
Formal Aspects of Computing

Model-Driven Synthesis of
Formally Precise, Stylized Software
Architectures
Hamid Bagheri1 and Kevin Sullivan2

1School of Information and Computer Sciences, University of California, Irvine
2Department of Computer Science, University of Virginia

Abstract. Reliably producing software architectures in selected architectural styles requires significant ex-
pertise yet remains difficult and error-prone. Our research goals are to better understand the nature of
style-specific architectures, and relieve architects of the need to produce such architectures by hand. To
achieve our goals, this paper introduces a formally precise approach to separate architectural style design
decisions from application-specific decisions, and then uses these separate decisions as inputs to an auto-
mated synthesizer. This in effect supports a model-driven development (MDD) approach to architecture
synthesis with style as a separate design variable. We claim that it is possible to formalize this separation of
concerns, long implicit in software engineering research; to automatically synthesize style-specific architec-
tures; and thereby to improve software design productivity and quality. To test these claims, we employed
a combination of experimental systems and case study methods: we developed an MDD tool and used it
to carry out case studies using Kitchenham’s methods. Our contributions include: a theoretical framework
formalizing our separation of concerns and synthesis approach; an MDD framework, Monarch; and results of
case studies that we interpret as supporting our claims. This work advances our understanding of software
architectural style as a formal refinement; makes application descriptions an explicit subject of study; and
suggests that synthesis of architectures can improve software productivity and quality.

Keywords: Software Architecture; SAT-based Synthesis; Architectural Styles; MDD; Alloy Language.

1. Introduction

Software architecture is essential for managing complexity and meeting demanding requirements in devel-
oping complex software systems [SG96, TMD09]. Architectural styles systematize successful architectural
designs in terms of constraints on architectural elements and their composition into systems [SG96].

Correspondence and offprint requests to: Hamid Bagheri, School of Information and Computer Sciences, University of California,
Irvine, CA, 92612. E-mail: hamidb@uci.edu.

2 H. Bagheri and K. Sullivan

Developing a sound and appropriate architecture, however, remains a significant and intellectually chal-
lenging activity. To develop architectures effectively one must understand both the application domain in
question and the discipline of software architecture. These bodies of knowledge are typically held by dif-
ferent people. Domain experts better understand requirements, while architects understand architectural
styles, their implications, and techniques for mapping application requirements models to architectures in
given styles.

The required communication and coordination between these roles, and the manual mapping of appli-
cation requirements to architectures, are costly and error-prone activities. What is needed is a reliable,
automated approach to mapping system models, expressed in terms closer to those of the domain expert, to
software architectures in selected architectural styles.

This paper presents such a capability: a formal, model-driven approach to synthesis of architectures based
on abstract application models and choices of architectural styles. We contribute a model-driven approach
to modeling application properties abstracted from choices of specific architectural styles, and a formal and
automated approach to mapping such models to architectures in given styles. Given an application model
and a choice of style, our formal synthesis procedure generates architectures in that style in a standard
architectural description language.

An important research challenge is that while we already have a theory of architectural styles [SG96,
PW92], and while we understand that we should seek to separate applications and architectural style, we
do not have an adequate theory or technologies for truly making this separation in ways that admit precise
definition of the mappings that combine application and architectural style choices to yield application
realizations in given styles. Rather, the separation is informal and these mappings are typically learned by
example and experience, and remain the domain of architectural gurus.

As an intellectual contribution, this paper introduces a formally precise approach to separate architectural
style design decisions from application-specific decisions, and then uses these separate decisions as inputs
to an automated synthesizer. The key to this separation is a means of reconciliation—an ‘architectural
map’—connecting application descriptions to realizations in particular architectural styles. The study of
architectural maps complements past work on architectural styles with new attention to how such styles
combine with application models to yield architectures.

We develop a framework, called Monarch1, that automates these architectural maps. Monarch supports
meta-models for a range of application types, the graphical development of models of these types, formal
synthesis of software architectures for chosen architectural styles, and representation of generated architec-
tures in standard architecture description languages, including ACME [GMW00]. It uses Alloy as a back-end
specification language [Jac02], and the Alloy Analyzer as the analysis engine. Alloy is a formal specification
language based on set theory, optimized for automated analysis.

