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ABSTRACT

The ubiquity of Internet of Things (IoT) and our growing reliance
on IoT apps are leaving us more vulnerable to safety and security
threats than ever before. Many of these threats are manifested at
the interaction level, where undesired or malicious coordinations
between apps and physical devices can lead to intricate safety and
security issues. This paper presents IotCom, an approach to au-
tomatically discover such hidden and unsafe interaction threats
in a compositional and scalable fashion. It is backed with auto-
mated program analysis and formally rigorous violation detection
engines. IotCom relies on program analysis to automatically infer
the relevant app’s behavior. Leveraging a novel strategy to trim
the extracted app’s behavior prior to translating them to analyz-
able formal specifications, IotCom mitigates the state explosion
associated with formal analysis. Our experiments with numerous
bundles of real-world IoT apps have corroborated IotCom’s ability
to effectively detect a broad spectrum of interaction threats trig-
gered through cyber and physical channels, many of which were
previously unknown, and to significantly outperform the existing
techniques in terms of scalability.
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1 INTRODUCTION

Internet-of-Things (IoT) ecosystems are becoming increasingly
widespread, particularly in the context of the smart home. Industry
forecasts suggest the average smart home will end the current year
with as many as 50 connected devices [32]. The race to configure,
control, and monitor these devices produces a web of different plat-
forms all operating within the same cyber-physical environment.
These platforms also allow users to install third-party software
apps, which can intricately interact with each other, allowing com-
plex and varied automations. Such diversity enhances the user’s
experience by delivering many options for automating their home,
but it comes at a price; it also escalates the attack surface for safety
and security threats. The increased complexity produced by the
coordination and interaction of these apps subjects the system
to the risk of undesired behavior, whether by misconfiguration,
developer error, or malice. For example, an app that unlocks the
door when a user returns home may be subverted—either acci-
dentally or intentionally—to unlock the door when the user is not
actually present. This risk is exacerbated by the unpredictable na-
ture of IoT environments, as it is not known a priori which apps
and devices will be installed in tandem. The increased impact of
these physical risks makes identification of risky interactions even
more important.

In this context, the safety implications and security risks of IoTs
have been a thriving subject of research for the past few years [3,
15, 17, 19, 20, 24, 26, 33, 38, 39, 47, 57, 58, 64] These research efforts
have scrutinized deficiencies from various perspectives. However,
existing detection techniques target only certain types of inter-app
threats [20, 38, 47] and do not take into account physical channels,
which can underpin risky interactions among apps. Moreover, the
state-of-the-art techniques suffer from acknowledged missing of
interaction threats, as they require manual specification of the
initial configuration for each app to be analyzed. This, in turn,
results in missing potentially unsafe behavior if it appears from
different configurations [20, 26, 38, 47]. Additionally, these analyses
have been shown to experience scalability problems when applied
on large numbers of IoT apps [20, 38, 47].

To address this state of affairs, this paper presents a novel ap-
proach and accompanying tool suite, called IotCom, for compo-
sitional analysis of such hidden and unsafe interaction threats in
a given bundle of cyber and physical components co-located in
an IoT environment. IotCom first utilizes a path-sensitive static
analysis to automatically generate an inter-procedural control flow
graph (ICFG) for each app. It then applies a novel graph abstraction
technique to model the behavior relevant to the devices connected
to the app as a behavioral rule graph (BRG), which derives rules
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from IoT apps via linking the triggers, actions, and logical condi-
tions of each control flow in each app. Unlike prior techniques, our
approach respects the conditions along each branch rather than
only the triggers and actions. IotCom then automatically generates
formal app specifications from the BRG models. Lastly, it uses a
lightweight formal analyzer [37] to check bundles of those models
for violations of multiple safety and security properties arising from
interactions among the apps rules.

IotCom has several advantages over existing work. First, unlike
prior work, IotCom supports the detection of violations occurred
through physically mediated interactions by explicitly modeling a
mapping of each device capability to the pertinent physical chan-
nels. Second, while prior approaches require manual specification
of the initial configuration, IotCom exhaustively identifies all initial
configurations, which in turn enables automatically checking them
for potential interaction violations with no need for any manual
configuration. Third, our novel BRG abstraction technique opti-
mizes the performance of our analysis and markedly improves our
scalability over state-of-the-art techniques by effectively trimming
the automatically-extracted ICFGs, eliding all nodes and edges ir-
relevant to the app’s behavior from the analysis.

Using a prototype implementation of IotCom, we evaluated
its performance in detecting prominent classes of IoT coordina-
tion threats among thousands of publicly-available real-world IoT
apps developed using diverse technologies. Our results corroborate
IotCom’s ability to effectively detect complex coordinations among
apps communicating via both cyber and physical means, many of
which were previously unreported. We also demonstrate IotCom’s
significantly improved scalability when compared to existing IoT
threat detection techniques.

We further compare the precision of IotCom to the other ap-
proaches using a set of benchmark IoT apps, developed by the other
research groups [20, 26]. IotCom is up to 68.8% more successful
in detecting safety violations. Additionally, compared to the state-
of-the art techniques in detecting safety and security violations
in IoT environments, IotCom reduces the violation detection time
by 92.1% on average and by as much as 99.5%. To summarize, this
paper makes the following contributions:

• Classification of interaction threats between IoT apps.We iden-
tify and rigorously define seven classes of multi-app inter-
action threats between IoT apps over physical and cyber
channels both within and among apps.

• Formal model of IoT systems. We develop a formal specifica-
tion of IoT systems, respecting cyber and physical channels
and representing the behavior of IoT apps apropos the de-
tection of safety and security vulnerabilities. We construct
this specification as a reusable Alloy [1] module to which all
extracted app models conform.

• Automated analysis.We showhow to exploit the power of our
formal abstractions by building a modular model extractor
that uses static analysis techniques to automatically extract
the precise behavior of IoT apps into a trimmed behavioral
rule graph, respecting the logical conditions that impact the
behavior of the app rules, which is then captured in a format
amenable to formal analysis.

• Experiments.Weevaluate the performance of IotCom against
real-world apps developed for multiple IoT platforms (Smart-
Things and IFTTT), corroborating IotCom’s ability in effec-
tive compositional analysis of IoT apps interaction vulnera-
bilities in the order ofminutes.Wemake research artifacts, in-
cluding the entire Alloy specifications, and the experimental
data available to the research and education community [35].

2 BACKGROUND AND MOTIVATION

Smart home IoT platforms are cyber-physical systems compris-
ing both virtual elements, such as software, and physical devices,
like sensors or actuators. In popular smart home platforms, such
as SmartThings [49], Apple’s HomeKit [5], GoogleHome [29], Za-
pier [63] and MicrosoftFlow [44], physical devices installed in the
home are registered with virtual proxies in a cloud-based backend.
Each proxy tracks the state of the device via one or more attributes,
which can assume different values. The backend also allows the
user to install software apps, which automate the activities of these
devices by applying custom rules that act on the virtual proxies.
These rules adopt a trigger-condition-action paradigm:
Triggers: Cyber or physical events reported to the smart home sys-

tem by the devices, such as a motion sensor being activated,
trigger the rules.

