
An Evolutionary Approach for Analyzing Alloy Specifications
Jianghao Wang

Department of Comp. Sci. & Eng.
University of Nebraska, Lincoln, USA

jianghao@huskers.unl.edu

Hamid Bagheri
Department of Comp. Sci. & Eng.

University of Nebraska, Lincoln, USA
bagheri@unl.edu

Myra B. Cohen
Department of Comp. Sci. & Eng.

University of Nebraska, Lincoln, USA
myra@cse.unl.edu

ABSTRACT

Formal methods use mathematical notations and logical reasoning
to precisely define a program’s specifications, fromwhich we can in-
stantiate valid instances of a system. With these techniques we can
perform a multitude of tasks to check system dependability. Despite
the existence of many automated tools including ones considered
lightweight, they still lack a strong adoption in practice. At the crux
of this problem, is scalability and applicability to large real world
applications. In this paper we show how to relax the completeness
guarantee without much loss, since soundness is maintained. We
have extended a popular lightweight analysis, Alloy, with a genetic
algorithm. Our new tool, EvoAlloy, works at the level of finite
relations generated by Kodkod and evolves the chromosomes based
on the failed constraints. In a feasibility study we demonstrate that
we can find solutions to a set of specifications beyond the scope
where traditional Alloy fails. While small specifications take longer
with EvoAlloy, the scalability means we can handle larger spec-
ifications. Our future vision is that when specifications are small
we can maintain both soundness and completeness, but when this
fails, EvoAlloy can switch to its genetic algorithm.

CCS CONCEPTS

• Software and its engineering→ Formal methods; Software

verification;

KEYWORDS

Formal analysis, Evolutionary algorithms, Relational logic.

ACM Reference Format:

Jianghao Wang, Hamid Bagheri, and Myra B. Cohen. 2018. An Evolutionary
Approach for Analyzing Alloy Specifications. In Proceedings of the 2018 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE
’18), September 3–7, 2018, Montpellier, France. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3238147.3240468

1 INTRODUCTION

Software has embedded itself in our daily lives, and is now essen-
tial for communication, healthcare, transportation, and even home
comfort. Yet at the same time, software continues to fail, and ma-
licious users exploit weaknesses of systems [1]. Fifteen years ago

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240468

the National Institutes of Standards reported that a poor software
quality infrastructure was costing the US upwards of $59 Billion
annually [2], and an equally ominous report from Tricentis in 2017
estimated the annual financial loss due to software failures world-
wide at $1.7 Trillion [3]. While many efforts have been made to
improve our software engineering techniques, and to develop better
software validation methods, these problems still persist. Recent
highly publicized bugs like the Toyota acceleration problem and
the heartbleed bug as well as the explosion of Android exploits [4]
show that we still lack sufficient techniques to verify and validate
our software.

One class of techniques that have been used to tackle depend-
ability are those which fall into the category of formal methods,
with their strength residing in the mathematical concepts leveraged
to prove the correctness of dependability properties. Most notably,
lightweight formal methods, such as those based on bounded veri-
fication, have recently received a lot of attention due to their auto-
mated, yet formally precise analysis capabilities, which reduce the
burden on traditional formal verification techniques. This spans a
wide range of software engineering and security domains, including
software design [5, 6], code analysis [7], security analysis [4], test
case generation [8] and tradeoff synthesis and analysis [9, 10]. Such
techniques often transform the system specification into a satisfia-
bility problem, and delegate the task of solving it to a constraint
solver. The analysis is then conducted by exhaustive enumeration
over the bounded scope of specification instances.

Despite significant advances, we still find ourselves lacking
strong adoption of formal techniques. At the crux of this prob-
lem, is scalability and applicability for large real-world applications.
Bounded verification techniques are at once both sound and com-
plete for the given analysis bound, but the completeness means that
on large systems they either fail or need to be reduced in scope. An
alternative approach to solving problems that grow exponentially
has been to use search-based techniques or more specifically evo-
lutionary algorithms [11]. These algorithms heuristically explore
large complex solutions spaces and converge on single solution,
rendering them sound but incomplete.

In this paper, we present a novel tradeoff that provides a new
road towards scalability. Our vision is that when the search space
of specifications are small, we can use the full power of a constraint
solver and maintain both soundness and completeness. When this
fails, we switch on evolutionary algorithms [12] promising to scale
to real-world problems without sacrificing soundness.

