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ABSTRACT

Software engineers have long employed formal verification to en-
sure the safety and validity of their system designs. As the system
changes—often via predictable, domain-specific operations—their
models must also change, requiring system designers to repeat-
edly execute the same formal verification on similar system models.
State-of-the-art formal verification techniques can be expensive at
scale, the cost of which ismultiplied by repeated analysis. This paper
presents a novel analysis technique—implemented in a tool called
SoRBoT—which can automatically determine domain-specific op-
timizations that can dramatically reduce the cost of repeatedly
analyzing evolving systems. Different from all prior approaches,
which focus on either tightening the bounds for analysis or reusing
all or part of prior solutions, SoRBoT’s automated derivation of
domain-specific optimizations combines the benefits of both solu-
tion reuse and bound tightening while avoiding the main pitfalls
of each. We experimentally evaluate SoRBoT against state-of-the-
art techniques for verifying evolving specifications, demonstrating
that SoRBoT substantially exceeds the run-time performance of
those state-of-the-art techniques while introducing only a negligi-
ble overhead, in contrast to the expensive additional computations
required by the state-of-the-art verification techniques.
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• Software and its engineering → Formal software verifica-

tion; • Security and privacy→ Logic and verification.

KEYWORDS

formal analysis, bounded verification, speculative analysis

ACM Reference Format:

Clay Stevens and Hamid Bagheri. 2022. Combining Solution Reuse and
Bound Tightening for Efficient Analysis of Evolving Systems. In Proceedings

of the 31st ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’22), July 18–22, 2022, Virtual, South Korea. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3533767.3534399

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534399

1 INTRODUCTION

Formal verification of software has long been a vital part of engi-
neering dependable, safe software systems [2, 3, 6, 12, 20, 24, 27, 34,
40]. Performing such analyses, however, is often an expensive en-
deavor, facing scalability issues, particularly for large and complex
software systems like those that drive our modern world. Software
systems also change frequently over their lifecycle in response to
changes in configuration, routine maintenance, and user-initiated
operations (to name a few reasons), requiring repeated analysis and
thus repeated payment of the costs of formal analysis. In today’s
fast-moving software development environment, the high cost of
formal verification may be prohibitive for rapidly evolving systems,
despite the benefits it can offer for reliability, safety, and security.

Many researchers are actively seeking to improve the scalability
and adoption of formal verification techniques, including applying
those techniques to evolving systems. In particular, using bounded
model checking to analyze evolving software specifications and
changing configurations (e.g., for self-adaptive systems) has been
an active research topic in recent years [4, 7, 8, 14, 28, 31, 37, 39, 41].
Many of the proposed techniques approach the problem in one of
two ways: (a) finding ways to incrementally reuse portions of prior
solutions [5, 37, 39, 41] or (b) tightening the bounds of the analysis
to reduce the search space [4, 8, 16, 22]. Both general approaches
serve to limit the work done by the solver with each iteration, but
each of the specific realizations comes with its own limitations.

The approaches that seek to reuse portions of the solutions
often operate on low-level, syntactic cues or expensive caching
techniques to find portions of the formula that can be reused; if
there is any deviation from the selected key—however irrelevant at a
higher level—the opportunity for reuse is lost. Similarly, tightening
the bounds of the analysis has to date required existing domain
expertise, as is the case with the approach proposed by Bagheri,
et al. [8] to tighten the bound specifically for repeated analysis of
Android inter-component communication vulnerabilities. It also
requires a method of determining the newer, tighter bounds, which
can itself be an expensive operation.

In this paper, we propose a novel approach for efficient repeated
formal verification of evolving relational specifications that com-
bines the benefits of both solution reuse and bound tightening while
avoiding the main pitfalls of each. We realize our approach in an ac-
companying tool suite, called SoRBoT for solution reuse and bound
tightening. Our approach automatically derives high-level oppor-
tunities to tighten the bounds used during repeated analysis of an
evolving system by reusing portions of prior analysis results. This
can dramatically reduce the size of the search space for each sub-
sequent analysis, promising to make large-scale repeated analyses
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significantly more tractable. The hypothesis guiding this research is
that by examining how the application of operations permissible in
each domain impact the exploration space of bounded verification,
it is possible to infer optimizations specific to that specification,
facilitating more efficient analyses. SoRBoT performs a one time
bounded speculative analysis—so called by analogy to speculative
execution [19]—on formal definitions of the operations that may be
applied to the analyzed system, automatically determining ways to
tighten the bounds of analysis, without demanding domain exper-
tise or excessive overhead. SoRBoT then applies the tighter bounds
when analyzing the result of applying each operation, greatly reduc-
ing the search space for subsequent, repeated formal verification
within the target domain. To demonstrate the power of SoRBoT,
we evaluate it on a variety of evolving specifications from multiple
domains, and compare it against state-of-the-art formal verifica-
tion techniques. Our experiments show SoRBoT reduces the search
space explored during repeated analysis (by more than 74% on aver-
age, and by >99.5% for the largest subjects), requires less total time
than competing approaches, and adds very little overhead (around
9.25 seconds on average and less than 20 seconds for the largest
specifications).

To summarize, this paper makes the following contributions:
• Automated discovery of opportunities to tighten analysis bounds

via solution reuse:We introduce a novel approach to automat-
ically identify opportunities to both (a) reuse solutions from
prior verifications and (b) reduce the search space for formal
analysis by tightening the analysis bounds, without relying
on costly overhead processing or prior domain-knowledge.
• SoRBoT implementation: We realize the presented approach
to automatically derive domain-specific optimizations in
a tool called SoRBoT. We make SoRBoT available to the
research and education community [32].
• Experiments: We present empirical evidence of the efficiency
gains compared to state-of-the-art formal verification tools
using real-world specifications adapted from prior research.

The following section provides a short, illustrative example to
describe the benefits of SoRBoT, followed by a more detailed de-
scription of our technique. Section 4 presents our empirical evalua-
tion of SoRBoT, and Section 5 discusses the implications of those
results. We close with a discussion of threats to validity, prior work,
and our conclusions.

