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Abstract—The rising popularity of declarative languages and
the hard to debug nature thereof have motivated the need
for applicable, automated repair techniques for such languages.
However, despite significant advances in the program repair of
imperative languages, there is a dearth of repair techniques for
declarative languages. This paper presents BeAFix, an automated
repair technique for faulty models written in Alloy, a declarative
language based on first-order relational logic. BeAFix is backed
with a novel strategy for bounded exhaustive, yet scalable, ex-
ploration of the spaces of fix candidates and a formally rigorous,
sound pruning of such spaces. Moreover, different from the state-
of-the-art in Alloy automated repair, that relies on the availability
of unit tests, BeAFix does not require tests and can work with
assertions that are naturally used in formal declarative languages.
Our experience with using BeAFix to repair thousands of real-
world faulty models, collected by other researchers, corroborates
its ability to effectively generate correct repairs and outperform
the state-of-the-art.

I. INTRODUCTION

Software has become ubiquitous, and many of our activities
depend directly or indirectly on it. Having adequate software
development techniques and methodologies that contribute
to producing quality software systems has therefore become
essential for many human activities. A well-established ap-
proach to achieving quality is to emphasize good problem
understanding and planning ahead of development, i.e., to put
an emphasis on the analysis and design phases of software
development [1]. These phases need to deal with descriptions
of software and problem domains, which are typically cap-
tured using specification, or modeling, languages. Techniques
and tools that allow users to analyze specifications are very
important, as they help developers in discovering flaws, such
as missing cases in the specifications, wrong interpretations
of requirements, etc. Two main problems arise in this phase:
correctly understanding the problem situation (thus capturing
the right problem), and correctly stating the problem in the
language at hand (thus capturing the problem right). In the
context of formal specification, where formalisms with for-
mal syntax and semantics are employed, the latter problem
is particularly relevant, as the developer has to master the
notation to correctly capture, in a formal way, a given software
description [2]. Even for experienced developers, many times
subtle errors arise, like mistakenly using the wrong expression
to capture a property, omitting an operator or using an operator

in place of another, leading to incorrect specifications that
do not capture the developer’s intentions [3]. These kinds of
mistakes share characteristics with program defects. Therefore,
techniques for dealing with these defects and, in general, to
assess or improve software quality (such as techniques for
bug finding and program debugging), are also relevant in the
context of software specifications. In particular, techniques
for improving debugging, e.g., via the automation of fault
localization or program repair, are pertinent in the context of
software specification.

This paper targets the problem of automatically repairing
formal specifications, more precisely, specifications in Alloy
[4], a formal language that has many applications in software
development and has been successfully applied in a number of
domains such as the discovery of design flaws in telecommu-
nication applications [5], the analysis of security mechanisms
in mobile and IoT platforms [6], [7], [8], the automation
of software testing [9], [10], [11], and the verification of
programs [12], [13], [14], among other applications [15].
While specifications share a number of characteristics with
programs, certain characteristics make it non-trivial to apply
the broad range of techniques for program repair, in the
context of specifications. For instance, as a way to tame the
space of candidates, various program repair techniques such as
GenProg [16] only use coarse-grained syntactic modifications,
such as block replacement, swapping, deletion and insertion,
but no intra-statement modifications are allowed. The rationale
is that good levels of repairability in programs are achieved via
coarse-grained modifications thanks to redundancies that are
present in code, especially in larger programs. Such redundan-
cies are not often seen in specifications, in particular due to the
relative conciseness of specifications compared to programs.
Other approaches to program repair, e.g., PAR [17], restrict the
modifications to patterns learned from human-written patches,
mined from large repositories categorizing fixes; such inputs
for the repair process are not available in the context of
formal specification, simply because, as opposed to source
code, there are no large repositories of specifications. Finally,
most program repair techniques rely directly or indirectly on
the availability of test cases; while there exist initiatives that
incorporate test cases to specifications [18], other forms of
checking, such as property satisfiability and verification, are



more naturally found in specifications.
In this paper, we present BeAFix, a novel technique that

automatically repairs faulty Alloy specifications. BeAFix has
several features distinguishing it from the state of the art
[19]. Firstly, the technique does not depend on test cases,
neither for fault localization nor for specification repair; it
supports any kind of specification oracle, notably the typical
assertion checks and property satisfiability checks found in
Alloy specifications, as well as test cases. It is then more
widely applicable in the context of formal specification, where
test cases are rarely found accompanying specifications. Sec-
ondly, the technique tackles automated repair in a bounded
exhaustive way, i.e., by exhaustively exploring all possible
repair candidates, for a given set of mutation operators and
maximum number of applications (on a set of identified
suspicious specification locations). Thus, it either finds a fix,
or guarantees that no fix is possible, within the provided bound
and with the considered mutation operators over the identified
faulty locations. This approach is natural to the context of
Alloy, where users are accustomed to bounded exhaustive
analyses.

BeAFix supports fine-grained mutations and is designed
to enable the repair of multi-location specification defects.
Since bounded exhaustive exploration suffers from inherent
scalability issues, our technique features a number of prun-
ing strategies, that leverage the use of the Alloy Analyzer
to soundly prune large parts of the candidate space. More
precisely, given a candidate repair for a specific suspicious
location, our technique exploits both a syntactic analysis of the
specification and a semantic analysis using the Alloy Analyzer
for checking the feasibility of this candidate, in the sense that
applying this specific repair candidate to the corresponding
location preserves the feasibility of the overall (multi-location)
repair. When feasibility fails, it allows us to prune, in a sound
way, i.e., without losing valid fixes, significant parts of the
search space for repair candidates, thus reducing specification
repair running times.

We evaluate our technique on a benchmark of Alloy speci-
fications, including specifications previously used in assessing
ARepair [19], [20], and a large benchmark of faulty Alloy
specifications produced by students [21]. Our evaluation shows
that our pruning technique significantly reduces specification
repair running times, duplicating the number of repairs that
can be produced within a 1-hour timeout, and reducing the
repair time by 62X, on average. Moreover, when specifications
feature typical assertions, and these are used as oracles,
our technique shows a significant improvement in overfitting
reduction, compared to the test-based technique ARepair.

