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Abstract—Declarative specification languages like Alloy are
critical for modeling and verifying complex software systems, yet
repairing these specifications remains a significant challenge for
ensuring software dependability. This study conducts the first
comprehensive empirical evaluation comparing traditional sys-
tematic repair techniques with emerging Large Language Model
(LLM)-based approaches across two established benchmarks,
analyzing over 1,900 Alloy specifications. By systematically an-
alyzing repair success rates, ground truth similarity, and repair
generation strategies, we reveal nuanced performance character-
istics of different repair methodologies. Our findings demonstrate
that while traditional tools excel in systematic fault localization
and achieving high ground truth similarity, LLM-based tech-
niques—particularly multi-round prompting approaches—offer
unique capabilities in addressing complex specification errors,
with some hybrid approaches achieving repair rates of up to
85.5%. Critically, we show that integrating traditional fault
localization techniques with LLM-based repair strategies can
significantly enhance overall repair effectiveness and specification
dependability. This research provides a large-scale empirical
evaluation of how various Alloy repair techniques work in
synergy, offering valuable insights that chart a promising path for
future automated specification repair approaches and contribute
to the development of more reliable and secure software systems.

I. INTRODUCTION

As our reliance on software systems grows, particularly
in safety-critical domains, ensuring their reliability becomes
paramount. Declarative specification languages play a crucial
role in addressing this challenge by enabling developers to
precisely define system behavior without implementation de-
tails. This approach facilitates the modeling, verification, and
analysis of complex systems, catching subtle yet potentially
dangerous bugs at the design level before implementation
begins [1]–[3]. Among these, the Alloy specification lan-
guage [4] stands out for its powerful capabilities in utilizing
relational algebra and first-order logic to model systems and
verify their properties, providing a formal framework applica-
ble across many domains in software engineering.

Alloy’s versatility is evident in its wide-ranging applica-
tions, from software verification and security analysis to sys-
tematic test case generation [5]. In software verification, Alloy
detects errors and inconsistencies early in the development

process, ensuring systems behave as intended [6]–[10]. For
safety and security analysis of modern platforms, like the
Internet of Things (IoT) and Android, Alloy helps identify and
mitigate otherwise undetected vulnerabilities [11]–[18]. Addi-
tionally, Alloy aids in the systematic generation of test cases,
enhancing software robustness through comprehensive testing
coverage [19], [20]. The integration of Alloy with the Alloy
Analyzer further enhances its functionality by automating the
verification of specified properties within given constraints,
providing immediate feedback and facilitating a more efficient,
iterative approach to specification development. Notably, Alloy
has been successfully applied to diverse critical systems,
ranging from web security protocols to surgical robots [1],
[21], demonstrating its effectiveness in enhancing software
reliability and safety across a wide spectrum of domains. This
broad applicability underscores Alloy’s capability to address
complex dependability challenges in various critical software
systems.

However, the process of debugging and repairing these spec-
ifications remains a significant challenge [22], [23]. Unlike
imperative programming languages, where automated program
repair (APR) techniques have seen substantial advancements,
declarative specification repair presents unique complexities
that demand innovative approaches. This gap is particularly
critical for Alloy users facing challenges in debugging and cor-
recting subtle bugs in complex system specifications. A recent
empirical study analyzing over 93,000 Alloy specifications
found that approximately 75% of specifications written by
novice users are either incorrect or fail to compile, with 45.3%
of the specifications being faulty and an additional 29.28%
not compiling, highlighting the urgent need for effective
debugging and repair techniques in declarative specification
languages [23].

The inherent characteristics of declarative
languages—emphasizing what a system should do rather than
how it should be implemented—introduce nuanced challenges
for repair techniques. Specifications often involve intricate
logical constraints, relational modeling, and complex state
representations that traditional repair methods struggle to
address comprehensively. Moreover, the absence of explicit



procedural logic means that repair strategies must navigate
abstract semantic relationships rather than straightforward
syntactic transformations.

In response to these challenges, researchers have developed
a range of approaches to Alloy repair [24]–[32]. Traditional
tools like ARepair [25], ICEBAR [26], BeAFix [27], and
ATR [28] have made initial strides, employing strategies such
as test-based repair, counterexample-driven approaches, and
bounded exhaustive exploration. These tools represent the first
wave of solutions addressing the previously identified lack of
APR techniques for declarative specifications.

Recent technological developments, particularly the emer-
gence of Large Language Models (LLMs), have opened new
frontiers in automated repair techniques. These models of-
fer unprecedented capabilities in understanding context, gen-
erating semantically meaningful repairs, and bridging gaps
between human intent and computational implementation.
However, their application in declarative specification repair
remains largely unexplored, presenting both exciting opportu-
nities and significant methodological challenges. Recent stud-
ies have begun to investigate LLM-based techniques, offering
new possibilities in natural language understanding and code
generation for specification repair [33], [34].

Our study emerges from this complex landscape, seeking
to systematically investigate and evaluate approaches to Alloy
specification repair. We recognize that no single repair tech-
nique can universally address all specification defects. Instead,
we aim to develop a nuanced understanding of how differ-
ent repair methodologies—ranging from traditional systematic
approaches to cutting-edge machine learning techniques—can
complement and enhance each other.

The research presented here is motivated by three critical
observations in the field of specification repair:

1) Methodological Diversity: Existing repair techniques
employ fundamentally different strategies, from test-
driven approaches to counterexample-based methods and
emerging LLM-driven techniques.

2) Limited Comprehensive Evaluation: Prior studies have
typically focused on individual repair techniques, leaving
a significant gap in understanding their relative strengths,
limitations, and potential synergies.

3) Technological Convergence: The rapid advancement
of machine learning techniques presents unprecedented
opportunities for integrating traditional systematic ap-
proaches with intelligent, context-aware repair strategies.

This study represents the first large-scale empirical evalua-
tion of how various Alloy repair techniques work in conjunc-
tion. By conducting a comprehensive, empirical investigation
into Alloy specification repair techniques, we seek to address
challenges in automated specification repair and provide in-
sights to guide future research and development. Our study
utilizes established benchmarks, including the ARepair bench-
mark [35] and the Alloy4Fun benchmark [36], to evaluate
the effectiveness of various repair techniques across different
problem domains. This research explores key questions about
the effectiveness of individual Alloy repair techniques, their

complementarity, and the potential for hybrid approaches that
leverage the strengths of both traditional and LLM-based
methods. We assess repair effectiveness through quantitative
measures such as repair success rates and similarity to ground
truth, while also considering qualitative aspects of the gen-
erated repairs. Through rigorous methodology and analysis,
we aim to contribute insights to the field of declarative
specification repair, paving the way for more robust, efficient,
and intelligent repair strategies.