2 ILLUSTRATIVE EXAMPLE

Our approach is best illustrated with an example drawn from a real-
world problem: analyzing the safety and security of co-installed IoT
apps. IoT ecosystems have experienced a rapid proliferation on the
market in recent years, and tools for safety/security analysis of third-
party apps available within those ecosystems have been quick to
follow [1, 10, 11, 30, 36, 38]. Many of these state-of-the-art analysis
tools for IoT apps (e.g., [1, 36]) use formal analysis techniques to
find insecure, risky, or inefficient interactions among co-installed
apps. Such formal analysis techniques rely on a specification of the
ecosystem, the apps installed within it, and the interaction rules
defined within each app. The set of installed apps (and thus the
interaction rules thereof) frequently change as the user installs new
apps or updates/removes existing apps over time, thus altering the

specification of the system as a whole. As each new app is added
or old app removed, the existing security analysis tools mentioned
above would need to repeat the full analysis of the (now updated)
specification in order to determine if any potential security threats
had been introduced or revealed.

With SoRBoT, information from prior analyses can be reused,
allowing for much more efficient repeated analyses of the results
of the operations (e.g., adding, updating, or removing apps). Fur-
thermore, SoRBoT automatically discovers which information can
be reused by performing an efficient, one-time analysis of a speci-
fication of the system and any allowed operations. This removes
the need for domain expertise in discovering such optimizations,
allowing the tool to improve analysis performance in any domain.

To provide a concrete example, consider a smart home IoT in-
stallation such as that depicted in Figure 1. The user has initially
installed two apps (cf. Figure 1(a)), each of which are benign. App
1 includes two rules for interacting with the windows and an ex-
ternal thermometer: the app opens the window if (r1) the outside
temperature drops below a configured threshold and the system
is in “home” mode; or (r2) the system is changed to “home” mode
and the outside temperature is currently below the threshold. App
2 provides only one rule (r3), which observes pressure sensors on
the windows and disables the air conditioning if any windows are
open. An analysis of these two apps would discover that there is
an interaction chain between these two apps (r1 or r2 could trigger
activation of r3), but the safety of the home is not compromised.
The extra conditions on r1 and r2 ensure the windows stay closed
when the user is not at home. Next, assume that the user installs a
new app, App 3, with a rule (r4) which periodically shuts off the A/C
while the system is in “away” mode to save energy. Unbeknownst
to the user, r4 includes an additional instruction which changes the
mode to “home” during the interval where the A/C is disabled. This
creates a new link in the interaction chain (r4 can activate r2) which
does have potentially unsafe consequences (the windows may open
when the user is away).

Existing IoT analysis tools would need to re-analyze the entire
specification to discover the new interaction, even though many
parts of the specification are not changed by adding a new app.
For example, rules r1, r2, and r3 are still present and unchanged,
as are the interaction chains between r1–r3 and r2–r3. Even so,
existing analysis techniques would still consider and explore poten-
tial solutions where r1–r3 was no longer a member of the “chain”
relation defining the interaction chains present in the system. SoR-
BoT, on the other hand, can automatically discover optimizations
that would rule out such (invalid) solutions before performing the
analysis. SoRBoT would perform a one-time speculative analysis (a
novel, exhaustive, yet bounded analysis, detailed in Section 3) of
each operation type (e.g., installing a new app) to determine which
parts of the specification will remain unchanged after applying that
type of operation. It can then optimize subsequent analysis of the
results of applying that operation by fixing the analysis bounds for
unimpacted relations in the specification. For the above example,
SoRBoT would discover that no member of the “chain” relation is
removed when applying “install app”; therefore, the lower bound—
the set of items whichmust be members of a given relation from the
specification—can be fixed for that relation under the application
of that operation. The upper bound for “chain”—the set of items
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(a) Example smart home IoT installation with two installed apps. App 1’s rules (r1 and r2) command the window to open if the thermometer is “low” and the
mode is “home”. App 2 (r3) turns off the A/C if the window is open. Interactions (i.e., r1/r2 can trigger r3 by opening the window) are benign, as the window
cannot open unless the user is home.

(b) Example application of “install app” operation. When App 3 is added, the interaction is no longer safe. r4 is triggered on a timer, and changes the mode to
“home”. That can trigger r1/r2 unexpectedly, opening the window when the user is not at home.

Figure 1: Example of an evolving IoT system. Security analysis of the system in (a) would show there are no vulnerabilities.

Applying an operation (“install app”) changes the system to configuration (b), which does contain a vulnerability. State-of-the-

art security analysis techniques must re-analyze the entire configuration; SoRBoT can automatically reuse the unchanged

parts of the configuration, and need only analyze the added components (i.e., Timer and App 3).

which may be members of the relation—cannot be fixed, as adding
a new app may add new interaction chains (e.g., r4–r2). By fixing
the lower bound, SoRBoT can trim a large portion of the search
space before the analysis begins, saving significant analysis time
compared to state-of-the-art analysis techniques.

3 APPROACH

This section presents our approach—realized in our tool SoRBoT,
for solution reuse and bound tightening—that allows for scalable,
repeated verification of evolving specifications. Figure 2 shows a
simplified, schematic view of the proposed optimization derivation
approach. The key innovation of SoRBoT is to automatically dis-
cover opportunities to reuse portions of prior solutions to tighten
the bounds such that subsequent bounded verification does not
have to explore the portions of the search space irrelevant to the re-
sult of the current operation. In the schematic, the original bounds
are represented by the full cube shown in Figure 2a. Figure 2b de-
picts the values assigned to each variable in a previously generated
model instance, which—in conjunction with the results of specula-
tive analysis, Figure 2c—can be reused to substantially tighten the
bounds and reduce the search space (Figure 2d).