II. AN ILLUSTRATING EXAMPLE

In this section, we introduce both Alloy and our tech-
nique by means of a motivating example. Alloy is a formal
specification language, with a simple syntax and a relational
semantics. The syntax of the language is rather small, and
is compatible with an intuitive reading of specifications, or
models, as they are typically called in the context of Alloy [4]

(we will use specification and model interchangeably in this
paper). Specifications can resemble object-oriented notions
that are familiar to developers. The basic syntactic elements
of Alloy specifications are: signatures, which declare data
domains; signature fields (akin to class attributes), that give
structure to specifications and declare relations between sig-
natures; predicates, parameterized formulas that can be used
to state properties, represent operations, etc.; facts, formulas
that constrain the specifications and represent assumptions;
and assertions, formulas that capture intended properties of
the specification, i.e., properties that the user would like to
verify. Formulas in Alloy are expressed in relational logic,
a first-order logic extended with relational operators such as
relational transpose, union, difference and intersection. Alloy
supports various quantifiers (all and some are the usual
universal and existential quantifiers, respectively, one and
lone are for “exists exactly one” and “exists at most one”,
respectively). It also features additional important relational
operators: relational join, a generalization of composition to
n-ary relations, which can be used to express navigations as in
object orientation; and transitive closure, which can be applied
only to binary relations, and extends the expressiveness of
Alloy beyond that of first-order logic.

Consider the Alloy model in Figure 1, a modified version of
an Alloy specification of linked lists, that is part of the bench-
mark used in [19]. This model declares domains for booleans
(with its two constants captured via singleton relations), and
signatures for nodes and lists. Nodes have a link (a set of
nodes), and associated elements (a set of integers); lists have
a header (a set of nodes). A fact constrains the cardinalities of
these signature fields: lists have at most one header, and nodes
have at most one successor node, and exactly one element
(when applied to expressions, lone, one and no constrain a
given expression to have a cardinality of at most one, exactly
one, and exactly zero, respectively). Notice the additional fact,
which is there for analysis purposes: it states that exactly one
List is going to be considered in each instance of the model,
and that all nodes present in an instance will be those in the
list (no unreachable “heap” objects). Predicate Loop captures
lists with a loop in its last node, saying that a list satisfies
the predicate if it either has no header, or for exactly one of
its nodes, the elements reachable in one or more steps from
link are exactly the same reachable in zero or more steps
through link. Predicate Sorted attempts to capture that lists
are non-decreasingly sorted (this predicate is buggy though,
as the order constraint is strict). Predicate RepOk is simply
defined as the conjunction of Loop and Sorted. Predicate
Contains is used to model an operation on lists, namely, the
operation for querying membership of an integer as an element
of a node of a list. The result of the operation is captured by
an additional Boolean parameter. This predicate is buggy, it
does not correctly model the intended operation (e.g., it admits
the predicate to return True despite the contents of the list).

Alloy specifications can be automatically analyzed, by an
analysis mechanism that resorts to SAT solving, and is imple-
mented in a tool called Alloy Analyzer [4]. Two kinds of analy-



abstract sig Boolean { }
one sig True, False extends Boolean { }

sig Node {
link: set Node,
elem: set Int
}

sig List {
header: set Node
}

fact CardinalityConstraints {
all l : List | lone l.header
all n : Node | lone n.link
all n : Node | one n.elem
}

fact IGNORE {
one List && List.header.*link = Node
}

pred Loop[This: List] {
no This.header ||
one n : This.header.*link | n.ˆlink = n.*link
}

pred Sorted[This: List] { // buggy
all n: This.header.*link | n.elem < n.link.elem
}

pred RepOk[This: List] {
Loop[This] && Sorted[This]
}

run RepOk for 1 but exactly 3 Node expect 1

// buggy
pred Contains[This: List, x: Int, res: Boolean]{
RepOk[This] &&
((x !in This.header.*link.elem => res=False ) ||
res = True)
}

pred Count[This: List, x: Int, res: Int] {
RepOk[This] &&
res = #{ n:This.header.*link | n.elem = x }
}

assert ContainsCorrect {
all l : List, i, j : Int |

(Count[l, i, j] && j > 0) iff Contains[l, i, True]
}

check ContainsCorrect for 10

Fig. 1. A (faulty) sample Alloy specification.

sis are possible: running a predicate and checking an assertion.
Both are analyzed in bounded scenarios. Running a predicate
searches for instances (scenarios) that satisfy all the constraints
(cardinalities, facts, etc.), including the predicate being run.
Assertion checking looks for counterexamples of the asserted
properties. Analysis is performed up to a bound k (typically
referred to as the scope of the analysis), meaning, e.g., that
assertion checking will either find a counterexample within the
given scope, or guarantee the validity of the formula within
the bound (similarly, a predicate will be found to be satisfiable

within the provided scope, or not to have a satisfying instance
within the scope). This bounded exhaustive analysis, of course,
does not necessarily mean that the formula is valid (resp.,
satisfiable), as counterexamples (resp., instances) of greater
size may exist if larger scopes are considered.

The Alloy language is the vehicle for defining abstract
software models in a lightweight and incremental way, with
immediate feedback via automated analysis [4]. Typically, the
process of constructing an Alloy model, as the one in our
example, starts very much in the same way one would proceed
while eliciting requirements, or sketching an abstract software
design: basic domains of the model are identified (signatures
of the model), over which more structured components are or-
ganized (signatures equipped with fields). How these domains
and components are constituted, the inherent constraints of the
problem domain and the operations that represent the software
model capacities, are all incrementally created, via a constant
interaction with the Alloy Analyzer. This process eventually
involves the use of assertions and predicates, that capture
intended properties of the model, and that serve essentially
as the oracle of the specification, i.e., the properties that
would convey the acceptance of the model. Sometimes these
properties can help find surprising counterexamples, that lead
to refinements of the properties themselves, but more often
they help one in “debugging” the core of the model, i.e.,
in getting the model “right”, adapting it until the intended
properties result as expected. For instance, for the linked lists
model, the developer would expect the representation invariant
RepOk to be satisfiable, and the definition of Contains
to have the relationship with Count captured in property
ContainsCorrect.

While the intended properties are subject to defects too, they
are typically significantly shorter and clearer than the “core”
of the specification. They capture high level properties of the
model, so they are expected to be simpler to write and get
right. So, once the intended properties are set, the user may
perform the corresponding analyses and use the results as an
acceptance criterion for the specification, and the correspond-
ing design it conveys. That is, a model will be considered
incorrect if any of the analyses of the intended properties
fails, i.e., has a result that contradicts the user expectations. In
Figure 1, for instance, the user may consider the consistency of
RepOk, the assertion ContainsCorrect and the auxiliary
predicate Count as the oracle of the specification, meaning
that when this intended property is found to be invalid, the
user would start modifying the remainder of the specification,
as an attempt to fix the error. BeAFix as well as other model
repair techniques aim at reducing human intervention along
this overall modeling process, by automatically fixing errors
in incorrect models.