To assess the feasibility of the approach, we develop EvoAlloy,
an extension to the existing lightweight formal analysis tool, Al-
loy [13]. EvoAlloy delegates the task of finding satisfying models
to an analysis engine using a genetic algorithm (GA), one of the
most popular types of evolutionary algorithms. They have been
shown to be useful for pinpointing solutions in a large search space.

820

https://doi.org/10.1145/3238147.3240468
https://doi.org/10.1145/3238147.3240468

ASE ’18, September 3–7, 2018, Montpellier, France Jianghao Wang, Hamid Bagheri, and Myra B. Cohen

1 abs t rac t s ig FSObjec t { }
2 s ig Dir extends FSObjec t {
3 c on t en t s : se t FSObjec t
4 }
5 s ig F i l e extends FSObjec t { }
6 one s ig Root extends Dir { }
7
8 f a c t Hie ra r chy {
9 // Root has no parent
10 no c on t en t s . Root
11 // All FSObjects are reachable from Root
12 FSObjec t in Root . ∗ c on t en t s
13 // Each FSObject has at most one parent
14 a l l ob j : FSObjec t | lone c on t en t s . ob j
15 }
16 pred model {
17 some F i l e
18 }
19 run model f o r 2 F i l e , 2 Di r

Listing 1: An Alloy specification example describing a

simple model of file system.

We have chosen the Alloy platform as an exemplar for our study
since it is a widely-used, open-source tool for modeling and analysis
of software systems, has an active development community, and
suffers from exactly the scalability problems addressed by this work.
We make research artifacts developed in this study and experimen-
tal data available to the research and education community [14].
The preliminary results corroborate the feasibility of the approach,
and denote that this direction of research is promising.

The remainder of this paper is organized as follows. Section 2
uses an illustrative example to describe the intuition behind our
technique as well as the necessary background. Section 3 overviews
our approach towards achieving a more scalable analysis technique.
Section 4 presents the preliminary results obtained in our experi-
ments. Sections 5 and 6 outline related research and conclude.

2 ILLUSTRATIVE EXAMPLE

This section motivates our research and illustrates the EvoAl-
loy technique using a simple example. Section 3 presents a more
detailed discussion of our approach.

Consider the Alloy specification for a simplified model of a file
system, shown in Listing 1. Essential data types are specified in
Alloy by their type signatures (sig), and the relationships between
them are captured by the declarations of fields within the definition
of each signature. The running example defines 4 signatures (lines
1–6): File system objects, FSObjects, are partitioned into Dir and
File types, with Root defined as a singleton extending Dir. Each Dir
may have a set of contents of type FSObject.

Facts (fact) are formulas that take no arguments, and define con-
straints that every instance of a specification must satisfy, thus
confining the instance space of the specification. The formulas can
be further structured using predicates (pred) and functions (fun),
which are parameterized formulas that can be invoked. The Hierar-
chy fact paragraph (lines 8–15) states that the Root directory has
no parent, and it cannot be a subdirectory for any other directory;
that each single file and directory should be reachable from the
Root directory; and that each file and directory belongs to at most
one parent directory.

Analysis of specifications written in Alloy is completely auto-
mated, but bounded up to user-specified scopes on the size of type
signatures. In particular, to make the state space finite, certain
scopes need to be specified that limit the number of instances of
each type signature. The run specification (lines 16–19) then asks
for instances that contain at least one File, and specifies a scope
that bounds the search for specification instances with at most two
elements for both File and Dir top-level signatures.

In order to analyze such a relational specification bounded by
the specified scope, both Alloy Analyzer and EvoAlloy then trans-
late it into a corresponding finite relational model in a language
called Kodkod [15]. Listing 2 partially shows a Kodkod translation
of Listing 1. A model in Kodkod’s relational logic is a triple consist-
ing of a universe of elements (also called atoms), a set of relation
declarations including their lower and upper bounds specified over
the model’s universe, and a relational formula, where the declared
relations appear as free variables [15].

The first line of Listing 2 declares a universe of four uninterpreted
atoms. In this section, we assume an interpretation of atoms, where
the first two (F1 and F2) represent File elements, the next one (R1)
represents a Root element, and the last one (D1) represents aDir ele-
ment. Note that the abbreviated atom names are chosen for readabil-
ity, and do not indicate type, as in Kodkod all relations are untyped.

