Parasol: Efficient Parallel Synthesis of Large Model Spaces

Clay Stevens
University of Nebraska-Lincoln
School of Computing
Lincoln, Nebraska, USA
clay.stevens@huskers.unl.edu

ABSTRACT

Formal analysis is an invaluable tool for software engineers, yet
state-of-the-art formal analysis techniques suffer from well-known
limitations in terms of scalability. In particular, some software de-
sign domains—such as tradeoff analysis and security analysis—
require systematic exploration of potentially huge model spaces,
which further exacerbates the problem. Despite this present and
urgent challenge, few techniques exist to support the systematic
exploration of large model spaces. This paper introduces PARASOL,
an approach and accompanying tool suite, to improve the scalability
of large-scale formal model space exploration. PARASOL presents
a novel parallel model space synthesis approach, backed with un-
supervised learning to automatically derive domain knowledge,
guiding a balanced partitioning of the model space. This allows
ParasoL to synthesize the models in each partition in parallel, signif-
icantly reducing synthesis time and making large-scale systematic
model space exploration for real-world systems more tractable. Our
empirical results corroborate that PARAsOL substantially reduces (by
460% on average) the time required for model space synthesis, com-
pared to state-of-the-art model space synthesis techniques relying
on both incremental and parallel constraint solving technologies
as well as competing, non-learning-based partitioning methods.

CCS CONCEPTS

« Software and its engineering — Formal software verifica-
tion; « Security and privacy — Logic and verification.

KEYWORDS

formal analysis, bounded verification, tradespace analysis, parallel

ACM Reference Format:

Clay Stevens and Hamid Bagheri. 2022. Parasol: Efficient Parallel Synthe-
sis of Large Model Spaces. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE "22), November 1418, 2022, Singapore, Singapore.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549157

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °22, November 14—18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM
ACM ISBN 978-1-4503-9413-0/22/11...$15.00
https://doi.org/10.1145/3540250.3549157

Hamid Bagheri
University of Nebraska-Lincoln
School of Computing
Lincoln, Nebraska, USA
bagheri@unl.edu

1 INTRODUCTION

Formal modeling of software systems has long been a hallmark of
rigorous software engineering. The ability to systematically and for-
mally analyze the properties and behavior of a system can greatly
benefit the system’s quality, security, and performance. Formal
analysis techniques have been successfully used in a wide variety
of applications, ranging from more theoretical uses like theorem
proving [29] and bounded verification [22] to more practical appli-
cations such as configuration selection [33, 35] and self-adaptive
systems [49]. Recent advances in the field have also lead to more
widespread industry adoption [14, 37, 41, 52]. However, these tech-
niques face well-known challenges with scalability when analyz-
ing large-scale systems. As the number of variables in the formal
specification of the system grows, the number of possible models
of the specification grows exponentially—the so-called “curse of
dimensionality”. Thus, formal analysis techniques must search a
vast model space to find models that satisfy all constraints in the
specification.

In many application domains, the problem is further exacerbated
by the need to not only find a single satisfying model, but to instead
explore the entire model space to find all satisfying models. In the
area of tradeoff analysis, for example, system designers must bal-
ance the needs of multiple stakeholders and conflicting objectives
to select the best design for a system,; this necessitates a systematic
analysis of the tradeoffs among all possible designs. For large-scale
systems, manual exploration of design variants will likely exclude
possible design alternatives that would be otherwise optimal candi-
dates, leading to a premature fixation on potentially non-optimal
designs [21, 44, 53]. The development of efficient formal techniques
to model and explore these design tradeoff spaces is therefore an
active area of research [6, 12, 13, 17, 28, 34, 43, 44, 48, 56].

Similarly, in security analysis, analysts must explore large model
spaces when identifying and addressing possible security threats
to their systems. The growing popularity of consumer IoT sys-
tems increases the need for scalable systems to model and identify
cyber-physical threats, which again necessitates a systematic explo-
ration of a large and ever-growing model space of possible security
risk models [1, 8, 19, 47]. In both of these areas, systematic model
space exploration has been successfully applied within constrained
sub-domains such as embedded systems or computer hardware
design [31, 45]. However, using such techniques faces steep chal-
lenges when applied to software systems, where the models spaces
are often colossal.

In fact, the major challenge limiting the application of system-
atic model space exploration to the software engineering domain
is the problem of exhaustive model space synthesis. While recent re-
searchers have presented systematic approaches which guarantee

https://doi.org/10.1145/3540250.3549157
https://doi.org/10.1145/3540250.3549157

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

a complete enumeration of the model space for a software sys-
tem [6, 12], they do not address the scalability of model space
synthesis. Exploring the model space for even modestly-sized soft-
ware systems can quickly become intractable for the existing model
space synthesis techniques, limiting the utility of existing tools for
software engineers in practice.

To address the problem of scalable exploration of large model
spaces, we present a novel approach and accompanying tool suite,
dubbed ParasoL, for parallel synthesis of large model spaces. PARA-
soL leverages unsupervised learning to effectively support system-
atic model space synthesis in parallel, by dividing the model space
into smaller, non-overlapping partitions, which can then be synthe-
sized concurrently. PARASOL improves upon state-of-the-art model
space synthesis techniques by addressing two of the factors cur-
rently limiting their scalability in practice. (1) First, in order to
ensure synthesis of the entire model space, the model space syn-
thesis problem must be incremented after synthesizing each model
to exclude previously synthesized models and prevent duplicates.
This self-referencing reliance on earlier solutions to avoid duplica-
tion of effort forces the existing techniques to operate sequentially. (2)
Second, using existing approaches, additional constraints must be
added to the model space synthesis problem to exclude each newly
synthesized model. As more constraints are added to the problem,
the time required to synthesize each new model grows, ultimately
requiring greatly increased time to synthesize each of the last models.

PARAsOL overcomes both limitations, enabling efficient paral-
lelization of the model space synthesis problem. PArRAsOL first gen-
erates a bounded sample of the model space through a rigorous
analysis of the system specification, and then clusters the models
for that sample via unsupervised learning. The invariants for those
clusters are then automatically derived and captured as formal par-
tition definitions such that synthesis of the target model space can
be performed in parallel. By partitioning the problem according
to the clusters discovered in the sample, PARAsoOL allows each par-
allel worker to synthesize a portion of the model space entirely
independently of the other workers, improving the efficiency of
the process while still avoiding synthesis of duplicate models. Also,
PARrAsoOL’s parallel synthesis mitigates the increased processing
time due to large numbers of constraints by dividing them among
multiple, smaller problems, reducing the impact of each additional
constraint.

The results of our experimental evaluation over a diverse set of
subject systems corroborate that PARAsoL greatly reduces the total
time required for systematic model space synthesis compared to
state-of-the-art approaches, while introducing very little overhead.
PArasoL provides an average speedup of 460% over state-of-the-art
model space synthesis approaches, including the sampling over-
head, which accounts for less than 7% of the total synthesis time.

To summarize, we make the following contributions:

o Efficient, learning-driven parallel model space synthesis: We
introduce a novel parallel model space synthesis approach,
backed with unsupervised learning to automatically derive
domain knowledge, guiding a balanced partitioning of the
model space, and thereby enabling efficient synthesis.

Clay Stevens and Hamid Bagheri

o PArasor implementation: We realize the presented approach
in a tool, called PArRAsoL, which we make available to the
research and education community [5].

o Experiments: We present empirical evidence of the efficiency
gains when synthesizing model spaces for real-world speci-
fications adapted from prior work.

The following section presents necessary background to describe
our technique and running example. Section 3 details the approach,
and Section 4 describes our empirical evaluation. We discuss the
results and validity of our experiments in Section 5, concluding with
areview of related research and some remarks on future directions.

2 BACKGROUND AND MOTIVATION

To further motivate the research and illustrate our approach, we
provide a running example of developing an efficient database
design having to do with a systematic model space synthesis of
the possible system-specific database design alternatives. Consider
object-relational database mapping (ORM) tools, now provided in
many popular software libraries (e.g., Hibernate [18]) and frame-
works (e.g., Django [16]). They map object-oriented data models to
relational database schemas for managing application data. These
mappings employed by an ORM design tool significantly impact
data storage and retrieval performance for the enclosing system.

Figure 1 shows three possible mappings for a partial object model
of an e-commerce system (adapted from Lau and Czarnecki [30])
that allows Customers to place Orders within the system, with an
additional subclass defined for Member customers, who receive
differential treatment. The full e-commerce system incorporates a
large tradespace, with thousands of possible design alternatives, as
shown in the scatter plot in Figure 1, where each grey circle on the
scatter plot represents a unique, valid database design alternative.
Larger data models will have an even larger tradespace. As the
number of associations or inheritance relations in the domain model
grows, the number of possible variants will grow exponentially;
each relationship would multiply the total by the number of possible
strategies that could be assigned to that relationship.