Let us describe how the technique works, assuming for
the moment that the faulty locations in the model have been
correctly identified. In order to attempt to repair the specifi-
cation, and assuming that for the first location the syntactic
mutation operators lead to n different fix candidates (for that
specific location), and for the second location we have m



different fix candidates, in the worst case we have to check
n × m potential fixes, as we would want to consider all
combinations of candidate fixes for each repair location. The
model expectations, in our example the satisfiability of RepOk
and the bounded validity of ContainsCorrect, will be the
acceptance criterion fix repair, i.e., if a fix candidate “passes”
these analyses, it will be considered a fix.

The automated repair process for the above faulty speci-
fication is then straightforward to describe: we have n × m
repair candidates (the combinations of fix candidates for
the suspicious locations), and since we aim at exhaustively
exploring this candidate space, we would run the oracles on
each candidate, stopping as soon as we find one that “passes”
all predicates and assertions.

Let us describe some situations that allow for sound pruning,
i.e., pruning that only avoids invalid fix candidates.

Notice that, in our case, we have two defective lines,
but these are not symmetric: the bugs in Sorted affect
Contains, as Contains depends on RepOk which in
turn depends on Sorted, but the latter does not depend
(i.e., calls directly or indirectly) on Contains. Thus, when
checking a specific candidate for Sorted that does not pass
an oracle involving Sorted but not Contains, as for
instance the satisfiability of RepOK, we can stop analyzing
the fix candidate for Sorted altogether, and not consider
it in combination with any further candidates for the other
location. Consider, for instance, the following combination of
fix candidates for Sorted and Contains:

pred Sorted[This: List] {
all n: This.header.*link | n.elem != n.link.elem

}

pred Contains[This: List, x: Int, res: Boolean] {
RepOk[This] &&
(x !in This.header.*link.elem => res = False) &&
res = True

}

Assuming that we consider the above described oracles for the
specification, this combination does not pass the oracles, it is
an invalid fix candidate. Moreover, if we leave the current
fix candidate for Sorted and iterate over other candidates
for Contains, the property check requiring RepOk to be
satisfiable will continue to fail, as the unsatisfiability of RepOk
cannot be solved by changing the definition of Contains.
Thus, if we are able to identify this situation (as we explain
later on, our technique does so), we can safely consider a
different mutation for Sorted, or equivalently, soundly skip
all combinations of the current mutation to Sorted with all
other mutations for Contains.

Now let us look at another situation, that will also allow us
to soundly prune parts of the fix candidate space, even in the
presence of bidirectional (or multi-directional) dependencies
between faulty locations. Consider the above fix candidate for
predicate Contains, that replaced || by &&. This “local”
candidate that fails to pass an oracle such as the assertion
on Contains (in combination with a particular candidate
for Sorted) does not allow us to discard it altogether,

as the failing cannot in principle be blamed on && on its
own: it may be the case that this candidate “works” with a
different candidate for Sorted. So in order to check the
local feasibility of the candidate for Contains, we need
to consider it in combination with any other candidate for
Sorted, of course, trying to avoid checking all candidates
for this predicate. Assuming that we identified the body of
the quantification of Sorted as the problematic part in that
predicate (fault localization techniques for Alloy, in particular
the one we use in this paper, can identify fine grained faulty
locations, such as particular subexpressions), what we would
need to intuitively check is whether there exists a (boolean)
value for that location, that in combination with && would
make the oracles pass:
pred Sorted[This: List] {

all n: This.header.*link | (??)
}

pred Contains[This: List, x: Int, res: Boolean] {
RepOk[This] &&
(x !in This.header.*link.elem => res = False) &&
res = True

}

That is, can we replace the double question mark above by a
value that would make oracles pass? If the answer is no, then
we can blame &&, and try another candidate for Contains,
avoiding considering of && with candidates for Sorted. If we
are able to correctly identify these situations, as our technique
does and we describe later on in this paper, we can again safely
prune a large number of candidates, namely all combinations
of && with all the mutations for Sorted.

It is worth remarking that we do not assume any particular
format or characteristic, neither from the specification itself,
nor from the oracle. This is in contrast with previous work
on repairing Alloy specifications [19], which requires repair
oracles to be provided as Alloy test cases. Alloy test cases
define scenario-based expectations, similar to what one would
capture with unit tests for source code. As an example,
consider the evaluation of Contains on a particular con-
crete structure, and its corresponding expected outcome (the
expected outcome represents a boolean, 1 for “satisfiable” and
0 for “unsatisfiable”):
pred ContainsFalseOnListTest[This: List] {
some n0, n1: Node | {
This.header = n0 &&
n0.link = n1 && n0.elem = 0 &&
n1.link = n1 && n1.elem = 0 &&
Contains[This, 1, False]

}
}

run ContainsFalseOnListTest expect 1

While scenarios do participate in the Alloy modeling process,
they typically do so as a result of analyzing properties. That
is, tests are not a common explicitly described part of Alloy
specifications. Recent proposals, notably [18], are starting
to motivate the use of test cases in formal specification.
As mentioned, our approach allows for any kind of oracle,
including test-based oracles.



III. THE TECHNIQUE

Our approach to Alloy specification repair involves a series
of tasks, for fault detection, fault localization, fix candidate
generation, and fix candidate assessment. We describe these
in more detail below.

A. Fault Detection and Fix Acceptance Criterion

In general, given an Alloy specification, we may say that
such specification is faulty if at least one of the analysis
commands in the specification has an outcome contrary to
its corresponding expectation. This can be either a failing
assertion (assertion with counterexamples), or a predicate that
is unsatisfiable while the user expected it to be satisfiable,
or vice versa. We may also allow for other flavors in com-
mands, in particular Alloy test cases, in the spirit of AUnit
[18]. The fault detection stage then resorts to SAT solving,
the underlying analysis mechanism behind Alloy Analyzer,
the tool for Alloy specification analysis [4]. Similarly, a fix
candidate can be considered an acceptable patch when all the
analysis commands in the specification have an outcome that
coincides with the corresponding command’s expectations.

Our technique requires the user to identify the specification
oracle, i.e., the assertions, predicates or tests that the technique
will have to consider as fix acceptance criterion. The technique
will then identify faults in the remainder of the specification
(the oracle is left out of the analysis space for fault local-
ization), and generate fix candidates for the faulty locations.
Therefore, our repair approach cannot fix any faulty situation,
but only those where the developer is certain about some part
of it (the oracle), and wishes to alter the remainder of the
specification to pass it. Looking for solutions that may modify
the specification and the criterion for acceptance would lead
to fixes that may simply relax the acceptance criterion. Notice
that, in this respect, we follow the same approach that ARepair
and most test-based program repair techniques: the tests (the
repair oracle) cannot be changed in the repair process. As
described later on in this section, other trivial solutions such
as changing a command’s expectations or simply removing
a command are prevented, due to how the fault localization
is performed (which cannot be blamed on commands) and
how fix candidates are generated (only by mutating the faulty
locations).