Lines 3–6 state relational variables along with their lower and
upper bounds and their size. Similar to Alloy, formulas in Kodkod
are constraints defined over relational variables. Kodkod further
allows specifying a scope over each relational variable from both
above and below by two relational constants. In principle, a rela-
tional constant is a pre-specified set of tuples drawn from a uni-
verse of atoms. Consider the Root declaration (line 3), its upper
and lower bounds both contain just one atom, R1, as it is defined
as a singleton set in Listing 1. The upper bound for the variable
contents ⊆ Dir × FSObject (line 6) is a product of the upper bound
set for its corresponding domain and co-domain relations, taking ev-
ery combination of an element from both and concatenating them.
Formula constraints are in the form of a conjunction of several
sub-formulas, i.e., F = ∧ subformulas. As an example, the formula
at the last line of Listing 2 represents this form for the constraints
specifications in our running example.

The Kodkod’s model finder then leverages off-the-shelf SAT-
solvers to explore within such upper and lower bounds defined for
each relational variable to find instances of a formula, which are
bindings of the formula’s relational variables to relational constants
in a way that makes the formula true. EvoAlloy, however, delegates
the task of model finding currently performed by computationally-
expensive constraint solvers to an analysis engine based on genetic
algorithms.

Figure 1a delineates a genetic representation of the problem,
where a candidate solution is represented as a chromosome, a.k.a. an
individual, consisting of a vector of genes. Evolutionary algorithms
are meta-heuristic optimization techniques that mimic the process
of natural genetic variation and selection into a computational
problem [12]. Each chromosome contains a gene for each relational
variable within the specification under analysis. Each gene has a
domain of values called alleles. Here, alleles are defined as a set of tu-
ples drawn from a universe of uninterpreted atoms within the upper
and lower bounds defined for each relation (Listing 2, lines 3–6).

821

An Evolutionary Approach for Analyzing Alloy Specifications ASE ’18, September 3–7, 2018, Montpellier, France

1 { F1 , F2 , R1 , D1 }
2
3 Root : (1 , 1) : : { { R1 } , { R1 } }
4 F i l e : (0 , 2) : : { { } , { { F1 } , { F2 } } }
5 Dir : (0 , 1) : : { { } , { { D1 } } }
6 c on t en t s : (0 , 8) : : { { } , { { R1 , R1 } , { R1 , D1 } , { R1 , F1 } , { R1 , F2 } , { D1 , R1 } , { D1 , D1 } , { D1 , F1 } , { D1 , F2 } } }
7
8 (a l l o : Root + Di r + F i l e | lone (D i r . c on t en t s . o)) && . . .

Listing 2: Kodkod representation of the Alloy module of Listing 1.

Figure 1: EvoAlloy’s (a) representation of a chromosome,

(b) two produced chromosomes for the specification of List-

ing 1, (c) crossover step for creating a new chromosome, and

(d) mutation step.

A genetic algorithm starts with an initial population of randomly
created chromosomes. Figure 1b demonstrates two sample chromo-
somes produced for our running example. Each chromosome in this
case has 4 genes that correspond to the specification’s relations, i.e.,
Root, File, Dir, and contents, from left to right, respectively. A solu-
tion is found by iteratively evolving population of chromosomes.
Evolutionary search entails two types of operators, i.e., crossover
and mutation. Crossover among two selected chromosome parents
is carried out to breed new chromosomes. A crossover is often
conducted by blending a subset of each parent’s genetic makeup.
Figure 1c represents EvoAlloy’s crossover step for creating off-
spring.

In EvoAlloy the recombination of the two parents create two
offspring. For the sake of simplicity and as it suffices to make the
idea concrete, here we just demonstrate one offspring. The diagram
shows a single-point crossover, i.e., a random point within the
middle range of a chromosome; EvoAlloy yet effectively is capable
of exploiting different types of crossover operators. Finally, some
genes in the population will bemutated using a given mutation rate.
Figure 1d illustrates applying a mutation operator to a chromosome
that gives rise to a randomized change in the chromosome. In fact,
mutation randomly selects a percentage of genes in the population
and modifies each by assigning a different tuple from within that
gene’s domain.

Figure 2: An Alloy model

instance derived automat-

ically from the chromo-

some shown in Fig. 1d.

