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Abstract
As software is rapidly being embedded into major parts of our soci-
ety, ranging from medical devices and self-driving vehicles to critical
infrastructures, potential risks of software failures are also growing
at an alarming pace. Existing certification processes, however, suffer
from a lack of rigor and automation, and often incur a significant
amount of manual effort on both system developers and certifiers.
To address this issue, we propose a substantially automated, cost-
effective certification method, backed with a novel analysis synthesis
technique to automatically generate application-specific analysis
tools that are custom-tailored to producing the necessary evidence.
The outcome of this research promises to not only assist software
developers in producing safer and more reliable software, but also
benefit industrial certification agencies by significantly reducing the
manual effort of certifiers. Early validation flows from experience
applying this approach in constructing an assurance case for a surgi-
cal robot system in collaboration with the Center for the Advanced
Surgical Technology.
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1 Introduction
As software is increasingly being used to control major critical infras-
tructures in our society, there is an urgent need to develop effective
methods for certifying that a system provides an acceptable level
of safety and reliability. In traditional safety-critical domains, such
as automotive, medical devices, and avionics, a set of certification
standards and regulations are in place to ensure that a system meets
a certain level of safety and reliability before its release. Many of
these standards are process-oriented, where the acceptability of a
system is determined by the use of particular development or test-
ing processes, rather than the properties of the system itself. For
instance, a standard from the U.S. Food and Drug Administration
(FDA) recommends the use of code coverage analysis and testing as
evidence that an adequate amount of validation has been applied to
the system [18].

There is little concrete evidence, however, that these standards
have been or will continue to be effective for systems where software
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plays a dominant role. While the use of certain validation techniques
is likely to improve the quality of software, its actual impact on qual-
ity is rather implicit, and does not directly demonstrate whether the
system satisfies its critical requirements [11]. For instance, despite
mature certification procedures regulated by the FDA, thousands of
medical devices are recalled each year in the US, many of them due
to software quality issues [17].

A different approach, called product-based or case-based cer-
tification, has been gaining traction among researchers and certi-
fiers. [12]. In this approach, the certification of a system involves the
construction of an assurance case—a documentation of an explicit
argument that the system satisfies its desired requirements. An assur-
ance case contains one or more claims about critical requirements
of a system and a set of evidence demonstrating that the system
indeed satisfies those claims. For instance, a case for a surgical robot
system may claim that a robotic arm never moves out of its intended
range of motion (possibly causing harm to a patient or a physician in
the operating room). A claim itself is decomposed into a set of sub-
claims, each of which states an assumption about the environment
(e.g., “The patient remains secured on a table”) or a property of code
(e.g., “The robot control module correctly processes a request for an
out-of-bound motion”). Various forms of evidence, ranging from the
results of testing, static analyses, and formal verification to expert
judgment, are provided to justify these sub-claims.

While state-of-the-art approaches have achieved noteworthy suc-
cess in many domains, they suffer from two key shortcomings: (1)
the informal nature of an argument and its susceptibility to logical
flaws and (2) the lack of readily available analyses for generating
sufficient evidence to support the argument. Indeed, assurance cases
are, by and large, specified informally and lack a precise semantics.
It is thus difficult for a certifier to rigorously validate an argument
for potential flaws (e.g., a missing assumption or a logical incon-
sistency among subclaims). In addition, the link between a claim
and its evidence is given a similarly informal treatment, and it is
often up to the subjective judgment of the certifier to determine
whether the evidence is sufficient to justify the claim. This lack of
rigor also makes it challenging for the developer to determine how
much evidence needs to be produced in support of a claim. To make
the matter worse, existing certification methods are intended for one-
time certification of a whole system, and not designed to support
frequent, incremental evolution of software [13]. Re-certifying the
system involves rebuilding the entire assurance case and generating
the necessary evidence again; hence re-certifying the system after
each software update would be economically prohibitive.