The core contribution of our approach is a one-time speculative
analysis, described in more detail in Section 3.1. Given a relational
specificationS and a set of domain-specific operations Λ to be applied
to the specification models, SoRBoT can automatically determine
which parts of the specification will be affected by subsequent
applications of each operation. Later, as the operations are applied
(e.g., at runtime, in response to changing requirements), SoRBoT

Listing 1 Example Alloy specification for an abstract IoT ecosystem.
Apps are modeled as collections of trigger-condition-action rules
operating on uniquely defined device/value pairs.
1 module iot
2 // IoT ecosystem components
3 abstract sig App {
4 rules : set Rule }
5 abstract sig Rule {
6 triggers : set Device_Value,
7 conditions : set Device_Value,
8 actions : set Device_Value }
9 abstract sig Device_Value { }
10 // interaction chains
11 fun chain: Rule -> Rule {
12 ((Installed.rules <: (actions.~triggers))
13 :> Installed.rules) }
14 // currently installed apps
15 sig Installed in App { }

can efficiently verify the outcome of applying each operation by
reusing previous solutions to tighten the bounds of the analysis
(Section 3.2), examining only those parts of the specification that
may have changed.

Throughout this section, we will refer to the example IoT sys-
tem introduced in Section 2 to explain the approach. We present
our approach with formal relational specifications expressed using
Alloy [17], a language based on first-order relational logic for de-
scribing and analyzing software designs. Each Alloy specification
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(a) (b)

(c) (d)

Figure 2: Schematic view of SoRBoT, where the dimensions

represent relational variables. For three hypothetical rela-

tional variables R1, R2, and R3: (a) default bounds for the

original specification; (b) previously computed satisfying in-

stance; (c) results of speculative analysis, where except for

the upper bound of R1, UB(R1), and the lower bound of R3,
LB(R3), all other bounds are unaffected by the operation and

can be fixed; and (d) adjusted bounds, which are substan-

tially tighter than the original default bounds (Figure 2a).

comprises one or more type-like constructs called signatures (key-
word sig). Each signature defines additional relations among the
signatures in the specification as properties of the signature. For
example, in Listing 1, the App signature (Line 3) defines a single
binary relation—identified by the rules property, Line 4—between
the App and Rule signatures. Relational constraints are represented
in Alloy either in fact blocks—which must be satisfied to satisfy
the specification—or as parameterized functions or predicates (iden-
tified with the fun keyword) which can be selectively applied under
certain conditions. Each signature can be accompanied by a “signa-
ture fact” block, which acts as a fact” applied to each member of
that signature. Finally, each Alloy signatures includes a set of com-

mands which instruct the Alloy analyzer as to how to interpret the
constraints in the signature. The assert statement in Listing 4, for
example, instructs the analyzer to find instances of the specification
satisfying every constraint except the one defined in the assert
statement, presenting counterexamples for the assertion which, in
this case, represent potentially unsafe app interactions.

Listing 1 shows an Alloy specification of a high-level meta model
for describing IoT apps. Lines 3-9 define the components commonly
found in IoT apps, modeling apps as collections of trigger-condition-
action rules which operate on uniquely-defined device/value pairs.
Lines 11-13 define an additional relation which connects two rules

Listing 2 Example Alloy specification for the initial configuration
of the IoT system described in Section 2 (see Figure 1a).
1 open iot
2 // concrete apps
3 one sig App1 extends App {} { rules = R1 + R2 }
4 one sig App2 extends App {} { rules = R3 }
5 // concrete rules
6 one sig R1 extends Rule {} {
7 triggers = Temp_Lo
8 conditions = Mode_Home
9 actions = Window_Open }
10 one sig R2 extends Rule {} {
11 triggers = Mode_Home
12 conditions = Temp_Lo
13 actions = Window_Open }
14 one sig R3 extends Rule {} {
15 triggers = Window_Open
16 no conditions
17 actions = AC_Off }
18 // concrete device/value pairs
19 one sig Mode_Away, Mode_Home, Temp_Lo,
20 Window_Open, AC_Off extends Device_Value {}
21 // installed apps
22 fact { Installed = App1 + App2 }

Listing 3 Additional Alloy for the updated configuration of the IoT
system described in Section 2 (see Figure 1b).
1 // new app, rule, and device/value pair
2 one sig App3 extends App {} { rules = R4 }
3 one sig R4 extends Rule {} {
4 triggers = Timer_Active
5 conditions = Mode_Away
6 actions = Mode_Home }
7 one sig Timer_Active extends Device_Value {}
8 // update the installed apps (replaces Listing 2,
9 // Line 22)
10 fact { Installed = App1 + App2 + App3 }

Listing 4 Example Alloy assertion to find an unsafe interaction
between IoT apps (i.e., window open while user is away).
1 assert no_open_window { no r1,r2 : Installed.rules {
2 r2 in r1.*chain // transitive closure of chain
3 Mode_Away in r1.(triggers + conditions)
4 Window_Open in r2.actions }}

if the device/value impacted by any of the first rule’s actions match
the device/value observed in any of a second rule’s triggers1. List-
ing 2 defines the specific apps (Lines 3-4), rules (Lines 6-17), and
device/value pairs (Lines 19-20) in our IoT example (cf. Figure 1(a)).
Line 22 defines the installed apps, completing the specification of
the initial configuration of the system. The evolved specification—
with the addition of App 3 and r4—is expressed in Listing 3 (note
that the fact block on Line 10 of Listing 3 replaces the similar
fact on Line 22 of Listing 2). Listing 4 presents a safety property

1The relation is specified using this notation to allow for invocation of the transitive
closure operator in Listing 4 and to constrain the relation to only consider the rules of
installed apps.
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Listing 5 Example operation predicates for the IoT example from
Section 2. In this notation, term α represents relation α before apply-
ing the operation, and α ′ represents the same relation afterward.
1 // installs a new concrete app in the system
2 pred install_app[a: one App] {
3 a not in Installed
4 Installed' = Installed + a }
5 // removes an existing app from the system
6 pred remove_app[a: one App] {
7 a in Installed
8 Installed' = Installed - a }

assertion which could be checked to formally verify the safety of
the IoT system—in this case, by ensuring that no chain of events
could lead to an open window when the user is away. Checking this
assertion on the initial specification of the system would find no
violations; however, a subsequent analysis including App 3 would
fail, as the chain from r4 to r2 violates the assertion.

Lastly, Listing 5 formally defines two abstract operations for the
IoT system in Section 2, each of which alters the set of installed
applications in the system. These definitions follow the convention
that, for any given relation r in the specification, r describes the
assignment to that relation prior to the application of the operation,
and r ′ describes the assignment to that relation following appli-
cation of the operation. Lines 2-3 describe the results of adding a
new app, corresponding to the change from Figure 1a to Figure 1b.
Lines 5-6 describe the inverse operation, which removes an app.