Our study presents the following significant findings:

• Finding 1: Alongside traditional repair techniques, LLMs
have shown significant effectiveness in repairing Alloy
specifications, particularly using multi-round prompting
techniques. In the ARepair benchmark, Multi-Round
LLM approaches outperformed traditional methods, while
in the Alloy4Fun benchmark, they were competitive with
top-performing traditional techniques. This suggests that
leveraging advanced algorithms and machine learning
models can enhance repair performance beyond what
traditional methods alone can achieve (Section IV-A,
Table I).

• Finding 2: Both traditional and LLM-based techniques
achieved high similarity to the ground truth in certain
scenarios, indicating their potential to produce high-
fidelity fixes. Notably, traditional techniques like ATR,
ICEBAR, and BeAFix consistently achieved higher sim-
ilarity scores, especially in the Alloy4Fun benchmark.
This highlights the strength of established methods in
maintaining the integrity of the original specification
(Section IV-A, Figure 2).

• Finding 3: Correlation analyses revealed varying pat-
terns of similarity among different repair methods across
benchmarks. While traditional techniques showed strong
internal correlations, LLM-based approaches demon-
strated distinct patterns. This suggests that integrat-
ing multiple repair methods, especially across different
paradigms, could lead to more robust and comprehensive
repair strategies (Section IV-B, Figure 3).

• Finding 4: Combining fault localization capabilities of
traditional tools with the bug fixing strengths of LLM-
based techniques showed potential for improved results,
particularly in enhancing repair case ratios. The effec-
tiveness of these combinations varied across benchmarks,
with some pairings (e.g., ATR with Multi-Round LLM
approaches) showing significant improvements in the
Alloy4Fun benchmark. This synergy between approaches
suggests a promising direction for more effective and
efficient code repair processes (Section IV-C, Figure 4).

To summarize, the novel contribution of this study is a
large-scale empirical evaluation comparing traditional and
LLM-based Alloy repair methods across two benchmarks,
uncovering their complementary strengths. It introduces hybrid
repair strategies that combine systematic fault localization with
iterative multi-round LLM prompting, significantly improving
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repair success rates and advancing our understanding of spec-
ification repair methodologies.

The remainder of this paper is structured as follows: Section
2 provides background on Alloy and existing repair tech-
niques. Section 3 details our study design and methodology.
Section 4 presents our experimental results and analysis.
Section 5 presents potential threats to the validity of our study
and the measures taken to mitigate them. Section 6 discusses
the implications of our findings and potential future directions.
Finally, Section 7 concludes the paper with a summary of our
key insights and their significance for the field of automated
specification repair.

II. ALLOY: A LIGHTWEIGHT SPECIFICATION FOR
DEPENDABLE SYSTEMS

Alloy is a lightweight formal specification language and
analysis tool designed to enhance software dependability
throughout the development lifecycle [37]. It enables devel-
opers to model and analyze complex software designs, with a
particular focus on critical system properties and dependability
cases. Using a simple yet powerful syntax based on first-order
logic and relational algebra, Alloy allows for the expression
of intricate structural constraints and behaviors of software
systems. The tool’s primary strength lies in its ability to
formally verify system properties and invariants before imple-
mentation, thereby significantly improving software reliability
and robustness. By facilitating early detection of design flaws,
inconsistencies, and potential failure modes, Alloy plays a cru-
cial role in building dependable software systems. It supports
the creation and validation of dependability cases, allowing
developers to systematically reason about and demonstrate the
reliability, safety, and security of their systems.

The Alloy Analyzer is a crucial component of the Alloy
toolkit. It automatically analyzes Alloy specifications to find
instances (examples) that satisfy the model’s constraints or
counterexamples that violate specified assertions. The Ana-
lyzer translates Alloy models into boolean satisfiability (SAT)
problems and uses off-the-shelf SAT solvers to find solutions.
This approach allows for bounded verification, where the
Analyzer explores all possible scenarios within a specified
scope, providing concrete feedback to developers.

To illustrate the key concepts of the Alloy formal specifi-
cation language and demonstrate how automated repair tools
can address subtle bugs, this section presents a simplified file
system specification derived from the Alloy4Fun benchmark.
This example will showcase Alloy’s syntax, basic concepts,
and a common bug that developers might encounter.

This specification demonstrates several key Alloy concepts.
Signatures, defined on lines 1-12, represent sets of atoms. The
‘abstract’ keyword on line 1 indicates that Key cannot have
direct instances, while ‘extends’ on line 2 creates a subset
relationship. Within signatures, fields define relations, such as
‘keys’ in Room (line 4) which relate each Room to a set of
Keys. Multiplicity keywords like ‘lone’ in FrontDesk (line 10)
specify that each Room maps to at most one RoomKey.

1 abstract sig Key {}
2 sig RoomKey extends Key {}
3 sig Room {
4 keys: set Key
5 }
6 sig Guest {
7 keys: set Key
8 }
9 one sig FrontDesk {
10 lastKey: Room -> lone RoomKey,
11 occupant: Room -> lone Guest
12 }
13
14 fact HotelInvariant {
15 all r: Room | some FrontDesk.lastKey[r]
16 all r: Room, k: Key | k in r.keys iff k = FrontDesk.

↪→ lastKey[r] or k in FrontDesk.occupant[r].keys
17 all g: Guest, r: Room | g = FrontDesk.occupant[r] iff

↪→ FrontDesk.lastKey[r] in g.keys
18 }
19
20 pred checkIn(g: Guest, r: Room, k: RoomKey) {
21 r not in FrontDesk.occupant.Guest
22 no g.keys
23 FrontDesk.lastKey' = FrontDesk.lastKey ++ r->k
24 FrontDesk.occupant' = FrontDesk.occupant + r->g
25 g.keys' = g.keys + k
26 r.keys' = r.keys + k
27 }

Fig. 1: Faulty Alloy Specification of Hotel Key Management.

Facts, such as HotelInvariant (lines 14-18), define con-
straints that always hold in the model. Predicates, like checkIn
(lines 20-27), describe operations, using primed variables (e.g.,
lastKey’) to represent post-state values. Alloy also employs
quantifiers and operators: ‘all’ (lines 15-17) is a universal
quantifier, while operators like ‘in’, ‘->’, and ‘+’ manipulate
sets and relations.

The subtle bug in this specification lies in the checkIn
predicate, specifically on line 22: no g.keys. This con-
straint requires that a guest have no keys when checking in,
which is overly restrictive. It prevents scenarios where a guest
might legitimately hold keys to other rooms or check into
multiple rooms. This bug exemplifies the challenges in formal
specification: It requires a deep understanding of the real-
world system being modeled, demands a delicate balance in
constraint formulation, and might only reveal its full impact
when considering diverse use cases.

