0.21), resulting in an overall accuracy of only 30%.

Domain-adapted models, like CodeT5 and CodeBERT, underperform in this context. CodeT5
shows 62% accuracy and 0.67 recall (0.15 precision) for class 𝑃 , while CodeBERT achieves 30%
accuracy with 0.28 recall for class 𝑁𝑃 . While effective for some code tasks, these models may lack
depth for applications reasoning for assessing optimal design trade-offs.

Overall, these findings underscore the importance of selecting appropriate learning approaches
tailored to the specific requirements of the task at hand, especially in complex domains like design
space analysis. Furthermore, our results emphasize the benefits of employing an NLP approach for
design space analysis and offer valuable insights for the development of more effective approaches
using Transformer DL models for such tasks.

Fig. 6. Comparison of transformer models for Pareto-optimal solution recognition. Mean and standard

deviation for precision, recall, and accuracy across nine experiments per model are reported.
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The superior performance of the encoder-decoder non-LMmodel when trained on standard-
ized data supports Hypothesis 1 (reducing token space variability improves performance),
while the strong recall and precision demonstrated by both the encoder-decoder non-LM
and decoder-only LM (Llama 3.1) models validate Hypothesis 2 (structured input processing
enhances comprehension of design solutions).

5 DISCUSSION

Comparative Performance of Non-LM and LM-based Models. Our results demonstrate that both
the encoder-decoder non-LM model and the decoder-only language model (Llama 3.1) achieve
superior performance compared to other Transformer-based models in evaluating ORM design
quality. The non-LM model’s strong performance, particularly when trained on standardized text,
can be attributed to its specialized architecture designed to capture structural relationships in
ORM design spaces effectively. This aligns with our Hypothesis 1, which posits that reducing
variability in token space through standardized text improves model performance. Similarly, Llama
3.1’s success stems from its extensive pre-training on diverse corpora, including structured data
and code, as well as its advanced decoder-only architecture with grouped query attention. Both
models benefit from structured input processing, supporting Hypothesis 2, which suggests that
such processing enhances comprehension of design solutions.

In contrast, general-purpose languagemodels (T5, BERT) and domain-specializedmodels (CodeT5,
CodeBERT) exhibit limitations in this task. These models struggle to balance precision and recall
when distinguishing Pareto-optimal from non-optimal design alternatives, resulting in lower
overall accuracy. For instance, T5 achieves 63% accuracy but suffers from low precision (0.20) for
Pareto-optimal solutions, while BERT shows high recall (0.77) for Pareto-optimal solutions but
low recall (0.21) for non-optimal ones. This underperformance can be attributed to their lack of
task-specific adaptation and architectural limitations in capturing the nuanced relationships in ORM
design spaces. Our findings underscore the importance of tailored architectures and appropriate
input processing in complex domains like design space analysis, highlighting the potential of
both specialized non-LM approaches and advanced, fine-tuned language models like Llama 3.1 in
tackling such tasks.

Generalization to Domain-Dependent Design Spaces. While our study focused on ORM problems
without domain-specific naming dependencies, we recognize the need to generalize our approach to
design-space exploration that may require domain knowledge. In scenarios where quality attributes
are naming-dependent, LM-based models might have an advantage due to their natural language
understanding. To address this, we propose future research directions, including developing hybrid
models that combine non-LM and LM strengths, such as incorporating domain-specific embeddings
into non-LM models or using a two-stage approach where LM models interpret domain-specific
terminology. Comparative studies across diverse domains would further elucidate the relative
strengths of non-LM and LM-based models in such scenarios.

Practical Application Workflow. Our proposed method can be integrated into various stages of
the software development lifecycle, particularly during initial database design and performance
optimization phases. The following workflow outlines how developers can apply our approach
to achieve optimal ORM designs: Developers begin by inputting their initial ORM design or a set
of design alternatives into our tool. This can be done during the early stages of database design
or when refactoring an existing system for performance improvements. Our trained Transformer
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model then evaluates the input design(s), considering multiple quality attributes such as query
performance, data integrity, and maintainability. The model generates a set of Pareto-optimal design
recommendations, highlighting trade-offs between different quality attributes. Developers review
these recommendations, taking into account project-specific constraints and requirements that may
not be captured by the model. Based on the model’s feedback and their own expertise, developers
refine the ORM design. This step may involve selecting one of the recommended designs or making
further adjustments. This process can be repeated iteratively to fine-tune the design further.
To facilitate adoption, we are developing a user-friendly tool that implements this workflow,

allowing developers to easily input their designs, receive recommendations, and visualize trade-
offs between different quality attributes. This tool will help bridge the gap between theoretical
optimality and practical application in real-world software engineering contexts.