3.1 Speculative Analysis

The first stage in SoRBoT’s process is to determine which if any
relations in the relational specificationS—denoted as the set R—can
be automatically optimized, done by performing a one-time specu-
lative analysis of the potential results of applying each operation.
We use the term “speculative analysis” by analogy with speculative
execution, used for instance in branch prediction to reduce the cost
of conditional branch instructions [19] and in recommender sys-
tems used in modern integrated development environments [9, 23].
By speculating about future states of a system specification, largely
characterized by operations applicable in a given domain, SoRBoT’s
bounded speculative analysis promises to yield useful information
apropos the impacts of each permissible operation on every sin-
gle relational variable that collectively constitute the specification
under analysis.

In specific, SoRBoT seeks to discover any relations r ∈ R which
have bounds that can be fixed (or unchanged) under the application
of each operation. The bounds of a given relation, r ∈ R, are repre-
sented by two sets, ⊥r and ⊤r , which define the set of tuples that
must be assigned to r in a satisfying model and the set of tuples that
may be assigned to r in a satisfying model, respectively. The former
is called the lower bound (⊥r ) and the latter is the upper bound

(⊤r ). By default, relational model finders (e.g., Kodkod [35]) set the
bounds for each relation based on the domains of the relation, using
the empty set as the default lower bound and the n-fold Cartesian
product of the domains of each relation as the default upper bound.
For any given satisfying model instancem of a specification S—
denoted m |= S—the tuple assignments to every relation r ∈ R

Algorithm 1 Speculative analysis algorithm
Input: λ: domain-specific operation
Input: R,R′: sets of relations before/after applying λ
Output: R⊥,R⊤: sets of relations for which the lower/upper

bounds can be fixed
1: R⊥ ← �,R⊤ ← �
2: for r ∈ R, r ′ ∈ R′ : r ≺ r ′ do
3: if λ =⇒ (r ⊆ r ′) then
4: R⊥ ← R⊥ ∪ {r }

5: if λ =⇒ (r ′ ⊆ r ) then
6: R⊤ ← R⊤ ∪ {r }

within that model (mr ) will thus stand in the following relation to
the bounds:

m |= S =⇒ ∀r ∈ R : ⊥r ⊆ mr ⊆ ⊤r (1)

SoRBoT’s speculative analysis leverages that relationship to
determine the impact each formally specified operation may have
on each of the relations in the specification. First, SoRBoT assumes
that the current set of relations, R, represent the relations before
applying the operation. It then produces a duplicate set of relations,
R′, that represent the relations after applying the operation, with
each corresponding duplicate relation having the same domains
and bounds as the original. Formally, SoRBoT defines R′ such that:

∀r ∈ R : ∃r ′ ∈ R′ : DN
r = D

N
r ′ ∧ ⊥r = ⊥r ′ ∧ ⊤r = ⊤r ′ (2)

We denote the relationship between r and r ′ as r ≺ r ′.
SoRBoT then “applies” the target operation based on the formal

description of the operation and checks the impact on each of the
relations. For example, if the predicate describing the operation
logically implies that the assignment to a given relation before the
operation is a subset of the assignment to that relation after the
operation (r ⊆ r ′), then the lower bound for that relation can be
counted as fixed; the operation will not remove any tuples from a
previous satisfying model assignment, so SoRBoT can reuse the
assignment to that relation from a prior result as the lower bound
for subsequent analysis. If r ⊈ r ′, the default lower bound will
be used for r . Similarly, if r ′ ⊆ r , then the upper bound can be
fixed and reused from a prior analysis result; otherwise, the default
upper bound will be used for r . The logical predicate describing
an operation is denoted λ ∈ Λ in Algorithm 1, which outlines the
speculative analysis process for a given operation. Line 2 loops
over all the relations in the specification, checking to see if either
bound can be fixed and building up a set of relations for which
the lower bounds (Lines 3-4) and/or upper bounds (Lines 5-6) can
be fixed, respectively. For any relation added by the operation or
where (r ⊈ r ′)∧(r ′ ⊈ r ), the bounds cannot be fixed and the default
bounds will be used.

More practically, SoRBoT performs this logical computation us-
ing the same underlying technique that drives the overall analysis—
bounded model checking. By formulating the conditions on Lines 3
and 5 as safety properties (i.e., properties that we expect to always
be true) and checking for a counterexample, we can use the under-
lying model checker efficiently to determine if the conditions hold,
up to some desired bound. As this check is still abstract and not tied
to any specific system state, the “small-scope hypothesis” would
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Listing 6 Example Alloy assertions for finding fixed bounds for
IoT operation install_app and chain relation for a scope of 4.
1 check { // lower bound fixed
2 all a: set App {
3 install_app[a] => chain in chain'
4 }} for 4
5 check { // upper bound fixed
6 all a: set App {
7 install_app[a] => chain' in chain
8 }} for 4

suggest that only a small bound is required to find a counterexam-
ple; however, SoRBoT allows for successive speculative analyses
with increasing bounds to improve confidence in its results. As a
concrete example, Listing 6 represents the checks that SoRBoT gen-
erates to analyze the possibility of adjusting bounds for applying
install_app as described in our running example from Section 2.
SoRBoT automatically creates and checks such assertions for ev-
ery operation and every relation in the specification, efficiently and
automatically determining which assignments can be reused from
prior solutions. Applying the assertions in Listing 6 to our running
example, SoRBoT would be able to determine that the lower bound
for chain can be fixed under application of install_app (no inter-
action chains are removed), but the upper bound cannot be fixed,
allowing new apps to add new interaction chains. SoRBoT identi-
fies all such bound adjustments automatically, without demanding
any domain knowledge from the end-user.