To evaluate our approach, we have conducted a set of case studies that formally model and replicate
several published informal results in the architecture literature. Our results are either consistent with those
previously derived informally, or reveal certain inconsistencies in earlier arguments. The data we have pro-
duced support the proposition that our theory and tool properly express and implement the key elements of
previously informal and intuitively understood architectural maps.

To summarize, this paper makes three contributions:
• Theoretical framework: We develop a theoretical framework to make the notion of architectural maps
precise (§ 2).

• Model-driven tool implementation: We show how to exploit the power of our formal abstractions by build-
ing an MDD framework, Monarch [Mon15], for formal model-driven development of software architecture
(§ 3).

• Experiments: We present results from experiments run on over 10 case studies—formally replicating,
among other things, prominent earlier architectural studies from the literature—corroborating Monarch’s
ability in correct-by-construction synthesis of style-specific architectures in the order of seconds (§ 5).
The remainder of the paper is organized as follows. Section 2 introduces a theoretical framework. Section 3

details the Monarch framework we have developed to support automated development of software architec-
ture. In Section 4, we use a well-known and widely used example of the Lunar Lander application [TMD09]
to demonstrate the key steps in the mapping process. Sections 5 and 6 then present the evaluation of the

1 The name is intended to abbreviate Model and Architecture.

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 3

t : AppType s : ArchStyle

map(t,s)(m)

m : AppModel {ai : ArchModel}

conforms

in in

in

refines

conforms

out

Fig. 1. Key entities and relations in architectural maps.

research, the experimental approach, and the results. Section 7 shows that comparing our work with related
efforts has the potential to improve both. Finally, Section 8 presents our conclusion and a discussion of future
work.

2. Approach Overview

This Section presents an overview of the notion of architectural maps, and then presents the correspondence
of the proposed notion and the formal structure of model-driven development.

2.1. Architectural Style as a Separate Design Decision

The success of architecture development, today, depends heavily on the experience of human architects, and
this manual process is unreliable, costly and labor-intensive. As our understanding of architectures grows,
we can systematize and eventually formalize and automate synthesis of architectures.

In this paper, we take a more robust approach to automate the costly and unreliable process of transform-
ing abstract application models into software architectures. Our approach introduces the application type–a
formal specification of a family of applications–as a source modeling language, and uses style specifications
as target languages2. Given an application model expressed in a particular application type, our approach
refines the application model into software architectures in a selected architectural style.

Formula 1 makes explicit and elaborates the notion that an architectural map (ArchMap) combines an
application model, m, of a given application type, with a specification, s, of a given architectural style, to
produce a set of architectural models, {ai}, for application m in style s. These architectural models refine
the application model while complying with the rules implied by the architectural style.

{ai : ArchModel} = ArchMap(t:AppT ype,s:ArchStyle)(m : AppModel) (1)

ArchMap captures architectural knowledge that we seek to formalize and automate. The study of ArchMap
balances attention to architectural styles, with attention to how such styles combine with application de-
scriptions to yield architectures. Knowledge of this mapping is crucial to expertise in software design. Given
an application description, the experienced designer knows both what architectural style to pick, and how
to map an application description of the given kind to an architectural description in the chosen style.

Clearly ArchMap is a complicated object. In some sense, it embodies knowledge of how to realize differ-
ent types of applications in different styles. We need a way to study it in pieces. We decompose ArchMap by
treating it as a function polymorphic in both application type and architectural style. We then investigate it
for specific pairs. This study requires to make explicit a notion of application type. Application descriptions
come in a variety forms. Examples include composition of functions (which is in essence how Parnas char-
acterized KWIC [Par72], for example), or state machine, or sense-compute-control [TMD09]. Each of these
application types provides a vocabulary and structuring mechanisms for organizing application descriptions

2 Architectural styles [SG96] are the results of earlier efforts to systematize successful architectures in terms of constraints on
architectural elements and their patterns of composition.

4 H. Bagheri and K. Sullivan

Table 1. Correspondence between terms of Architectural maps and the formal structure of MDA.

Model-driven Development Our Theory

Meta-model Application type

Platform Independent Model (PIM) Application Model

Model Transformation Architectural Mapping

Platform Definition Model (PDM) Architectural Style

Platform Specific Model (PSM) application- and
style-specific Architecture

prior to the choice of architectural style for the system implementation. An architectural map in essence
converts the structure and content of such a description into a form consistent with a given architectural
style choice. Specifically, we view ArchMap as parameterized by type (AppType) and style (ArchStyle), and
develop separate mappings for each compatible AppType/ArchStyle pair. Compatibility captures the idea
that not every architectural style is appropriate for every application type.