Picking the best database design and object-relational mapping
often requires analyzing tradeoffs among candidates (e.g., query vs.
update speed), necessitating systematic exploration of the entire
model space; otherwise the designer may only consider suboptimal
designs. However, the current state-of-the-practice for ORM design
tools produces database designs based on a single-point strategy [7],
considering no/limited non-functional properties and ignoring the
performance ramifications for the system [16, 18, 24]. The star
highlighted in Figure 1 denotes the point design solution produced
by a state-of-the-practice ORM design tool. It is clear from the
diagram that the database design generated by state-of-the-practice
design tools is not among the Pareto-optimal designs, highlighted by
triangles in Figure 1. The design produced by the state of practice—
widely used every day by thousands of developers—is far away from
Pareto optimal solutions because such design tools fail to consider
the entire model space, focusing on a single solution. The challenge
is that generating large numbers of complex variants is expensive.
Thus, in order to enable the selection of (Pareto-)optimal design
solutions, system designers require tools that can systematically
and scalably generate the entire model space.

Parasol: Efficient Parallel Synthesis of Large Model Spaces

P I Customer |1 Order
v I orderld
TableO ' #| amount
customerld i T
(a) customertype ¢ i

memberNum Table2 Tablel

T

— customenid orderid
memberNum orderld amount

[mabeo | [customer | Order

- 1

orderld
*[amount
T
Table1
ordertd
customerid
amount

customerld customerld

(b)

Table2
customerid
memberNum

Order
orderld
*

amount

2

Table0
customerld
customerType

amount

Insert Time (s) e

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

-100
-90
- 80
- 70
- 60

Storage (KB)

O Design Alternatives
A Pareto Optimal
* State-of-the-Practice

— O\
400 goo 100 &

Figure 1: Example model space with quality attributes (i.e., tradespace) for database designs for an e-commerce system, com-
paring insert and select time and required storage space. (a)-(c) present partial object-relational mappings for three design
alternatives, indicated in the scatter plot by the arrows (gray circles represent individual alternatives). Designs with optimal
tradeoffs (Pareto optimal) are indicated by triangles. State-of-the-practice (SOTP) design generated by a COTS ORM system
indicated with a red/dark star. Note that the SOTP design is far from optimal, and only a small fraction of designs present
optimal tradeoffs. Systematic synthesis and evalution of the entire model space is required to find the optimal tradeoffs.

The above example—which we use as a running example—
manifests one of the most prominent and widely-used soft-
ware/system engineering problems that requires model space syn-
thesis and exploration to be addressed effectively. Model space
synthesis is an indispensable part of practical design. The motiva-
tion for this paper is the current lack of adequate scientific founda-
tions and practical technologies for scalable model space synthesis
in software and systems engineering. The consequences are sig-
nificant, in opportunity costs, stakeholder dissatisfaction, and in
underperforming and failed projects and systems. We hypothesize,
and our experimental results confirm, the possibility of a paral-
lelized model space synthesis approach, backed by unsupervised
learning, to automatically derive a balanced partitioning of gigantic
design spaces. Such a pragmatic synthesis of the entire model space
promises revealing designs that greatly outperform those produced
by the existing design tools and provides significant performance
improvements to both systems designers and their end-users. In the
next section, we provide an overview of PArRAsoL, then describe in
detail its approach to address these issues and enable the pragmatic
and scalable synthesis of large-scale software model spaces.

3 APPROACH

This section overviews our approach—realized in a tool called PARA-
soL!—to effectively parallelize systematic synthesis of large model
spaces. The driving innovation of this approach is to first synthesize
a bounded sample of the model space and cluster it using unsuper-
vised learning. An invariant from each cluster is then automatically
inferred to support a balanced partitioning of the large model space
prior to exploring the entire set of design variants, allowing each

Lhttps://sites.google.com/view/parallel-exploration/home

partition to be synthesized concurrently and independently by a
distinct synthesis engine. PARAsoL comprises four main steps, as
depicted in Figure 2.

(1) Sampling, which automatically synthesizes a bounded sub-
set of models M; apropos formula 73, derived from the
system specification, ¥, via declarative slicing;

(2) Clustering, which automatically discovers related subsets
within the sample using unsupervised learning;

(3) Partitioning, which automatically infers an invariant from
each cluster, i, and synthesizes constraints c¢; corresponding
to that invariant; then

(4) Parellel synthesis, where each c; is conjoined with ¥ to
define a set of independently analyzable partitions of the
target model space, which can each be explored concurrently
to synthesize the entire model space in parallel.

While our goals are broad, for concrete exposition of our ideas,
we use relational logic as an example medium of specification to
explain our vision in this paper. Relational logic is shown to be a
perfect candidate for software abstraction [26, 27].

3.1 Sampling

The first step in PARASOL is to synthesize a small, bounded subset of
the desired model space which can act as a representative sample.
Figure 3 provides an overview of the sampling process. To generate
this sample, PARAsOL accepts as input a formal specification of a
system (e.g., in Alloy [26]), which is then translated into a format F,
appropriate for consumption by an underlying off-the-shelf solver
and/or model finder. When the solver finds a model, m, which
satisfies ¥, that model is added to the model space.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

e 0o
® 9 o

® 9
°®

14

@ Sample Synthesis

System

Specification Sample Models

¢» Synthesizer

@ Clustering

v

e ono
® o m

© Fartitioning
[] <> 4
¢

¢ O Farallel Synthesis

Figure 2: PARASOL overview. (1) A sample set of models is
synthesized from a slice of the specification. (2) The sample
set is clustered using unsupervised learning. (3) An invari-
ant from each cluster is automatically inferred to support
sound partitioning of the large model space. (4) Model space
synthesis is then performed in parallel, greatly reducing the
time required to generate the entire model space.

ParasoL relies on declarative slicing [55] to identify a base slice
for its sampling. Specifically, PARASOL first selects a slicing criterion
C C R and generates a base slice and derived slice of the specifica-
tion. The base slice represents a smaller problem than the original
due to the removal of all relations that do not appear in the slicing
criterion besides all clauses referencing the removed relations. The
formulae for the base and derived slices (}, and ¥y, respectively)
partition the formula for the input such that ¥ = #, A ;. From
there, it is easy to deduce that ¥ = ¥3; in other words, every
assignment of tuples that satisfies ¥ must also satisfy 7. This
guarantees a mapping between the models of the sample and those
of the input specification, as each model of the input is a valid
extension of a sample model.

PARrAsoL selects its slicing criterion based on the complexity of
the formula for the base slice, derived from the number of clauses
appearing in the formula. The complexity ratio (Formula 1) com-
pares the number of clauses, C, in the conjunctive normal form
(CNF) representation of the original formula with the total number
of clauses in the CNF for the base and derived slices (Cp, and Cy,
respectively). The CNF translation process adds additional auxiliary
variables and clauses to represent a given formula as a conjuction
of disjunctions. The base and derived slices are each likely to be
smaller than the original formula, so their translations will include

Clay Stevens and Hamid Bagheri

o Sample Synthesis

N T : |

Sample
Models
® oo
® 9o
o e
OO o +

SAT? @

Figure 3: Sample synthesis overview. Input specification is
translated into a format suitable for solver, then sliced us-
ing declarative slicing. Sample is then synthesized from base
slice 7, using specification-driven model space synthesis.

fewer total auxiliaries than the original formula would require, al-
lowing for complexity ratios greater than one. Parasot filters the
possible slicing criteria to those that would produce unique base
slices and selects the criterion with the highest complexity ratio.

complexity ratio = CbTCd (1)
ParasoL then uses the specification-driven model space synthe-
sis process to synthesize a sample of model instances satisfying the
base slice formula, 73, as shown in Figure 3. If 7, is satisfiable,
the model finder returns the satisfying model, mg, and adds it to
the sample model space, Ms. A clause representing the negation
of myg is conjoined with 73, and the resulting conjunction is then
subjected to another round of analysis to produce a different satis-
fying solution. This loop continues until the model finder cannot
find a satisfying model, completing sample model space synthesis.
These sample models satisfy the base slice derived from the original
specification. In view of the logical relationship described above
between the base slice and the original, larger specification, each
model in the original model space, M, is an extension of one of the
models in M;. As such, PARAsOL can glean from M; information
about the models of the original specification.

3.2 Clustering

For each model ms € M, ParasoL then generates an observa-
tion vector, og, to provide as input for clustering. This vector is
constructed by checking the model against a given set of features
which serve to identify the relevant similarities and differences

e Clustering

@ oo
® 9o Ob
e 0 serve
) e Observatlan
Sample next’7 Vectors
Models :
1
[} DD
° i
) 4 (e.g., k-means)

Figure 4: Clustering component overview. For each model
ms in the sample, PARASOL constructs an observation vector
os (see Figure 5). Observations are clustered using unsuper-
vised learning to partition design alternatives in the sample.