3.2 Solution Reuse and Bound Adjustment

Using the set of fixed upper and lower bounds identified for each
operation by the speculative analysis, SoRBoT is then primed for
any subsequent formal verification. More specifically, given specifi-
cation S as input, SoRBoT automatically identifies the sets of fixed
bounds R⊥,R⊤ ⊆ R for each operation predicate λ. Before running
the verification with the underlying model checker, SoRBoT will
first examine the fixed bounds and adjust the bounds of the anal-
ysis to match the provided model instance,m |= S, accordingly;
for relations in R⊥, for instance, SoRBoT will set the lower bound
equal to the tuples assigned that relation in the provided model. In
other words:

∀r ∈ R⊥ : ⊥r ←mr (3)
∀r ∈ R⊤ : ⊤r ←mr (4)

Having thus adjusted the bounds, SoRBoT supplies the original
specification and the adjusted bounds to the boundedmodel checker
and returns the results of its verification. The underlying verifi-
cation process is unchanged, allowing SoRBoT to be applied to
analyze any properties or specifications supported by the underly-
ing bounded model checker.

4 EVALUATION

This section presents our experimental evaluation of SoRBoT. Our
evaluation addresses the following research questions:
RQ1. How effective is SoRBoT at reducing the search space for

post-operation analyses compared to Alloy Analyzer?

RQ2. What is the performance improvement achieved by SoR-
BoT compared to state-of-the-art techniques for analyzing
evolving specifications?

RQ3. Howmuch performance overhead is introduced by SoRBoT’s
speculative analysis?

Experimental setup. We conducted the experiments using a
custom Java 13 implementation of SoRBoT2 comprising over 3,800
lines of code. The specifications used in the experiments were
developed in Alloy [17] and executed using the Java API of Alloy
5.1, the Kodkod model finder [35] which drives that version of the
Alloy Analyzer, and the MiniSAT [29] SAT solver. All experiments
were run on an OpenStack instance running Ubuntu 20.04 with
16 2.3GHz VCPUs and 100GB RAM. A maximum 20GB RAM was
allowed for the Java heap during each execution.

Measures. During our experiments, we tracked the values of
four metrics to use as measures for answering our research ques-
tions. First, to determine the scope of the analysis performed by
SoRBoT and our baseline systems for RQ1, we tracked the number

of primary variables in the propositional translation of the relational
specification. During translation from the high-level relational spec-
ification to the lower level Boolean/SAT formula, model finders,
such as Kodkod, assign a Boolean variable to each tuple that is in
the upper bound for each relation but not in the lower bound for
that relation. These variables are used to track whether or not the
corresponding tuple was assigned to that relation in the resulting
model instance, and are called primary variables. The translator may
also create auxiliary variables and clauses during translation, but as
those tend to depend on the number of primary variables, we report
only the primary variables to avoid reporting unnecessary mea-
sures. Second, we timed the wall clock running time taken to verify

the properties included in each subject specification—including any
run time overhead—for SoRBoT and all of our baseline systems in
order to answer RQ2. To ensure a reasonable total running time for
our experiments, each analysis was limited to a total of 24 hours.
Lastly, we recorded the wall clock running time required to perform

speculative analysis using SoRBoT to measure the overhead for
RQ3.

Baselines. For our experimental evaluation, we compare SoR-
BoT against the latest version of Alloy Analyzer (version 5.1) to
provide a baseline for our optimizations, as our implementation of
SoRBoT extends Alloy 5.1. We also considered three other recent
approaches—Titanium [4], Platinum [41], and iAlloy [39]—as base-
lines for comparison vs. state-of-the-art techniques for verifying
evolving specifications.

Titanium. Titanium [4] optimizes repeated analysis of evolving
relational specifications by tightening the analysis bounds based on
the results from prior analyses. Titanium’s method of determining
the tighter bounds is very different from SoRBoT’s speculative anal-
ysis. Rather than running a single small-scope analysis, Titanium
enumerates all satisfying instances of the base (unmodified) specifi-
cation and computes observed bounds by examining each satisfying
instance. These observed bounds are used to tighten bounds for
subsequent analysis, although there is no guarantee the observed
bound will differ from the default. Enumeration can be incredibly

2Our custom Java implementation of SoRBoT and our experimental data are available
at https://sites.google.com/view/operation-bounder/home

https://sites.google.com/view/operation-bounder/home
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Figure 3: Boxplots showing cumulative analysis time (in seconds, log scale) for applying a sequence of 20 operations and

analyzing the results for each operation in the sequence with each analysis technique. Note that the median analysis time

taken by SoRBoT across all the subject systems is typically less than the corresponding time taken by the other state-of-the-

art techniques. The improvement was more noticeable for larger-scale specifications. † Titanium took longer than 24 hours

to finish computing the observed bounds for MT-RBAC. ‡ iAlloy was unable to accurately analyze the changes to the Android

specifications (see the third paragraph of Section 4.2)
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costly, as there may be an exponential number of satisfying model
instances. During our experimental evaluation, we analyzed each
of our subject specifications with Titanium both before and after
applying each operation to each specification, allowing Titanium
to compute the observed bounds on the “before” specification and
apply those bounds during the analysis of the “after” specification.
When running many operations in sequence, we had Titanium
compute the observed bounds after analyzing each resulting speci-
fication, as the change to the specification may have changed the
observed bounds. Note that to ensure our experimental analyses
ran in a reasonable time, we limited Titanium’s enumeration while
computing the observed bounds to 10,000,000 instances.

Platinum. Platinum [41] also proposes to optimize the analy-
sis of evolving specifications, this time by automatically finding
opportunities to reuse solutions for independent clauses in the
underlying formula. Platinum works by slicing the propositional
formula generated by Kodkod [35] (which underpins Alloy An-
alyzer) into independent clauses—i.e., clauses that share no free
variables. Similar to Titanium, Platinum also incurs overhead that
can grow exponentially as the specification increases in size. While
Platinum employs a union-find operation on disjoint set structures
to find these slices, the number of variables that must be partitioned
can grow exponentially as more relations are added to the speci-
fication. Coupled with the additional complexity of determining
the weight of each variable for canonicalization (see [41], Section
3.2), the overhead introduced by Platinum can quickly make the
approach intractable. When applying operations in sequence, we
invoked each operation such that Platinum maintained its cache
of previously solved clauses throughout the entire sequence of
operations to best demonstrate Platinum’s optimizations. For our
experiments, we include the time taken to slice the formula and
canonicalize the slices as part of the running time for Platinum.

iAlloy. Lastly, iAlloy [39] performs a lexical analysis to find
changes to the text of an Alloy specification as it evolves. While
the most prominent use case for iAlloy is during the development
of a specification, it could also be employed to detect the impacts
of executing operations on the specifications of evolving systems.
iAlloy works by parsing the text of the Alloy specification in ques-
tion starting at each command run by the solver. It then generates
a dependency graph for the command, finding all the paragraphs
of the specification on which the command depends. The approach
then generates a checksum for each paragraph, and stores those
checksums for comparison with later versions of the specification.
If all the dependent checksums match for a given command, then
iAlloy reuses the solution for that command and does not invoke
the solver. For our experiments, we include the time taken to gen-
erate and read dependency graphs and checksums as part of the
running time for iAlloy.