B. Fault Localization

Once a specification is deemed faulty, we need to identify
the specific parts of the specification that are more likely
to be blamed for the fault or faults. We do not deal with
fault localization in this paper, and we assume an external
technique/tool provides fault localization information. There
exist techniques for fault localization that specifically tar-
get Alloy specifications, such as the spectrum-based fault
localization mechanism behind ARepair [19], and our fault
localization technique presented in [22]. While in principle
any fault localization technique would fit our technique, as
long as the employed fault localization can handle the oracles
present in the faulty specification, it is worth to remark that the

fault localization within ARepair inherently depends on having
tests as oracles (acceptance criteria) for specifications [19].
Moreover, the fault localization in ARepair can dynamically
change the identified faulty locations, as the specification is
transformed during the repair process. Our technique, on the
other hand, uses an offline process for fault localization: the
faulty program is fed to the fault localization tool, and a
number of suspicious specification locations are returned. This
is the input to our specification repair approach, and the space
of all possible patches for these locations, for a maximum
depth in mutation application and a given set of mutation
operators, will be considered.

For our experiments in Section IV, we use the FLACK
fault localization technique [22]. While we do not describe
in detail the fault localization technique in this paper (we
refer the reader to [22]), let us remark a number of facts
about FLACK: it supports arbitrary satisfiability checks and
assertions, as well as tests, as specification oracles; it is based
on the use of (partial) maximum satisfiability procedures, to
process counterexamples of an Alloy model (witnessing the
faulty status of the specification); and it can only identify
faults within formulas and relational expressions, it cannot
locate faults in data definitions, such as signature and field
declarations, nor in commands (Alloy’s runs and checks).

C. Generation of Fix Candidates

Once the suspicious expressions are identified, syntactical
variants of these expressions are produced. We consider an
ample set of mutation operations, including the obvious logical
and relational operator insertion, removal and replacement,
quantification mutation (e.g., changing a quantifier), multiplic-
ity constraint replacement, field/variable swap/replacement,
etc., based on Alloy’s grammar. Our tool processes the speci-
fication to obtain some typing information, so that some legal
expressions that necessarily lead to empty relation/contradic-
tory formulas are disregarded, as well as innocuous operation
application (e.g., double transitive closure). Two elements
are important to highlight here, namely the use of join to
produce navigation chains, using fields, signatures, etc., and
the possibility of combining mutations, i.e., applying further
mutations to an already mutated expression, akin the so called
higher-order mutants [23] in mutation testing.

Both the mutation operators and the maximum depth, i.e.,
the number of cumulative mutations (hence, the higher order
nature of the generated mutants) that can be applied to a
given faulty location, are configurable. These are bounded-
exhaustively generated as the space of fix candidates is tra-
versed (see below). In our experiments, we used 21 mutation
operators in total, typically leading to roughly between 60 and
260 1-level mutants per location.

D. Fix Candidate Space Traversal

Here we present our general repair approach. The two
pruning techniques just introduced, are also described in more
detail, and we argue about their soundness. The search space
is organized as a search tree in a traditional search problem:



the root is the original specification, with its faulty locations
identified; and if a specification s is in the tree and s′ can be
obtained by applying a mutation to a faulty location, then s′

is also in the tree, with the same locations marked as faulty
(so that the mutation process can be iterated). This in principle
leads to an infinite fix candidate space, which we explore up to
a maximum depth. While any search strategy may be applied,
we explore the state space in a breadth-first fashion.

1) Partial repair checking: Our first pruning strategy con-
sists of identifying one of the suspicious locations for which
a current repair candidate fails, as established by an analysis
check that does not depend on the remainder of the faulty
locations. We will describe it in more detail, assuming two
faulty locations, without loss of generality. Let Spec be an
Alloy specification, Check1, . . . ,Checkk its analysis checks
used as oracles, and L0, L1 the suspicious locations identified
by the fault localization phase. Each analysis check Checki
refers to a specific part of Spec, which can be determined
by a straightforward syntactic analysis: Checki refers to the
formula it directly mentions (the body of the corresponding
predicate or assertion), all the facts (axioms of the specification
that are implicitly involved in every analysis check), and the
symbols directly and indirectly referred syntactically to by
these (predicates called, relations used, etc.). This syntactic
analysis can determine then, for every Checki, which of the
suspicious locations L0 and L1 it involves.

Most logics, and certainly Alloy’s relational logic, have a
sort of syntactic locality property, that guarantees that the
validity/satisfiability of a formula depends only on the symbols
it refers to. (In the case of Alloy, since validity/satisfiability is
actually bounded validity/satisfiability, it can also depend on
the scope, the bound, of analysis; but since the bound of anal-
ysis cannot be modified in the patch generation phase, we can
disregard it). Moreover, the logic is monotonic, meaning that
adding more assumptions to a formula can never reduce the
conclusions drawn originally from it. These properties allow us
to make the following observation. Let m0 and n0 constitute
the modifications to locations L0 and L1, respectively, in the
current fix candidate (i.e., be the expressions substituting the
original expressions in locations L0 and L1 of Spec). If a
failing satisfiability check Checki refers to only one of the
suspicious locations, say L0 and its current expression m0,
this means that the formula in Checki is determined to be false
independently of n0. Then, for every alternative expression
ni for location L1, the corresponding fix candidate (m0, ni)
(the replacement expressions for locations L0 and L1) will
still make Checki to be false, due to the monotonicity of
the logic. In other words, the specification cannot be repaired
by modifying location L1 if the current fix for location L0

is maintained. We can therefore exclude (prune from the
checking) all (m0, ni) fix candidates as soon as we determine
this situation, which in turn can be determined by a syntactic
analysis of the specification, and the analysis outcome for fix
candidate (m0, n0).

We refer to this analysis and the corresponding pruning it
enables as partial repair checking, due to the partiality of fix

candidates when these do not involve all suspicious locations.
2) Variabilization: Our second pruning strategy is called

variabilization, due to the mechanism employed for prune
checking, that requires introducing fresh variables to refer to
fix candidates to specific locations, in a general way.