To address this state of affairs, in this paper, we set out to explore
novel connections between system-level and code-level reasoning
to provide a substantially automated, cost-effective mechanism for
software certification: Specification and verification techniques are
used to decompose a system-level property into component proper-
ties, which are, in turn, used to enable scalable, application-specific
program analyses to generate evidence that the system as a whole
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Figure 1: Approach overview. Boxes represent process modules,
and ovals represent documents or artifacts. Grey indicates a
module created in this work; yellow indicates an output from
these modules.

satisfies its property. In particular, to eliminate the need to build
ad-hoc analyses for evidence generation, we will leverage a novel
analysis synthesis technique to automatically generate analysis tools
that are custom-tailored to producing the necessary evidence. In
comparison to existing methods, the proposed approach will offer
(1) a rigorous guarantee that the resulting assurance case is free of
logical flaws and (2) reduced costs for both developers and certifiers
by replacing error-prone reasoning tasks with automated analysis.

The rest of this paper introduces the working scheme of our
approach, reports and discusses our experience on applying the
approach in constructing an assurance case for a surgical robot
system in collaboration with the Center for the Advanced Surgical
Technologies (CAST) [1], surveys related work, and concludes.

2 Approach
The proposed approach, shown in Figure 1, consists of two major
components: (1) Property Synthesizer, which, given an assurance
requirement and a system architecture, infers properties for indi-
vidual components such that their composition forms a logically
valid argument for a claim that the system satisfies a critical require-
ment; and (2) Analysis Synthesizer, which produces customized,
application-specific program analyses to check that each system
component meets its allotted properties.

2.1 Property Synthesizer
The Property Synthesizer accepts an assurance requirement that a
certifier wishes to audit, and a system architecture that describes its
components and types of data that are communicated among them.
Then, the Synthesizer generates a set of properties that the individual
components must satisfy in order to establish the given requirement.
The composition of these properties forms an argument for a claim
that the system satisfies the requirement. To be more precise, the
Synthesizer performs the following task:

Given a system-level requirement R and a set of n
components C1, ...,Cn, generate properties P1, ...,Pn
such that if Ci |= Pi for i ≤ n, then C1 ⊕ ...⊕Cn |= R.

where Ci ⊕C j is a composition of components Ci and C j for i, j ≤ n.
In particular, it generates weakest properties that are sufficient to

establish R; in other words, for any i ≤ n, if Pi is replaced with a
weaker property P′

i such that Ci |= P′
i but Ci ̸|= Pi, then C1 ⊕ ...⊕Cn

may no longer satisfy R. This, in turn, enables components that are
not responsible for establishing R to be removed from the analysis
phase, reducing the developer’s burden of producing evidence.

1 / / RobotApp : Main c o n t r o l
2 component RobotApp {
3 / / Given a t a r g e t coord inate , invoke a so l ve r to conver t i n t o
4 / / angle and r e t u r n feedback to the user
5 event touch Input ( coord : Point3D ) : Feedback { c a l l Kinematics . so lve ; }
6 / / Conf igure a new feedback value to be re turned to the user
7 event genFeedback ( feedback : Force ) { . . . }
8 }
9 / / Kinemat ics : Converts a coord ina tes to an angle

10 component Kinematics {
11 / / Convert a 3D coord ina te i n t o an angle needed
12 / / to move an arm to the t a r g e t
13 event solve ( coord : Point3D ) : Angle { c a l l RobotApp . genFeedback ; }
14 }
15 / / RobotControl : Sends robot ac tua to r commands
16 component RobotControl {
17 / / Generate an ac tua to r command to move an arm to the s e t p o i n t angle
18 event moveArm ( s e t p o i n t : Angle ) { c a l l RobotComm . sendCmd ; } ;
19 }
20 / / Safety c la ims
21 claim MaxAngleSafety { / / I f the touch inpu t exceeds the bound ,

/ / the angle o f the robot arm i s set to i t s maximum range .
22 RobotApp . touchInput ( coord ) = _ and coord > MAX_BOUND and
23 RobotComm . sendCmd(MOVE, angle ) then angle = MAX_ANGLE }
24 claim OutOfBoundFeedbackProduced { / / I f the touch inpu t
25 / / exceeds the bound , non−zero feedback i s provided back to the user .
26 RobotApp . touchInput ( coord ) = feedback and
27 coord > MAX_BOUND then feedback > 0 }
28 / / Real−world types
29 type Point3D { x , y , z : i n t }
30 type Force { newton : double }
31 type Angle { rad ian : double }
32 type Command { va l : { MOVE, PING , JOG } }

/ / Enumerated type
33 const Point3D MAX_BOUND, Angle MAX_ANGLE; / / User−def ined constants

Figure 2: Snippet of the Architecture Specification for the Surgi-
cal Robot System. The keywords and and then represent logical
conjunction and implication.