Subject systems. We collected a set of 16 system specifications
as our experimental subjects, representing evolving specifications in
4 different domains: (1) four bundles of real-world IoT app models,
all drawn from the suite of models automatically generated by
IoTCOM, a recent IoT security analysis technique [1]; (2) five data
models extracted by a prior study from real-world Ruby-on-Rails
systems [25]; (3) an Alloy model of multi-tenant role-based access

control (MT-RBAC), as described in [33]; and (4) six bundles of
real-world Android app models automatically extracted from a pool

of 215 Android apps drawn from the security analysis literature [5,
8], including the evaluations of both Titanium and Platinum [4, 41].

All subject specifications—as well as our reference implementa-
tion of SoRBoT—are publicly available online for reuse [32].

IoT Security Analysis. First, we evaluated SoRBoT against a suite
of models of real-world IoT apps that were automatically captured
by IoTCOM, a state-of-the-art IoT security analysis approach [1].
We generated four bundles of individual application models rep-
resenting a suite of apps that could be installed on the same IoT
system. The analysis determines if each suite of co-located apps
is subject to risky interactions among the apps. We analyzed the
application of two operations—installing a new app or removing an
existing app (as described in Listing 5). Each bundle contained up
to 10 apps. For the experiment, we started the analysis with a list
of one random installed app, and executed the install operation on
another random app until all 10 apps were counted as installed. We
then randomly removed an installed app until the list of installed
apps was empty, analyzing the results of each operation. We have
handled uncontrollable factors in the experiments by repeating the
experiments 10 times with each analysis technique and report the
analysis time for each iteration.

Data models. A system’s data model frequently changes as the
design of the system evolves. To evaluate SoRBoT’s ability to opti-
mize the analysis of such changes, we analyzed the application of
common data model transformations on formal specifications of
five real-world data models adapted from those extracted by Nijjar
and Bultan [25] and packaged with iDaVer [26]. We applied six
different types of mutation operations to the data model specifica-
tions: (1) changing an association from one-to-one to one-to-many;
(2) changing from one-to-many to one-to-one; (3) changing from
one-to-many to many-to-many; (4) changing from many-to-many
to one-to-many; (5) changing from many-to-many to a pair of one–
to-many associations joined by a join table; and (6) changing a join
table into a direct many-to-many association. For our experiments,
we generated 20 sequences of 20 operations drawn from those six
and applied them in sequence to each original data model specifi-
cation, recording the metrics during the analysis of the properties
defined in the original specifications for each data model.

MT-RBAC. User access control (UAC) administration is perhaps
the most prominent example of a system where user-initiated op-
erations change the system’s state. Administrators must be highly
trusted within the organizations using these UAC systems. The poli-
cies governing access control are often external to the system, with
no ability to verify that changes to the system satisfy the governing
policies. The lack of any formal validation makes changing user ac-
cess contentious and time-consuming, as administrators cannot be
sure of the ramifications of each operation. Further, administration
of user access via third-party, web-based portals (e.g., Azure’s por-
tal [21]) requires online analysis of each operation’s result, which
has to date been out of reach for formal analysis of UAC due to
poor scalability [13, 15, 18]. To evaluate SoRBoT’s applicability
to user-initiated system evolution, we created a formal model of
a multi-tenant role based access control (MT-RBAC) system as de-
scribed by Jha, et al. [18]. In an MT-RBAC system, users are granted
roles, which represent bundles of permissions granting access to
certain resources. Multiple tenants within the system can establish
trust relations among tenants that allows for sharing of roles. In the
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Table 1:Mean number of primary variables in the CNF trans-

lation when analyzing operations on each subject specifica-

tion for SoRBoT vs. Alloy, as well as the mean pairwise re-

duction in the number of primary variables (%).

Subject specification

# Vars

(Alloy)

# Vars

(SoRBoT)

% Reduction

IoT

Bund. 1 7,278 24 99.7%
Bund. 2 12,923 27 99.9%
Bund. 3 6,021 28 99.5%
Bund. 4 6,947 19 99.7%

Data
Models

FatFreeCRM 479 237 50.3%
LovdByLess 23 17 5.0%
OSR 78 37 53.3%
Substruct 84 41 51.9%
Tracks 66 33 49.4%

Security RBAC 20,850 5,898 71.2%

Android

Bund. 1 565,670 729 99.9%
Bund. 2 466,268 550 99.9%
Bund. 3 230,078 368 99.8%
Bund. 4 773,569 761 99.9%
Bund. 5 511,791 584 99.9%
Bund. 6 374,291 531 99.9%

experiments, we considered the following operations that could be
applied by a user during the administration of a role-based access
control system: (1) granting/revoking a role to/from a user; (2) grant-
ing/revoking a role to/from a permission; (3) adding/removing a
relation in a role hierarchy; and (4) adding/removing a trust rela-
tion between two tenants of the multi-tenant system. As with the
data model subjects, we generated 20 random sequences each with
20 operations and applied each sequence to the base MT-RBAC
specification.

Android Security Analysis. Lastly, we evaluated SoRBoT against a
suite of formal specifications derived from real-world Android apps
that have been used in the evaluation of a number of other recent
papers on analysis of evolving specifications [4, 8, 41]. To generate
the apps specifications, we used the Covert security analysis tool [5]
to produce six bundles of Android app specifications representing
a suite of apps that could be installed on the same device. The
security analysis aims at determining if each suite of co-located
apps is subject to a vulnerability in the communication among the
components of each app, such as a privilege escalation attack [5].
We generated 6 bundles containing a random selection of 25 apps
drawn from a pool of 215 possible app models. For the experiment,
we started the analysis with a list of one random installed app, and
executed the add operation on another random app until all 25 apps
were counted as installed. We then randomly removed an installed
app until the list of installed apps was empty, analyzing the results
of each operation.