Parasol: Efficient Parallel Synthesis of Large Model Spaces

n={t th.ti_,ti} — [101,..,11]
me=9 5={ thethyth) —> 01,11 Qoorea™ %

n={tht, ..t }— [L10,..,10]
m={n4¢u”) T 10,01 € =0

Figure 5: Example observation vector construction for clus-
tering. Sample models my,m; € M; correspond to ob-
servation vectors op and o;, respectively. Each vector is
constructed by concatenating sub-vectors corresponding to
each relation r;,r; € R, where each index x, is 1 if tuple
t% € rq in the corresponding model or 0 otherwise.

among the observations. PARASOL uses a list of features extracted
from the tuple assignments in each satisfying model of the sample
problem. Specifically, it defines one Boolean feature for each tuple
of atoms ¢ in the upper bound of each relation r € R. The upper
bound, denoted r.UPPERBOUND, represents the set of all tuples that
may be assigned to relation r by the solver in a potential model
instance of ¥, usually defined as the n-fold Cartesian product of
the domains of r. The size of each tuple assignment feature vector
is therefore equal to)}, <% | . UPPERBOUND |.

The observation vector for each sample model m; is computed
as shown in Figure 5. First, the relations in R and the tuples in
each relation’s upper bound are ordered into a canonical ordering
and indexed. The assignments of each relation r; in my is then
translated into a sub-vector according to that indexing, setting a
value of 1 at each index where the corresponding tuple is a member
of r; in ms and a value of 0 otherwise. For example, Figure 5 depicts
two sample models my, m; € M;s and relations r;,r; € R with
cardinalitigs n agd m, _respectively. Inmy, r;i = {t{, té, t:l—l’ tfl}
andrj = {té, trjn—l’ t,jn}. In this case, the vector o; generated ferm
my. would contain a one at indices corresponding to t; and ¢, _,,
but would contain a zero at the index corresponding to t{, among
others. Similarly, for m;—which has different tuple assignments for
r; and rj—the observation vector o; would contain a one at indices
corresponding to t{ and té, but a zero at the index for t;

The observations are then passed through unsupervised clus-
tering algorithms. If the desired degree of parallelism is known,
PArasoL uses k-means clustering to produce the desired number of
clusters. Specifically, if the degree of parallelism is n > 1, PARAsOL
will run k-means clustering where k = min(n — 1, 2). It generates
one fewer cluster in order to account for differences between the
sample and the original input, detailed in Section 3.3.

If the desired degree of parallelism is not specified explicitly,
PAaRrAsoL uses x-means clustering [39] to automatically determine
an appropriate value for k. X-means clustering determines the best
value for k by identifying candidate cluster locations and selecting
those that optimize the Bayesian information criterion (BIC) for
each cluster. This allows for effective unsupervised clustering of the
sample models even when a value for k is not given. The discovered

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

o Partitioning
F onF
(Specification)
... DDD 5 1 O Synthesizer

[Infer Invariant

Define Partition

{ Synthesizer

Sample
Clusters

¢

Figure 6: Partitioning component overview. Invariant y; is
inferred from cluster i, specifying tuples assignments as
included/excluded/neither. y; is transformed into variable
clauses and conjoined to the CNF representation of ¥ to gen-
erate partition definition c; for each synthesis engine.

Algorithm 1 Invariant inference algorithm. Input is a set of rela-
tions, R; a set of cluster centroids, each comprising an ordered list
of tuple assignment features. Returns invariants for each centroid.

Input: R :relations, centroids : set of ordered lists of 0 or 1
Output: invariants

1: invariants <

2: for ¢ € centroids do

3: ino T

4 forr € Rdo

5 for i = 1 to | r.UrPERBOUND | do
6: t « r.UpPERBOUND [i]

7 if c[i] = 1.0 then

8 inv—inoA(ter)

9 else if c[i] = 0.0 then

10: inv—inoA(té¢r)

11: invariants < invariants U ino

12: return invariants

clusters—both the metadata and the list of member observations
for each—are provided as input for the next step of our process.

3.3 Partitioning

ParasoL logically partitions the original model space based on
the information derived by the unsupervised learning (shown in
Figure 6). It first examines the statistical metadata (e.g., the centroid
values) for each cluster to infer a set of invariants (i.e., logical
statements that are true of every sample model in the cluster) based
on the features used for the clustering. Each centroid adopts a
value for each feature in the closed range between 0.0 and 1.0,
summarizing the feature’s values in the sample models assigned
to the corresponding cluster. PARAsOL analyzes each centroid and
infers an invariant relational assignment of tuples based on the
centroid values. If the value for a particular feature is 1.0 in a
given centroid, then PARAsOL infers that the assignment of the
tuple corresponding to that feature is invariant in the given cluster.
Similarly, a value of 0.0 indicates that non-assignment of the tuple
is invariant in that cluster.

Alg. 1 outlines the invariant inference process. The algorithm
first iterates through a set of centroids representing each cluster
(Line 2), generating an invariant for each. The inner loops (Lines 4-
5) iterate through each tuple in the upper bound of each relation by

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

o Parallel Synthesis

& Synthesizer

Model Space

Figure 7: Parallel synthesis component overview. Each syn-
thesizer performs a model space synthesis loop on the pro-
vided partition definition. Models satisfying the definition
are added to the shared model space, negated, and conjoined
with the definition to discover new models. When no more
models are found, model space synthesis is complete.

index, using the same index to access to the corresponding feature
in centroid ¢ (Lines 7 and 9). If the feature value is equal to 1.0 in the
centroid, it conjoins the constraint that the tuple must be present in
the set defining the relation (i.e. the tuple is included); if it is equal
to 0.0, it asserts the tuple must not be present (i.e., it is excluded).
For all other values, it adds no clause. Once each the invariant for
each cluster have been created, PARASOL generates an additional
logical definition from the conjunction of the negation of each of
the other invariants; this additional definition would match for any
models that would not match any of the other invariants, ensuring
that PARASOL can enumerate all satisfying models.

The resulting invariants logically define each cluster, but would
not be directly applicable as constraints for synthesizing models for
% each one explicitly checks for the presence or absence of individ-
ual tuples inside the previously defined relations, but # represents
the relations themselves as free variables. Therefore, PARAsOL fur-
ther translates ¥ into conjunctive normal form (CNF) in order to
directly reference variables corresponding to each individual tuple
assignment. In the CNF representation, each tuple in the domain
of each relation is assigned a primary variable indicating that that
tuple is assigned to that relation in a given model. By finding the
primary variable associated with each relation and tuple referenced
in the invariant, PARAsSOL can explicitly add clauses to the CNF
requiring the variables for included tuples to be “true” and excluded
tuples to be “false”. If the invariant does not imply inclusion or
exclusion for a given relation and tuple, then no constraint is added
for the corresponding primary variable in the CNF. Once every tu-
ple assignment has been checked, the emitted clauses are conjoined
with the original CNF to generate a partition definition which can
be given to an independent synthesis engine.

3.4 Parallel Synthesis

The last step in our approach (cf. @ in Figure 2) is to distribute
each partition definition—c; for some partition i—to a separate
synthesis engine and synthesize the model space for each partition
concurrently. PARASOL again uses a variant of the model space
synthesis process described in Section 3.1, as shown in Figure 7.
If a satisfying model m; is found for c;, the model is added to the
model space, c; is extended by conjoining it with the negation of
m;, and the result is given back to the solver/model finder. This

Clay Stevens and Hamid Bagheri

process loops until no satisfying model instance can be found, at
which point the synthesis terminates. When the analysis of all the
partitions has terminated, PARAsoL will have synthesized the same
model space as that synthesized by state-of-the-art model space
synthesis approaches, but in a fraction of the time.

4 EVALUATION

This section presents the experimental evaluation of PArRAsoL. Our
evaluation addresses the following research questions:

RQ1. How well does PArAsOL’s learning-based, parallelized model
space synthesis perform vs state-of-the-art techniques?
RQ2. Does our learning-based partitioning divide the work more
evenly than competing model space partitioning methods?
RQ3. How much overhead is introduced by Parasor?

Experimental setup. We conducted the experiments using a
custom Java 13 implementation of PARASOL?, comprising over 5,000
lines of code using the built-in parallel streaming capabilities of Java
8 and above [38] to execute concurrently on multiple threads. The
learning-based partitioning algorithms are realized on top of the
WEKA library [20] developed by the Machine Learning Group at the
University of Waikato. The specifications used in the experiments
were developed in Alloy relational logic specification language [27]
and executed using the Java API of Alloy 5, the Kodkod model
finder [54] which drives that version of the Alloy Analyzer, and
the Glucose 4.1 SAT solver [2-4]. All experiments were run on
OpenStack instances running Ubuntu 20.04, each with 16 VCPUs
and 60GB RAM.