To make the idea precise, Figure 1 represents the fundamental elements of this model and their rela-
tionships: (1) {ai}, a set of architectural models (architectures) derived by the processes we describe in this
paper; (2) s, an architectural style specification; (3) conforms, a relation encoding the conformance of an
architectural model, ai, to an architectural style, s; (4) m, an application model; (5) t, an application type;
(6) a (second) conforms relation, encoding the conformance of m to t; (7) map(t,s), a map parameterized
by t and s that takes application model, m, to the set of architectural models, {ai}; (8) a refines relation
encoding the property that each such ai refines the application model, m. Given input parameters, t, s, and
m, our map yields a set of architectures, as, in general, multiple architectures in a given style satisfy the
required conformance and refinement constraints.

With these terms in hand, we can now say more precisely what we mean by architectural style as a separate
design variable. For a given application model and type, one can select among compatible styles and maps
and automatically synthesize architectures in these styles. To the extent that the essence of modularity is a
decoupling of design parameters, the approach realizes a new form of modularity: it modularizes architectural
style.

2.2. Model-driven Automation

As software systems become larger and more complex, there is an ever greater need to employ higher levels
of abstraction in application development. Model-driven development is centered around abstract, domain-
specific models and transformations of abstract models into the constructs of specific underlying platforms.
To be more precise, according to the specification for OMG’s Model Driven Architecture (MDA)3 [MM03],
it is rooted in a mapping that takes a platform-independent model (PIM), p, and a platform definition model
(PDM), s, to a platform-specific model (PSM), i:

i : PSM = map(p : PIM, s : PDM) (2)
The analogy between two approaches is clear in the equations 1 and 2. Architectural styles plays the

same role as platform descriptions in an MDA approach [Sch06]. We believe that this observation opens a
path to model-driven tools that support architectural style as a separate variable in automated development
of software architectures.

Table 1 shows the correspondence between terms of Architectural maps and the formal structure of MDA.
We introduce application types as styles of application description that play the same role as application meta-
models in MDA. Application models correspond to platform independent models in MDA; architectural maps,
to MDA transformations; architectural styles, to MDA platforms; and synthesized software architectural
models, to platform-specific models in MDA.

3 Model Driven Architecture (MDA) is a registered trademark of the Object Management Group (OMG) for model driven
development.

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 5

Fig. 2. High-level overview of the Monarch approach.

Given the concepts of application type and architectural style, we can now concisely describe the approach.
A user selects an application type. This type selects a meta-model that parameterizes a model-based editing
tool. Within such a tool one creates an application model as an instance of the selected application type. One
then selects an architectural style. The combination of an application type and an architectural style selects
the specification of a synthesis function: an architectural map for that particular pair of input specifications.
Each architectural map specifies the mapping of any application model (instance) of the given application
type to architectures in the given style. Application types, architectural styles, and architectural maps are all
formally specified in a notation that supports automated analysis and synthesis. The approach involves the
synthesis of an architectural description that satisfies the constraints of both type and style specifications,
and that does so in a particular manner described by architectural mapping constraints.

3. The Monarch Framework

This section shows how the ideas for automated development of software architecture can be realized in
practice. Figure 2 outlines the high-level overview of our approach. The Monarch framework comprises (1)
an approach to architecture-independent application modeling using the Generic Modeling Environment
(GME) [LBM+01], with application types realized concretely as GME architecture-independent modeling
language (AIML) meta-models; (2) interpreters that transform application models, viewed as concrete in-
stances of architecture-independent modeling languages, into application specification Alloy modules that
extend the corresponding application types; (3) a mapping engine, based on the Alloy Analyzer, that takes
such an application specification (represented in the Alloy language) and a formal specification of an ar-
chitectural style and that finds architectural models that refine the application model in conformance with
the given architectural style. The mapping employed (ArchMap) is based on the combination of the selected
application type and the selected architectural style. The engine uses the Alloy constraint solver to compute
intermediate architectural models, represented as satisfying Alloy solutions; (4) a final post-processing phase,
Alloy2ADL, translates the resulting Alloy instances into human-readable architectural description languages
(ADLs).