4.1 RQ1: Improvements in Practice

Table 1 summarizes the size of propositional formulas generated
by each of the two techniques, i.e., SoRBoT and Alloy Analyzer,
in terms of the number of primary variables in the translation of

each specification. The table includes the mean number of primary
variables in each translation of the corresponding specification
across all experimental runs; for the IoT, data model, and MT-RBAC
subjects—which had more operations to test—N=400 each whereas
for the Android specifications N=288, for both Alloy and SoRBoT.

As shown, the number of variables in formulas generated by
SoRBoT is significantly less than those generated by the Alloy An-
alyzer. On average, SoRBoT exhibits more than 74% reduction in
the size of the translated propositional formulas, compared to those
produced by the Alloy Analyzer. The effects of SoRBoT’s optimiza-
tion are clearly visible for more extensive specifications. According
to the experimental results, the specifications of the Android app
bundles, representing the largest experimental subjects, enjoyed the
greatest reduction in variables, with over 99.9% of primary variables
removed by SoRBoT. This result clearly shows the effectiveness of
our algorithm in reducing the exploration space.

4.2 RQ2: Analysis Time

To address the second research question, we tracked the total time
required for each system to analyze the results of applying opera-
tions to each of the specifications. For the datamodels, we generated
20 random sequences of 20 operations each, successively generating
updated versions starting from the unmodified base specification.
We attempted to analyze each version of the specification with
SoRBoT, Alloy Analyzer, Titanium, Platinum, and iAlloy to collect
their analysis results. The results for SoRBoT, Titanium, iAlloy,
and Alloy Analyzer for our subject specifications are reported in
Figure 3, but we were unable to compile results using Platinum.

For Platinum, we used the implementation made available on the
website accompanying the published paper. The implementation
was unable to finish any of our experiments within the 24-hour
limit, spending an excessive amount of time in the lookup phase of
the union-find algorithm employed to canonicalize the formulas
and ultimately running out of memory on the larger specifications
(20GB were allocated for each execution).

We are also unable to report performance results for iAlloy with
respect to the Android subject systems as iAlloy provides incor-
rect analysis results for Android subject systems. Android app
specifications include signatures representing concrete apps and
components, defined as subsignatures of more abstract signatures.
The facts and commands in the specification are defined upon the
abstract signatures, which remained unchanged. iAlloy analyzes
the text of the specification starting from the executed commands,
working back to find all dependencies. As the commands do not
explicitly depend on the added/removed subsignatures, iAlloy in-
correctly determined no changes were made, and reused existing
solutions rather than re-running the analysis, leading to wrong
analysis results. Therefore, we exclude the results for the Android
specifications as they would not be representative of the time re-
quired for a correct analysis. We report iAlloy’s results for all other
subjects, which did not suffer from the same limitation.

Figure 3 shows box plots of the cumulative analysis times (on
a logarithmic scale) for each subject system, grouped by the anal-
ysis tools. For all the subject systems, the analysis time required
by SoRBoT was less than the time required by Alloy Analyzer to
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Figure 4: Box plots showing the running time (in seconds)

for speculative analysis with SoRBoT for each of the four

base subject specifications (N=10).

analyze the same specification. The improvement was more notice-
able for larger scale specifications, e.g., IoT app bundles. SoRBoT
also outperformed Titanium in terms of the analysis time across all
subject systems. While in a few Android cases, Titanium performed
comparably to SoRBoT, in all other cases, SoRBoT remarkably out-
performed Titanium. In one case (MT-RBAC), Titanium was not
able to finish computing the observed bounds for the first operation
within the 24-hour time limit.

4.3 RQ3: Overhead

To measure overhead, we executed only the speculative analysis
for each of our subject systems 10 times, with the results depicted
as box plots in Figure 4. According to the experimental results, the
execution time overhead incurred by the speculative analysis to
automatically derive optimized analysis bounds is 9.25 seconds on
average, with no speculative analysis taking longer than 20 seconds.
The overhead of the one-time speculative analysis for each domain
is negligible considering the actual analysis time for the specifica-
tions in each respective domain. Note that the speculative analysis
is operating on high-level meta models for specifications to auto-
matically identify opportunities for bound adjustments. Therefore,
all four IoT app bundles, all five data models, and all six Android
app bundles share the same fixed bounds with the other specifica-
tions in their domain. The Android analysis took the longest, in
keeping with the fact that the meta model describing Android inter-
component communication is much larger than the entity-relation
meta model for the data models and the model for MT-RBAC, with
the IoT app bundles only slightly larger. As the speculative analysis
only needs to be performed once for each domain, the overhead
reported here would also be amortized across every subsequent
run-time verification.

5 DISCUSSION

Overall, we interpret the experimental results to show that SoR-
BoT provides a practical and efficient alternative to state-of-the-art
techniques for analysis of evolving specifications, without suffering
from the drawbacks of the existing approaches. As shown in Table 1,
SoRBoT cuts the scope of analysis in half (often far better) for all
but the smallest subject systems, showing a promising reduction
in the amount of work the solver must do for each run-time opera-
tion verification. The reductions in the total analysis time vs. the

Alloy baseline also benefit from the same underlying fact: the im-
provements shown by SoRBoT accrue with each repeated analysis,
resulting in an increasing improvement each time an operation is
formally verified.

This comes at the cost of a very low overhead; as shown in
Figure 4, The speculative analysis took around 8, 5, 4, and 20 seconds
for the IoT, data model, MT-RBAC, and Android specifications,
respectively. In the case of MT-RBAC and Android, this overhead
accounts for a small fraction of the total analysis time saved for

each repeated operation, despite accruing exactly once. Compared
to Titanium SoRBoT introduces negligible overhead, and Platinum
required so much preprocessing that it could not be included in our
reported results. SoRBoT demonstrates a remarkable improvement
over the state-of-the-art techniques. As shown in Listing 5, SoRBoT
can automatically derive impressive optimizations from even very
simple operation descriptions.