Conditions: Logical predicates defined on the current state of the
devices determine if the rule should execute. For example, a
rule might only execute if the system is in “home” mode.

Actions: If the conditions are met, the rule changes the state of
one or more devices, which could result in a physical change
like activating a light switch.

The safety and security of these systems is a major concern [17,
38, 47], particularly regarding software apps. Users can install multi-
ple, arbitrary apps which can interact not only with physical devices
in the smart home, but also with each other. Multi-app coordination
threats among smart home apps arise when two or more app rules
interact to produce a surprising, unintended, or even dangerous result
in the physical environment of the smart home. Apps can interact
over cyber channels such as shared device proxies, global settings,
or scheduled tasks. We refer to coordination over cyber channels as
direct coordination. They also interact over physical channels [26]
via a shared metric acted upon by an actuator and monitored by a
sensor ; this is termed indirect coordination.

Tomake the idea concrete, consider three publicly-available apps,
i.e., the SmartThings app MultiSwitch and the IFTTT automations
If It’s Bright Turn Off the Light and Living Room Lamp On. Figure 1
shows an example configuration of these apps along with their
devices, which can enter into an infinite loop. If It’s Bright watches
a light sensor. When the light reaches a user-defined level, it turns
off the MultiSwitch. MultiSwitch forwards that command to both
the overhead light and the lamp. Living Room Lamp On responds
to the overhead light going off by turning on the lamp. That, in
turn, activates the light sensor through luminance physical channel,
which initiates the same chain of events again.

The above example points to one of the most demanding issues
in the smart home IoT ecosystem, i.e., detection of multi-app coor-
dination threats. What is required is a system-wide reasoning—that
determines how those individual rules could impact one another
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Figure 1: Example infinite actuation loop. The apps turn the

living room lights on and off again repeatedly due to a mis-

configuration.

when the corresponding apps are installed together—not comfort-
ably attainable through conventional analysis methods such as
static analysis or testing, which are more suited for identifying is-
sues in individual parts of the system. In the next sections, we first
provide a classification of various multi-app coordination threats,
and then present a formal modeling approach to address these
issues.

3 MULTI-APP COORDINATION THREATS

In this section, we present seven classes of potential multi-app coor-
dination threats that can arise due to interactions between IoT app
rules. As defined earlier, a rule comprises a set of triggers, conditions,
and actions. More formally, an app rule ρ is a tuple ρ = ⟨Tρ ,Cρ ,Aρ ⟩,
where Tρ , Cρ , and Aρ are sets of triggers, conditions, and actions
for rule ρ, respectively. Each component (trigger, condition, or ac-
tion) can be described as a triple of a device, an attribute, and a set
of values. The sets of devices, attributes, and values associated with
a component α are denoted as D(α), A(α), and V(α), respectively.

3.1 Direct Coordination

Two rules Ri and Rj directly coordinate if an action from Ri influ-
ences the devices and attribute associated with a component of Rj .
As they act on a shared physical environment, co-located apps can
coordinate via both cyber and physical means. In cyber coordina-
tion, the devices and attribute of an action of Ri mustmatch those
referenced by some component of Rj :

Definition 3.1 (match). The relationmatch defines an intersec-
tion between the devices and attribute of a component α from an
IoT app rule Ri and a component β from another IoT app rule Rj :

match(α, β ) ≡
(
D(α ) ∩ D(β ) , ∅

)
∧
(
A(α ) = A(β )

)
Physical coordination is mediated by some physical channel. We

define the set of physical channels asChannels, withActuators(γ )
and Sensors(γ ) denoting the sets of devices that can either act upon
or sense changes to a channel γ ∈ Channels, respectively.

Definition 3.2 (same_channel). The relation same_channel de-
fines physically-mediated interaction via channel γ between the
devices of an action α from an IoT app rule Ri and a trigger β from
another IoT app rule Rj :
same_channel (α, β ) ≡ ∃γ ∈ Channels.((D(α ) ⊆ Actuators(γ ))

∧ (D(β ) ∩ Sensors(γ ) , ∅))

The most common type of coordination—which is a core fea-
ture of IoT automation systems—is (T1) action-trigger coordination,

where the value of one of Ri ’s actions matches a value in or actuates
a channel sensed by one ofRj ’s triggers, as depicted in Figure 2. This
coordination is often intended but can also lead to an unintended
activation of subsequent rules if misused.

Definition 3.3 ((T1) Action-trigger). Action a of rule Ri activates
trigger t of rule Rj either directly (by involving overlapping de-
vices, attributes, and values) or mediated by some physical channel
actuated by the devices of a and sensed by the devices of t .
T 1(Ri , Rj ) ≡

(
(∀a ∈ ARi , c ∈ CRj .(match(a, c) ⇒ (V(a) ⊆ V(c))))

∧ (∃a ∈ ARi , t ∈ TRj .((match(a, t ) ∧ (V(a) ⊆ V(t )))

∨ (same_channel (a, t ))))
)

Figure 2: (T1) Action-trigger

Action-condition coordination may be less obvious to the user;
in this case, Ri either (T2) enables or (T3) disables Rj depending on
whether or not the values of the action and the related condition
match, as shown in Figures 3a and 3b.

Definition 3.4 ((T2) Action-condition (match)). Rule Ri executes
action a that changes the system to satisfy condition c of rule Rj .

T 2(Ri , Rj ) ≡
(∀a ∈ ARi , c ∈ CRj .(match(a, c) ⇒ (V(a) ⊆ V(c))

)
Definition 3.5 ((T3) Action-condition (nomatch)). RuleRi executes

action a that changes the system to no longer satisfy condition c of
rule Rj .
T 3(Ri , Rj ) ≡

(∃a ∈ ARi , c ∈ CRj .(match(a, c) ∧ (V(a) ∩ V(c) = ∅)
)

(a) (T2) match (b) (T3) no match

Figure 3: Action-condition

3.2 Chain Coordination

The first three classes define ways for two rules to coordinate
directly, but apps may also coordinate via a chain of rules—each
coordinating with another via action-trigger (T1) coordination—or
via a relationship between their triggering event(s). We refer to two
rules that can be triggered by the same event as siblings if their
conditions are not mutually exclusive.

Definition 3.6 (sibling). Relation siblinд holds between two rules
Ri and Rj if and only if there is a trigger t1 in Ri that overlaps via
devices, attributes, and values with a trigger t2 in Rj ; none of the
conditions in Ri violate any condition of Rj ; and vice versa.
siblinд(Ri , Rj ) ≡

(
(∀c1 ∈ CRi , c2 ∈ CRj .

(match(c1, c2) ⇒ (V(c1) ∩ V(c2) , ∅)))

∧ (∃t1 ∈ TRi , t2 ∈ TR2 .(match(t1, t2) ∧ (V(t1) ∩ V(t2) , ∅)))
)
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Chain coordination may lead to the scenario where the action of
a chain of rules (or a single rule itself) triggers one of the rules previ-
ously involved in the same chain. We define this class of multi-app
coordination threats as (T4) self coordination (shown in Figure 4):

Definition 3.7 ((T4) Self coordination). Rule Ri—either directly or
through a transitive chain of intermediate rules connected by the
T 1 relation, denoted T 1+—triggers itself.