Let Checki be a failing assertion (validity) check that refers
to suspicious locations L0 and L1, and let (m0, n0) be the
current failing fix candidate. Notice that since Checki is a
failing validity check, we have a counterexample CEXi as a
result of the violation. That is, we have that:

CEXi 6|= Spec[m0, n0]⇒ Checki,

where Spec[m0, n0] denotes the fix candidate obtained by
replacing L0 and L1 by m0 and n0, respectively, in Spec. The
purpose of variabilization is to check whether the current fix
for L0, i.e., m0, may work with some candidate for L1 (other
than n0, of course, which we already know it does not work).
For technical reasons, we actually check whether some fix for
L1 may work in combination with m0, for counterexample
CEXi. Let us describe the process for performing this check.

Notice that fault locations can be subexpressions of a
formula; let us refer by F1 to the formula (predicate, fact,
etc) containing L1. Also, let T be the most general type for
L1 in context F1 (in Alloy, this most general type will depend
on the arity required by L1 in F1, the context in which L1

may depend upon, and will use the most general unary type,
the universe univ). Let SpecL1

be the specification obtained
by replacing F1 in Spec by

∃l1 : T |F1[l1/L1]

i.e., we substitute L1 by an existentially quantified variable of
type T (hence the name variabilization). We now can check:

CEXi |= SpecL0
[m0]⇒ Checki,

i.e., whether there exists a value of type T that can be
put in place of location L1, so that CEXi ceases to be a
counterexample. If this is the case, then local fix m0 works
as a fix for L0, at least as far as CEXi is concerned, and we
may traverse the space of local candidates for L1 to attempt
to find a complete fix. But, on the other hand, if the above
check fails, then there is no value that can be put in place
of L1 such that the local fix m0 would work (CEXi would
still be a counterexample). Therefore, we can again exclude
(prune from the checking) all (m0, ni) fix candidates if the
check fails.

One may argue why not check the “variabilized” spec-
ification in the general case, instead of doing so only for
counterexample CEXi. The reason has to do with the type T
of location L1. When this type is a relation of an arity greater
than one, variabilization leads to a higher-order quantification,
that Alloy cannot handle as a general analysis check, but it can
do so for the specific counterexample CEXi.

To clarify this variabilization process, and especially the
reason why we typically have higher-order quantification,
let us consider the example introduced in Section II, where



one local fix candidate is applied and the other was
generalized with question marks. Assuming that assertion
ContainsCorrect failed, a counterexample CEX was gen-
erated from this fix. To check whether variabilization pruning
can be applied, we turn the question marks into existen-
tial quantifications. Intuitively, the corresponding variabilized
specification would then be as follows (we are abusing the
notation below, using Boolean for the type of the variabilized
formula within Sorted):

pred Sorted[This: List] {
some b: Boolean | all n: This.header.*link | b
}

pred Contains[This: List, x: Int, res: Boolean]{
RepOk[This]
(x !in This.header.*link.elem => res=False )
&& res = True
}

However, we need to take into account that the variabilization
context, the place where the location being variabilized occurs,
depends in this case both on This and n. Thus, the actual
variabilization for the check is as follows (we are again
abusing the notation for the sake of clarity):

pred Sorted[This: List] {
some b: List -> Node -> Boolean |

all n: This.header.*link | b[This, n]
}

pred Contains[This: List, x: Int, res: Boolean]{
RepOk[This]
(x !in This.header.*link.elem => res=False )
&& res = True

We cannot check ContainsCorrect over this specification
due to the higher-order quantification in Sorted; but we can
check it for CEX.

It is worth remarking that the above check, if successful, will
produce a relational value for b that makes the variabilized
specification work. It will not produce an expression to put in
place of the body of the quantification, as a local fix candidate.
It would not even produce a relational value that can be “hard-
wired” as a local fix of the corresponding location, since it is in
principle just a relational value that works for counterexample
CEX. But its existence is what enables us to decide that a local
fix for L1 (Sorted) may be possible, considering the current
local fix for L0 (the && in Contains). Our check essentially
corresponds to only checking for feasibility of a local fix with
respect to other locations.

An alternative to the above would be to attempt to turn
the relational value bound to b into a relational expression,
that can be considered a local fix candidate. Such a process
would correspond to a synthesis procedure, which would
require a grammar for expressions, so that the solver can
attempt to work out an instance (an actual expression) during
the satisfiability process. While it is technically feasible, it
is also significantly more costly than our simpler query for
satisfiability, which we solely use for pruning.

IV. EVALUATION

We now assess our technique for automated repair of Alloy
specifications. Our evaluation is based on two benchmarks of
real faulty Alloy specifications, one taken from [3] and used in
the evaluation of ARepair [19], and the other originated in the
Alloy4Fun project [21], which includes 6 new models, with a
total of 1936 faulty variants (considering different specification
assignments resolved by different students). All the presented
experiments were run on a 3.6GHz Intel Core i7 processor
with 16 GB RAM, running GNU/Linux. We used a 1 hour
timeout for each repair analysis instance.

Our evaluation considers the following research questions:
• RQ1 What is the impact of the pruning strategies in the

performance of our technique?
• RQ2 How does our technique compare to previous work

on automated repair for Alloy specifications?
For RQ1, notice that the pruning strategies only apply to
specifications with multiple faulty locations. We then evaluate
our technique, with pruning enabled vs. pruning disabled, over
the following cases:
• From ARepair’s benchmark (we will refer in this way to

the benchmark used in the original evaluation of [19]),
we consider 18 specifications out of the 38 that are part
of the benchmark. We disregard cases that have exactly
one bug (20 in total in the benchmark), as these will not
make pruning checks, nor trigger the pruning.

• From Alloy4Fun, we consider a total of 273 faulty
specifications. To build these specifications, we tracked
the models with multiple assignments, and identified the
cases in which a given model was submitted with more
than one bug by the same student. (While the student id is
not reported as part of the Alloy4Fun dataset, submissions
are organized as chains of interaction ids, that correspond
to a same student session. We use this information to
organize submissions based on student sessions.)

The results are summarized in Table I. This table shows, for
each of the benchmarks, the number of cases, how many
were repaired with pruning enabled and disabled (recall the
1 hour timeout), and the average time for those cases that
were repaired within the timeout (time is in milliseconds). We
also report the increased repairability, and improved efficiency,
obtained by pruning. We considered the cases that were not
repaired with pruning disabled, but were repaired with pruning
enabled, as if they were repaired in 1 hour. So, the increased
efficiency is actually a lower bound of the actual improve-
ment. For reference, we also report the range of efficiency
improvement along all cases in each benchmark.