The evolutionary search us-
ing genetic operators is carried
on up to an identification of
a satisfactory solution or an
end criterion is met. EvoAl-
loy relies in part on the Kodkod
analysis engine to get the rela-
tions that fail within each chro-
mosome along with the num-
ber of failed subformulas to
drive the search towards those
which have no violations. Fig-
ure 2 illustrates a satisfying
model instance produced by
EvoAlloy from the chromo-
some shown in Fig. 1d.

The above example provides an intuitive description of model
finding using both Alloy and EvoAlloy. However, in practice con-
straint solving, despite significant advances, continues to be a bot-
tleneck in analyses relying on such technologies, including the
traditional Alloy Analyzer. To gain further confidence in the cor-
rectness of their models, Alloy users must re-analyze them with
larger and larger scopes. Yet, the cost of the constraint-solving
technologies underlying Alloy is exponential in those bounds, pre-
venting the analysis beyond only trivial bounds. The magnitude
of formulas tends to increase exponentially in the size of the sys-
tem to be analyzed, making it less practicable to employ constraint
solving in analyzing realistic complex systems. There is a need for
mechanisms that facilitate efficient application of formal analyzers
in rapidly growing domain of software systems.

The next section overviews our approach to extend Alloy with
an evolutionary algorithm towards achieving a more scalable model
finding technique.

3 EVOALLOY

Figure 3 shows an overview of EvoAlloy, and explains how it
can bypass the computationally intractable part of the existing
Alloy Analyzer. On the left, the Alloy Analyzer reads in an Alloy
specification and translates it into a relational model, then passes
that to Kodkod (a finite relational model analyzer) [15]. For each
relation, Kodkod uses the scopes and signature bounds from Alloy,
and concretizes these to bound the problem specification. The use of
Kodkod in Alloy has already provided scalability beyond its original
implementation, because it can help reason about partial models.
To transform such a finite relational model into a Boolean logic
formula, Kodkod renders each relation as a Booleanmatrix, in which
any tuple within the bounds of the given relation maps to a unique
Boolean variable [16]. Relational constraints are then captured as

822

ASE ’18, September 3–7, 2018, Montpellier, France Jianghao Wang, Hamid Bagheri, and Myra B. Cohen

Figure 3: Schematic view of EvoAlloy

Boolean constraints over the translated Boolean variables. It then
translates the resulting Boolean formula to CNF, and passes the
CNF to an off-the-shelf SAT solver to obtain a solution. Last, the
Alloy interpreter translates the SAT result into a solution instance.

Our insight is to utilize the bounded relational model to make
the genetic algorithm scalable for two reasons. First, applying the
genetic algorithm on the Kodkod level, rather than the higher Alloy
level, is more efficient as both tight relational bounds and partial
models limit the space of concrete instances that need to be explored
by the search engine. Second, translating a Kodkod model to a
propositional formula and then to CNF introduces many auxiliary
variables [15, 17]. The explosion in the number of variables affects
the scalability of the genetic algorithm approach.

Our GA extension is thus inserted between Kodkod and the Alloy
interpreter, as depicted in Figure 3. At the highest level, EvoAl-
loy’s GA extension takes in the model from Kodkod and outputs a
satisfying solution to the Alloy interpreter. The box at right shows
the steps EvoAlloy follows to do this.

The GA employed in this work is delineated in Algorithm 1. The
initial population of our individuals is made up of random assign-
ment of values to each relational variable, from within the legal
relations and their bounds. The scope of each relational variable is
defined by two relational constants, called upper and lower bounds,
respectively. The upper bound represents the whole set of tuples
that a relational variable may contain, and a lower bound represents
a partial solution for a given model. Every relation in a satisfying
solution, thus, must contain all tuples in the lower bound, and no
tuple that is not in the upper bound. In the initial population, we
randomly assign a value to each relation from within the speci-
fied bounds. In essence, each chromosome within the population
represents a potential Alloy solution.

Fitness is measured by assessing the chromosome andmonitoring
how close it gets to satisfying constraints of the target specifica-
tion. To verify each individual, we employ the APIs provided by
the Kodkod model finder; it also has a built-in ability to identify a
minimal unsatisfiable core when the individual does not satisfy the
specification constraints. Essentially, if any constraint is omitted
from the identified core, the resulting set of constraints would be
satisfiable. With each subsequent iteration, we breed new chromo-
somes through combining chromosomes selected with a likelihood
proportional to their fitness value, and then mutating the resulting
ones (e.g., arbitrarily change some of its tuples).