Subject systems. We collected a set of eight system specifica-
tions as our experimental subjects, representing model space ex-
ploration problems in three different domains: (1) database schema
design, and more specifically as explained in Section 2, object-rela-
tional database mapping (ORM) design; (2) role engineering within
arole-based access control (RBAC) system; and (3) security analysis,
where the threat space of real-world IoT apps, scoped by threat
models thereof, should be exhaustively explored in order to help
discover and address the risks. All subjects—as well as our reference
implementation of PARASOL and experimental data—are publicly
available online for reuse [5].

Database Design. Our first set of subjects evaluates PARASOL in
the context of designing object-relational database mapping (ORM)
schemas. The ORM tools provide an indirection layer between
object-oriented data models and relational database management
systems, and are included in many popular libraries (e.g., Hiber-
nate [18]) and frameworks (e.g., Django [16]). The design mapping
strategies employed by an ORM can have a large impact on its
performance. Selecting an appropriate design often demands the
analysis of tradeoffs among candidates, requiring analysis of the en-
tire model space. We considered the database design problem of two
systems, adopted from the literature. The first is the object model
of an E-commerce system adopted from Lau and Czarnecki [30]. It
represents a common architecture for open-source and commercial
E-commerce systems. The other object model is for a cyber-social
operating system, CSOS [6], to help coordinate people and tasks.

2Research artifacts and experimental data are available at
https://sites.google.com/view/parallel-exploration/home

Parasol: Efficient Parallel Synthesis of Large Model Spaces

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Table 1: Experimental data for each subject system specification. Average total runtime (limited to 24 hours) for three exe-
cutions reported for (a) model space synthesis performed using the approach from TradeMaker [6, 7] with state-of-the-art
incremental and parallel SAT solvers and (b) using PArRasoL. Model space size is the number of models synthesized by the
TradeMaker baseline for the full system specification. Runtime column for PaArasor includes overhead.

Model hesis [6, 7
Specification Model Space odel Space Synthesis [6, 7] ParasoL
. System . Incremental Solver [2] Parallel Solver [11]
Domain Size

Runtime (secs) Runtime (secs) Runtime (secs) Overhead (secs) Speedup
Database E-commerce [30] 803,863 36,968.49 >86,400.00 14,179.25 633.89 250%
Design CSOS [6] 1,576,796 81,142.15 >86,400.00 17,020.02 349.14 467%
Role Eng. ‘ RBAC [46] ‘ 362,133 1,768.02 >86,400.00 233.38 0.71 755%
130,816 2,888.78 >86,400.00 712.95 86.41 361%
IoT Threats [1] 301,360 16,389.06 >86,400.00 6,183.67 695.23 276%
Security (App Bundles 1-5) 999,424 42,041.08 >86,400.00 6,223.16 699.46 607%
pp 958,464 39,568.51 >86,400.00 5,951.50 761.37 589%
1,042,688 53,511.07 >86,400.00 8,529.01 602.78 586%

Role Engineering. The next subject is centered around model
space synthesis and analysis of the tradeoffs in developing roles
and their associated permissions within a role-based access control
(RBAC) system [46], a process known as role engineering. In such a
system, a given user has a set of permissions and resources that are
required to perform their job as well as a set of roles that have been
assigned to that user. In each satisfying assignment, each user must
be assigned roles that grant their required permissions/resources.
System administrators must then select the roles that provide the
best tradeoffs among various non-functional properties, such as
minimizing the number of roles they will need administer or the
number of unneeded permissions assigned to users in the system.
The analysis allows administrators to select the role assignment
that best satisfies the desired qualities.

Security Analysis. Our last set of subjects represents discovering
and exploring the space of potential security threats in IoT systems.
Each warning produced denotes a possible threat to the security of
the IoT system. Fully assessing the risk and mitigating the impact
of each threat would require examining every violations. Ensuring
the security of the system therefore requires synthesis of the entire
threat space to discover and address all possible security risks. To
evaluate PARASOL’s performance in this context, we considered 100
real-world IoT app models drawn from [1]. We divided the apps
collection into five non-overlapping groups of 20 each, and explored
for bundles of apps among each group that violate interaction threat
assertions. Each individual model in the model space corresponds
to a single possible threat that may arise from interactions among
apps within the corresponding bundle.

Baselines and Measures. To evaluate PARASOL in the context
of the research questions, we synthesized model spaces (i.e., design
models, role models, and threat models) for each subject system and
measured (a) the total execution runtime to synthesize the entire
model space, in seconds; (b) the overhead incurred by PARAsOL, in
seconds; and (c) the number of models synthesized by each analysis
engine during execution, used to compute the coefficient of variation
to measure partition parity.

To answer RQ1, we synthesized the model space for each sub-
ject specification with PArRAsoL and compared the results against
synthesis using the model space synthesis method described in
TradeMaker [6, 7], the state-of-the-art in systematic, specification-
driven model space synthesis. Our baseline approach relies upon
SAT solvers to explore the space of models for various systems spec-
ifications provided as input. To ensure a fair comparison against
TradeMaker, we empowered it with state-of-the-art SAT solvers.
Specifically, we studied two classes of SAT solvers as the underlying
analysis engine for the baseline approach. First, we used an incre-
mental SAT solver to directly represent the TradeMaker approach
as described in [6, 7]. Second, we used a parallel solver, which al-
lows us to compare the high-level parallelization approach taken
by ParasoL to lower-level, CNF-based parallelization.

To evaluate RQ2, we synthesized the model space for each subject
in parallel using two other partitioning methods as our baselines,
described in more detail in Section 4.2. Lastly, for RQ3 we measured
the overhead for synthesis with PARAsoL against the overhead for
the state-of-the-art model space synthesis. In order to ensure our
experiments completed within a reasonable time, we limited each
execution—both for PArasor and each baseline—to 24 hours. The
model space for each system was synthesized three times with
Parasol and with each baseline, and the mean values are reported.
The resulting model spaces synthesized by each approach are all the
same, as PARAsOL synthesizes the same models as state-of-the-art
approaches in a much shorter time.

4.1 RQ1: PaArasoL In Practice

To answer the first research question, we compared the time taken
to synthesize the model space of each experimental subject with
PArasoL to that required to synthesize the same model spaces
using TradeMaker, the state-of-the-art model space synthesis tech-
nique [6, 7]. We used two state-of-the-art SAT solvers to drive our
baseline: (a) Glucose [3]—an incremental SAT solver; and (b) Plin-
geling [11]—a parallel SAT solver. Using the incremental solver
provides a direct comparison with our baseline, as an incremental

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

SAT solver is used by TradeMaker as presented in [6, 7]. The paral-
lel solver allows us to compare our approach against lower-level
parallelization performed by the SAT solver. We used our reference
Java 13 implementation of PArasoL, and collected the running time
using the Bash time command. To ensure a fair evaluation, we
used Plingeling’s default degree of parallelism (8) as the number of
partitions in the experiments.

The experimental results are summarized in Table 1. Across the
board, PARASOL outperformed the incremental baseline, providing
an average speedup of 460%. The largest speedup (755%) was ob-
tained on the role engineering model, which also had the shortest
overall running time.

The IoT threat space enumeration subjects fell in the middle, with
an average speedup of 483%; the speedup was more pronounced
on app bundles with more potential security risks. For example,
ParAsoL shows 586% speedup in the analysis of Bundle 5 with
over a gigantic number of potential threats detected vs. Bundle
1 with only 130,816 potential threats and 361% speedup. Lastly,
ParAsoL demonstrates the average speedup of 358% for the two
ORM database design problems. As a case in point, for CSOS—the
system with the most valid database design models—ParasoL saved
the most total hours compared to the baseline, reducing runtime
from 22.5 hours to under 5 hours.

ParasoL also performed well against the baseline approach
driven by the Plingeling parallel SAT solver. As shown in Table 1,
the baseline using the parallel solver was unable to fully synthesize
any of the model spaces within a 24-hour time period. This is in
part due to the fact that the underlying parallel solvers are intended
to quickly provide a single SAT/UNSAT determination by dividing
a given CNF problem into subproblems and executing in parallel.
Model space synthesis techniques such as that used by our baseline,
however, repeatedly invoke the underlying solver, incrementing
the previous formula with a new clause for each discovered design
variant. Plingeling treats each such new invocation as an entirely
new problem, discarding any information discovered during the
solve steps from previous iterations. In contrast, PARASOL extracts
specification-level domain knowledge from each model to partition
the problem at a higher level of abstraction. Because the parallel-
SAT version of the state-of-the-art baseline approach was unable
to synthesize any of the subject model spaces within 24 hours, we
excluded that version from subsequent experiments and used only
the incremental-SAT.