For RQ2, we compare our technique with the only other
approach for repairing Alloy models, namely ARepair [19].
We analyze both tools in their corresponding abilities to repair
specifications in our considered benchmarks. For ARepair’s
benchmark, we used the models’ corresponding assertions as
oracles for BeAFix, and automatically generated test suites,
using AUnit [18], for ARepair. Recall that ARepair requires
tests as oracles for the repair process; we actually follow the



TABLE I
IMPACT OF PRUNING IN REPAIRABILITY.

Benchmark Total Pruning Disabled Pruning Enabled Improved repairability/efficiency
cases Repaired Cases Avg. Time Repaired Cases Avg. Time Repaired Cases Avg. Time [Range min - max]

ARepair’s benchmarks
balancedBST 2 0 0 - -
cd 1 1 1765 1 540 1.00X 3X [3X - 3X]
dll 3 2 290366 2 2756 1.00X 80X [26X - 133X]
farmer 1 0 0 - -
fsm 1 0 0 - -
student 10 0 5 184030 5.00X 26X [1X - 81X]
Total: 18 3 146066 8 62442 2.66X 37X [1X - 133X]

Alloy4Fun’s benchmarks
Graphs 22 6 409667 16 6821 2.66X 123X [9X - 387X]
LTS 33 0 1 1983 1.00X 181X [181X - 181X]
Trash 23 7 94960 15 8084 2.14X 46X [2X - 107X]
Production 2 0 0 - -
Classroom 169 14 755978 32 138447 2.28X 82X [1X - 433X]
CV 24 0 0 - -
Total: 273 27 420201 64 38833 2.36X 85X [1X - 433X]

procedure suggested in [19], as test cases are not commonly
found accompanying Alloy specifications. Notice then that the
results reported in [19] do not coincide with those reported
here for ARepair’s benchmark, as we use the same models
with different test suites. The test suites used in [19] include
manually designed cases, to help ARepair in overcoming
overfitting. In our evaluation, we favored a comparison in
which only the original assertions are available, and thus we
generated test cases automatically, with AUnit (using the best
performing criterion, predicate coverage [18]).

From the Alloy4Fun dataset, we generated a benchmark
consisting of: (i) every faulty submission of the dataset as
a single specification (these correspond to every intermediate
specification submitted for analysis check in Alloy4Fun); and
(ii) the specifications combining all modifications within a
single user session, that we used for RQ1. The total number
of faulty specifications in this benchmark is 2209 (1936 faulty
submissions, plus 273 sessions combining submissions of the
same user). For BeAFix, we used the models’ corresponding
assertions as oracles. Since we do not have tests for these
specifications, and ARepair inherently requires tests as repair
oracles, we generated tests automatically using AUnit [18]
(with predicate coverage as a target criterion), using the
specification assertions, and employed these generated test
suites for running ARepair.

In all of the above cases, we contrasted the obtained repairs
against correct versions of the corresponding specifications,
using Alloy Analyzer, to account for overfitting. The results
for ARepair and Alloy4Fun benchmarks are summarized in
Tables II and III, respectively. For each model, we report the
number of cases, and for each tool, the number of fixes found
(percentage also reported), and how many of these are correct
and incorrect (the latter, due to overfitting) patches. We also
report the percentage of correct and incorrect patches, with
respect to the total number of cases, and the average repair

time in milliseconds, for each tool (these are the averages only
for the repaired cases).

A. Discussion

Let us discuss the evaluation results. For RQ1, the results
are conclusive: the impact of pruning is significant. Let us
remark that the efficiency speed up is better than the increase
in repairability (38X to 85X speed up, as opposed to roughly
2.5X increase in repairability). This may be explained by the
timeout that we have set: 1 hour may be a small timeout for
specification repair using BeAFix: increasing it may show a
repairability increase closer to the speed up. Another important
issue about these results is that the semantic check that we
need to perform for pruning using variabilization, does in fact
pay off. In other words, the variabilization checks, that require
additional calls to the SAT solver, implied a time saving thanks
to pruning that improved the overall analysis time. This, of
course, is relative to the considered case studies. We did not
observe any case where the overhead caused by pruning made
the tool to actually take longer to repair a faulty specification,
which may in fact happen for a specification, if most feasibility
checks succeed, consuming time and leading to no pruning.
The benchmarks were taken from other authors’ work; we
did not purposely look for specifications that may favor or
harm the pruning strategies. We plan to design synthetic
specifications, and extend the set of case studies, to further
assess the effect of pruning.

Regarding RQ2, the comparison between BeAFix and
ARepair can be analyzed along various dimensions. Let us
first consider the evaluation over ARepair’s benchmark. For
this benchmark, the test suites used for running ARepair
are solely composed of automatically generated tests, using
AUnit with predicate coverage. As a result, the number of
correct specification fixes differ from the experiments in [19],
where manually designed test cases helped the tool from
overfitting. In our current experiments, ARepair is affected



TABLE II
EXPERIMENTS TAKEN FROM AREPAIR’S BENCHMARKS.

Total ARepair BeAFix
Model Cases Repaired (%)

Avg. Correct (%) Incorrect (%) Repaired (%)
Avg. Correct (%) Incorrect (%)time time

addr 1 1 (100%) 9010 1 (100%) 0 (0%) 1 (100%) 351 1 (100%) 0 (0%)
arr 2 2 (100%) 7651 2 (100%) 0 (0%) 2 (100%) 2394 2 (100%) 0 (0%)
balancedBST 3 2 (67%) 120276 1 (33%) 1 (33%) 1 (33%) 358 1 (33%) 0 (0%)
bempl 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
cd 2 2 (100%) 3302 0 (0%) 2 (100%) 2 (100%) 742 2 (100%) 0 (0%)
ctree 1 1 (100%) 6774 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
dll 4 3 (75%) 22585 0 (0%) 3 (75%) 3 (75%) 2624 3 (75%) 0 (0%)
farmer 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
fsm 2 2 (100%) 6068 2 (100%) 0 (0%) 1 (50%) 313 1 (50%) 0 (0%)
grade 1 1 (100%) 124797 0 (0%) 1 (100%) 0 (0%) 0 (0%) 0 (0%)
other 1 0 (0%) 0 (0%) 0 (0%) 1 (100%) 3120 1 (100%) 0 (0%)
student 19 12 (63%) 76120 9 (47%) 3 (16%) 13 (68%) 71197 13 (68%) 0 (0%)
Total: 38 26 (68%) 41843 16 (42%) 10 (26%) 24 (63%) 10137 24 (63%) 0 (0%)

TABLE III
EXPERIMENTS TAKEN FROM ALLOY4FUN’S BENCHMARKS.