T 4(Ri ) ≡ T 1+(Ri , Ri )

Figure 4: (T4) Self coordination

Action-action coordination occurs when two distinct rules act
upon the same attribute of the same device. If the rules are triggered
by unrelated events, there is no coordination between the two rules.
If the triggering events are the same, then the rules may coordinate
to produce an undesired result such as a race condition or additional
wear on a given device (cf. Figures 5a-5b):

Definition 3.8 ((T5) Action-action (conflict)). Two rules Ri and
Rj that are each triggered by the same event—either directly or
through a chain of coordinating rules—each has an action with the
same device and attribute but different values. (T1∗ denotes the
reflexive transitive closure of the T 1 relation).

T 5(Ri , Rj ) ≡
(∃a1 ∈ ARi ;a2 ∈ ARj ;Rm, Rn ∈ R .(match(a1, a2)

∧ (V(a1) , V(a2)) ∧T 1∗(Rm, Ri ) ∧T 1∗(Rn, Rj )

∧ ((Rm = Rn ) ∨ siblinд(Rm, Rn )))
)

Definition 3.9 ((T6) Action-action (repeat)). Two rules Ri and Rj
that are each triggered by the same event—either directly or through
a chain of coordinating rules—each has an action with the same
device, attribute, and value.

T 6(Ri , Rj ) ≡
(∃a1 ∈ ARi ;a2 ∈ ARj ;Rm, Rn ∈ R .(match(a1, a2)

∧ (V(a1) = V(a2)) ∧T 1∗(Rm, Ri ) ∧T 1∗(Rn, Rj )

∧ ((Rm = Rn ) ∨ siblinд(Rm, Rn )))
)

(a) (T5) conflict (b) (T6) repeat

Figure 5: Action-action

The prior chain coordinations result from a single initiating
event; it is also possible for rules to be configured such that a
given outcome is guaranteed even in the face of mutually-exclusive
events. We define a seventh class of coordination—(T7) exclusive
event coordination—to detect this case, shown in Figure 6.

Definition 3.10 ((T7) Exclusive event coordination). Two rules Ri
and Rj that would be triggered bymutually exclusive events—which
share a device and attribute but different values—have actions that
share the same device, attribute, and value.
T 7(Ri , Rj ) ≡

(∃a1 ∈ ARi ;a2 ∈ ARj ;Rm, Rn ∈ R; t1 ∈ TRm ; t2 ∈ Rn .

(match(a1, a2) ∧ (V(a1) = V(a2)) ∧T 1∗(Rm, Ri ) ∧T 1∗(Rn, Rj )

∧match(t1, t2) ∧ (V(t1) ∩ V(t2) , ∅)
)

Figure 6: (T7) Exclusive event

In the rest of the paper, we show how, through a practical combi-
nation of static analysis and a lightweight formal method, IotCom
can automatically discover such unsafe and intricate interaction
threats in a compositional and scalable fashion.

4 APPROACH OVERVIEW

This section introduces IotCom, a technique that automatically de-
termines whether the interactions within an IoT environment could
compromise the safety and security thereof. Figure 7 illustrates the
architecture of IotCom and its two major components, described
in detail in the following two sections:

Figure 7: IotCom System Overview.

(1) Behavioral Rule Extractor (Section 5): The Behavioral Rule
Extractor component automatically infers models of the apps be-
havior using a novel graph abstraction technique. The component
first performs static analysis on each app to generate an inter-
procedural control flow graph (ICFG). It then creates a behavioral
rule graph containing only the flows pertinent to the events and
commands forwarded to/from physical IoT devices, along with
any conditions required for those actions. Each flow is then auto-
matically transformed into a formal model of the app.
(2) Formal Analyzer (Section 6): The Formal Analyzer compo-
nent is then intended to use lightweight formal analysis techniques
to verify specific properties (i.e., IoT coordination threats) in the
extracted specifications. IotCom uses three formal specifications:
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(1) a base model of smart home IoT systems that defines foundational
rules for cyber and physical channels, IoT apps, how they behave,
and how they interact with each other, (2) assertions for safety
and security properties, and (3) the IoT app behavioral rule mod-
els automatically generated by the previous component for each
app. Those specifications are then checked together for detecting
violations of the properties.

5 BEHAVIORAL RULE EXTRACTOR

The Behavioral Rule Extractor executes three main steps to auto-
matically infer the behavior of individual IoT apps: (1) build an
inter-procedural control flow graph (ICFG); (2) convert the ICFG to a
behavioral rule graph (BRG); and (3) generate formal models for the
behavioral rules.

5.1 Building ICFG

The Behavioral Rule Extractor first generates an inter-procedural
control flow graph for each app. It analyzes the abstract syntax tree
of the given app to build a call graph of local and API-provided
methods as well as a control flow graph for each local method. Each
graph is generated using a path-sensitive analysis [41] to preserve
the logical conditions along each control flow. To capture the precise
behavior of IoT apps, it is essential to extract the predicates that
will influence the actions performed by IoT apps. Path-sensitivity
supports this goal. Many of the triggered methods in the IoT apps
are calling other methods that will perform certain actions. As such,
an inter-procedural analysis is required to consider the calling
context when analyzing the target of a triggered method. This,
in turn, improves the precision of our approach compared to the
state-of-the-art techniques, which do not consider the conditions
when identifying interactions between apps [26]. The Behavioral
Rule Extractor then combines each control flow graph with the call
graph to construct an ICFG starting at each entry method in the
graph. The details of generating the ICFG depend on how apps are
defined for each platform.

IFTTT applets are reactive rules that interact with REST services
exposed by service providers [34]. Each applet consists of a single
trigger-action pair. The Behavioral Rule Extractor treats each applet
as a standalone IoT app defining exactly one rule. It performs string
analysis [22] to extract an ICFG comprising one entry node for the
trigger and one “method call” invoking a device API for the action.
For instance, IFTTT applet “If I arrive at my house then open my
garage door” [28] would result in an ICFG with an entry node for
“arrive at my house” and a method call node for “open my garage
door”. Automatically identifying the corresponding keywords spec-
ified in triggers and actions, in turn, allows IotCom to detect the
associated capability, attribute, and value in the next steps.

SmartThings apps are written as Groovy programs, allowing
for multiple rules and more extensive logic. To generate an ICFG
for a SmartThings app, the Behavioral Rule Extractor first extracts
principal information regarding: (1) the devices and attributes used
in the app, (2) the user’s configuration of the app, (3) any global
variables defined in the SmartThings documentation [49] or set
using the state object, and (4) the entry methods of the app’s
triggers. The SmartThings platform defines entry methods using
calls to specific API methods: subscribe, schedule, runIn, and

Listing 1 Groovy code for MultiSwitch app
1 preferences {
2 section("When this switch is toggled...") {
3 input "master", "capability.switch", title: "Where?" }
4 section("Turn on/off these switches...") {
5 input "switches", "capability.switch", multiple: true } }
6 def installed() {
7 subscribe(master, "switch.On", switchOn)
8 subscribe(master, "switch.Off", switchOff) }
9 def updated() {
10 unsubscribe()
11 subscribe(master, "switch.On", switchOn)
12 subscribe(master, "switch.Off", switchOff) }
13 def switchOn(evt) {
14 log.debug "Switches on"
15 switches?.on() }
16 def switchOff(evt) {
17 log.debug "Switches off"
18 switches?.off() }

runOnce. Next, the Behavioral Rule Extractor creates a control flow
graph for each of those entry methods. These graphs are combined
to generate an inter-procedural control flow graph for the IoT app.
Note that existing state-of-the-art analysis techniques lack support
for direct program analysis of Groovy code. By performing the
analysis directly on the Groovy code, IotCom avoids the pitfalls
(and cost) of translating the code into some intermediate represen-
tation. As a concrete example, Listing 1 shows the Groovy code
defining the MultiSwitch app described in Section 2. The calls to
subscribe on Lines 11-12 define two entry points—switchOn and
switchOff. Each of those methods would comprise two nodes in
the ICFG corresponding to the logging line and API call contained
in each.