Automated repair tools can significantly aid in addressing
such nuanced issues. These tools might identify the problem
where valid check-in scenarios are prevented. For instance,
a tool could suggest replacing line 22 with a more precise
constraint: k not in g.keys. This modification would
ensure the guest doesn’t already have the specific key being
issued, rather than requiring no keys at all. The challenge
for automated repair tools in this case is to identify the
overly restrictive nature of the constraint that illustrates valid
scenarios the current specification doesn’t allow.

By addressing such subtle logical errors, automated repair
tools can significantly aid developers in creating correct and
robust formal specifications, especially when dealing with
complex structural constraints like those found in access
control systems. While our example focused on an overly
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restrictive constraint, automated repair tools can address vari-
ous types of bugs in Alloy specifications. These may include
under-constraint issues (where the model allows unintended
behaviors), over-constraint problems (where valid scenarios
are inadvertently excluded), logical inconsistencies, and syntax
errors. These tools must not only identify bugs but also
propose fixes that maintain the overall integrity of the model
while allowing for all valid real-world scenarios.

III. STUDY DESIGN

Automated repair of declarative specifications presents com-
plex challenges that demand sophisticated approaches to iden-
tify, localize, and correct software defects. This section out-
lines our methodological framework for evaluating and under-
standing the landscape of Alloy specification repair techniques.
We present a comprehensive overview of selected repair tools
and techniques, describe the benchmark specifications used
for evaluation, detail the metrics employed to assess repair
effectiveness and provide the experimental settings and im-
plementation details.

A. Research Questions
In this study, we address three fundamental research ques-

tions that explore the landscape of Alloy specification repair:
RQ1: (Effectiveness) How effective are individual Alloy

repair techniques—including traditional tools and LLM-based
approaches?

This question systematically assesses the performance of
diverse repair methodologies across established benchmarks.
By evaluating each technique’s ability to generate accurate
repairs, we aim to understand the strengths and limitations
of current approaches in addressing specification defects. Our
investigation will provide insights into the effectiveness of both
traditional systematic repair tools and emerging large language
model-based techniques.

RQ2: (Complementarity) To what extent do these tech-
niques produce similar or complementary repair outcomes?

Our investigation explores the potential synergies and varia-
tions among different repair approaches. We aim to determine
whether techniques produce similar repairs or offer unique
solutions to specification challenges. By analyzing the cor-
relation and divergence between repair methods, we seek to
understand how different approaches might complement each
other in addressing complex specification defects.

RQ3: (Combination) What is the potential for hybrid ap-
proaches that leverage strengths from both traditional methods
and LLM-based techniques?

Building upon insights from the previous research questions,
this inquiry explores the possibility of creating more robust
repair strategies by integrating different methodological ap-
proaches. We investigate how the systematic fault localization
capabilities of traditional tools might be combined with the
flexible, context-understanding strengths of large language
models to develop more comprehensive repair techniques.

To address these research questions, we designed a com-
prehensive study that systematically examines various Alloy
specification repair techniques.

B. Selected Tools and Techniques
In this study, we conduct a comparative analysis that

evaluates the performance of four state-of-the-art traditional
Alloy repair techniques against several recent methods that
utilize Large Language Models for conducting repairs. These
tools and techniques serve as a baseline for several studies
that have achieved remarkable results in fixing faulty Alloy
specifications [26]–[28], [33]–[35]. The specific tools used in
our study are described in detail below.

1) Traditional Alloy Repair: We focus on four traditional
repair tools that do not use LLMs in their process. ARe-
pair [25], ICEBAR [26], BeAFix [27], and ATR [28]. Each
tool uses a distinct approach to specification repair.

a) Arepair [25]: The ARepair tool is designed to address
faulty Alloy models by taking them as input alongside a suite
of tests that outline the desired model properties. It generates
a corrected model that satisfies all provided tests. Utilizing
tests crafted within the AUnit framework—an established
method for unit testing Alloy models—ARepair identifies and
rectifies faults in the models. ARepair operates by accepting
a defective Alloy model responsible for triggering failed tests,
along with an AUnit test suite. ARepair explores the solution
space iteratively, aiming to rectify the model so that all tests
pass successfully. This iterative process may involve multiple
modifications to the model, with ARepair employing a greedy
approach until it either discovers a solution that resolves all test
failures or exhausts all possibilities without success. ARepair’s
main limitation is its reliance on user-provided tests, which can
cause overfitting—producing repairs that pass the tests but may
not meet the intended specification.

b) ICEBAR [26]: ICEBAR is an iterative,
counterexample-driven process designed to generate and
validate repairs for flawed Alloy specifications. The process
begins by accepting a defective Alloy specification along
with a failing property-based oracle as inputs. Utilizing
Alloy’s counterexamples, ICEBAR constructs tests that
are processed by ARepair (as previously introduced) to
produce a candidate repair. This candidate is then evaluated
against the property oracle to check for overfitting: if it
satisfies the oracle, it is considered a successful repair; if
not, ICEBAR generates additional counterexamples to further
refine the test suite. This iterative cycle continues until either
a successful repair is identified or no viable repairs can be
found. ICEBAR employs various mechanisms to generate
counterexamples from failing predicates and assertions, each
varying in reliability. Overall, ICEBAR’s refinement strategy
enhances robustness, but its success is limited by the quality
of generated counterexamples.

c) BeAFix [27]: BeAFix is an automated repair tech-
nique specifically developed for addressing faults in Alloy
models. It employs a distinct strategy that utilizes bounded
exhaustive exploration to navigate the space of potential repair
candidates, significantly enhanced by a robust pruning method
that improves scalability. Unlike other Alloy repair methods,
such as ARepair [25] and ICEBAR [26], which depend on unit
tests for validation, BeAFix operates without them, instead
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leveraging assertions inherent to the Alloy specification. This
allows for a more integrated approach to model correction.
The process begins with BeAFix mutating a faulty Alloy
model to generate repair candidates, diligently exploring the
state space while applying pruning strategies to optimize
efficiency and manage the rapid growth of potential solutions.
While BeAFix can utilize tests as oracles for validation, it
primarily relies on property-based oracles found in Alloy
models through predicate satisfiability and assertion validity
checks. BEAFIX’s main limitation is the rapid growth of the
repair search space as the number of suspicious locations and
allowed mutations increases, which can significantly impact
efficiency despite its pruning techniques.

d) ATR [28]: ATR is an automated program repair
technique specifically designed for declarative specifications
in the Alloy language. It accepts a faulty Alloy specification
characterized by violated assertions and produces a repaired
specification that satisfies these assertions. The method is
grounded in two fundamental principles: first, it analyzes the
differences between counterexamples and satisfying instances
to inform the repair process; second, it generates repair candi-
dates from predefined templates while systematically pruning
the candidate space using both counterexamples and satisfying
instances. To identify satisfying instances similar to those
produced by the Alloy Analyzer, ATR employs a PMAXSAT
solver. Additionally, it leverages an analysis of both satisfying
instances and counterexamples to refine its candidate repair
templates, enhancing the overall effectiveness of the repair
process. Overall, ATR’s systematic, template-based approach
yields high-quality repairs, but its performance is constrained
by the expressiveness and coverage of its predefined templates.