In terms of analysis time, Titanium performed poorly for most
subject systems. This was due to the extreme cost of enumerating
all satisfying models to compute the observed bounds, even when
limited to 10,000,000 instances. As SoRBoT requires no explicit
enumeration, it does not suffer from that drawback. Titanium was
able to compare favorably with SoRBoT in the Android domain,
the domain against which Titanium was originally evaluated in [4].
Also, Titanium showed a vast spread of analysis times for two An-
droid bundles; this may be due to the higher number of solutions
enumerated by the Titanium approach. In cases where Titanium’s
analysis returns no instances after applying an operation, Titanium
has no instances to enumerate to observe the bounds and thus
must translate the entire specification for the subsequent opera-
tion. This leads to large swings in translation time for the Android
specifications, which require a great deal of translation time when
unadjusted. SoRBoT does not have this limitation, as its bound
adjustment does not require enumeration. iAlloy performed well
on the smaller specifications, but required more time for the large
IoT specifications. This may be due to the extra overhead of having
to build the dependency graph and compute checksums on the
paragraphs of the specification. Notably, iAlloy outperformed the
Alloy baseline for all subject systems, but required more (median)
analysis time than was required by SoRBoT.

6 THREATS TO VALIDITY

The main threat to the internal validity of our experiment is the
fidelity of our implementation and the correctness of our generated
model variants. The entire system—both our Java implementation
and our experimental scripts—underwent intensive testing during
development to ensure they were correctly executing as desired and
reporting the correct measurements during the experiments. To
further validate the consistency of results produced by SoRBoT’s
optimized analysis with those produced by the Alloy Analyzer, we
compared the solutions produced by the two techniques. The ex-
perimental results confirm that SoRBoT computes the same set
of solutions as the Alloy Analyzer in all cases, corroborating our
theoretical expectation. To ensure our external validity, we drew
our subject specifications from four disparate domains representing
active areas of research in the verification of evolving specifica-
tions. All of our subject specifications were drawn directly from
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the literature, with small alterations to allow our tool to analyze
the results of the operations and synthesize the necessary variants
to test changes to the model. Lastly, the measures we chose for
our experiment are well established and provide no threat to the
validity of our construct.

7 RELATEDWORK

Formal verification of evolving specifications has recently been a
very active area of research [4, 8, 14, 28, 37, 39, 41]. In particular,
approaches that use bounded model checking have been very pop-
ular, tending to approach solutions to the problem from two main
directions. Approaches such as Titanium [4] and Flair [8] introduce
and validate the method of tightening bounds based on the instances
produced by bounded model checking. However, as discussed in
Section 5, both rely on enumerating satisfying models of at least one
specification to compute the observed bounds. Also, the latter relies
on existing domain expertise that must be provided by the user
about which relations are affected by each operation. For Titanium,
the altered model must constitute a specialization of the original
such that all instances satisfying the modified solution must satisfy
the original. This limits the generality of their approach. SoRBoT
does not suffer that limitation, as any domain-specific operation
can be analyzed. On the other hand, Flair analyzes a specific pair
of operations in a single domain–namely adding or removing apps
from a bundle of apps installed on an Android phone. Flair’s devel-
opers leverage their expertise in the domain to specify the bounds
that can be fixed for each operation. As demonstrated in Section 4,
SoRBoT not only automatically detects those bounds when ap-
plied to the Android domain, but can derive such domain-specific
optimizations for any other domain.

Other approaches tend to focus on solution reuse, finding oppor-
tunities to reuse all or part of prior solutions to reduce the scope
of subsequent analyses [37, 39, 41]. Platinum [41] extends Alloy
Analyzer by slicing the propositional formula translated via Kodkod
into independent subclauses and caching the results for each sub-
clause for future use. This introduces an additional computational
burden for the analysis of large specifications, as each verification
must also slice and canonicalize the formula as well as exploring and
updating the cache with any new subclauses. This approach is simi-
lar to recent approaches derived from Green, proposed by Visser, et
al. [37], which also stores and reuses portions of the propositional
formula. iAlloy—proposed by Wang, et al. [39]—approaches the
reuse in a different way by storing and reusing solutions wholesale
when verifying multiple disjoint properties of a given specification.
iAlloy performs a lexical analysis of the specification to determine
which “run” or “check” commands are impacted by the change,
and re-uses prior solutions for any commands that were not al-
tered. Titanium, Platinum, and iAlloy were used as baselines for
our experiments, as described in Section 4.

Different from all these techniques, SoRBoT explores the pos-
sibility of automated discovery of domain-specific optimizations
that combines the benefits of both solution reuse and bound tight-
ening while avoiding the main pitfalls of each. To the best of our
knowledge, SoRBoT is the first approach that seeks to automati-
cally derive domain-specific optimization without direct input from
domain experts.

8 CONCLUSION

In this paper, we presented SoRBoT, a novel approach to automati-
cally discover and exploit potential domain-specific optimizations
for repeated verification of evolving formal specifications. SoRBoT
performs an inexpensive, one-time speculative analysis to deter-
mine which if any relational bounds in the provided relational
specification can be “fixed”, indicating they can be reused from a
prior solution drawn from a related specification. Experimental
results indicate that (a) SoRBoT improves upon Alloy Analyzer’s
(our baseline) by cutting the search space in half or better for nearly
all of our subject specifications; (b) speculative analysis introduces
negligible overhead; and (c) SoRBoT’s run-time analysis time for
verifying the results of domain-specific operations improves upon
the baseline and is at least on par with state-of-the-art techniques
for verifying evolving specifications.

In future research, we would seek to improve the speedups due
to SoRBoT by targeting the translation of relational specifications
to propositional logic and SAT formulas to see if any similar po-
tential exists to reuse prior translations or limit the scope of the
translation. We would also like to explore combinations of the SoR-
BoT’s speculative analysis with other techniques promoting full or
partial solution reuse, to see if similar solver-based approaches can
automate the discovery of reuse opportunities in other parts of the
formal verification process.
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