5.2 Generating Behavioral Rule Graph

The Behavioral Rule Extractor next tailors the ICFG into a succinct,
annotated graph representing the relevant behavior of the IoT app—
a behavioral rule graph (BRG). By eliding all edges and nodes from
the ICFG that do not impact the app’s behavior with respect to
physical devices, the BRG makes it easier to infer the behavior
defined in the app, optimizing the performance of our analysis.
To construct the BRG from the ICFG, the nodes in the ICFG are
traversed starting from each entry method, generating nodes in the
BRG as follows:

• Trigger: Entry method nodes from the ICFG are propagated
to the BRG as trigger nodes.

• Condition: Control statements such as if blocks generate
condition nodes in the BRG.

• Action: Any node that invokes a device API method creates
an action node in the BRG.

• Method Call: Method calls to other local methods produce
method call nodes in the BRG, as the called method may
include relevant app behavior.

Continuing the example (Listing 1) from Section 5.1, the Behav-
ioral Rule Extractor converts the ICFG for MultiSwitch into a BRG,
starting with the entry point function switchOn. The next node in
the ICFG is a call to a logging API, which has no bearing on the
app’s behavior and is not included in the BRG. The node following
the logging is an API call to on, which translates directly to an
action node in the BRG. The resulting BRG captures all actions that
affect the devices in the environment. If the example contained any
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conditional statements, the BRG would also maintain the control
flow reflecting the conditions for each action.

After creating the BRG, the statements corresponding to each
node are converted to ⟨device,attribute,value⟩ tuples. If a value
in any of the nodes does not correspond directly to a member of
one of those sets, we perform backward inter-procedural data flow
analysis [45] to resolve the dependency.

5.3 Generating Rule Models

The final component of the Behavioral Rule Extractor generates
formal models of each app’s rules based on the BRG. As described
in Section 2, the behavior of an IoT app consists of a set of rules R,
where each rule is a tuple of triggers, conditions, and actions.

In order to tie the behavior of these rules back to the physical
devices in the smart home, the elements of T , C , and A are each
formalized as sets of tuples of ⟨device,attribute,value⟩. Each
type of device is assumed to have its own set of device-specific
attributes, and each attribute constrains its own allowed values
according to the device manufacturer’s specifications. For example,
a smart lock device may have a “locked” attribute to indicate the
state of the lock, which acceptsvalues of “locked” or “unlocked”.
An action to unlock a specific lock (TheLock) would contain a tuple
composed of those elements, e.g., ⟨TheLock, locked,unlocked⟩.

To generate the models from the BRG, IotCom starts from each
trigger node (which is used as the Trigger for the rule) and tra-
verses the graph to find the action nodes; every rule must have
at least one Action. From each action node, it performs a reverse
depth-first search back to the trigger, collecting the tuples for each
condition node encountered along the path as the Conditions of
the rule.

6 FORMAL ANALYZER

This section describes the Formal Analyzer component of IotCom,
which takes as input the behavioral rule models generated by
the Behavioral Rule Extractor. These formal models are verified
against various safety and security properties using a bounded
model checker to exhaustively explore every interaction within a
defined scope. This allows IotCom to automatically analyze each
bundle of apps without manual specification of the initial system
configuration, which is required for comparable state-of-the-art
techniques [20, 47]. We use Alloy [37] to demonstrate our approach
for several reasons. First, it provides a concise, simple specification
language suitable for declarative specification of both IoT apps and
safety and security properties to be checked. In particular, Alloy
includes support for modeling transitive closure, which is essen-
tial to analyze complex, chained interactions. Second, it provides
a fully-automated analyzer, shown to be effective in exhaustively
analyzing specifications in various domains [7–13, 43].

The bounded model checking relies on three sets of formal spec-
ifications, as shown in Figure 7: (1) a base smart home model de-
scribing the general entities composing a smart home environment;
(2) the app-specific behavioral rule models generated by the Behav-
ioral Rule Extractor; and (3) formal assertions for our safety and
security properties. Complete Alloy models are available online at
our project site [35].

Listing 2 Excerpt of base smart home Alloy model.
1 abstract sig Device { attributes : set Attribute }
2 abstract sig Attribute { values : set Value }
3 abstract sig Value { }
4 abstract sig IoTApp { rules : set Rule }
5 abstract sig Rule {
6 triggers : set Trigger,
7 conditions : set Condition,
8 actions : some Action }
9 // Trigger, Condition, and Action contain
10 // similar tuples
11 abstract sig Trigger {
12 devices : some Device,
13 attribute : one Attribute,
14 values : set Value }
15 abstract sig Condition { ... }
16 abstract sig Action { ... }

Listing 3 Excerpt of Environment model.
1 abstract sig Channel {
2 sensors : set Capability,
3 actuators : set Capability }
4 one sig ch_temperature extends Channel {} {
5 sensors = cap_temperatureMeasurement
6 actuators = cap_switch + cap_thermostat + cap_ovenMode }
7 one sig ch_luminance extends Channel {} {
8 sensors = cap_illuminanceMeasurement
9 actuators = cap_switch + cap_switchLevel }
10 one sig ch_motion extends Channel {} {
11 sensors = cap_motionSensor + cap_contactSensor
12 actuators = cap_switch }

6.1 Smart Home Base Model

The overall smart home system is modeled as a set of Devices and a
set of IoTApps, as shown in Listing 2. Each IoTApp contains its own
set of Rules. Each Device has some associated state Attributes, each
of which can assume one of a disjoint set of Values. Recall from
Section 4, each rule contains its own set of Triggers,Conditions, and
Actions. Each individual trigger, condition, and action is modeled
as a tuple of one or more Devices, the relevant Attribute for that
type of device, and one or more Values that are of interest to the
trigger, condition, or action. Defined in Alloy, each of the listed
entities is an abstract signature which is extended to a concrete
model signature for each specific type of device, attribute, value,
IoT app, behavioral rule, etc.
Environment Modeling. Apps can communicate both virtually
within the cloud backend and physically via the devices they control.
Virtual interactions fall into two main categories: (1) direct map-
pings, where one app triggers another by acting directly on a virtual
device/variable watched by the triggered app; or (2) scheduling,
where one rule calls—e.g., using the runIn API from SmartThings—
to invoke a second rule after a delay. Physically mediated interac-
tions occur indirectly via some physical channel, such as tempera-
ture. Our model—in contrast to others [20, 47]—directly supports
detection of violations mediated via physical channels (cf. Listing 3).
As part of our model of the overall SmartThings ecosystem, we
include a mapping of each device to one or more physical Channels
as either a sensor or an actuator.