2) LLM based Alloy Repair Techniques: In contrast to
those techniques, some recent approaches utilized LLMs—
specifically GPT [38]—to propose repairs. Two recently pro-
posed approaches employ versatile prompt engineering tech-
niques to mend flawed Alloy specifications.

a) Single-Round Approach [33]: Hasan et al. [33] lever-
aged OpenAI’s ChatGPT to automate the repair of faulty Alloy
specifications using a single, zero-shot prompt. This approach
involves providing the model with the faulty specification
along with various combinations of critical information:

(a) Bug location (Loc): The approximate location of the bug.
(b) Fix comment (Fix): A description of a potential fix.
(c) Passing assertion requirement (Pass): An assertion that

the fix must satisfy.

The study explored five distinct prompt configurations:
Loc+Fix, Loc, Pass, None (no additional hints), and Loc+Pass,
each offering insights into the effectiveness of different infor-
mational cues in automated specification repair.

b) Multi-Round Approach [34]: Alhanahnah et al. [34]
advanced the field by introducing a sophisticated Multi-Round
approach to LLM prompting, contrasting with prior non-
iterative, single-prompt methods. This technique employs a
dual-agent LLM framework (Repair Agent and Prompt Agent),
leveraging the more advanced GPT-4 model.

The core of this approach lies in its iterative nature; the
agents engage in a dialogue with the LLM, refining repairs
based on feedback from the Alloy Analyzer. This process
creates a dynamic, self-improving repair cycle. Our study
replicates their methodology, exploring three feedback levels:

(a) No-feedback: A minimalist approach where the Alloy
Analyzer provides only a binary fix confirmation, chal-
lenging the LLM’s autonomous error identification and
correction capabilities.

(b) Generic-feedback: Simulating a developer’s query on
a Q&A platform, this setting offers a template-based
summary of counterexamples, instances, and errors.

(c) Auto-feedback: The most advanced setting, where the
Prompt Agent, another LLM, generates tailored feedback
based on the Alloy Analyzer’s report and proposed spec-
ifications, guiding the Repair Agent in a sophisticated
AI-to-AI interaction.

C. Benchmarks

For this study, we utilized two distinct benchmark suites:
ARepair [35] and Alloy4Fun [36]. These suites have un-
dergone extensive scrutiny and were developed by separate
research entities, allowing for equitable comparisons across
various methodologies.

The Alloy4Fun benchmark [36] consists of 1,936 manu-
ally crafted flawed specifications sourced from submissions
across six distinct Alloy problem domains. These domains
include modeling challenges such as labeled transition systems
(LTS), automated production lines, class registrations, work
and source distribution dilemmas, assorted graph properties
(including acyclic and completeness conditions), and the con-
ceptualization of a file system trash can. Each specification is
designed to encapsulate realistic bugs that Alloy developers
might encounter, providing a rich dataset for evaluating repair
techniques. This benchmark is particularly valuable because
it contains real-world examples of common mistakes and
challenges faced by Alloy developers.

In contrast, the ARepair benchmark [35] encompasses
38 flawed specifications derived from a range of 12 Alloy
problems. Six of these issues—labeled addr, cd, ctree, farmer,
bempl, and others—were sourced from the Alloy Analyzer.
The remaining flawed specifications were extracted from
graduate student assignments, encompassing problems like
arr, balancedBST, dll, fsm, and student. This benchmark is
particularly valuable as it includes both simple and complex
bugs, allowing for a comprehensive assessment of repair tools.

The benchmark datasets comprise specifications ranging
from tens to hundreds of lines, each harboring genuine bugs
crafted by human developers. The issues encapsulated within
the benchmarks vary widely: they range from simple faults
amendable by adjusting a single operator to intricate defects
necessitating the synthesis of new expressions or the substi-
tution of entire predicate bodies. Both benchmarks include
correct specification versions that serve as reference points
for validating result accuracy.
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D. Metrics

This study employs three metrics to evaluate the effec-
tiveness of the repair techniques examined. The first metric
indicates whether a given technique successfully repaired each
flawed specification, while the remaining two metrics assess
the token based similarity and the syntactic similarity of each
repair candidate—successful or otherwise—to the ground truth
for each benchmark specification. For each repair technique,
the findings present the arithmetic mean of each metric across
the relevant benchmark(s).

a) Repair (REP): The first metric, Repair (REP), in-
dicates whether a given repair technique can successfully
fix a flawed specification. It is computed using the Alloy
Analyzer to run each command in both the proposed fix and its
corresponding ground truth. For each command in the ground
truth specification, results are compared with those from the
proposed fix. If any results differ, a REP of 0 is assigned to
indicate an unsuccessful repair. Conversely, if all results match,
a REP of 1 is assigned to signify a successful repair.

b) Token Match (TM): Token Match (TM) represents
the token-level similarity of the text in each proposed repair
compared to the text of the ground truth for the corresponding
specification. It is computed by calculating the sentence-level
BLEU score [39] for the tokens in each file, with tokens
separated based on whitespace. The score ranges from 0 (no
tokens match) to 1 (the files are effectively identical).

c) Syntax Match (SM): Syntax Match (SM) indicates the
similarity of the parse trees of each file according to the syntax
of the Alloy language. This measure ignores whitespace and
other differences irrelevant to the Alloy Analyzer, indicating
how structurally similar each fix is to the ground truth. SM is
computed by constructing a parse tree using a custom parser
built from an ANTLR grammar adapted from Eid [40]. The
parse trees are then compared by computing subtree kernel
similarity [41]–[43]. SM can range between 0 and 1; a score
of 0 indicates that none of the subtrees from the ground truth
appear in the parse tree of the fix, while a score of 1 indicates
that both parse trees are structurally identical.

E. Experimental Settings

To evaluate the repaired specifications, we utilized Alloy
Analyzer 4.2 to compare the repair results against the ground
truth. For the traditional techniques, the repaired files provided
by the authors of each tool in their prior work [25]–[28] were
verified using the Alloy Analyzer to compute the relevant
metrics. To compute the Repair (REP) metric, we implemented
a custom Java program that executes the Alloy Analyzer
via its Java API. This program runs each command in both
the proposed fixes and their corresponding ground truths,
outputting a JSON file summarizing the results.