Overall, the experimental results indicate that PARAsSOL pro-
vides significant time savings—with an overall average speedup
of 460%—compared to state-of-the-art model space synthesis
techniques using an incremental SAT solver.

4.2 RQ2: ParasoL vs. Other Partitioners

To address the second research question, we set out to assess how
well PARASOL’s learning-based partitioning divides the model space
and whether it distributes the work more evenly than compet-
ing specification-level partitioning methods. We considered two
competing partitioning approaches, comparing each against our
learning-based partitioning (c.f. Section 3):

Clay Stevens and Hamid Bagheri

(1) Random partitioning: With random partitioning, each free
variable in the original specification is—with equal probability—
explicitly included, excluded, or neither, in which case that variable
is left to the solver to include or exclude. To test this method of
partitioning, we implemented an algorithm where the the random
partitioner elects whether to include, exclude, or defer each variable
based on a value drawn from a uniform random distribution rather
than setting the variables in the CNF according to the invariants.

(2) Scope partitioning: Scope partitioning relies on informa-
tion already encoded in the input specification to guide the parti-
tioning. Formal specifications for bounded verification tools, like
Alloy, include constraints on the scope of the analysis. Specifically,
the author of the specification determines the scope by declaring
the maximum number of distinct atoms that can be assigned to cer-
tain type-like unary relations (i.e., sigs). For example, in the ORM
design specifications, the user determines the maximum number of
tables that may appear in each model by setting the scope for the
TABLE sig. For the CSOS specification, the TABLE scope is set to 18,
meaning that the solver will explore models containing between 0
and 18 tables. For the scope partitioning baseline, we restrict each
partition to synthesize models within a subrange of the original
scopes; for example, one partition might synthesize all models of
CSOS with exactly 18 tables, another all models with exactly 17
tables, and so on. We implemented an iterative partitioner that
loops through each type-like relation in the specification, creating
partitions by fixing the scope of each relation to a single value until
the desired number of partitions has been created.

The boxplots in Figure 8 show the synthesis time (in seconds)
taken by each of the techniques vs. PARASOL over the subject sys-
tems. The horizontal axis specifies the synthesis methods: Trade-
Maker’s model space synthesis with an incremental solver (Glu-
cose [3]), parallel synthesis using random partitioning, parallel syn-
thesis using scope partitioning, and PARAsOL (orange, right-most
box). PARASOL tends to exhibit significantly lower synthesis time
compared to the other techniques.

To determine how each of the three partitioning methods divides
the model space among the parallel analysis engines, we tracked
the number of models synthesized by each distributed worker using
each of the three partitioning methods. We then computed the mean
(1) and standard deviation (o) of the number of models synthesized
for each partition for each method in order to calculate the coeffi-
cient of variation (Cy)—the ratio of standard deviation to mean—as
a measure of the parity among the partitions. The C, assumes a
value between zero and the square root of the number of partitions
(i.e., 8), with a lower C, indicating more balanced division of work.

Table 2 presents the results for each partitioning method and
subject specification. PARAsOL significantly outperformed both the
random and scope-based partitioning baselines in all but one case,
where the partitions produced by scope-based partitioning are the
same as those produced by PARAsOL; for the role engineering subject
the slicing criterion used by PARAsOL contained only the ROLE sig
from the specification, resulting in the same partitions as those
created by the scope partitioning baseline. In terms of partition
parity, the Cy, for PARAsOL was less than half of the square root of
the number of partitions for each subject system, indicating that
ParasoL evenly divides work among the partitions. Furthermore,

Parasol: Efficient Parallel Synthesis of Large Model Spaces

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Table 2: Total runtime (in seconds, including overhead), speedup, and coefficient of variation (C,) across partitions for each
subject system specification from each of the three partitioning methods. Note that 2.83 is the maximum value for C,, and
results when one worker synthesizes the entire model space. PARAsSOL’s learning-based partitioning produces significantly
more balanced partitions (lower C,) and substantially less runtime than other partitioning methods for all subjects.

Partitioning . Subject System
Metric
Method
E-commerce CSOS ‘ RBAC ‘ IoT Threats

Random | Runtime (secs) | 38,865.65 8467595 | 1,794.32 | 2,820.19 1481877 4072811 37,127.55 5450631
Co 2.83 2.83 2.83 2.83 2.83 2.83 2.83 2.83
Scope Runtime (secs) | 36,447.39 86,744.50 | 229.82 | 2,957.37 155590.44 40,440.00 39,126.65 50,559.78
P Co 2.83 2.83 1.35 2.83 2.83 2.83 2.83 2.83
Pamasor | Runtime (secs) | 14,813.14 17,369.16 | 23409 | 799.36 6,878.90 6,922.62 6,712.87 9,131.79
Co 0.87 1.48 1.35 0.50 0.67 0.57 0.54 0.52
Speedup w/ | vs. Random | 262% 488% | 767% | 353% 215% 588% 553% 597%
PARASOL | s Scope | 245% 499% | 98% | 370% 227% 584% 582% 554%

Parasor had the lowest C, among all three partitioning methods for
all specifications, showing that PARAsOL outperforms the baseline
approaches in terms of evenly partitioning the model space.

We interpret these data to suggest that PARAsOL improves upon
other partitioning methods for (a) runtime performance and (b)
even partitioning of work among parallel workers.

4.3 RQ3: Overhead

To determine the overhead incurred by PARAsOL, we computed the
time (in seconds) between the start of execution and the start of
the exploration of the model space for the original specification for
both the state-of-the-art model space synthesis used as a baseline
for RQ1 and ParasoL. That overhead time period includes the sam-
pling and partitioning conducted by ParasoL before design space
exploration, which is not performed by state-of-the-art model space
synthesis. The overhead, then, can be represented as the difference
between those two time durations. Table 1 summarizes the over-
head (in seconds) for each of subject in the last column. Overall,
the execution time overhead incurred by PArRAsoL accounted for a
small fraction of the running time (< 7% on average), making the
effect on user experience negligible.

Across the board, the speedup provided by PARAsOL substantially
outweighs the overhead.

5 DISCUSSION

Overall, the results described in Section 4 demonstrate that PARA-
soL can synthesize a huge model space much more efficiently than
state-of-the-art model space synthesis techniques, exhibiting an av-
erage speedup of over 460% compared to the competing approaches.
ParasoL also outperforms state-of-the-art parallel solvers by par-
titioning the model space at a higher level of abstraction than the
underlying SAT problem. We interpret our results to show that the
variance among partitions produced by PARAsOL is low overall, indi-
cating the effectiveness of our learning-based partitioning in evenly

dividing work among the parallel workers (see Table 2). Finally, the
overhead required by PARAsoOL is minimal considering the multi-
plicative speedup PARAsOL provides compared to state-of-the-art
model space synthesis (see Table 1).

For some experimental subjects (e.g., CSOS), the variation among
the partitions was higher than the others. We believe this was due
to differences in how well the sample represented the implicit struc-
ture of the specification. PARASOL samples via declarative slicing
using the criteria described in Section 3, which measures the com-
plexity ratio of the base slice compared to the original formula
(see Formula 1). For some specifications, the base slice effectively
matched the high-level structure of the target model space. For
example, the base slice selected for all five IoT Coordination Threat
app groups included the relation defining which apps were installed.
Each partition was thus defined by the inclusion/exclusion of spe-
cific combinations of apps rather than by potential security risks,
resulting in a low coefficient of variation (between 0.50 and 0.67).

In contrast, the slice selected for the RBAC specification parti-
tioned based on the number of roles included in the models (i.e., one
partition synthesized all models with exactly one role, another all
variants containing exactly two roles, etc.). This resulted in greater
imbalance among the partitions. For example, there are more possi-
ble assignments of roles and permissions in a system with five roles
than in a system with only two. This is indicated by the higher C,
(1.35) for the RBAC system. It is also worth noting that the slice se-
lected by ParasoL for that particular system resulted in exactly the
same partitioning as the scope-based partitioning method, hence
the two methods have the same C,. This was the only case among
all eight subject specifications where the scope-based partitioning
provided the same partitions. In all other cases, PARASOL outper-
formed the other methods both in terms of runtime performance
and allocation of work among partitions.