Algorithm 1 The genetic algorithm applied in EvoAlloy
1: Popcurrent ← generate random population
2: repeat
3: Popnew ← elite (Popcurrent , e)
4: P ′, P ′′ ← permute (Popcurrent)
5: i ← 0
6: while |Popnew | , |Popcurrent |/2 do
7: Popnew ← Popnew ∪ select (P ′[i], P ′′[i])
8: i ← i + 1
9: end while

10: while |Popnew | , |Popcurrent | do
11: p1, p2← pickParents (Popnew)
12: ⟨c1, c2⟩ ← crossover (p1, p2, probcrossover)
13: c1←mutation (c1, Probmutation)
14: c2←mutation (c2, Probmutation)
15: Popnew ← Popnew ∪ {c1, c2}
16: end while

17: Popcurrent ← Popnew
18: until solution f ound ORmaximum resources spent

The remainder of this section describes the details of EvoAlloy.

3.1 Problem Representation

The initial step in developing any evolutionary algorithm is to
decide on a genetic representation of a candidate solution to the
problem. This entails defining a chromosome and the mapping
from it to the original problem context. In our case, a chromosome
is represented as a vector shown in Figure 1a, where each index
in the vector denotes a gene. It can be seen as a tuple-string of
length n, where n is the number of relations within the problem
specification. Each single gene refers to the value assignment of
exactly one relation. Given an Alloy specification S , we define a
function fS : Relation (S) → N that maps each relation r of the
specification S into a vector index assigned to that relation. Analo-
gously, we define f −1S : N → Relation (S) as a function that maps
a given vector index to the relation it represents. Note that the cho-
sen representation has a fixed size for a given problem, determined
by the number of relations within the problem specification under
analysis. This representation influences variation operators, i.e.,
crossover and mutation, discussed below.

3.2 Fitness Function

The fitness function is a decisive factor of evolutionary algorithms.
It measures the solution-quality of a chromosome, and acts as a
means to differentiate chromosomes in proportion to the extent of
their contribution to a solution. EvoAlloy considers two factors in
assessing the fitness of chromosomes: Formula constraints (ci) and
relations (ri). The fitness of a chromosome chrom is determined as
follows:

f (chrom) =
∑

ci ∈Consts
Tc (ci , chrom) +

∑
ri ∈Rels

Tr (ri , chrom)

where Tc (ci , chrom) equals one if ci is not satisfied by chrom;
and it evaluates to zero otherwise. Similarly, Tr (ri , chrom) equals
one if ri is not satisfied by chrom; it evaluates to zero otherwise.
When a chromosome for a given specification satisfies all its con-
straints defined over its relational variables, we identify it as an

823

An Evolutionary Approach for Analyzing Alloy Specifications ASE ’18, September 3–7, 2018, Montpellier, France

ideal chromosome with a fitness score of 0. The fitness function
establishes truth-invariance, as the Alloy specification is satisfied
provided that all the relations and formulas thereof are satisfied.

3.3 Selection

The Algorithm on lines 3–9 explains the process by which EvoAl-
loy selects chromosome variants to pass to the next generation. It
leverages both elitism and unbiased tournament selection strate-
gies [18] to select half of population members in a new generation
from the current generation. The select group of chromosomes
establishes the next mating pool. Specifically, it first picks a config-
urable number (e) of chromosomes with best fitness values. The use
of elitism prevents the loss of the current fittest members of the pop-
ulation. The new generation is then half-filled with chromosomes
produced by the unbiased tournament selection, which forms two
distinct permutations of the population and conducts a pairwise
comparison to select one chromosome from each pair of compared
chromosomes. The use of unbiased tournament selection promises
to eliminate the loss of diversity due to chromosomes not being
sampled, typically occurred in the traditional tournament selection.
3.4 Crossover

The initial step in producing new chromosomes for the next gen-
eration is crossover. It picks two chromosomes from the popula-
tion, and produces two new chromosomes by mixing their genetic
makeup. The employed crossover operator in EvoAlloy is essen-
tially the well-known two-point crossover. Because the lengths of
the two chromosomes are the same, the cut points are uniformly
chosen within the chromosomes’ length. The crossover creates two
offspring, where it swaps every tuple assigned to the genes between
the two points of the parent chromosomes.
3.5 Mutation

To counter genetic drift [19] and recover lost genes, crossover is
often used along with mutation to achieve a diverse population of
chromosomes. Mutation simply alters parts of the genetic makeup
of a chromosome with a probability threshold that is configurable.
EvoAlloy mutates genes with various creation, transformation and
removal operators.