6.2 Extracted IoT App Behavioral Rule Models

The second set of specifications required by the Formal Analyzer is
the models automatically extracted from each individual IoT app.
These specifications extend the base specifications described in
Section 6.1 with specific relations for each individual IoT app.
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Listing 4 Excerpts from the generated specification forMultiSwitch
(Listing 1)
1 one sig MultiSwitch extends IoTApp {
2 master : one Switch,
3 switches : some Switch }
4 { rules = r0 + r1 }
5
6 one sig r0 extends Rule {}{
7 triggers = r0_trig0
8 no conditions
9 actions = r0_act0 }
10 one sig r0_trig0 extends Trigger {} {
11 devices = MultiSwitch.master
12 attribute = Switch_State
13 value = ON }
14 one sig r0_act0 Action {} {
15 devices = MultiSwitch.switches
16 attribute = Switch_State
17 value = ON }
18
19 one sig r1 extends Rule {}{ ... }

Listing 4 partially shows the Alloy specification generated for
theMultiSwitch app from Section 2. First, the new signatureMulti-
Switch extends the base IoTApp by adding fields for some Switch
devices–a single master and multiple others–as well as constraining
the inherited rules field to contain the two rules, r0 and r1, defined
on Lines 6 and 19 as extensions of Rule. As described in Section 5,
the Behavioral Rule Extractor generates the tuples for the triggers,
conditions, and actions of each app’s rules from the behavioral
rule graph. In this case, the entry point node corresponding to the
switchOn method is translated into the r0_trg0 signature (Line 10)
while the action node of the BRG generates r0_act0 (Line 14). The
bundle of these specifications define all apps co-installed in the
system.

6.3 Safety/Security Properties

In Section 3, we present seven classes of multi-app coordination
threats that violate safety. In this section, we describe Alloy as-
sertions drawn from the logical definitions of those threat classes.
These assertions express the threats as safety properties that are ex-
pected to hold in the specifications extracted from each individual
IoT app. We also draw upon prior work [20, 26, 47] to define specific
unsafe or undesirable behaviors that may result from chain trig-
gering. Table 1 summarizes A set of safety and security properties
caused due to action-trigger coordination (T1), derived from the
literature [20, 26, 47] and formally verified by IotCom. In total, we
consider 36 safety and security properties, 7 generic coordination
threats introduced Section 3) and 29 properties listed in Table 11.

As a concrete example of the seven coordination threats, the
assertion T4 in Listing 5 corresponds to threat T4, presented in
Section 3. In this snippet, we define the predicate are_connected
(Lines 7-11) which encodes the relation specified in Def. 3.3 for
threat (T1). It relies on the two other predicates, match (Lines 2-3)
and same_channel (Lines 4-6), which correspond to the logical rela-
tions of the same names defined in Defs. 3.1 and 3.2 from Section 3.
The fact on Line 13 converts are_connected predicate to a field
connected on the Rule signature. Line 17 then defines the assertion,
which ensures that no rule is found in the transitive closure of it’s

1The complete specifications of these properties are available online at our project
site [35].

Table 1: A sample of safety and security properties caused

due to action-trigger coordination, derived from the litera-

ture [20, 26, 47] and formally verified by IotCom.

Property Description
P.1 DON’T turn on the AC WHEN mode is away
P.2 DON’T turn on the bedroom light WHEN door is closed
P.3 DON’T turn on dim light WHEN there is no motion
P.4 DON’T turn on living room light WHEN no one is home
P.5 DON’T turn on dim light WHEN no one is home
P.6 DON’T turn on light/heater WHEN light level changes
P.7 DON’T turn off heater WHEN temperature is low
P.8 DON’T unlock door WHEN mode is away
P.9 DON’T turn off living room light WHEN someone is home
P.10 DON’T turn off AC WHEN temperature is high
P.11 DON’T close valve WHEN smoke is detected
P.12 DON’T turn off living room light WHEN mode is away
P.13 DON’T turn off living room light WHEN mode is vacation
P.14 DO set mode to away WHEN no one is home
P.15 DO set mode to home WHEN someone is home
P.16 DON’T turn on heater WHEN mode is away
P.17 DON’T open door/window WHEN smoke is detected or mode is away
P.18 DON’T turn off security system WHEN no one is home
P.19 DON’T turn off the alarm WHEN smoke is detected
P.20 DON’T unlock the door WHEN light level changes
P.21 DON’T lock the door WHEN smoke is detected
P.22 DON’T open the door WHEN smoke is detected and heater is on
P.23 DON’T unlock the door WHEN smoke is detected and heater is on
P.24 DON’T open the door WHEN motion is detected and fan is on
P.25 DON’T unlock the door WHEN motion is detected and fan is on
P.26 DON’T open the door/window WHEN temperature changes
P.27 DON’T set mode WHEN temperature changes
P.28 DON’T set mode WHEN smoke is detected
P.29 DON’T set mode WHEN motion is detected and alarm is sounding

own connected rules, matching the definition of the threat class
from Def. 3.7.

As a concrete example of a safety properties caused due to action-
trigger coordination (T1), Listing 6 illustrates the Alloy assertion
for one of the fine-grained safety properties analyzed by IotCom
(P.8 in Table 1). This assertion states that no rule (r) should have an
action (a, Line 2) that results in a contact sensor (i.e., the door) being
opened (Lines 4-5) while the home mode is Away (Lines 10-11).

Listing 5 Example coordination threats (T1) and (T4) defined as
assertions in Alloy. The are_connected predicate and connect at-
tribute encode the logical definition of T1.
1 // example relations defining coordination (cf. Section 3)
2 pred match[a : Action, t : Trigger] {
3 (some t.devices & a.devices) and (a.attribute = t.attribute)}
4 pred same_channel[a : Action, t : Trigger] {
5 (some c : Channel | (a.devices in c.actuators) and
6 (some t.devices & y.sensors))}
7 pred are_connected[r,r' : Rule] {
8 (some a : r.actions, t : r'.triggers {
9 (match[a, t] and (a.value in t.value)) or same_channel[a, t]})
10 all a : r.actions, c : r'.conditions {
11 (match[a,c]) => (a.value in c.value) } }
12 // defines the 'connected' field so we can use transitive closure
13 fact { all r,r' : Rule | (r' in r.connected) <=> are_connected[r,r'] }
14 // action-trigger coordination
15 assert t1 { no Rule.connected }
16 // self coordination
17 assert t4 { no r : Rule | r in r.^connected }

The property check is formulated as a problem of finding a valid
trace that satisfies the specifications but violates the assertion. The
returned solution encodes the sequence of rule activations leading
to the violation. Given our running example (cf. Figure 1), the an-
alyzer automatically detects a violation scenario, a visualization
of which is shown in Figure 8, where the four rules form a cycle.
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Listing 6 Example Alloy assertion for the property DON’T unlock
door WHEN location mode is Away.
1 assert P8 {
2 no r : IoTApp.rules, a : r.actions {
3 // DON'T open the door...
4 a.attribute = CONTACT_SENSOR_CONTACT_ATTR
5 a.values = CONTACT_SENSOR_OPEN
6 // ... WHEN ...
7 ((some r' : r.*are_connected, t : r'.triggers {
8 (some r' : r.*are_connected, a' : r'.actions {
9 // ...mode is away
10 a'.attribute = MODE_ATTR
11 a'.values = MODE_AWAY })) }}

IotCom’s ability to detect violations in complex chains of inter-
action across both cyber and physical channels sets it apart from
other research in the area.