The formulae selected during declarative slicing also determined
the number of models synthesized for the sample, which was the
largest contributor to the overhead for each subject specification.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

40000
— =
goo0l — T = /=
30000
760000 7
@ 2
g 30000
@ @
2 40000 2 Q
= =
20000 . 10000
ol— 0
& $ & o & S & o
I S S S L £ &
B < < S T &
(a) CSOS (b) Ecommerce
2000 3500
T T o =
_ 1500 2500
3 [
o (%]
&) 2 2000
<1000 =
2 21500
[= =
1000
500
=
S I 500
T & o > T o >
S S) % N L& SO S
o g S RS §
& S CES & <9 &S 9 S X
N
N @ & S & &
(c) RBAC (d) IoT (Bnd. 1)
— El
= E
15000 - 40000
2 730000
8 10000 3
[(4]
2 El £ 20000
= =
5000
10000
0 0
A) >)
s° b"é.\s‘” Fo & $ Seo Fo &
® & ¥ 5 §S&§& S ¥
< Q7§ RS < 4 Sty DS o
SEE S & SR & <
R Q < S < <
(e) IoT (Bnd. 2) (f) IoT (Bnd. 3)
60000
40000 === = — = ||
= 50000 ==
330000 40000
2 230000
2 20000 ©
£ £
= = 20000
10000
—_ 10000 —
0 0
o IS 2 A N @
< s o L o 3) & § N
S & S L & L L& &L
& &F ¢ & o IS 3¢ &
N > > Q & S Q
Ny N o g
S Q Q B < <

(g) IoT (Bnd. 4) (h) IoT (Bnd. 5)

Figure 8: Boxplots depicting the synthesis time (in seconds)
taken by each of the techniques vs. PARASOL over the subject
systems. Horizontal axis indicates synthesis method: state-
of-the-art model space synthesis with an incremental solver
(Glucose [3]), parallel synthesis using random partitioning,
parallel synthesis using scope partitioning, and PArRAsOL (or-
ange, right-most box).

Clay Stevens and Hamid Bagheri

For example, the “installed app” slice chosen for the IoT Coordi-
nation Threat app groups generated more than 300,000 sample in-
stances, increasing the overhead. On the other hand, the base slices
generated for RBAC produced only the scope of the Role signature
in the specification, despite the large number of models generated
for the problem overall. Further research into different slicing al-
gorithms could improve PArRAsoOL’s ability to select smaller and/or
more representative samples, leading to even greater speedups.

6 THREATS TO VALIDITY

The main threat to the internal validity of our experimental evalua-
tion is the accuracy of our custom implementation. Our code was
debugged and tested thoroughly, including unit tests written with
JUnit to ensure our implementation synthesized models correctly.
We also canonicalized and serialized the models synthesized by
ParasoL and each baseline to ensure the same model space was syn-
thesized by each one; the de-duplicated set of models was the same
in each case, providing evidence that our implementation works
as intended. To ensure our external validity, we have conducted
our experiments on real-world model spaces drawn from various
software engineering domains. Lastly, the validity of our construct
relies on the use of the coefficient of variation as a proxy for parity
among our partitions; there may be other possible measures, such
as standard error of the mean or median absolute deviation. C,
is used in a wide variety of statistical and analytical settings, and
provides an intuitive understanding of the variation, so we believe
it is a reasonable metric to use for our analysis.

7 RELATED WORK

Researchers have explored the area of specification-driven design
space exploration. Kang, Jackson, and Schulte [28] employed for-
mal methods for design space exploration using an SMT solver, but
focused the effort on finding one or more satisfying model—not nec-
essarily the entire model space. The focus of more recent research
efforts is usually on constraining the model space in order to filter
some models during a complete exploration. Sullivan et al. [51]
recently proposed a general abstraction idiom to only synthesize
models that satisfy a given abstraction function. Porncharoenwase
et al. [40] presented an approach that finds a representative sample,
attempting to demonstrate the most syntactic coverage while ex-
ploring the smallest fraction of the overall space. Nelson et al. [36]
developed an approach called Aluminum that enables users to man-
ually guide exploration, which may not be suitable for large-scale
systematic analysis. These approaches all seek to limit the model
space rather than to effectively explore all variants, assuming that
the user performing the analysis can determine which variants are
irrelevant. PARAsOL makes no such assumption, providing signifi-
cant speedups while still exploring the entire model space.

Rosner et al. developed Ranger [42] to partition a bounded model
checking problem based on ranges of bound assignments. However,
Ranger focuses on finding one instance or counterexample rather
than parallelizing the model space exploration. In fact, the recur-
sive range partitioning technique used by Ranger to ensure parity
among the worker nodes—which introduces acceptable overhead
for finding a single model—would be invoked too frequently to be
suitable for exploring vast model spaces. Portfolio solvers, such as

Parasol: Efficient Parallel Synthesis of Large Model Spaces

ManySAT [23] and HordeSAT [9], attempt many different config-
urations of sequential solvers in parallel to find the best method
of solving the problem. Iser et al. [25] described an approach that
can aid such solvers by using a shared repository of clauses to
mitigate memory issues. As demonstrated in Section 4, the tech-
niques used in these parallel (but non-incremental) solvers (e.g.,
Plingling [11]) optimize finding a single satisfying model, leading to
extremely poor performance when searching for subsequent mod-
els. PARASOL avoids these pitfalls by using learning at a higher level to
automatically derive domain knowledge, guiding the parallelization
of exploring the model space.

Lastly, while other constraint solvers (e.g., SMT solvers like
Z3 [15]) have made impressive improvements in recent years, they
still lag behind SAT-based solutions when analyzing relational spec-
ifications. Meng et al. [32] developed an approach to use CVC4 [10]
as the underlying solver for Alloy specifications, but the SAT-based
solution still outperformed their implementation for most specifica-
tions. Stoel et al. [50] developed a Z3-based tool which was similarly
less efficient than the baseline Alloy translation to SAT. Therefore,
we implement PARASOL atop a SAT solver, as that represents the
current state-of-the-art for relational specifications.

8 CONCLUSION

In this paper, we presented PARASOL, a novel approach to perform
systematic specification-driven model space synthesis in parallel,
leveraging unsupervised learning to extract domain knowledge
about specification in order to evenly partition the model space.
The experimental results demonstrated an average speedup of 460%
over state-of-the-art model space synthesis, possibly saving hours
or even days for large system specifications. The results further
corroborated that the division of work guided by our learning-based
partitioning strategy was more even than competing partitioning
strategies. We also showed that the fractional overhead introduced
by the sampling is far outweighed by the improvement in overall
runtime.

In future research, we would seek to explore some of the compo-
nents of the approach to improve upon this research. For example,
different strategies may be employed to extract samples with declar-
ative slicing, rather than using the complexity ratio. Furthermore,
parallel synthesis of the model space could also enable further opti-
mizations, such as conducting dynamic tradespace analysis where
each of the design variants is evaluated in parallel as well. Finally,
we also believe further research could be done using different learn-
ing techniques—perhaps supervised learning with some form of
oracle—to better extract domain knowledge.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
comments. This work was completed utilizing the Holland Comput-
ing Center of the University of Nebraska, which receives support
from the Nebraska Research Initiative. This work was supported
in part by awards CCF-1755890, CCF-1618132, CCF-2139845, and
CCF-2124116 from the National Science Foundation.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

REFERENCES

[1] Mohannad Alhanahnah, Clay Stevens, and Hamid Bagheri. 2020. Scalable analysis
of interaction threats in IoT systems. In ISSTA °20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 272-285. https:
//doi.org/10.1145/3395363.3397347

Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. 2013. Improving

Glucose for Incremental SAT Solving with Assumptions: Application to MUS

Extraction. In Theory and Applications of Satisfiability Testing - SAT 2013 - 16th

International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings (Lecture

Notes in Computer Science), Matti Jarvisalo and Allen Van Gelder (Eds.), Vol. 7962.

Springer, 309-317. https://doi.org/10.1007/978-3-642-39071-5_23

Gilles Audemard and Laurent Simon. 2009. Predicting Learnt Clauses Quality

in Modern SAT Solvers. In IJCAI 2009, Proceedings of the 21st International Joint

Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009,

Craig Boutilier (Ed.). 399-404. http://ijcai.org/Proceedings/09/Papers/074.pdf

[4] Gilles Audemard and Laurent Simon. 2018. On the Glucose SAT Solver. Int. J.

Artif. Intell. Tools 27, 1 (2018), 1840001:1-1840001:25. ~https://doi.org/10.1142/

$0218213018400018

Authors. 2020.

exploration/home.