The creation operator basically generates a new tuple-string
from within the upper and lower bounds specified for the relation
associated with a given gene currently containing no tuple. The
number of added tuples is random with a minimum of one and a
configurable upper threshold. Transformation operators include
changing one tuple to another and inserting a new tuple-string
at a random index. The removal operator omits the tuple-string
assigned to a gene. In other words, the gene becomes empty, if
permitted by its given lower bound.

4 EXPERIMENTAL EVALUATION

Wehave implemented EvoAlloy as an open-source extension to the
Alloy analysis engine. To realize the genetic algorithms discussed
in the prior sections, EvoAlloy modifies both the Alloy Analyzer
and its underlying finite relational model finder, Kodkod [15]. The
modifications lie in realizing the facility to producing the initial
population of chromosomes and next generations, assessing satisfi-
ability of each chromosome within the population, collecting the in-
formation necessary in measuring fitness values, and transforming

chromosome-level model instances into high-level Alloy models.
The EvoAlloy prototype is available at the project website [14].

To assess the effectiveness of EvoAlloy, we compare it with
the state-of-the-art Alloy Analyzer (version 4.2). In addition, we
consider a random exploration approach, RD, that neither applies a
GA nor leverages constraint solvers. Rather, it randomly generates
candidate solutions following the rules implied by the bounds of
specifications relations. We set RD to generate 10,000 candidates.

Objects of Analysis. Our objects of analysis are specifications that
vary in terms of size and complexity and are distributed with the
Alloy Analyzer (cf. Table 1). Chord models the chord distributed
hash table lookup protocol; com specifies Microsoft component
object model query interface and aggregation mechanism; sync
is a model of a generic file synchronizer; fileSystem specifies a
generic file system; and life specification models John Conway’s
game of life. To perform the comparison experiments, we gradually
increased the scope of analysis on each of our object specifications.

Experimental Setup. For our GA parameters we ran some initial
experiments to heuristically tune these to work across more than
one subject. We leave a full evaluation of tuning as future work.
We use 32 as the population size. We configured the algorithm to
perform a two-point crossover with a crossover probability of 50%,
and set the mutation rate to 80%. For mutation, we use the addition
operator 10% of the time, the transformation operators 60% of the
time, and the creation operator 30% of the time. To control for vari-
ance, we ran the technique three times, and report the average. We
did this separately on each of the five specifications under consider-
ation. All of the experiments were conducted on an 8-core 2.0 GHz
AMD Opteron 6128 system, with an 8 GB of memory was dedicated
to the running technique to keep extraneous variables constant.
We used two stopping criteria: reaching a (1) a satisfying solution
or (2) exceeding the given maximum memory.

Results and Interpretation. Table 1 reports the analysis time in sec-
ond taken from EvoAlloy, the Alloy Analyzer (AA), and Random
(RD) over the increasing analysis scope across object specifications.
The scope of analysis is specified on the horizontal axis.

As Table 1 shows, for each specification, EvoAlloy outperforms
the state-of-the-art Alloy Analyzer in terms of scalability, and the
difference in the analysis capability is more pronounced for the
larger analysis scopes. The random approach, except in one case,
i.e., the sync specification with the analysis scope of 5, was not able
to find any satisfying solution. This confirms that one has almost no
chance to come up with a valid Alloy solution with a pure random
search. We also see that for smaller scopes Alloy often outperforms
EvoAlloy, but as the scope of analysis increases, EvoAlloy is more
effective than the Alloy Analyzer. For instance, for chord, Alloy
fails at scope 45, but EvoAlloy finds a solution up to a scope of 125.
Indeed, higher analysis scope is accompanied by a larger search
space, which can amplify the relative effectiveness of a GA-based
approach, like EvoAlloy. With com, EvoAlloy goes beyond Alloy
and solves scope 25, but fails afterwards due to out of memory. We
believe that better tuning and a more compact way to store finite
Kodkod models will allow us to keep improving the analysis.