Figure 8: An automatically detected violation scenario for

our running example (cf. Fig. 1), where the four rules form

a cycle.

7 EVALUATION

This section presents our experimental evaluation of IotCom, ad-
dressing the following research questions:

• RQ1:What is the overall accuracy of IotCom in identifying
safety and security violations compared to other state-of-
the-art techniques?

• RQ2: How well does IotCom perform in practice? Can it
find safety and security violations in real-world apps?

• RQ3:What is the performance of IotCom’s analysis realized
atop static analysis and verification technologies?

Experimental subjects.Our experiments are all run on a multi-
platform dataset of 3732 smart home apps drawn from two sources:
(1) SmartThings apps: We gathered 404 SmartThings apps from the
SmartThings public repository [51]. These apps arewritten inGroovy
using the SmartThings Classic API platform. (2) IFTTT applets: We
used the IFTTT dataset provided by Bastys et al. [14]. This dataset
is in JSON format, with each object defining an IFTTT applet.

Safety and Security Properties. We use a set of 36 safety and
security properties for all of our experiments, each encoded as an
Alloy assertion as described in Section 6.3.

We performed the experiments on a MacBook Pro with a 2.2GHz
2-core Intel i7 processor and 16GB RAM, with the exception of the
real-world app analysis in Section 7.2. Those experiments were

Table 2: Safety violation detection performance compar-

ison between SOTERIA, IoTSAN and IotCom. True Pos-

itive (TP), False Positive (FP), and False Negative (FN)

are denoted by symbols 2�, 4, 2, respectively. (X#) repre-
sents the number # of detected instances for the corre-

sponding symbol X .

Test Cases SOTERIA* IoTSAN IotCom
Individual Apps

ID1BrightenMyPath 2� 2� 2�
ID2SecuritySystem 2� 2† 2�
ID3TurnItOnOffandOnEvery30Secs 2� 2 2�
ID4PowerAllowance 2�2 (22) (2�2)
ID5.1FakeAlarm 2 2 2
ID6TurnOnSwitchNotHome 2� 2� 2�
ID7ConflictTimeandPresenceSensor 2� 2‡ 2�
ID8LocationSubscribeFailure 2� 2� 2�
ID9DisableVacationMode 4 2 2�

Bundles of Apps

Application Bundle 1 2� 2� 2�
Application Bundle 2 2� 2† 2�
Application Bundle 3 2� 2† 2�
Application Bundle 4# 2 2‡ 2�
Application Bundle 5# 2 2 2�
Application Bundle 6# 2 2 2�
Precision 90% 100% 100%

Recall 66.7% 25% 93.8%

F-measure 76.6% 40% 96.8%

* results obtained from [21]
† IoTSAN did not generate the Promela model
‡ SPIN crashing
# Benchmarks involving physical channels related violations.

performed as distributed jobs on a local cluster of 2 CPU/16 core
Intel Xeon processors, with each job assigned up to 32GB RAM. We
used Alloy 4.2 for model checking for all experiments.

7.1 Results for RQ1 (Accuracy)

To evaluate the effectiveness and accuracy of IotCom and com-
pare it against other state-of-the-art techniques, we used the IoT-
MAL [36] suite of benchmarks. This dataset contains custom Smart-
Things Classic apps, for which all violations, either singly or in
groups, are known in advance—establishing a ground truth. As
IotCom identifies safety/security violations arising from interac-
tions of conflicting rules. Such rules can be defined within the scope
of one app or multiple apps. Therefore, to perform a fair comparison
with the state-of-the-art, we used benchmarks which incorporate
violations in both individual apps and bundles of apps.

We faced two challengeswhile evaluating the accuracy of IotCom
against the state-of-the-art: (1) Most analysis techniques—including
HOMEGUARD [24], SOTERIA [20], and iRULER [57]—are not avail-
able; IoTSAN [47] was the lone exception. We also were not able to
run IoTMON because only one component thereof is publicly ac-
cessible; its Groovy parser 2 is available, but the channels discovery
and NLP components are not. SOTERIA [20] was evaluated using
the IoTMAL dataset, but the tool is not publicly available. Therefore,
we rely on the results provided in the technical report [21]. (2) The

2https://github.com/nsslabcuus/IoTMon

279



Scalable Analysis of Interaction Threats in IoT Systems ISSTA ’20, July 18–22, 2020, Virtual Event, USA

violations in the IoTMAL dataset do not involve physical channels.
For evaluating this capability of the compared techniques, we de-
veloped three bundles, B4–B6, available online from the project
website [35].

Table 2 summarizes the results of our experiments for evaluating
the accuracy of IotCom in detecting safety violations compared to
the other state-of-the-art techniques. IotCom succeeds in identi-
fying all 9 known violations out of 10 in the individual apps, and
all violations in 6 bundles of apps. Furthermore, IotCom identifies
two violations in the test case ID4PowerAllowance–namely, (T6) re-
peated actions and (T5) conflicting actions. Different from SOTERIA
and IoTSAN, IotCom captures schedule APIs; thus, it can iden-
tify the conflicting actions violation that was not detected by the
other techniques. IotCom misses only a single violation, in test
case ID5.1FakeAlarm. This app generates a fake alarm using a smart
device API not often used in SmartThings apps. Neither SOTERIA
nor IoTSAN detected this violation.

IotCom also successfully identifies potential safety and security
violations arising from interactions between apps. Test bundles
B1− B3 exhibit such violations using only virtual channels of inter-
action. Bundles B4−B6 define violations due to physical interactions
between apps. For example, B4 contains an interaction violation
over the temperature channel that can result in the door being
unlocked while the user is not present, violating one of the specific
properties belonging to class (T1) chain triggering, while B5 and B6
contain unsafe behavior and infinite actuation loop, respectively.
SOTERIA and IoTSAN cannot detect such violations that involve
interactions over physical channel.

7.2 Results for RQ2 (Real-World Apps)

We further evaluated the capability of IotCom to identify violations
in real-world IoT apps.We randomly partitioned the subject systems
of 3732 real-world SmartThings and IFTTT apps into 622 non-
overlapping bundles, each comprising 6 apps, in keeping with the
sizes of the bundles used in prior work [33, 47]. This partitioning
simulates a realistic usage of IoT apps, where no restrictions prevent
a user from installing any combination of IoT apps. The resulting
bundles enabled us to perform several independent experiments.
We evaluated each bundle against (1) the seven classes of interaction
threats introduced in Section 3 and (2) a set of specific action-trigger
coordinations adopted from the literature [20, 26, 47] (listed in
Table 1), which we used to assess the capability of our approach to
accommodate and detect scenario-based violations. More details on
these properties, along with the specifications thereof are available
from the project’s website [35]. Overall, IotCom detected 2883
violations across the analyzed bundles of real-world IoT apps, with
analysis failing on one of the 622 bundles.