For testing the LLM-based techniques, we developed a
program using Python version 3.11 to leverage API services
from OpenAI and Microsoft Azure for GPT-4, which is the
most recent version of the GPT model available at the time of
this writing. Additionally, a specialized parser was developed

to address challenges posed by unique scenarios that could
hinder the extraction of proposed specifications.

The experiments were conducted on a system equipped with
a 3.5 GHz Quad-Core Intel Core i7 processor and 32 GB of
RAM, running macOS Monterey. The system was configured
with Oracle Java SE Development Kit 8u202 (64-bit).

IV. EXPERIMENTAL RESULTS

A. Results for RQ1: Effectiveness of Existing Techniques

Repair Performance. Table I presents a comprehensive
comparison of the REP scores (number of specifications
repaired) for all tested Alloy repair techniques, including
four state-of-the-art traditional repair tools—ATR, ARepair,
BeAFix, and ICEBAR—and two LLM-driven techniques un-
der different settings and using different underlying models.

For the smaller ARepair benchmark of 38 specifications, the
Multi-Round LLM approach fared particularly well, scoring
three of the top five highest REP scores across all techniques.
The Multi-Round approach using generic feedback outper-
formed all other techniques by repairing 29 specifications.
BeAFix scored highest among the traditional techniques with
24 repairs, closely followed by ATR (22 repairs) and ICEBAR
(21 repairs). ARepair itself repaired only 9 specifications in its
own benchmark. The Single-Round LLM approach produced
mixed results. The prompt which included the bug location
performed well (21 repairs), but the prompt requiring passing
the assertions performed worst overall, only repairing 4 of
38 specifications. In the Alloy4Fun benchmark consisting of
1936 specifications, the Multi-Round LLM approach again
performed well on all settings, scoring three of the top four
highest REP scores. ATR repaired the most specifications of
the traditional approaches and third most overall with 1286
repairs. The Single-Round LLM approach performed relatively
poorly across all prompt settings, surpassing only ARepair.
ARepair performed the worst overall on the Alloy4Fun specifi-
cations, only repairing 185. Overall, the Multi-Round approach
and ATR outperformed all other techniques, each repairing
more than 1300 of the 1974 specifications in total.

The results indicate that the Multi-Round LLM ap-
proach significantly outperformed all other techniques,
repairing 76.3% (29 out of 38) specifications in the
ARepair benchmark and 69.6% (1348 out of 1936)
specifications in the Alloy4Fun benchmark. Traditional
tools also demonstrated strong performance, with ATR
achieving 66.4% (1286 out of 1936) repairs in the
Alloy4Fun benchmark. In contrast, ARepair itself per-
formed the weakest, repairing only 23.7% (9 out of
38) of its own benchmark, highlighting the potential
of LLM-based methods in Alloy repair tasks.

B. Results for RQ2: Complementarity and Synergies in Repair
Techniques

This section addresses our second research question (RQ2),
which explores the complementarity and potential synergies
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TABLE I: Comparing REP scores for state-of-the-art traditional Alloy repair techniques (ARepair [35], ICEBAR [26],
BeAFix [27], ATR [28]) and LLM-based Alloy repair studies (Single-Round [33], Multi-Round [34]) on the ARepair and
A4F benchmarks, using various combinations of settings.

Model Total
# spec

Traditional Single-Round
(Prompt Settings)

Multi-Round
(Feedback Settings)

ARepair ICEBAR BeAFix ATR Loc+Fix Loc Pass None Loc+Pass None Generic Auto

A
4F

B
en

ch
m

ar
k classroom 999 88 424 387 688 139 231 94 88 162 667 593 553

cv 138 2 86 82 38 58 50 43 04 53 119 117 117
graphs 283 19 237 232 260 78 109 90 20 75 158 167 180
lts 249 1 73 41 70 91 70 49 21 53 51 51 51
production 61 27 36 56 43 28 32 24 12 26 161 170 158
trash 206 48 195 183 187 7 5 3 2 5 192 192 178

Summary 1936 185 1051 981 1286 401 497 303 147 374 1348 1290 1237

A
R

ep
ai

r
B

en
ch

m
ar

k

addr 1 1 1 1 1 1 0 0 0 1 0 1 0
arr 2 2 2 2 1 1 1 1 0 1 0 1 0
balancedBSt 3 1 2 1 1 3 2 2 0 0 1 2 0
bempl 1 0 1 0 1 0 1 1 1 1 0 0 1
cd 2 0 2 2 2 1 1 2 0 2 2 2 2
ctree 1 1 0 0 0 0 0 1 0 1 1 1 1
dll 4 0 3 3 2 4 4 3 0 1 4 4 4
farmer 1 0 0 0 0 1 0 0 0 0 0 1 1
fsm 2 2 2 1 2 2 1 0 0 0 1 1 2
grade 1 0 1 0 1 1 0 1 0 0 0 0 0
other 1 0 0 1 1 1 0 0 1 0 1 1 1
Student 19 2 7 13 10 14 10 15 2 4 14 15 15

Summary 38 9 21 24 22 29 20 26 4 11 24 29 27

Total 1974 194 1072 1005 1308 430 517 329 151 385 1372 1319 1264

among different repair techniques. We aim to understand the
extent to which these approaches produce similar or unique
repair outcomes, and how they might complement each other
in addressing complex specification defects.

Our analysis focuses on two key aspects: the similarity of
repairs to ground truth and the correlation between different
repair techniques. By examining these factors, we can gain
insights into the strengths and potential complementary nature
of various repair approaches.

a) Similarity Analysis: Figure 2 provides a comprehen-
sive overview of the similarity between repairs generated by
various techniques and the ground truth—a version of each
specification known to be correct. We quantify this similarity
using two metrics: Token Match (TM) and Syntax Match
(SM), as detailed in Section III-D.

Traditional repair techniques, including ATR, BeAFix, ICE-
BAR, and ARepair, consistently demonstrate higher similarity
scores across all metrics compared to LLM-based techniques
(single- and multi-round approaches). ATR achieves the high-
est scores with a Token Match of 0.985 and a Syntax Match
of 0.997, while the best-performing LLM-based technique
(Multi-Round Generic) reaches a Token Match of 0.938 and
a Syntax Match of 0.943. SM scores consistently exceed
TM scores across most techniques, indicating that structural
similarity is better preserved than token-level similarity.