6 RELATEDWORK

In this section, we provide overview of relevant research and examine them in light of our research.
Design space exploration. A relevant thrust of research has focused on design space explo-

ration [31, 39, 44, 50, 54]. Kang, Jackson, and Schulte [31] used formal methods and an SMT solver
for exploration, focusing on identifying satisfying models rather than optimal ones. Recent efforts
have aimed at constraining the model space during exploration. Sullivan et al. [54] introduced
a method to synthesize models satisfying a specified abstraction function. Porncharoenwase et
al. [44] proposed an approach to identify a representative sample covering a broad syntactic range.
Nelson et al. [39] developed Aluminum, allowing manual user guidance in exploration. These
approaches primarily aim to reduce the model space rather than efficiently identifying optimal
models. In contrast, DesignTradeoffSculptor makes no such assumptions, offering significant
speedups in identifying Pareto-optimal designs while fully exploring the entire design space.
Tradeoff analysis. Tradeoff analysis is another relevant research area [2, 5, 11, 42, 47, 55].

Bondarev et al. [11] introduced DeepCompass for analyzing architectural alternatives, but it re-
quires manual specification and lacks architecture synthesis support. Petke et al. [42] used genetic
improvement to transplant code between system versions for performance enhancement. Schulte
et al. [47] optimized non-functional properties unaddressed by compilers. Aleti et al. [2] developed
ArcheOpterix to optimize embedded system architectures using an evolutionary algorithm on
AADL models, focusing on component deployment. Martens et al. [36] proposed PerOpteryx to
enhance initial software architectural models by searching for Pareto-optimal solutions using ge-
netic algorithms with Palladio Component Models. Unlike our method of automatically identifying
Pareto frontiers from input models, these research efforts often start from a specific solution point
and incrementally optimize it. We view these two approaches to tradeoff analysis as complementary.

Neural Machine Translation. Neural Machine Translation (NMT) has been applied to various
software engineering problems [4, 20, 21, 30, 63]. Cerebro [21] used NMT for mutation testing
optimization, showing strong inter-project prediction but limited by a low subsuming mutant recall
rate. It employed RNN-based NMT, which underperforms compared to Transformer models for
certain tasks. Wang et al. [63] explored Seq2Seq pretraining for NMT, finding improvements but
introducing discrepancies affecting quality. CURE [30] leveraged pre-training techniques for neural
program repair, facing challenges in benchmarking due to data variations and Java dependency.
AutoTransform [57], an NMT-based approach for automating code transformations in code reviews,
has limitations in scope and scalability. Gad et al. [20] introduced a transformer-based model for
pseudo-code generation, showing promise with Python data but limited by single-language focus.
Unlike all prior work, our approach, to the best of our knowledge, is the first to employ NMT
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extensively for identifying Pareto optimal solutions in tradeoff selection, reducing reliance on
resource-intensive tradespace dynamic evaluation and saving time and memory.
7 THREATS TO VALIDITY

External validity threats relate to the generalizability of our findings beyond the specific software
database systems used in our experiments. While DesignTradeoffSculptor has demonstrated
its success across a diverse set of systems, it is important to acknowledge that its performance
may vary when applied to systems from different domains or with distinct characteristics. To
mitigate this issue and enhance the external validity of our study, we carefully selected a varied set
of real-world database-driven software systems from various application domains, encompassing
more than 13,000 database designs across nine subject systems.
The primary internal validity concern in our experimental evaluation pertains to the accuracy

and reliability of our custom implementation. To mitigate this threat, we rigorously debugged
and extensively tested our code, including the implementation of unit tests. These measures
ensure that our custom implementation accurately analyzes database models, reducing the risk of
implementation-related errors influencing our results.
Construct validity threats typically revolve around the selection of appropriate metrics and

measures for assessing the phenomenon under investigation. In this study, we have taken significant
measures to address construct validity concerns. Our choice of metrics, including Generational
Distance and Hypervolume, aligns with established practices for evaluating tradeoff analysis
techniques. Furthermore, our use of diverse subject systems and comprehensive training and
validation of the transformer model adds to the robustness of our approach, minimizing potential
validity threats.
8 CONCLUSION

This paper introduces DesignTradeoffSculptor, a novel machine learning-based solution for
swiftly identifying optimal tradeoffs in database designs for object-oriented software systems. By
training a transformer model on a dataset of formally analyzed database designs, DesignTrade-
offSculptor efficiently pinpoints Pareto-optimal design tradeoffs, significantly reducing the need
for costly design tradespace analysis. Evaluation across various software database systems show-
cases DesignTradeoffSculptor’s ability to unveil previously overlooked Pareto-optimal design
schemas while drastically improving analysis efficiency, with an average time reduction exceeding
98.21% compared to current state-of-the-art methods.
Future work could explore extending it to other domains like software architecture or code

optimization, promising valuable insights. Additionally, integrating it into integrated development
environments (IDEs) or database design tools could streamline the design process by providing
real-time feedback and recommendations to developers during the design phase.
9 DATA AVAILABILITY

Research artifacts and experimental data are available at
https://www.doi.org/10.6084/m9.figshare.24233629
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