In the rest of this section, we first provide a brief overview of Alloy, and then describe each of the
aforementioned modules of the Monarch framework.

3.1. Alloy Overview

Alloy is a lightweight formal specification language based on the first-order relational logic with transitive
closure [Jac02, Jac12]. We chose Alloy for this study for two reasons. First, its ability to compute solutions
that satisfy complex sets of constraints is useful as an automation mechanism. Second, and more importantly,
it allows us to better validate our claims because we use, as inputs, architectural style specifications, in Alloy,
that others have published [KG10, WSWS08]. Reusing published models is important in that it shows our
ideas and approach to be consistent with contemporary formal accounts of architectural style.

Essential data types, that collectively define the vocabulary of a model, are specified in Alloy by their
type signatures (sig). Signatures represent basic types of elements, and the relationships between them are

6 H. Bagheri and K. Sullivan

captured by the declarations of fields within the definition of each signature. A signature declaration may
also include a signature fact constraining elements of the signature. A signature declaration can also extend
another signature. Signatures defined as abstract represent types of elements that cannot have an instance
object without explicitly extending them.

The other essential constructs of the Alloy language include: Facts, Predicates, Functions and Assertions.
Facts (fact) are formulas that take no arguments, and define constraints that must always hold. Predicates
(pred) are named logical formulas used in defining parameterized and reusable constraints that are always
evaluated to be either true or false. Functions (fun) are parameterized expressions. A function similar to a
predicate can be invoked by instantiating its parameter, but what it returns is a relational value instead.
An assertion (assert) is a formula required to be proved. It can be used to look for counterexamples of
conjectures.

The Alloy language comes with a set of logical and relational operators. The dot (.) and tilde (∼) rela-
tional operators denote a relational join of two relations and the transpose operation over a binary relation,
respectively. The transitive closure (ˆ) of a relation is the smallest enclosing relation that is transitive. The
reflexive-transitive closure (*) of a relation is the smallest enclosing relation that is both transitive and
reflexive.

The Alloy Analyzer is a constraint solver that supports automatic analysis of models written in Alloy. The
analysis process is based on a translation of Alloy specifications into a Boolean formula in conjunctive normal
form (CNF), which is then analyzed using off-the-shelf SAT solvers. With respect to the constraints in a given
model, the Alloy Analyzer can be used either to find solutions satisfying them, or to generate counterexamples
violating them. The Alloy Analyzer is a bounded checker, so a certain scope of instances needs to be specified.
In the matter of architectural styles, the scope states the number of architectural elements of each type. The
analysis is thus performed through exhaustive search for satisfying instances within the specified scopes. To
take advantage of partial models, the latest version of the analyzer usesKodKod [Tor09] as its constraint solver
so that it can support incremental analysis of models as they are constructed. The generated instances are
then visualized in different formats such as graph, tree representation or XML. We use the Alloy Analyzer to
compute architectural models given the conjunction of an architecture-independent model represented using
a particular meta-model, and a choice of formal specifications of an architectural style, also represented in
Alloy. We will introduce additional details of the Alloy language as necessary to present our model-driven
architecture synthesis approach. For further information about Alloy, we refer the interested reader to [Jac12].

3.2. AIML Meta-model

To facilitate architecture-independent application modeling, we realize application types as meta-models, the
development of which is supported thoroughly by many meta-modeling environments, e.g. Generic Eclipse
Modeling System [WSNW07], MetaEdit+ [Met10] and Generic Modeling Environment [LBM+01]. We have
developed Architecture-Independent Modeling Languages (AIMLs) on top of the GME to support the spec-
ification of application content at the abstract modeling level. The reasons for choosing GME for this study
include its straightforward mechanisms for developing extensions, and its availability and proven success for
MDD.

A meta-model specification describes a particular form of model. In our earlier work [BSS10, BS10b],
we identified several possible forms of architecture-independent model, including composition of func-
tions, aspect-enabled composition-of-functions (ACF), state-driven behavior (SD) and sense-compute-control
(SCC). Our meta-model for the sense-compute-control (SCC) application type is shown in Figure 3a. We
have developed GME meta-models for several previously identified but not well elaborated application types:
composition-of-functions (CF), aspect-enabled composition-of-functions(ACF) (Figure 3b), and state-driven
behavior (SD) (Figure 3c). For brevity, and because it suffices to make our points, we describe only the SCC
meta-model in this work. Monarch supports the others as well.