In summary, the preliminary results provide the evidence that
the line of research on exploring the synergy between evolutionary
algorithms and lightweight formal analyzers is worth pursuing.

824

ASE ’18, September 3–7, 2018, Montpellier, France Jianghao Wang, Hamid Bagheri, and Myra B. Cohen

Table 1: The analysis time in second taken from EvoAlloy (EA), Alloy Analyzer (AA), and Random (RD) over the increasing

analysis scope across objects of study; dashes indicate the approach terminates without finding a solution.

Spec
Analysis Scope

5 25 45 65 85 105 125
RD AA EA RD AA EA RD AA EA RD AA EA RD AA EA RD AA EA RD AA EA

com — 11 4 — — 313 — — — — — — — — — — — — — — —
sync 1 2 2 — 4 3 — 13 6 — 31 11 — 55 30 — 235 43 — 294 74
fileSys — 1 3 — 8 8 — 23 26 — 63 176 — 203 333 — 363 680 — — 1501
chord — 3 2 — 94 16 — — 241 — — 299 — — 391 — — 705 — — 1496
life — 3 3 — 7 80 — 26 624 — 93 1000 — 205 3412 — — 4389 — — 6850

5 RELATEDWORK

There is a large body of research on using evolutionary algorithms
to solve software engineering problems [11]. EvoAlloy falls within
this class of solutions. Concolic Walk combines linear constraint
solving with tabu search to solve complex arithmetic path condi-
tions [20]. ACO-Solver uses the Ant Colony Optimization to solve
complex string constraints [21]. The work of Godefroid and Khur-
shid [22] is perhaps the most closely related work to ours. It uses a
genetic algorithm to guide a search in the analysis of concurrent
reactive systems towards errors like deadlocks and assertion viola-
tions. In contrast with all of this prior work, the problem addressed
in this paper addresses bounded analysis of large-scale solution
spaces specified in relational logic. Among other things, it requires
the development of both original chromosome encodings and fit-
ness functions appropriate for models specified in Alloy’s relational
logic. To the best of our knowledge, EvoAlloyis the first evolution-
ary technique for automated analysis of bounded relational logic
specifications.

The widespread use of Alloy has lead to a number of extensions
to its underlying analyzer [23, 24]. Among others, Uzuncaova and
Khurshid [25] partition a specification into base and derived slices,
in which a solution to the base slice can be extended to produce a
solution for the entire specification. Rosner et al. [26] present a tech-
nique, Ranger, that leverages a linear ordering of the solution space
to support parallel analysis of first-order logic specifications. These
techniques rely on leveraging multiplicity of computing to improve
the efficiency of the Alloy analyzer, whereas EvoAlloy is geared
towards the application of genetic algorithms to foster exploration
of large, complex solution spaces.

6 CONCLUSIONS AND FUTUREWORK

In this paper we have provided a proof-of-concept for EvoAlloy to
demonstrate its potential benefit and power. However, it is still
early in its development and it suffers from some limitations. First,
the fitness function provides strong guidance early in the search,
but needs refinement when the solution gets close. We plan to
experiment with additional fitness functions and to consider an
adaptive approach that has been used in prior work on evolutionary
algorithms for constraint based problems. Second, we have found
that the parameter tuning (e.g., mutation, crossover) is sensitive to
the specific specification being solved. We plan to explore this issue
further; recent work on self-tuning and hyperheuristic algorithms
may help us in this context. Last, we still depend on loading the
entire Kodkod model which may limit us as we scale to even larger
systems. We plan to examine ways to store in a more efficient way.

ACKNOWLEDGEMENT

This work was supported in part by an NSF EPSCoR FIRST award,
and awards CCF-1755890, CCF-1618132 and CCF-1745775 from the
National Science Foundation.

REFERENCES

[1] Symantec Corp., “2012 norton study: Consumer cybercrime estimated at $110
billion annually,” Sep. 2012. [Online]. Available: $http://www.symantec.com/
about/news/release/article.jsp?prid=20120905_02$

[2] RTI, “The economic impacts of inadequate infrastructure for software testing,”
National Institute of Standards & Technology, Technical Report 7007.011, 2002.

[3] Tricentis Corp., “2017 tricentis software fail watch report,” 2017. [Online].
Available: https://www.tricentis.com/software-fail-watch/

[4] H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek, “Practical, formal synthesis
and automatic enforcement of security policies for android,” in Proceedings of
DSN, 2016, pp. 514–525.