Total ARepair BeAFix
Model Cases Repaired (%)

Avg. Correct (%) Incorrect (%) Repaired (%)
Avg. Correct (%) Incorrect (%)time time

Graphs 305 276 (90%) 2625 18 (6%) 258 (85%) 248 (81%) 6734 248 (81%) 0 (0%)
LTS 282 165 (59%) 8729 7 (2%) 158 (56%) 42 (15%) 5999 42 (15%) 0 (0%)
Trash 229 220 (96%) 4077 68 (30%) 152 (66%) 199 (87%) 4915 199 (87%) 0 (0%)
Production 63 47 (75%) 6232 8 (13%) 39 (62%) 56 (89%) 4124 56 (89%) 0 (0%)
Classroom 1168 911 (78%) 95717 92 (8%) 819 (70%) 418 (36%) 82856 418 (36%) 0 (0%)
CV 162 132 (81%) 4966 4 (2%) 128 (79%) 82 (51%) 2805 82 (51%) 0 (0%)
Total: 2209 1751 (79%) 20391 197 (9%) 1554 (70%) 1045 (47%) 17905 1045 (47%) 0 (0%)

by overfitting: 16 out of the 26 produced fixes are correct
fixes. BeAFix outperforms ARepair in terms of the number
of repaired models: 16 models repaired by ARepair, against
24 repaired by BeAFix (a 21% difference in the number
of repaired models, over the size of the benchmark). It is
worth remarking that the two techniques complement each
other in terms of the repaired models: ARepair is able to
repair models that BeAFix does not repair (see for instance
ctree and fsm), and BeAFix repairs models that ARepair
is not able to repair (see for instance student and other).
In terms of efficiency, both tools show comparable running
times. The average time to produce a repair is however just
a reference, since the tools perform different kinds of tasks.
BeAFix does not include fault localization, so the times here
account for absolute repair times, given that the faults have
been localized offline. ARepair, on the other hand, includes
both the time to localize faults and perform the repair. Let us
remark however that, in ARepair, on average 62% of the time
corresponds to repair and 38% to fault localization. Unlike
ARepair, that alternates between patching and calling fault
localization, BeAFix calls fault localization only once, before
triggering repair. As such, the proportion of time devoted to
fault localization is much less. In our experiments, when we

consider the combination of fault localization and BeAFix, on
average 4% is devoted to fault localization (in the worst case,
Student6, the fault localization time was 13% of the total time).
Further details can be found in the tool’s site (see below).

Now let us consider the Alloy4Fun benchmark. For this
benchmark, we did not have any choice but to automatically
generate test cases, as these were not available for these
models. We generated test cases automatically, using AUnit
[18] (again, using the best performing generation criterion, as
reported in [18]). ARepair is able to repair a significant number
of models: 1751 out of 2209. However, only 197 were correct
fixes; the remaining 1554 were overfitting cases, that passed
the automatically generated tests, but were not correct fixes for
the corresponding specifications. BeAFix, on the other hand,
produced a smaller number of fixes: 1042 out of the 2209. But
since it uses Alloy assertions as repair oracles, instead of test
cases, it showed no overfitting issues for these specifications.
As a result, BeAFix shows a better effectiveness in repair:
47% of correctly repaired models by BeAFix, against 9% of
correctly repaired models by ARepair. Regarding the cases
themselves, again, the tools complement each other: there are
cases correctly repaired by one tool that were not repaired by
the other, and vice versa.



The observed overfitting is an important difference between
the two tools and their approaches, and confirms our intuition
and motivation regarding the use of stronger repair oracles,
that naturally come in specifications. Clearly, one may argue
that ARepair’s performance, in terms of overfitting, can be
improved by feeding the tool with different/stronger test suites.
We fully agree, and in fact, this is confirmed with ARepair’s
benchmark: if the test suites used in [19] are fed to ARepair
(which, as we mentioned, include manually crafted tests), then
26 out of 38 models are repaired, compared to the 14 out of
38 repaired models obtained with just automatically generated
tests (effectiveness is increased from 42% to 68%). Writing
the right set of test cases for specification repair is a time
consuming task, that would require a manual design of a test
suite for each of the models, to improve the tool’s results. The
overfitting problem is an inherent problem of using tests as
specifications, and thus it is expected of tools such as ARepair.

It is important to remark that we do not claim that our
technique leads to no overfitting, since this will depend on
the oracle being used, and how faithfully it captures the de-
veloper’s intentions. In the case of our controlled experiments,
where we had the ground truths as oracles (which would not be
the general case in formal specification), we had no overfitting,
although overfitting may still have been observed due to the
bounded nature of the analysis. In any case, being forced to
use test cases as opposed to more general properties makes it
more prone to overfitting.

Other attributes of the generated patches may be considered.
One of these is readability. We can remark that candidate
patches are built out of mutations of the faulty expressions,
and the space of faulty expressions is visited in breadth-first.
Therefore, simpler/shorter fix candidates are considered first.
While we did not evaluate readability in a systematic fashion,
BeAFix’s patches can be simpler and clearer than manual,
human-written ones. For instance, for Production.Inv4 in the
Alloy4Fun benchmark, the faulty expression:
all c: Component |

(c.parts).position in (c.position).ˆ˜next

is manually fixed by a student with the following expression:
all c: Component |

((c.ˆparts) & Component).position not in
(c.position).ˆnext or no (c.ˆparts & Component)

BeAFix on the other hand, produces the following:
all c : one Component |

c.parts.position in c.position.˜*next

Another dimension to consider is efficiency of our tech-
nique, compared with manual repairs. In Alloy4Fun we can
measure the effort of human patches, by considering the time
of the sessions of a same student, from defect introduction to
its fixing. On average, it takes a student about 10 minutes to fix
a defect, once it is introduced. On the other hand, the average
time to repair in the case of BeAFix is about 10 seconds. For
instance, for the above faulty specification, it took the student
a total of 49 minutes to get it right. BeAFix repaired it in 3
seconds. Due to space reasons, we do not present here a more

detailed comparison. The benchmarks, the tool’s output with
further statistical information, and the tool itself, can be found
in the tool’s site (see below).

V. RELATED WORK

The problem of automatically repairing software defects has
received great attention in the last decade, and a variety of
techniques have been proposed to tackle it, including generate-
and-validate techniques (e.g., based on evolutionary computa-
tion [16] or other forms of search in the space of candidates),
techniques based on patch synthesis (e.g., techniques that
gather constraints for correct program behavior and produce
patches from these [24]) and techniques driven by data (e.g.,
techniques based on learning [25]). The emphasis is largely
targeted at programs, rather than specifications. As explained
earlier in this paper, the context of formal specification has
some significant differences with programs (source code), that
render many of these techniques not applicable, or at least
difficult to adapt, to repairing specifications. The problem of
dealing with the explosion of repair candidates has been dealt
with in different ways, in the context of automated program
repair. Some approaches attempt to bring down the branching
factor in the search space by using a single mutation (e.g.,
[26]); others consider a very small set of mutators (e.g.,
based on patterns of human-written fixes [17]), or consider
coarse grained mutations (e.g., no intra-statement program
modifications [16]). Most of these approaches perform non-
exhaustive heuristic searches, as opposed to our technique,
that proposes safely pruning the search space.