Figure 9 illustrates how the detected violations were distributed
among the seven classes of multi-app coordination, presented in
Section 3. Threats (T1) Action-trigger, (T4) Self coordination, and
(T6) Action-action (repeat) were the most prevalent. These threats
also appear in the motivating example from Section 2. The fact that
action-trigger (T1) and action-action (T5, T6) coordination classes
were the most frequently detected violations indicates that race
conditions among actions would be the most likely consequence of
multi-app coordination. Out of the 29 specific safety properties from

Figure 9: Distribution of the detected violations across seven

classes of multi-app coordination.

class (T1) Action-trigger, IotCom detects violations of 15 properties,
where 72.3% (450 out of 621) of the bundles violate at least one
property. In the following, we describe some of our findings.

7.2.1 Violation of (T 1) Action-trigger. Figure 10 depicts a chain of
virtual interactions that could lead to a door being left unlocked if
misconfigured. The SmartThings app LockItWhenILeave locks the
door when the user leaves the house, as detected by a presence
sensor. The lock action triggers the IFTTT applet Unlock Door,
which unlocks the door again. This violates one of our specific,
scenario-based, action-trigger coordination properties.

Figure 10: Example violation of T1: Cyber coordination be-

tween apps may leave the door unlocked when no one is

home. The first rule is guarded by a condition that the home

owner not be present.

This example also demonstrates IotCom’s unique ability to con-
sider logical conditions when evaluating interactions. The code
of LockItWhenILeave does not specify a particular value for the
presence sensor in the trigger for its rule; the entry method is in-
voked by any change to the presence sensor. Instead, the rule uses a
condition to ensure it is only invoked when the user is not present.
Other techniques, particularly those that require manual specifi-
cation of the initial system configuration for analysis, may miss
this violation by only considering the interaction when the user
is present. IotCom does not have such a limitation, and correctly
identifies the violation.

7.2.2 Violation of (T 4) Self Coordination via Physical Channel. The
chain of interactions shown in Figure 11 results in a loop that could
continually turn a switch on and off, similar to our example from
Section 2. This violation represents the self coordination threat
(cf. T4). The loop involves three SmartThings apps: RiseAndShine,
TurnItOnXMinutesIfLightIsOff, and LightsOnWhenIArriveInTheDark.
RiseAndShine contains a rule activating some switch when motion
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is detected. LightsOnWhenIArriveInTheDark controls a group of
switches based on the light levels reported by light sensors. TurnI-
tOnXMinutesIfLightIsOff switches a switch on for a user-specified
period, then turns it back off.

Figure 11: Example violation of T4: Lights continually turn

off and on. Dashed line represents coordination via the lu-
minance physical channel.

When RiseAndShine activates its switch, it could trigger LightsOn-
WhenIArriveInTheDark via the luminance physical channel, switch-
ing all connected lights off. This event triggers TurnItOnXMinutesI-
fLightIsOff, which may re-enable one of the lights. This changes the
luminance level, entering into an endless loop between LightsOn-
WhenIArriveInTheDark and TurnItOnXMinutesIfLightIsOff. IotCom
is uniquely capable of detecting this violation due to our support
of physical channels, scheduling APIs, and arbitrarily long chains
of interactions among apps.

Figure 12: Example violation of T5: Both “on” and “off” com-

mands sent to the same light due to the same event. Dashed

line represents coordination via the luminance physical

channel.

7.2.3 Violation of (T 5) Action-action (conflict) via Physical Channel.
The three apps shown in Figure 12 lead to potentially unpredictable
behavior due to competing commands to the same device, violating
T 5. They also interact in part over a physical channel that could not
be detected by approaches that only consider virtual interaction
between apps. The IFTTT applet GarageDoorNotification activates
a switch when the garage door is opened. This triggers the action
of SmartThings app TurnItOffAfter, which will turn off the light
after a predefined period. At the same time, GarageDoorNotifica-
tion may also have triggered the IFTTT applet LightWarsOn via
a light sensor, interacting over the physical luminance channel.
LightWarsOnwould attempt to turn the light back on, producing an
unpredictable result—a race condition—depending on which rule
was executed first.

We also manually evaluated the accuracy of IotCom on a sample
of the real-world bundles. We first randomly selected 30 of the 622
bundles of six applications (approx. 5%), and acquired the source
code for the apps in those bundles. We then manually examined the
Groovy source or IFTTT definition of each app in each bundle to
find violations of the seven classes of multi-app coordination pre-
sented in Section 3. The precision, recall, accuracy, and F-measure
derived from that random bundles are summarized in Table 3.

Table 3: Results obtained through a manual analysis of a

sample of approx. 5% (30) of the 622 real-world bundles.

Precision Recall Accuracy F-measure
47.86% 94.92% 65.71% 62.64%

Note that the low precision (47.86%) is in part due to a quirk of
IFTTT. IFTTT applets specify a “channel” to signify the device for
the trigger and the action of each rule, identified by an ID value
assigned by the platform and passed to the REST interface of the
service invoked by the applet. The service controlling Android
phones re-uses the same channel ID for multiple tasks; for example,
detecting a connection to a particular WiFi network and changing
the volume on the phone both correspond to the same channel ID.
Our reference implementation of IotCom interprets both of those
to be the same device, so a rule that, for example, muted the phone
when connecting to a particular network would be flagged as a
violation of both T1 and T4, even though the actual action taken
by the rule would not result in any coordination.

7.3 Results for RQ3 (Performance and Timing)

The last evaluation criteria are the performance benchmarks of
model extraction and formal analysis of IotCom on real-world
apps drawn from the SmartThings and IFTTT repositories.

Figure 13 presents the time taken by IotCom to extract rule
models from the Groovy SmartThings apps and IFTTT applets.
The scatter plot shows both the analysis time and the app size.
According to the results, our approach statically analyzes and infer
specifications for 98% of apps in less than one second.

We also measured the verification time required for detecting
safety/security violations and compared the analysis time of IotCom
against that required by IoTSAN [47]. We checked all 36 safety and
security properties against the app bundles. IoTSAN requires the
initial configuration for each app in the bundle as part of the model
to be analyzed. IotCom, however, exhaustively examines all con-
figurations that fall within the scope of the app model. To perform
a fair comparison between the two approaches, we generated ini-
tial configurations for 11 bundles of apps and converted them into
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Figure 13: Scatter plot representing analysis time for behav-

ioral rule extraction of IoT apps using IotCom.
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Figure 14: Comparing verification time by IotCom and IoT-

SAN to perform the same safety violation detection across 11

bundles of real-world apps (in minutes, displayed on a log10
scale). IotCom remarkably outperforms IoTSAN (by 92.1%

on average), without sacrificing the detection capability.

a format supported by IoTSAN. We then ran the two techniques
considering all valid initial configurations to avoid missing any
violation.