To make the idea concrete, consider Figure 2 that shows a sample
architecture specification for the surgical robot system, describing
three components: RobotApp, Kinematics, and RobotControl. Each
component defines a set of input events and may generate an output
event by invoking events in other components. For instance, event
solve in the Kinematics component takes a 3D coordinate as an input
and returns an angle of the movement of a robotic arm necessary to
reach the target coordinate (line 13).

Each specification also defines one or more claims that must be
established on the specified system. For instance, Figure 2 represents
two separate claims that state desired safety requirements of the
robot (lines 20-27). The second claim states that to prevent the robot
arm from moving out of a safe range, the system must produce
feedback to the surgeon as a warning.

Each type declaration (e.g., Angle) is associated with its code-
level representation (double). To make explicit the correspondence
between specification- and physical entities, we adopt the notion of
real-world types [19]. A custom analyzer generated by our Analysis
Synthesizer then leverages the mapping between each type and its
representation as an abstraction function to compute an abstraction
of program variables and reason about properties expressed over the
real-world types.

To synthesize properties of components, an input architecture
specification (along with real-world types) will be translated into a
constraint-based representation that is amenable to automated anal-
ysis (in particular, a first-order relational logic in Alloy [10]). A
technique called contract decomposition [9] is then applied to auto-
matically derive component properties that are sufficient to ensure
system-level claims. To extract minimal properties, the synthesizer
leverages the capability of a modern verification engine to produce a
minimal unsatisfiable core (MUC), which corresponds to a minimal
subset of constraints that are needed to establish a claim.
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1 RobotApp . property P1 { / / Given a touch input , RobotApp moves the
2 / / r o b o t i c arm according to the output from the Kinemat ics so l ve r .
3 ( recv touch Input ( c ) ) and ( Kinemat ics . so lve ( c ) returns = s e t p o i n t )
4 then ( c a l l RobotControl . moveArm( angle ) and angle = s e t p o i n t ) }
5 / / I f the i npu t coord ina te i s out o f bound , the Kinemat ics so l ve r
6 / / r e tu rns max . angle range .
7 Kinematics . property P2 { ( recv solve ( c ) and c > MAX_BOUND)
8 then solve . re t = MAX_ANGLE }
9 / / RobotControl issues a c o r r e c t MOVE command given an inpu t angle s e t p o i n t .

10 RobotControl . property P3 { recv moveArm( s e t p o i n t )
11 then ( c a l l RobotComm . sendCmd(MOVE, angle ) and angle = s e t p o i n t ) }
12 / / I f RobotApp , Kinematics , and RobotControl s a t i s f y t h e i r p roper t i es ,
13 / / then maximum angle sa fe t y i s es tab l i shed .
14 argument A1 { (P1 and P2) and P3 then MaxAngleSafety }
15
16 / / Given a touch input , RobotApp prov ides any feedback from
17 / / the Kinemat ics so l ve r back to the user .
18 RobotApp . property P4 { recv touch Input ( c ) and recv genFeedback ( f )
19 then c a l l Kinemat ics . so lve ( c ) and touch Input . re t = f }
20 / / I f the i npu t coord ina te i s out o f bound , the so l ve r
21 / / generates a non−zero feedback .
22 Kinematics . property P5 { ( recv solve ( c ) and c > MAX_BOUND)
23 then ( c a l l RobotApp . genFeedback ( feedback ) and feedback > 0) }
24 argument A2 { P4 and P5 then OutOfBoundFeedbackProduced }

Figure 3: Component properties generated by the Property Syn-
thesizer from the surgical robot specification. The expression
(recv e) states that a component has received an input event e.