[6] Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2014. TradeMaker: automated

dynamic analysis of synthesized tradespaces. In 36th International Conference on
Software Engineering, ICSE '14, Hyderabad, India - May 31 - June 07, 2014. 106-116.
https://doi.org/10.1145/2568225.2568291

[7] Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2017. Automated Synthesis

and Dynamic Analysis of Tradeoff Spaces for Object-Relational Mapping. IEEE
Trans. Software Eng. 43, 2 (2017), 145-163. https://doi.org/10.1109/TSE.2016.
2587646

[8] Georgios Bakirtzis, Brandon J. Simon, Aidan G. Collins, Cody Harrison Fleming,

and Carl R. Elks. 2020. Data-Driven Vulnerability Exploration for Design Phase

System Analysis. IEEE Syst. J. 14, 4 (2020), 4864-4873. https://doi.org/10.1109/

JSYST.2019.2940145

Tomas Balyo, Peter Sanders, and Carsten Sinz. 2015. HordeSat: A Massively

Parallel Portfolio SAT Solver. CoRR abs/1505.03340 (2015). arXiv:1505.03340

http://arxiv.org/abs/1505.03340

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In

Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird,

UT, USA, Fuly 14-20, 2011. Proceedings (Lecture Notes in Computer Science), Ganesh

Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer, 171-177. https:

//doi.org/10.1007/978-3-642-22110-1_14

[11] Armin Biere. 2017. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Enter-

ing the SAT Competition 2017. In Proc. of SAT Competition 2017 — Solver and

Benchmark Descriptions (Department of Computer Science Series of Publications B),

Tomas Balyo, Marijn Heule, and Matti Jarvisalo (Eds.), Vol. B-2017-1. University

of Helsinki, 14-15.

Javier Camara, David Garlan, and Bradley R. Schmerl. 2017. Synthesis and

Quantitative Verification of Tradeoff Spaces for Families of Software Systems. In

Proceedings of ECSA.

Paul D. Collopy. 2018. Tradespace Exploration: Promise and Limits. In Disci-

plinary Convergence in Systems Engineering Research, Azad M. Madni, Barry

Boehm, Roger G. Ghanem, Daniel Erwin, and Marilee J. Wheaton (Eds.). Springer

International Publishing, 297-307.

Byron Cook. 2018. Formal Reasoning About the Security of Amazon Web Services.

In Computer Aided Verification - 30th International Conference, CAV 2018, Held

as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,

Proceedings, Part I (Lecture Notes in Computer Science), Hana Chockler and Georg

Weissenbacher (Eds.), Vol. 10981. Springer, 38-47. https://doi.org/10.1007/978-3-

319-96145-3_3

Leonardo Mendonca de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of Systems,

14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,

March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science), C. R.

Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963. Springer, 337-340. https:

//doi.org/10.1007/978-3-540-78800-3_24

[16] Django Foundation. 2020. Django website. https://www.djangoproject.com/.

[17] Tobias Diirschmid, Eunsuk Kang, and David Garlan. 2019. Trade-off-oriented
development: making quality attribute trade-offs first-class. In Proceedings of
ICSE-NIER.

[18] Steve Ebersole, Gail Badner, Andrea Boriero, and Sanne Grinovero. 2020. Hiber-
nate website. https://hibernate.org/orm/.

[19] Eduardo B. Fernandez. 2016. Threat Modeling in Cyber-Physical Systems.
In 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing,
14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology Congress,

5

—_
£

—
&

Project website. https://sites.google.com/view/parallel-

[

[10

[12

(13

(14

[15

https://doi.org/10.1145/3395363.3397347
https://doi.org/10.1145/3395363.3397347
https://doi.org/10.1007/978-3-642-39071-5_23
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1142/S0218213018400018
https://sites.google.com/view/parallel-exploration/home
https://sites.google.com/view/parallel-exploration/home
https://doi.org/10.1145/2568225.2568291
https://doi.org/10.1109/TSE.2016.2587646
https://doi.org/10.1109/TSE.2016.2587646
https://doi.org/10.1109/JSYST.2019.2940145
https://doi.org/10.1109/JSYST.2019.2940145
http://arxiv.org/abs/1505.03340
http://arxiv.org/abs/1505.03340
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.djangoproject.com/
https://hibernate.org/orm/

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

[20

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39

DASC/PiCom/DataCom/CyberSciTech 2016, Auckland, New Zealand, August 8-12,
2016. IEEE Computer Society, 448-453. https://doi.org/10.1109/DASC-PICom-
DataCom-CyberSciTec.2016.89

Eibe Frank, Mark A. Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer,
Ian H. Witten, and Len Trigg. 2010. Weka-A Machine Learning Workbench for
Data Mining. In Data Mining and Knowledge Discovery Handbook, 2nd ed, Oded
Maimon and Lior Rokach (Eds.). Springer, 1269-1277. https://doi.org/10.1007/978-
0-387-09823-4_66

Richard P. Gabriel. 2006. Design beyond Human Abilities. In Proceedings of the
5th International Conference on Aspect-Oriented Software Development (AOSD "06).
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/1119655.1119658

Juan P. Galeotti, Nicolas Rosner, Carlos Gustavo Lopez Pombo, and Marcelo F.
Frias. 2013. TACO: Efficient SAT-Based Bounded Verification Using Symmetry
Breaking and Tight Bounds. IEEE Trans. Software Eng. 39, 9 (2013), 1283-1307.
https://doi.org/10.1109/TSE.2013.15

Youssef Hamadi, Said Jabbour, and Lakhdar Sais. 2009. ManySAT: a Parallel
SAT Solver. F. Satisf. Boolean Model. Comput. 6, 4 (2009), 245-262. https://
satassociation.org/jsat/index.php/jsat/article/view/77

David Heinemeier Hansson. 2020. Ruby on Rails website. https://rubyonrails.
org/.

Markus Iser, Tomas Balyo, and Carsten Sinz. 2019. Memory Efficient Parallel SAT
Solving with Inprocessing. In 31st IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2019, Portland, OR, USA, November 4-6, 2019. IEEE,
64-70. https://doi.org/10.1109/ICTAL.2019.00018

Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM
Trans. Softw. Eng. Methodol. 11, 2 (April 2002), 256-290. https://doi.org/10.1145/
505145.505149

D. Jackson. 2012. Software Abstractions (2nd ed.). MIT Press.

Eunsuk Kang, Ethan K. Jackson, and Wolfram Schulte. 2010. An Approach
for Effective Design Space Exploration. In Foundations of Computer Software.
Modeling, Development, and Verification of Adaptive Systems - 16th Monterey
Workshop 2010, Redmond, WA, USA, March 31- April 2, 2010, Revised Selected
Papers (Lecture Notes in Computer Science), Radu Calinescu and Ethan K. Jackson
(Eds.), Vol. 6662. Springer, 33-54. https://doi.org/10.1007/978-3-642-21292-5_3
Sun Kim and Hantao Zhang. 1994. ModGen: Theorem Proving by Model
Generation. In Proceedings of the 12th National Conference on Artificial Intel-
ligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1, Barbara Hayes-
Roth and Richard E. Korf (Eds.). AAAI Press / The MIT Press, 162-167. http:
//www.aaai.org/Library/AAAI/1994/aaai94-025.php

Sean Quan Lau. 2006. Domain Analysis of E-Commerce Systems Using Feature-
Based Model Templates. Master’s thesis. University of Waterloo.

Dong Liu and Benjamin Carrién Schéfer. 2016. Efficient and reliable High-Level
Synthesis Design Space Explorer for FPGAs. In Proceedings of FPL. 1-8.

Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark W. Barrett. 2017.
Relational Constraint Solving in SMT. In Automated Deduction - CADE 26 - 26th
International Conference on Automated Deduction, Gothenburg, Sweden, August 6-
11, 2017, Proceedings (Lecture Notes in Computer Science), Leonardo de Moura (Ed.),
Vol. 10395. Springer, 148-165. https://doi.org/10.1007/978-3-319-63046-5_10
Sanjai Narain. 2013. ConfigAssure: A Science of Configuration. In 32th IEEE
Military Communications Conference, MILCOM 2013, San Diego, CA, USA, No-
vember 18-20, 2013, Joe Senftle, Mike Beltrani, and Kari Karwedsky (Eds.). IEEE,
1497-1498. https://doi.org/10.1109/MILCOM.2013.252

Luigi Nardi, David Koeplinger, and Kunle Olukotun. 2019. Practical Design
Space Exploration. In 27th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, MASCOTS 2019,
Rennes, France, October 21-25, 2019. IEEE Computer Society, 347-358. https:
//doi.org/10.1109/MASCOTS.2019.00045

Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and
Shriram Krishnamurthi. 2010. The Margrave Tool for Firewall Analysis. In
Uncovering the Secrets of System Administration: Proceedings of the 24th Large
Installation System Administration Conference, LISA 2010, San Jose, CA, USA,
November 7-12, 2010, Rudi van Drunen (Ed.). USENIX Association. https://www.
usenix.org/conference/lisal0/margrave-tool-firewall-analysis

Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and Shriram Krish-
namurthi. 2013. Aluminum: principled scenario exploration through minimality.
In 35th International Conference on Software Engineering, ICSE °13, San Francisco,
CA, USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.).
IEEE Computer Society, 232-241. https://doi.org/10.1109/ICSE.2013.6606569
Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. 2015. How Amazon Web Services Uses Formal Methods.
Commun. ACM 58, 4 (mar 2015), 66-73. https://doi.org/10.1145/2699417
Oracle. 2019. Java Tutorials — Parallelism. https://docs.oracle.com/javase/tutorial/
collections/streams/parallelism.html.