We view sense-compute-control (SCC) as an application type for embedded control systems. The SCC
application type is used to model applications in which a set of sensors and actuators are connected to
controllers that cycle through the steps of fetching sensors values, executing a set of functions, and emitting
outputs to the actuators [TMD09]. Figure 3a shows a UML class diagram for the SCC meta-model as
represented in GME. The ApplicationDescription class is common among application-type meta-models,
and represents the top level container class, required by the MetaGME interpreter to facilitate modeling of
all other application elements. The Controller, Sensor and Actuator classes represent three main elements

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 7

Fig. 3. Meta-models in GME for application types: a) Sense-Compute-Control b) Aspect-enabled Composition-of-Functions c)
State-Driven behavior

of the SCC application type. The Controller’s frequency is abstracted into discrete ranges of slow and fast.
The Controller can also be specified as using a periodic, aperiodic or sporadic task.

Given such a meta-model specification of a modeling language for each architectural-style-independent
application type, GME automatically creates an architectural-style-independent modeling environment. The
designer of a system then specifies an application description as a model using the modeling environment.
This approach promises to allow domain experts to model their applications abstracted from details of
software architectural styles.

3.3. Transformation to Alloy Specification

Monarch translates an application model specified as a concrete instance of such an architecture-independent
modeling language (AIML) for a given application type into an Alloy module. The GME provides several
ways to process data from the model automatically. We used the Java version of the Builder Object Network
(BON), providing us access to the internal representation of the model through Java objects. The BON Java
interface mirrors the structure of the models, where each element, such as a Model or a Connection, has
a corresponding builder class. In that way, the BON interface provides support for traversal of the models
along the containment hierarchy.

We developed a GME interpreter for each meta-model as a syntax mapping, which elicits the model
elements and transforms the constructs of the application model to formal specifications in the Alloy lan-
guage. Specifically, for each meta-element, our interpreter contains a specific builder class that extends a
corresponding general-purpose builder class provided by GME. For example, our builder class for Controller,
tagged with the Model stereotype, extends the JBuilderModel class, and the builder class developed for
Sensors of type Connection, extends the JBuilderConnection class.

The interpreter transforms elements of type Model into a singleton signature definition that represents
the inheritance of the given element from its corresponding signature definition. The following code snippet

8 H. Bagheri and K. Sullivan

shows the Alloy representation of a Controller element, where the value for the ControllerName is captured
from the application model (developed in the GME environment). The element’s properties specified in the
model are then transformed into signature facts (lines 2–4). If no value is specified for a field, it will be
assigned as none. The Connection elements are also transformed into signature facts such that they specify
the exact values of their corresponding signature field (lines 5–6).
1 one s i g <ControllerName> extends C o n t r o l l e r {}{
2 c o n t r o l l e r _ d i s p a t c h _ s t a t e = <dispatchValue>
3 frequency_state = <frequencyValue>
4 program = <programValue>
5 s e n s o r s = <Sensors>
6 a c t u a t o r s = <Actuators>
7 }

Given an application model, the interpreter thus creates an Alloy module that contains a signature
definition for each Model element in the application model and additional sets of facts corresponding to the
properties of those elements. In doing so, the interpreter starts from the root folder of the model, and then
accesses all builder objects corresponding to the root model through recursive traversal of the children of
model builders.

3.4. Architectural Mapping

After modeling application content, in this section we show how we use the Alloy Analyzer to enable auto-
mated formal derivation of software architectures. We first define the notions of conformance and refinement.
Definition 1 (conformance). Let S be a set of first-order sentences4, we say that model m conforms to
S, if m satisfies each sentence of S.

conform(m, S) ≡ ∀ si ∈ S . m |= si (3)
Definition 2 (architectural refinement). Let a be an architectural model, m be an application model,
and T be a set of first-order sentences which model m conforms to, or conform(m, T). We say that a refines
m with respect to T , if and only if a would also conform to T , or conform(a, T).