These results suggest that traditional techniques produce
repairs that more closely resemble the ground truth in terms of
both token and syntactic structure. This high structural fidelity
could be attributed to these techniques relying on established
patterns and heuristics specific to Alloy specifications. In
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Fig. 2: The bar charts show Token Match (TM) and Syn-
tax Match (SM) similarity scores for 12 specification repair
techniques, revealing that traditional tools (ARepair, ICE-
BAR, BeAFix, ATR) consistently outperform LLM-based ap-
proaches in both structural and token-level similarity to the
ground truth.

contrast, LLM-based techniques show lower similarity scores,
which might indicate more diverse repair outputs. This diver-
sity could result from the inherent creativity and adaptability of
language models, potentially leading to solutions that deviate
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Fig. 3: Correlation analysis of repair techniques. The heatmap
displays Pearson correlation coefficients between pairs of re-
pair techniques across two benchmarks. Darker colors indicate
stronger correlations. Traditional techniques (ATR, ICEBAR,
ARepair, BeAFix) show high internal correlation, while LLM-
based techniques (Single-Round and Multi-Round) exhibit dis-
tinct patterns, suggesting potential complementarity between
different approach types.

more from the exact structure of the ground truth but might
address the underlying issues in novel ways.

While higher similarity scores indicate structural fidelity,
they do not necessarily reflect comprehensive effectiveness
in addressing all faulty specifications. Traditional repair tools
may rely on established patterns that enhance similarity but
could limit their adaptability to diverse problem contexts
compared to LLM-based approaches. The lower scores of
LLM-based techniques might suggest a trade-off between strict
adherence to known patterns and the ability to generate more
flexible, context-aware repairs.

Among the LLM-based approaches, multi-round tech-
niques generally outperform single-round ones, with Multi-
Round Generic showing the highest scores. This suggests that
iterative refinement can lead to improvements in the final
repair’s similarity to the ground truth.

b) Correlation Analysis: To further explore the potential
for complementarity among current Alloy Repair techniques,
we calculated the Pearson correlation [44] for each pair of
techniques. This analysis was based on the match metrics
introduced in Section III-D. The Pearson correlation is a
widely employed measure for gauging the level of correlation
between two data sets [45], [46]. A high Pearson correlation
coefficient indicates that the two repair techniques generate
similar repairs for each specification. Conversely, a lower Pear-
son value suggests a lack of correlation between their repairs,
potentially indicating opportunities for complementarity.

Figure 3 presents a comparative analysis of repair technique

correlations across the two benchmarks, revealing distinct pat-
terns in the relationships between different repair approaches.
All correlations reported were found to be statistically sig-
nificant (p < 0.001). The analysis reveals a structure in
correlation strengths, with several notable clusters emerging.
The strongest correlation is observed between traditional repair
techniques with ICEBAR and ATR (r = 0.983) demonstrating
particularly strong alignment. The traditional repair techniques
form a tightly correlated cluster with coefficients consistently
above 0.972.

A clear demarcation exists between LLM-based specifi-
cation repair approaches (including both Multi-Round and
Single-Round approaches). Single-Round repair techniques
demonstrate notably lower correlations with both traditional
and Multi-Round approaches, with coefficients as low as
0.644. However, multi-round approaches maintain stronger in-
ternal correlations, particularly between Multi-Round Generic
and Multi-Round Auto (r = 0.949), indicating consistency
within the Multi-Round paradigm despite their divergence
from Single-Round methods.

The consistent high internal correlations among approaches
within each type (traditional, single-round, multi-round) in-
dicate a fundamental alignment in their underlying repair
mechanisms, potentially suggesting that combining approaches
from the same type may not be optimal. At the same time, sig-
nificant demarcations emerge between approaches of different
types, suggesting the promise of combining these techniques
to achieve higher repair rates.

The low correlation between single-round and multi-round
approaches stems from inherent differences in their repair
processes. Consequently, multi-round techniques do not sim-
ply extend single-round outputs but instead iteratively explore
different repair directions based on feedback mechanisms. This
iterative adaptation causes multi-round repairs to diverge from
their single-round counterparts, leading to the observed low
correlation despite their shared starting point.

The effectiveness of Multi-Round techniques across bench-
marks highlights their versatility in program repair. This
suggests that Multi-Round techniques could serve as a robust
foundation for hybrid repair approaches, potentially combined
with traditional repair strategies to maximize repair effective-
ness across different contexts and bug patterns.

The correlation analysis highlights significant dif-
ferences between repair technique clusters, suggest-
ing promising opportunities for complementary ap-
proaches that combine traditional and LLM-based
methods to maximize repair effectiveness across differ-
ent specification contexts. These findings underscore
the importance of considering both structural fidelity
and adaptive problem-solving capabilities when devel-
oping and selecting specification repair techniques.
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TABLE II: Overview of the repair capabilities of hybrid
approaches combining traditional and LLM-based techniques.

Traditional
Technique

Traditional
Technique

Repairs

LLM
Technique

LLM
Technique

Repairs
Overlaps

Total
Repairs
(Unique)

ARepair 194

Single-Round Loc+Fix 430 32 592
Single-Round Loc 517 62 649
Single-Round Pass 329 35 488
Single-Round None 151 21 324
Single-Round Loc+Pass 385 27 552
Multi-Round None 1372 142 1424
Multi-Round Generic 1319 137 1376
Multi-Round Auto 1264 122 1336

ICEBAR 1072

Single-Round Loc+Fix 430 255 1247
Single-Round Loc 517 322 1267
Single-Round Pass 329 219 1182
Single-Round None 151 98 1125
Single-Round Loc+Pass 385 230 1227
Multi-Round None 1372 807 1637
Multi-Round Generic 1319 788 1603
Multi-Round Auto 1264 746 1590

BeAFix 1005

Single-Round Loc+Fix 430 259 1176
Single-Round Loc 517 314 1208
Single-Round Pass 329 219 1115
Single-Round None 151 98 1058
Single-Round Loc+Pass 385 227 1163
Multi-Round None 1372 768 1609
Multi-Round Generic 1319 742 1582
Multi-Round Auto 1264 697 1572

ATR 1308

Single-Round Loc+Fix 430 296 1442
Single-Round Loc 517 385 1440
Single-Round Pass 329 250 1387
Single-Round None 151 127 1332
Single-Round Loc+Pass 385 109 1584
Multi-Round None 1372 1003 1677
Multi-Round Generic 1319 970 1657
Multi-Round Auto 1264 913 1659

C. Results for RQ3: Hybrid Approaches: Leveraging Tradi-
tional and LLM-based Techniques

Building upon the insights gained from our analysis of
individual repair techniques and their correlations, we now
turn our attention to RQ3: What is the potential for hy-
brid approaches that leverage strengths from both traditional
methods and LLM-based techniques? This section explores
the synergistic possibilities of combining these diverse repair
paradigms to enhance overall repair effectiveness.

Our investigation into hybrid approaches was motivated by
the complementarity observed between traditional and LLM-
based techniques, as highlighted in the correlation analysis
from RQ2. To assess the potential of these hybrid strate-
gies, we systematically combined each of the four traditional
approaches with eight LLM-based approaches, encompassing
both single-round and multi-round variants.