Dan Pelleg and Andrew W. Moore. 2000. X-means: Extending K-means with
Efficient Estimation of the Number of Clusters. In Proceedings of the Seventeenth
International Conference on Machine Learning (ICML 2000), Stanford University,
Stanford, CA, USA, June 29 - July 2, 2000, Pat Langley (Ed.). Morgan Kaufmann,

[40

[41

=
L)

(43]

[44]

[45

=
&

(47

(48]

N
)

[50

[51

[52

[53

(54

[56

Clay Stevens and Hamid Bagheri

727-734.

Sorawee Porncharoenwase, Tim Nelson, and Shriram Krishnamurthi. 2018. Com-
POSAT: Specification-Guided Coverage for Model Finding. In Formal Methods -
22nd International Symposium, FM 2018, Held as Part of the Federated Logic Con-
ference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings (Lecture Notes in Com-
puter Science), Klaus Havelund, Jan Peleska, Bill Roscoe, and Erik P. de Vink (Eds.),
Vol. 10951. Springer, 568-587. https://doi.org/10.1007/978-3-319-95582-7_34
Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza Johnson, and
Ben Laurie. 2020. Towards making formal methods normal: meeting developers
where they are. CoRR abs/2010.16345 (2020). arXiv:2010.16345 https://arxiv.org/
abs/2010.16345

Nicolas Rosner, Junaid Haroon Siddiqui, Nazareno Aguirre, Sarfraz Khurshid,
and Marcelo F. Frias. 2013. Ranger: Parallel analysis of alloy models by range
partitioning. In Proceedings of ASE.

Adam Ross, Hugh McManus, Donna Rhodes, and Daniel Hastings. [n.d.]. Re-
visiting the Tradespace Exploration Paradigm: Structuring the Exploration Process.
https://doi.org/10.2514/6.2010-8690

Adam M. Ross, Daniel E. Hastings, Joyce M. Warmkessel, and Nathan P. Diller.
2004. Multi-Attribute Tradespace Exploration as Front End for Effective Space
System Design. Journal of Spacecraft and Rockets 41, 1 (2004), 20-28. https:
//doi.org/10.2514/1.9204

Kathrin Rosvall and Ingo Sander. 2018. Flexible and Tradeoff-Aware Constraint-
Based Design Space Exploration for Streaming Applications on Heterogeneous
Platforms. ACM Trans. Design Autom. Electr. Syst. 23, 2 (2018), 21:1-21:26. https:
//doi.org/10.1145/3133210

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
1996. Role-Based Access Control Models. IEEE Computer 29, 2 (1996), 38-47.
https://doi.org/10.1109/2.485845

Daniel Schlette, Florian Menges, Thomas Baumer, and Giinther Pernul. 2020.
Security Enumerations for Cyber-Physical Systems. In Data and Applications
Security and Privacy XXXIV - 34th Annual IFIP WG 11.3 Conference, DBSec 2020,
Regensburg, Germany, June 25-26, 2020, Proceedings (Lecture Notes in Computer
Science), Anoop Singhal and Jaideep Vaidya (Eds.), Vol. 12122. Springer, 64-76.
https://doi.org/10.1007/978-3-030-49669-2_4

Eric Spero, Michael P. Avera, Pierre E. Valdez, and Simon R. Goerger. 2014.
Tradespace Exploration for the Engineering of Resilient Systems. In Proceedings
of the Conference on Systems Engineering Research, CSER 2014, Redondo Beach, CA,
USA, March 20-22, 2014 (Procedia Computer Science), Azad M. Madni and Barry W.
Boehm (Eds.), Vol. 28. Elsevier, 591-600. https://doi.org/10.1016/j.procs.2014.03.
072

Clay Stevens and Hamid Bagheri. 2020. Reducing run-time adaptation space via
analysis of possible utility bounds. In 42nd International Conference on Software
Engineering, ICSE °20, Virtual Event, USA, July 6-11, 2020. ACM.

Jouke Stoel, Tijs van der Storm, and Jurgen J. Vinju. 2019. AlleAlle: bounded
relational model finding with unbounded data. In Proceedings of the 2019 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2019, Athens, Greece, October 23-24, 2019,
Hidehiko Masuhara and Tomas Petricek (Eds.). ACM, 46—61. https://doi.org/10.
1145/3359591.3359726

Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. 2019. Solution Enumera-
tion Abstraction: A Modeling Idiom to Enhance a Lightweight Formal Method. In
Formal Methods and Software Engineering - 21st International Conference on Formal
Engineering Methods, ICFEM 2019, Shenzhen, China, November 5-9, 2019, Proceed-
ings (Lecture Notes in Computer Science), Yamine Ait Ameur and Shengchao Qin
(Eds.), Vol. 11852. Springer, 336-352. https://doi.org/10.1007/978-3-030-32409-
4 21

Maurice H. ter Beek, Kim G. Larsen, Dejan Ni¢kovi¢, and Tim A. C. Willemse.
2022. Formal Methods and Tools for Industrial Critical Systems. Int. J. Softw.
Tools Technol. Transf. 24, 3 (jun 2022), 325-330. https://doi.org/10.1007/s10009-
022-00660-4

Dan Tofan, Matthias Galster, and Paris Avgeriou. 2013. Difficulty of Architectural
Decisions - A Survey with Professional Architects. In Proceedings of ECSA. 192—
199.

Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In
Tools and Algorithms for the Construction and Analysis of Systems, 13th Interna-
tional Conference, TACAS 2007, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April
1, 2007, Proceedings (Lecture Notes in Computer Science), Orna Grumberg and
Michael Huth (Eds.), Vol. 4424. Springer, 632-647. https://doi.org/10.1007/978-3-
540-71209-1_49

Engin Uzuncaova and Sarfraz Khurshid. 2008. Constraint Prioritization for Effi-
cient Analysis of Declarative Models. In FM 2008: Formal Methods, 15th Interna-
tional Symposium on Formal Methods, Turku, Finland, May 26-30, 2008, Proceedings.
310-325. https://doi.org/10.1007/978-3-540-68237-0_22

Ru Wang, Anand Balu Nellippallil, Guoxin Wang, Yan Yan, Janet K. Allen, and
Farrokh Mistree. 2018. Systematic design space exploration using a template-
based ontological method. Adv. Eng. Informatics 36 (2018), 163-177. https:
//doi.org/10.1016/j.2¢i.2018.03.006

https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.89
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.89
https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.1145/1119655.1119658
https://doi.org/10.1145/1119655.1119658
https://doi.org/10.1109/TSE.2013.15
https://satassociation.org/jsat/index.php/jsat/article/view/77
https://satassociation.org/jsat/index.php/jsat/article/view/77
https://rubyonrails.org/
https://rubyonrails.org/
https://doi.org/10.1109/ICTAI.2019.00018
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1007/978-3-642-21292-5_3
http://www.aaai.org/Library/AAAI/1994/aaai94-025.php
http://www.aaai.org/Library/AAAI/1994/aaai94-025.php
https://doi.org/10.1007/978-3-319-63046-5_10
https://doi.org/10.1109/MILCOM.2013.252
https://doi.org/10.1109/MASCOTS.2019.00045
https://doi.org/10.1109/MASCOTS.2019.00045
https://www.usenix.org/conference/lisa10/margrave-tool-firewall-analysis
https://www.usenix.org/conference/lisa10/margrave-tool-firewall-analysis
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1145/2699417
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
https://doi.org/10.1007/978-3-319-95582-7_34
https://arxiv.org/abs/2010.16345
https://arxiv.org/abs/2010.16345
https://doi.org/10.2514/6.2010-8690
https://doi.org/10.2514/1.9204
https://doi.org/10.2514/1.9204
https://doi.org/10.1145/3133210
https://doi.org/10.1145/3133210
https://doi.org/10.1109/2.485845
https://doi.org/10.1007/978-3-030-49669-2_4
https://doi.org/10.1016/j.procs.2014.03.072
https://doi.org/10.1016/j.procs.2014.03.072
https://doi.org/10.1145/3359591.3359726
https://doi.org/10.1145/3359591.3359726
https://doi.org/10.1007/978-3-030-32409-4_21
https://doi.org/10.1007/978-3-030-32409-4_21
https://doi.org/10.1007/s10009-022-00660-4
https://doi.org/10.1007/s10009-022-00660-4
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-68237-0_22
https://doi.org/10.1016/j.aei.2018.03.006
https://doi.org/10.1016/j.aei.2018.03.006

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Approach
	3.1 Sampling
	3.2 Clustering
	3.3 Partitioning
	3.4 Parallel Synthesis

	4 Evaluation
	4.1 RQ1: Parasol In Practice
	4.2 RQ2: Parasol vs. Other Partitioners
	4.3 RQ3: Overhead

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 conclusion
	References