Figure 14 depicts the total time taken by each approach to ana-
lyze all relevant configurations (rather than a single, user-selected
configuration). Note that the analysis time is portrayed in a logarith-
mic scale. The experimental results show that the average analysis
time taken by IotCom and IoTSAN per bundle is 11.9minutes (rang-
ing from 0.05 to 104.78 minutes) and 216.9 minutes (ranging from
0.33 to 580.91 minutes), respectively. Overall, IotCom remarkably
outperforms IoTSAN in terms of the time required to analyze the
same bundles of apps by 92.1% on average and by as much as 99.5%.
The fact that IotCom is able to effectively perform safety/security
violation detection of real-world apps in just a few minutes (on
an ordinary laptop), confirming that the presented technology is
indeed feasible in practice for real-world usage.

7.4 Threats to Validity

The major external threat to the validity of our results involves the
study of a small set of benchmark programs developed and released
by prior research work [20], so that we can directly compare our
results with their previously reported results. To mitigate this threat
and help determine whether our results may generalize, we con-
ducted additional studies using 3732 real-world SmartThings and
IFTTT apps. This enabled us to assess the capabilities of IotCom
in real-world scenarios and capture violations that have not been
discovered by prior work. The primary threat to internal validity
involves potential errors in the implementations of IotCom and
the infrastructure used to run IoTSAN. To overcome this threat,
we extensively validated all of our tool components and scripts
over the same baseline and configurations that have been used by
prior work. The experimental data is also publicly available for
external inspection. The main threat to construct validity relates
to the fact that IotCom identifies all potential safety violations
that can occur but do not yet assess whether these violations can
happen in reality (e.g., when the heater is switched on, it is diffi-
cult to identify the time that will be taken until the temperature

reaches a certain value because other factors can affect this process
such as the size of the room).

8 DISCUSSION AND LIMITATIONS

For the sake of the feasibility demonstration of the presented ideas,
this paper provides substantial supporting evidence for analyzing
two of the most prominent IoT platforms, i.e., SmartThings home
automation platform and IFTTT trigger-action platform. It would
be interesting to see how IotCom fares when applied to safety and
security analysis of other IoT platforms, such as HealthSaaS [31],
Microsoft Flow [44] and Zapier [63]. Given that we developed
IotCom based on the general trigger-condition-action paradigm,
upon which these other IoT platforms are by and large relying, we
believe the current analysis technique can be naturally extended to
include such platforms. This forms a thrust of our future work.

Regarding the efforts required by end-users, IotCom uses static
analysis to automatically infer apps behavior, captured in BRG
models. It then automatically translates such behavioral models
into formal specifications in the Alloy language. The formal analysis
part is also conducted automatically. However, the specifications
for the base smart home Alloy model and the safety properties are
manually developed once and can be reused by others. Thus, it poses
a one-time cost to develop new properties to be analyzed. Each app
specification is automatically extracted, independent of the other
apps. So if a new app is added, the only thing the user needs to do is
to run IotCom’s behavioral rule extractor to automatically extract
the specification for the new app without changing the other apps.
Note that we also automatically identified device-specific attributes
by parsing the documentation of SmartThings to extract capabilities
and actions of devices.

Similar to any approach that relies on static analysis, IotCom is
subject to false positives. A fruitful avenue of future research is to
strengthen IotCom by incorporating dynamic analysis techniques.
In principle, it should be possible to leverage dynamic analysis
techniques to automatically confirm some of the violations, and
potentially enforce the required safety policies, further lessening
the manual analysis effort. Moreover, dynamic analysis can address
dynamic features in Groovy apps, as they support reflection and
can make HTTP requests at runtime [18].

9 RELATEDWORK

IoT safety and security has received a lot of attention recently [2,
4, 6, 16, 17, 23, 25, 30, 40, 42, 46, 48, 52–56, 58–62, 65]. Here, we
provide a discussion of the related efforts in light of our research.
As depicted in Table 4, we compare IotCom with the other exist-
ing approaches over various features provided by such analyzers.
ContexIoT [38] analyzes individual IoT apps to prevent sensitive
information leakage at run-time. However, it does not support the
analysis of risky interactions among multiple apps. Soteria [20] and
HOMEGUARD [24] are static analysis tools for detecting violations
in multiple IoT apps. However, these techniques do not take into
account physical channels, which can carry perilous interactions
among apps, such as violations reported in section 7.2 as detected
by IotCom. Moreover, none of these techniques can handle the
interactions between IoT apps and trigger-action platform services.
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Table 4: Comparing IotCom with the state-of-the-art IoT

analysis approaches.
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Physical channel
analysis ✗ ✗ ✗ ✗ ✓ ✓

Trigger-action
applet analysis ✗ ✗ ✗ ✓ ✗ ✓

Multi-app analysis ✗ ✓ ✓ ✓ ✓ ✓

Entire config.
space analysis ✗ ✗ ✗ ✗ ✗ ✓

Along the same line, IoTSAN [47] detects violations in bundles
of more than two apps. However, IoTSAN [47] first translates the
Groovy code of the SmartThings apps to Java, limiting its analysis to
just less than half of the devices supported by SmartThings [50]. In
contrast, IotCom directly analyzes Groovy code, supports large app
bundles and all SmartThings device types, and is completely auto-
mated. IoTSAN [47], similar to Soteria [20] and HOMEGUARD [24],
cannot detect violations mediated by physical channels.

IoTMON [26] is a purely static analysis technique that analyzes
rules based solely on triggers, neglecting the conditions for specific
actions. In contrast, IotCom validates the safety of app interactions
with more precision by effectively capturing logical conditions
influencing the execution of app rules through a precise control
flow analysis. Moreover, IoTMON, similar to many other techniques
we studied, does not support the analysis of interactions between
IoT apps and trigger-action platform services. To the best of our
knowledge, IotCom is the first IoT analysis technique for automated
analysis of the entire configuration space, broadening the scope of
the analysis beyond certain initial system configurations, required
to specify in other existing techniques manually.

Other researchers have evaluated the security of IFTTT ap-
plets [3, 14, 27, 33]. Fernandes et al. [27] studied OAuth security in
IFTTT, while Bastys et al. [14] used information flow analysis to
highlight possible privacy, integrity, and availability threats. How-
ever, none of the studies examined the aforementioned IoT safety
and security properties. In contrast, IotCom performs large scale
safety and security analysis, examining interactions between tens
of IFTTT smart home applets. IotCom also analyses bundles com-
prising both SmartThings Classic apps and IFTTT applets, demon-
strating its unique cross-platform analytical capability.

10 CONCLUSION

This paper presents a novel approach for compositional analysis
of IoT interaction threats. Our approach employs static analysis to
automatically derive models that reflect behavior of IoT apps and in-
teractions among them. The approach then leverages these models
to detect safety and security violations due to interaction of multi-
ple apps and their embodying physical environment that cannot
be detected with prior techniques that concentrate on interactions

within the cyber boundary. We formalized the principal elements
of our analysis in an analyzable specification language based on re-
lational logic, and developed a prototype implementation, IotCom,
on top of our formal analysis framework. The experimental results
of evaluating IotCom against prominent IoT safety and security
properties, in the context of thousands of real-world apps, corrob-
orates its ability to effectively detect violations triggered through
both virtual and physical interactions.
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