Figure 4 presents a comprehensive view of these com-
binations through 32 Venn diagrams, each representing the
repair capabilities of a traditional approach paired with an
LLM-based technique. This visualization allows for a clear
comparison of the unique and overlapping repair capabilities
of each hybrid combination. Table II provides an overview
of the repair capabilities of hybrid approaches that combine
traditional and LLM-based techniques.

Our analysis reveals that hybrid approaches consistently
outperform their constituent individual techniques. The most
striking improvements were observed when combining tradi-
tional methods with multi-round LLM-based approaches. For
instance, the combination of ATR with the Multi-Round None
LLM approach achieved the highest overall performance,
successfully repairing 1,677 out of 1,974 faulty specifica-
tions (85.5%). This represents a substantial improvement

over ATR’s individual performance of 1,308 repairs (66.3%),
demonstrating the significant potential of hybrid strategies.

The effectiveness of hybrid approaches varied across dif-
ferent traditional techniques. ICEBAR, when combined with
Multi-Round None, showed a remarkable increase in re-
pair capability, addressing 1,637 faulty specifications (82.9%)
compared to its individual performance of 1,072 repairs
(54.3%). Similarly, BeAFix paired with Multi-Round None
repaired 1,609 specifications (81.5%), a significant jump from
its standalone performance of 1,005 repairs (50.9%). No-
tably, ARepair, which had the lowest individual performance
among traditional techniques (194 repairs, 9.8%), showed
the most dramatic improvement when combined with LLM-
based approaches. Its best hybrid combination, ARepair with
Multi-Round None, successfully repaired 1,424 specifications
(72.1%), representing an extraordinary increase in repair ca-
pability.

The extent of overlap between traditional and LLM-based
repair techniques reveals their complementarity: strong tra-
ditional tools like ATR show substantial shared repair space
with multi-round LLMs (e.g., 76.7% overlap), while weaker
tools like ARepair have much lower overlap, indicating they
benefit more from hybridization. Single-round LLMs consis-
tently have lower overlap with traditional methods than multi-
round LLMs, and certain pairings—such as ATR with Single-
Round Loc+Pass—achieve minimal overlap but maximize
unique repairs, highlighting the strategic value of combining
diverse approaches. The consistent superiority of hybrid com-
binations involving multi-round LLM approaches aligns with
our earlier findings from RQ2, where multi-round techniques
demonstrated higher similarity to ground truth repairs. This
suggests that the iterative refinement process in multi-round
approaches is particularly effective when combined with the
structured guidance of traditional techniques.

These results underscore the complementary nature of tra-
ditional and LLM-based repair techniques. Traditional ap-
proaches, with their structured, rule-based strategies, excel
at repairing certain types of specification faults. LLM-based
techniques, particularly multi-round, contribute adaptability
and the ability to generate novel solutions. When combined,
these approaches can cover a broader spectrum of specification
defects, leading to significantly higher repair rates.

Our analysis of hybrid approaches highlights a promis-
ing strategy for enhancing Alloy specification repair
by combining traditional and LLM-based techniques,
with multi-round LLMs showing the greatest synergis-
tic potential. Evaluating 32 combinations across four
traditional and eight LLM-based methods, we observe
performance improvements of over 60%, underscor-
ing the complementary strengths of these paradigms.
These findings offer a roadmap for developing more
robust, adaptive repair tools that leverage both rule-
based structure and flexible generative capabilities.
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Arepair BeAFix ICEBAR ATR

Fig. 4: Venn diagrams illustrating the repair capabilities of hybrid approaches combining traditional and LLM-based techniques
for 1,974 Alloy specifications. The figure consists of 32 Venn diagrams arranged in a matrix format. Each column represents one
of the four traditional approaches (ARepair, ICEBAR, BeAFix, and ATR), while each row corresponds to a specific LLM-based
repair approach. The overlapping regions in each Venn diagram depict the shared repair capabilities, while the non-overlapping
areas show the unique contributions of each technique in the hybrid approach. This comprehensive visualization allows for a
direct comparison of the synergistic effects across different combinations of traditional and LLM-based repair methods.
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V. THREATS TO VALIDITY

In this section, we discuss potential threats to the validity
of our study and the measures taken to mitigate them.

a) Internal Validity Threats: Internal validity concerns
the causal relationships identified in our study. One potential
threat is the implementation of the repair techniques. To mit-
igate this, we carefully followed the methodologies described
in previous studies. Another threat is the potential bias in
the selection of prompts for the Single-Round and Multi-
Round LLM approaches. We attempted to address this by
using a variety of prompt configurations based on previous
research, but there may be other prompt designs that could
yield different results.

b) External Validity Threats: The main threats to our
external validity are (a) the comprehensiveness of our bench-
marks and (b) our focus on techniques which operate on Alloy
specifications. Our benchmarks are widely used in research
and contain 1,974 faulty specifications; however, they may not
include all possible bugs or all Alloy features used in “real-
world” Alloy models. The performance of the approaches may
vary on other datasets. Alloy was chosen as the specification
language due to the breadth of specification repair techniques
available for Alloy, which is greater than that for other speci-
fication languages such as TLA+. The approaches examined,
however, use state-of-the-art techniques (e.g., template-based
fault localization, agent-based problem solving) that could be
employed in other languages.

c) Construct Validity Threats: To ensure validity of our
construct, we selected metrics used in prior studies and
calculated those metrics against the provided ground truth
(correct) specifications included in each benchmark dataset.
REP uses the Alloy Analyzer to compute equisatisfiability
between each proposed repair and the ground truth, while TM
and SM are computed using similarity analyses proposed in
other studies [39], [41]–[43].

VI. DISCUSSION

Our analysis of Alloy specification repair techniques reveals
insights into the integration of traditional and LLM-based ap-
proaches, highlighting their complementary strengths and the
potential for hybrid strategies to enhance repair effectiveness.

Complementarity of Traditional and LLM-based Ap-
proaches. Differences in performance can be attributed to both
benchmark characteristics and tool design, which differs sig-
nificantly between the traditional and LLM-based techniques.
Our findings illustrate a clear complementarity between tra-
ditional repair tools and LLM-based techniques. Traditional
repair techniques excel in scenarios involving systematic con-
straint manipulation and well-defined structural modifications.
They demonstrated robust performance on specifications from
categories like classroom, graphs, and trash in the Alloy4Fun
benchmark, as well as on arr and addr specifications in the
ARepair benchmark.

In contrast, LLM-based approaches, particularly those em-
ploying multi-round techniques, exhibit unique capabilities in
addressing complex repairs. Their success in modules such

as farmer and ctree underscores their ability to understand
implicit constraints and complex state transitions—areas where
traditional tools often struggle. For instance, the LLMs effec-
tively repaired the farmer module, which requires nuanced
reasoning about state transitions.