[5] H. Bagheri and K. Sullivan, “Model-driven synthesis of formally precise stylized
software architectures,” Form. Asp. of Comput., vol. 28, no. 3, pp. 441–467, 2016.

[6] ——, “Bottom-up model-driven development,” in Proceedings of ICSE, 2013, pp.
1221–1224.

[7] M. Taghdiri and D. Jackson, “Inferring specifications to detect errors in code,”
Automated Software Engineering, vol. 14, no. 1, pp. 87–121, 2007.

[8] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing Combina-
torics in GUI Testing of Android Applications,” in Proceedings of ICSE, 2016, pp.
559–570.

[9] H. Bagheri, C. Tang, and K. Sullivan, “Trademaker: Automated dynamic analysis
of synthesized tradespaces,” in Proceedings of ICSE, 2014, pp. 106–116.

[10] ——, “Automated Synthesis and Dynamic Analysis of Tradeoff Spaces for Object-
Relational Mapping,” IEEE Transactions on Software Engineering, vol. 43, no. 2, pp.
145–163, Feb. 2017.

[11] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering:
Trends, techniques and applications,” ACM Comput. Surv., vol. 45, no. 1, pp. 11:1–
11:61, Dec. 2012.

[12] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. SpringerVer-
lag, 2003.

[13] D. Jackson, Software Abstractions, 2nd ed. MIT Press, 2012. MIT Press, 2012.
[14] “EvoAlloy web page,” 2018. [Online]. Available: https://sites.google.com/site/

evoalloy2018/
[15] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in Proceedings of

TACAS, 2007, pp. 632–647.
[16] E. Torlak, “A constraint solver for software engineering: Finding models and

cores of large relational specifications,” PhD Thesis, MIT, Feb. 2009.
[17] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “Aluminum:

Principled scenario exploration through minimality,” in Proceedings of ICSE, 2013,
pp. 232–241.

[18] A. Sokolov and D. Whitley, “Unbiased tournament selection,” in Proceedings of
GECCO, 2005, pp. 1131–1138.

[19] A. Rogers and A. Pruegel-Bennett, “Genetic drift in genetic algorithm selection
schemes,” IEEE Transactions on Evolutionary Computation, 1999.

[20] P. Dinges and G. A. Agha, “Solving complex path conditions through heuristic
search on induced polytopes,” in Proceedings of FSE, 2014, pp. 425–436.

[21] J. Thomé, L. K. Shar, D. Bianculli, and L. C. Briand, “Search-driven string constraint
solving for vulnerability detection,” in Proceedings of ICSE, 2017, pp. 198–208.

[22] P. Godefroid and S. Khurshid, “Exploring Very Large State Spaces Using Genetic
Algorithms,” Int. J. Softw. Tools Technol. Transf., vol. 6, no. 2, pp. 117–127, 2004.

[23] E. Torlak, M. Taghdiri, G. Dennis, and J. P. Near, “Applications and extensions
of alloy: past, present and future,” Mathematical Structures in Computer Science,
vol. 23, no. 4, pp. 915–933, 2013.

[24] H. Bagheri and S. Malek, “Titanium: Efficient Analysis of Evolving Alloy Specifi-
cations,” in Proceedings of FSE, 2016, pp. 27–38.

[25] E. Uzuncaova and S. Khurshid, “Constraint prioritization for efficient analysis of
declarative models,” in Proceedings of FM, 2008, pp. 310–325.

[26] N. Rosner, J. H. Siddiqui, N. Aguirre, S. Khurshid, and M. F. Frias, “Ranger: Parallel
analysis of alloy models by range partitioning,” in Proceedings of ASE, 2013, pp.
147–157.

825

$http://www.symantec.com/about/news/release/ article.jsp?prid=20120905_02$
$http://www.symantec.com/about/news/release/ article.jsp?prid=20120905_02$
https://www.tricentis.com/software-fail-watch/
https://sites.google.com/site/evoalloy2018/
https://sites.google.com/site/evoalloy2018/

	Abstract
	1 Introduction
	2 Illustrative Example
	3 EvoAlloy
	3.1 Problem Representation
	3.2 Fitness Function
	3.3 Selection
	3.4 Crossover
	3.5 Mutation

	4 Experimental Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