Our technique produces fine-grained repair candidates that
are akin to mutations [27], such as operator and operand
replacements, etc., or more generally, combinations of muta-
tions (as in higher order mutations in the context of mutation
testing [28]). The motivation for this decision is based on a
number of issues, that seem to impact the effectiveness of
larger-grained modifications (such as the copying, deletion and
swapping of whole expressions) as operations to build repairs
in the context of specification (for instance, for the case studies
presented in [20], our manual inspection showed no case where
one may repair the specification by deleting, swapping or
copying whole expressions within the specification). Firstly,
specifications do not seem to feature the same level of reuse
that programs have. For instance, in text books on formal
specification with more traditional languages such as Z [29]
or B [30], one does not see modularization mechanisms (e.g.,
schema/machine composition) being used for reuse across
different specifications, with the exception of the reuse of
some general purpose specifications of sets, sequences, etc.
Rather, modularization mechanisms seem to be exploited
mainly for specification organization, with little impact in
reuse. Secondly, most declarative specification languages are
order-insensitive (the order of declarations and statements is
irrelevant, as opposed to operational languages, making order-
changing modifications ineffective). Thirdly, specifications are
significantly shorter than source code, and therefore less
redundancy that could be exploited for repairs is observed.



While most work on automated repair applies to programs,
there are some notable exceptions [31], [19], [20]. The tool
AutoFix [31] targets contract-equipped programs, and can
produce repairs that make the programs satisfy their contracts
(at least as far as a test suite can determine). The technique can
modify contracts as well as the code itself, and therefore can
be considered as a specification repair technique. The approach
differs from ours in many respects: it applies to specifications
at the source-code level, as opposed to the more abstract
specifications we target in this paper; it is not constrained
to specifications, it can indistinguishably alter programs and
specifications; and the specification is not the oracle for repair,
the tests are. An approach closely related to ours, as it applies
to Alloy specifications too, is ARepair [19], [20]. ARepair
repairs faulty Alloy specifications by combining a number
of techniques, including a technique for synthesis known as
sketching [32], and mutation-based repairs, as in program
repair. ARepair can fix specifications with multiple buggy
locations, and is able to do so considering a manageable set of
candidates, thanks to an effective fault localization approach
(and resorting to sketching rather than arbitrary mutations).
In effect, ARepair is guided by its own fault localization
approach, and the whole process is supported by Alloy tests.
Our approach, on the other hand, is not coupled with fault
localization, and can use different techniques (e.g., [33], [22],
as long as they can be used with the fault localization oracle
at hand) for fault localization. Alloy tests are similar to unit
tests for source code: they provide specific scenarios with an
expected outcome when evaluating specific parts of an Alloy
specification, e.g., a predicate. The tool has been successfully
applied to repair specifications taken from a benchmark of
Alloy models [3] very efficiently, by being combined with
techniques for automated Alloy test generation (as tests are
necessary for repair). As for program repair techniques which
use tests as acceptance criteria, they are subject to overfitting,
the problem that arises when a candidate passes all tests, but is
not a true repair, i.e., there are situations in which the program
(in this case, specification) fails to comply with the intended
behavior. This, as usual, is strongly related to the quality of
the provided test suite, and many of the cases from [3] were
repaired thanks to additionally, manually provided, test cases
[19], [20]. ARepair inherently depends on test cases, while our
technique works on arbitrary Alloy specification oracles. See
the previous section for a more detailed comparison of BeAFix
with ARepair, from a more experimental point of view.

Our technique uses Alloy counterexamples to weakly check
variabilization feasibility, since fully checking feasibility re-
quires dealing with higher-order quantification. To perform
this higher-order checking, one may use Alloy* [34]. We
experimented with this approach, but due to performance
issues, we favored our current counterexample-based mecha-
nism. Also in this line, one may profit from Alloy* to capture
Alloy’s grammar and semantics into Alloy*, and use the solver
to encode the whole repair approach. In this way, Alloy* would
function as a synthesis engine, with the solver doing the search
for repairs, as in some semantic program repair approaches

(e.g., [24]). In our initial attempts we did not manage to obtain
results, due to the available heap space being exceeded, for
fragments of Alloy’s grammar significantly smaller than what
we are considering with our ad-hoc search approach. We plan
however to further investigate this possibility.

VI. CONCLUSION

Software specification and modeling are crucial activities
of most software development methods. Getting a software
specification right, i.e., capturing correctly a software design,
the constraints and expected properties, etc., especially when
the language to capture these is formal, is very challenging.
Thus, techniques and tools that help developers in correctly
specifying software is highly relevant. In this paper, we have
presented a technique that helps precisely in this task, in the
context of formal specification using the Alloy language [4].
Our technique has a number of characteristics that distinguish
it from related work [20]. Firstly, it does not require any
particular form of the oracles, i.e., the properties to be used for
assessing fix candidates (as opposed to existing work which
require such oracles to be expressed in terms of test cases).
Secondly, it bounded exhaustively explores the state space of
fix candidates, thus finding a specification fix, or guaranteeing
that such a fix is impossible within the established bounds,
for the identified faulty locations, and with the provided
mutation (syntactic modification) operators. This is suitable
in an Alloy context, where users are accustomed to bounded-
exhaustive analyses. This bounded-exhaustive exploration of
fix candidates demands then appropriate mechanisms to make
the search more efficient. Our technique comes with two sound
pruning strategies, that allow us to avoid visiting large parts
of the state space for fix candidates, which are guaranteed
not to contain valid fixes. We have assessed our technique
on a large benchmark of Alloy specifications, and shown that
the pruning strategies have an important impact in analysis.
The technique has an efficiency comparable to that of the
previous work [20], it complements the latter in terms of the
fixes it is able to generate, and is less prone to overfitting,
as it naturally supports stronger oracles based on assertion
checking and property satisfiability, that usually accompany
Alloy specifications.

VII. DATA AVAILABILITY

BeAFix, all benchmark data, further statistical information
and the instructions to replicate the experiments in this paper,
are available at [35]. A snapshot of the tool and benchmark,
as used in the paper, is available at [36].
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