This complementarity suggests that the future of specifica-
tion repair lies in integrating these diverse methodologies. By
combining the structured, rule-based strategies of traditional
tools with the adaptive capabilities of LLMs, we can develop
more comprehensive repair systems. For example, ARepair’s
improvement in RQ3 likely arises because its original repair
techniques, though effective at locating faults, struggle to
generate accurate fixes. When combined with multi-round
LLM, which iteratively refines repairs based on feedback,
the hybrid approach leverages ARepair’s localization strength
and the LLM’s synthesis capabilities, significantly enhancing
overall repair effectiveness.

The Promise of Hybrid Approaches. Our investigation
into hybrid approaches demonstrates substantial potential for
enhancing overall repair effectiveness. The superior perfor-
mance of hybrid strategies, particularly those involving multi-
round LLM techniques, indicates a promising direction for
future research. The combination of ATR with the Multi-
Round None LLM approach achieved an impressive repair
rate of 85.5% across benchmarks, significantly improving
upon individual performances.

We chose GPT-4 for its state-of-the-art performance and
demonstrated effectiveness in complex reasoning tasks, mak-
ing it well-suited for evaluating advanced feedback mech-
anisms in Alloy specification repair. In our study, GPT-4
was deployed in two feedback modes: in Generic-feedback,
it receives a templated Alloy Analyzer report summarizing
counterexamples and errors, while in Auto-feedback, a dual-
agent pipeline uses both the report and the proposed spec-
ifications to generate targeted, error-specific instructions for
repair. This flexibility allowed us to systematically study how
feedback settings affect repair performance. Unlike prior work
comparing GPT-3.5 and GPT-4 [33], [34], our study focuses
on contrasting GPT-4 with traditional repair tools to isolate
the impact of these novel feedback mechanisms and establish
a clear baseline for LLM-based automated software repair.

Future repair tools could implement a dynamic approach
that selects the most suitable combination of techniques based
on the characteristics of faulty specifications. This could
involve initial analysis using traditional tools to identify struc-
tural issues, followed by LLM-based analysis for semantic
understanding and innovative solution generation. Iterative
refinement through multi-round approaches could further en-
hance repair quality.

Implications for Formal Methods and Software Verifica-
tion. The implications extend beyond Alloy to the broader field
of formal methods and software verification. By improving
our understanding of effective repair strategies for declarative
specifications, we contribute to developing more robust soft-
ware systems—particularly in critical domains where formal
verification is essential.
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Furthermore, LLM-based approaches stand to benefit sig-
nificantly from targeted improvements such as fine-tuning
on domain-specific datasets. Fine-tuning these models with a
corpus of formal specifications and their corresponding repairs
could enhance their understanding of the precise semantics and
structural nuances inherent in formal languages. Additionally,
iterative feedback mechanisms, reinforcement learning from
domain experts, and advanced prompt engineering tailored
for formal methods could further refine their output quality.
Such enhancements are expected to reduce repair variability,
increase consistency, and better align generated repairs with
ground truth, thereby amplifying the impact of LLM-based
techniques in hybrid repair frameworks.

The success of hybrid approaches signifies a potential
paradigm shift in specification repair. This integration may
lead to more comprehensive verification processes capable
of addressing a wider range of specification errors while
reducing time and effort in development phases. Moreover, it
could enhance accessibility to formal methods for developers,
promoting their adoption in mainstream software development.

Challenges and Future Directions. Despite promising
results, key challenges remain: scalability, interpretability, and
consistency. Integrating retrieval-augmented generation and
leveraging our dataset can enhance fine-tuning, while iterative
refinement and continuous learning will improve handling
of complex specifications. Addressing scalability is crucial
as specifications grow, interpretability remains a barrier due
to LLMs’ black-box nature, and ensuring consistent, reliable
performance across prompts and model versions is essential.
Extending these hybrid methods to other formal languages and
enabling repair tools to learn from experience are important
directions for future research. Our study highlights a promising
future for specification repair that leverages both traditional
and AI-driven approaches. By embracing this hybrid paradigm,
we can work towards more robust, efficient, and accessible
formal verification techniques that contribute to reliable and
secure software systems.

VII. CONCLUSION AND FUTURE WORK

This study presents a comprehensive empirical evaluation
of Alloy specification repair techniques, exploring the synergy
between traditional tools and emerging LLM-based approaches
in the context of enhancing software dependability. Our find-
ings offer significant insights into improving the reliability
and correctness of formal specifications, a critical aspect of
developing dependable software systems.

Key conclusions from our research include: (1) The comple-
mentary strengths of traditional and LLM-based repair tech-
niques, with each excelling in different types of specification
errors; (2) The superior performance of hybrid approaches that
combine traditional tools with multi-round LLM techniques,
achieving repair rates of up to 85.5% across benchmarks, thus
significantly enhancing specification reliability; and (3) The
potential for developing more robust and adaptive repair
strategies that can significantly improve the dependability of
Alloy specifications across various domains and complexity

levels. While our evaluation is centered on Alloy, the observed
trends have broader implications for formal specification repair
in general. The structured nature of traditional techniques al-
lows for precise constraint modification, whereas LLM-based
methods introduce adaptability in handling underspecified
or ambiguous constraints. These characteristics suggest that
hybrid approaches could be effective across other declarative
languages with similar specification repair challenges. Future
work should explore their applicability to other specification
languages to validate their generalizability.

Our work contributes to the field of dependable systems
by providing empirical evidence for the effectiveness of inte-
grated repair approaches in enhancing specification quality. We
demonstrate that combining rule-based, systematic techniques
with the flexible, context-aware capabilities of LLMs can sig-
nificantly improve the dependability of formal specifications,
a crucial foundation for reliable software systems.

Looking ahead, this research opens up several promising
avenues for future work in dependable systems: (1) Developing
more sophisticated hybrid repair systems that dynamically
adapt to different specification types and error patterns, en-
hancing the overall reliability of formal modeling processes;
(2) Investigating techniques to improve the interpretability
and consistency of LLM-generated repairs, crucial for their
adoption in safety-critical and high-assurance systems; (3) Ex-
ploring the application of these hybrid approaches to other
formal specification languages used in dependable systems
development; and (4) Addressing scalability challenges to
ensure the effectiveness of these techniques for large-scale,
complex specifications typical in critical infrastructure and
mission-critical software.

In conclusion, our study underscores the potential for a
paradigm shift in specification repair, moving towards more
integrated, AI-assisted approaches that can significantly en-
hance the dependability of software systems. By continuing to
explore and refine these hybrid methodologies, we can work
towards more reliable, efficient, and robust formal verification
techniques. This advancement promises to contribute substan-
tially to the development of highly dependable software sys-
tems, crucial in an era where software reliability is paramount
across various critical domains.
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