When applied to the specification in Figure 2, the synthesizer
produces the set of properties shown in Figure 3. For example, con-
sider the claim OutOfBoundFeedbackProduced from Figure 2 (lines
24-27). This property does not rely on the behavior of RobotControl,
since it only concerns the generation of feedback by Kinematics back
to the user through RobotApp (P4 and P5 in Figure 3). However, the
decomposition procedure initially produces an output that assigns
some additional property P6 to RobotControl such that (P4∧P5∧P6)
implies the claim. Given these properties, our core extraction algo-
rithm then identifies P6 as an over-constraint and returns a weaker
set of properties (P4∧P5) as the final output.
2.2 Analysis Synthesizer
The Analysis Synthesizer takes properties generated in the prior
step and synthesizes application-specific program analyses that are
specifically intended to check that each component satisfies its as-
signed property. Once generated, the analyses are performed on the
respective components and their results, if positive, are presented to
the certifier as the evidence along with the assurance case.

Static analysis techniques have made tremendous progress in
the past decade. However, applying these techniques to real-world
safety-critical systems remains challenging, in part because despite
significant advances in detecting general defects common across a
variety of systems (e.g., buffer overflows), existing techniques fall
short of detecting the violations of system-specific rules (e.g., “the
computed angle of the robot arm must never exceed a safe thresh-
old”). Using general-purpose analyzers to check domain-specific
properties of a system often requires substantial expertise and man-
ual effort, in specifying these properties, devising sound abstractions
to enable scalable analysis, and manually discharging assumptions
(e.g., expected behavior of a library) that a general-purpose analysis
may not be designed to handle [8].

To address these challenges, we propose the automated synthesis
of domain-specific checkers so that each system of interest can have
analysis engines tailored to its specific characteristics and the proper-
ties to be examined, thereby significantly relieving developers from
the cumbersome and error-prone task of developing customized
checkers. We leverage well-understood classes of static analysis
problems, such as type qualifiers [6], to facilitate automated deriva-
tion of customized static analyzers that are capable of effectively

checking system-specific properties. More specifically, we build on
prior research that have established the generic characterizations and
realizations of type qualifiers to infer the custom instantiations of
these frameworks [3–5]. Unlike all prior techniques that demand
a type system developer to manually specify new type qualifiers
and the semantics that they entail, and then to create the checker
that enforces the semantics, our approach automatically synthesizes
custom checkers for the properties that the Property Synthesizer has
inferred for the individual components in the system.

To enable the automated synthesis of custom checkers, we utilize a
library of analysis procedures and a library of checker templates. The
scope of these libraries determine the range of rule violations that can
be scrutinized by the specialized checkers. The generated checkers
are then incorporated as extensions to a pluggable type system [5],
which in turn applies them to the code base and generates alerts when
violations are detected. The benefit of the library-based approach
is the opportunity for amortizing the overall cost of the system-
specific analysis for both certifiers and developers: Once constructed
by domain experts, these fragments of analysis procedures can be
reused in automated synthesis customized checkers for multiple
scenarios, without program analysis or verification expertise.

Note that while our goal is to substantially automate the process
of constructing an assurance case, there are aspects of construction
that may not be amenable to automation. For instance, there are
certain types of evidence that cannot be generated using an auto-
mated analysis, and instead require expert judgment—for instance,
an assumption about a human actor (e.g., “A patient remains secured
and still on the operating table”) or a property of a non-software
component (e.g., “The mechanical arm does not malfunction in an
erratic manner”). Therefore, domain experts (e.g, a mechanical en-
gineer) will continue to play an essential role in any certification
process, including our proposed methodology. A systematic method
of integrating different types of evidence is an important research
problem on its own, but is beyond the scope of this work.

3 Evaluation
In this section, we show that our ideas can be reduced to practice. We
have developed a prototype to synthesize trustworthy, yet customized
and domain-specific, static-analysis environments. Our prototype
is realized on top of the Checker framework [5], a state-of-the-art
static program analysis tool with default checkers that can detect
common issues in Java programs, such as possible buffer overflow
vulnerabilities, null-pointer dereferences, and memory leaks. There
are two main reasons that motivate our choice of the Checker frame-
work as a platform for realizing the initial prototype. First, it has
an active community of developers and a discussion group, and is
widely used in several research projects. Second, it is open-source
and publicly available. Note that our synthesis approach is general
and can work with other pluggable type systems as well.