To ensure conformance of derived architectural models to the target architectural styles, an architectural
style description specifies the co-domain of an architectural map that drives the architecture synthesis. The
result of an architectural map, ArchMap(T,S)(m), thus is a set of architectural models that refine the input
application model, m, while conforming to the rules implied by the architectural style, S. More precisely,

ArchMap(T,S)(m) = {ai : ArchModel | conform(m, T) ∧ conform(ai, S) ∧ refine(ai, m)} (4)
To accomplish this, four pieces of Alloy specifications are conjoined in the process of mapping an applica-

tion model to architectural models in a given style: (1) an application type represented in an Alloy module;
(2) an application model, comprising an instance of an application type, represented in an Alloy module;
(3) an architectural style specification module; and (4) mapping predicates. These predicates take types of
applications as parameters, and define relationships required to hold between applications of given types and
computed architectural models in the given style. As an example, Listing 7 presents part of the predicate for
mapping application models in the sense-compute-control application type to architectures in the implicit
invocation style. We describe it in more detail in Section 4.3. The Alloy Analyzer then computes satisfying
solutions to the conjoined specification, yielding the synthesized architectures.

Formalizing the approach, elements, and mapping rules in an analyzable specification language, such as
Alloy, not only enables automatic synthesis of architectural models, but also provides the basis to formally
validate their correctness. We express essential properties of target architectural style, and use the automated
relational logic analyzer, i.e., Alloy Analyzer, to verify them. We specify such implications required to be
checked as Alloy assertions, a set of constraints intended to follow from specifications.

As a concrete example, Listing 1 illustrates the content of one such assertion specified for architectures
synthesized in the component-and-connector (Cnc) architectural style (cf. Listing 5). The correctCncConfig-
uration assertion states that each component port in a configuration of a component-and-connector architec-
ture should be attached to a connector role, where the component and connector connecting through their

4 Note that Alloy’s specification language can be viewed as first-order logic, as Jackson notes [Jac12].

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 9

1 a s s e r t c o r r e c t C n c C o n f i g u r a t i o n {
2 a l l s : System | attachments [s] . dom in s . c o n n e c t o r s . r o l e s &&
3 attachments [s] . ran in s . components . p o r t s
4 }

Listing 1. An example assertion specification checking the correct attachments of component ports
and connector roles in a configuration of a system architecture modeled in component-and-connector
architectural style.

1 <alloy ...>
2 <instance ...>
3 <field label="components">...</field>
4 <field label="connectors">...</field>
5 <field label="ports">...</field>
6 <field label="roles">...</field>
7 <field label="attachments">...</field>
8 <field label="handle">
9 <tuple> <atom label="IIObject$0"/>

10 <atom label="FlightControl"/> </tuple>
11 ...</field>
12 </instance>
13 </alloy>

Listing 2. An example of the intermediate representation of a synthesized architectural model

respective port and role belong to the same system. The functions dom and ran, defined in the Alloy module
util/relation, return the domain and range of a binary relation, respectively.

The analyzer performs scope-complete analysis [Jac12], where each assertion is exhaustively checked
against a huge set of model instances up to a certain bound. In other words, the analyzer is a bounded
checker, guaranteeing the validity of assertions only within a bounded instance space. We bound execution
of assertion checking with the ultimate scope used for synthesis of stylized architectural models, and thus
expect the validity of assertions for all generated model instances.

3.5. Transformation to Architecture Description Language

Having computed satisfying solutions, our Alloy2ADL transformer component parses and transforms these
solutions from low-level, XML formatted Alloy objects to high-level architecture descriptions in human-
readable ADLs.

Listing 2 presents an example of the intermediate representation of a synthesized architectural model
represented as an XML formatted Alloy instance, which is automatically generated by Monarch. The result
was edited manually for presentation (to remove inessential details). The XML model contains basic elements
involved in the component-and-connector architectural models, such as, components, connectors, ports of
components, and roles of connectors. The system’s configuration is further specified in the attachments field.
Finally, the field labeled handle describes the relationships between the architectural model elements and
application model constituents. Transformation of these XML-formatted results into a desired format, such
as ADLs that supports essential architectural constructs, is straightforward and can be realized using the
FreeMarker template engines [Fre].

During the past several years, a considerable number of general and domain-specific ADLs have been
proposed [MT00]. We use the ACME language in our prototype [GMW00]. ACME emerged as a generic
language for describing software architectures, with particular support for architectural styles. It is also
designed to work as an interchange format for mapping among other architecture description languages. In
an earlier work [BS10a], we briefly reported on the feasibility of treating architectural style as a separate
variable in an aspect-oriented setting, with AspectualACME [GCB+06]—an aspect-enabled extension of
ACME—as a target ADL.