We applied our prototype to the code base of a control software
for a family of surgical robots [14], developed at the Center for
the Advanced Surgical Technologies Laboratory (CAST) [1]. As a
concrete example, Figure 4 shows a simplified version of an assur-
ance case for the surgical robot system. The claim to be established,
using this case, states that the system never permits a robotic arm
to move out of its safe range (cf. Fig. 2, lines 20-23). This claim is
contingent on three sub-claims about the properties of three software
components in the system (RobotApp, Kinematics, and RobotCon-
trol). The inferred rules are transformed into customized checkers
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Figure 4: An example assurance case for the surgical robot sys-
tem.

for the checker framework. The analysis engine uses these synthe-
sized checkers to find rule violations in the code base, which are
then examined by developers.

Among others, Property P2 (cf. Fig. 3) states that given an out of
bounds coordinate, the Kinematics solver returns a max angle value.
Verifying this property requires intra-procedural data flow analysis.
This property is realized by setting the arm angle values to max
values in specific conditions relating to the type of joint. The checker
first needs to verify whether it is possible to reach the part of the
program that sets the arm angle values to the maximum. It then needs
to ensure that the value of the arm angle variable corresponding to
the angle type is updated because in case the program goes into the
specific branch but does not update the value, it may cause a serious
problem. The results indicate that the customized analyzers can be
synthesized for the properties inferred for each system component.

4 Related Work
Assurance cases. A lack of rigor and automation has been recog-
nized as a significant barrier to a wider adoption of assurance cases
for software certification. and there are a number of on-going and
prior work on formal tool support for assurance case development.
Among these, Pernsteiner et al. developed a formal assurance case to
establish safety requirements of a radiotherapy system and generated
a set of evidence to support the case using a combination of veri-
fication and analysis tools [16]. Similarly, Near et al. developed a
formal assurance case for a proton therapy system and build custom-
tailored code analysis tools to check the code-level properties in the
assurance case [15]. In both cases, the construction of an assurance
case and the selection of appropriate tools for evidence generation
were performed manually; our goal is to automate these tasks.

Specification inference. A body of prior work exist on inferring
properties or assumptions on parts of a system in order to establish
an end-to-end specification. Most of these efforts, however, aim
at synthesizing operational specifications in the style of state ma-
chines (e.g., [7]) or temporal logic ([2]). In comparison, our goal
is to generate relational specifications of input-output component
behaviors.

Extensible type system. There is an active area of research on
developing techniques that enable multiple extensible type systems,
including user-defined type systems, to be applied in a single lan-
guage. Among others, the Checker Framework [5] promotes adding
pluggable type systems to the Java programming language, and pro-
vides a framework on top of which developers can build custom
analyzers. Building on these approaches, we propose a novel analy-
sis synthesis framework that facilitates an automated realization of

an application-specific custom analysis by providing a description of
the corresponding properties to be analyzed, which in turn promises
to considerably decrease the analysis cost while relieving developers
from having to develop customized checkers.

5 Conclusion
This paper contributes a cost-effective, rigorous approach for soft-
ware certification by automating many of the error-prone tasks that
are manually performed by system developers and certifiers today.
It offers a synergy between system-level and code-level reasoning,
where specification and verification techniques are used to decom-
pose a system-level property into component properties, which are
used to facilitate synthesis of application-specific program analyses,
custom-tailored to producing the necessary evidence. Early valida-
tion through experience of applying the approach to constructing an
assurance case for a surgical robot system supports the feasibility
of the ideas for software certification, while eliminating the need
to build ad-hoc analyses for evidence generation. As next steps, we
plan to (1) improve the generality of the Analysis Synthesizer to
cover a wider range of properties, (2) explore approaches to make the
Property Synthesizer and generated custom analyzers more scalable,
and (3) demonstrate our techniques on other real-world case studies.
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