Listing 3 partially represents the template for transforming generated satisfying solutions into models in
the ACME architecture description language. Template parameters, such as components, connectors, and
their respective ports and roles, are delimited by ${ and } in the template definition. The values of these

10 H. Bagheri and K. Sullivan

1 System ${system.name} extended with {
2 <#list components as component>
3 Component ${component.name} extended with {
4 <#list component.ports>
5 <#items as port>
6 Port ${port.name} extended with {}
7 </#items>
8 </#list>
9 }

10 </#list>
11 <#list connectors as connector>
12 Connector ${connector.name} extended with {
13 <#list connector.roles>
14 <#items as role>
15 Role ${role.name} extended with {}
16 </#items>
17 </#list>
18 }
19 </#list>
20 <#list attachments as attachment>
21 Attachment ${attachment.port} to ${attachment.role};
22 </#list>
23 }

Listing 3. Part of the template for transforming generated Alloy instances into models in the ACME
architecture description language.

1 module SCC
2
3 s i g Sensor extends needHandle {}
4 s i g Actuator extends needHandle {}
5
6 s i g C o n t r o l l e r extends needHandle {
7 s e n s o r s : s e t Sensor ,
8 a c t u a t o r s : s e t Actuator ,
9 c o n t r o l l e r _ d i s p a t c h _ s t a t e : d i spatch_protoco l ,

10 f requency_state : frequency ,
11 program : f i l e A d d r e s s
12 }
13
14 a b s t r a c t s i g d i spatch_protoco l {}
15 a b s t r a c t s i g f requency {}
16 one s i g p e r i o d i c , a p e r i o d i c , s p o r a d i c extends d i spatch_protoco l {}
17 . . .

Listing 4. Part of SCC application type as an Alloy module.

parameters are dynamically realized by FreeMarker while parsing each XML formatted Alloy instance that
represents a synthesized architectural model (cf. Listing 2). The #list and #item tags instruct the template
engine to enumerate values for each architectural element. For example, expressions in lines 4–8 enumerate
ports of each component within the system architecture.

4. Illustrative Example

In this section, we use Monarch to formally illustrate the process of mapping a SCC description of the Lunar
Lander application [TMD09] to architectural models in the implicit-invocation style [DGJN98].

4.1. Application Type: SCC

In Section 3, we presented the concrete and human-centric realization of SCC application type as an AIML
meta-model developed atop GME. Here we focus on its representation as an Alloy module.

Listing 4 partially outlines the sense-compute-control application type represented in Alloy. We explain

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 11

1 // (a) Cnc style specification
2 module Cnc
3
4 a b s t r a c t s i g System {
5 components : s e t Component ,
6 c o n n e c t o r s : s e t Connector ,
7 attachments : Role −> some Port
8 }
9 a b s t r a c t s i g Component {

10 p o r t s : s e t Port ,
11 handle : lo ne needHandle
12 }
13 a b s t r a c t s i g Port {
14 component : one Component
15 }{
16 t h i s in component . p o r t s
17 one c : Component | t h i s in c . p o r t s
18 }
19 a b s t r a c t s i g Connector {
20 r o l e s : s e t Role ,
21 handle : lo ne needHandle
22 }
23 a b s t r a c t s i g Role {
24 connector : one Connector
25 }{
26 t h i s in connector . r o l e s
27 one c : Connector | t h i s in c . r o l e s
28 }

1 // (b) OO style specification
2 module OO
3
4 open Cnc
5
6 a b s t r a c t s i g Ca l l extends Port {}
7 a b s t r a c t s i g Procedure extends Port {}
8 a b s t r a c t s i g Provide extends Role {}
9 a b s t r a c t s i g Request extends Role {}

10 a b s t r a c t s i g Object extends Component{
11 c a l l s : s e t Call ,
12 procedures : s e t Procedure
13 }{
14 p o r t s = c a l l s + procedures
15 }
16 a b s t r a c t s i g p r o c e d u r e C a l l extends Connector {}{
17 one Provide & r o l e s
18 one Request & r o l e s
19 r o l e s = Provide + Request
20 }
21 f a c t {
22 a l l port : C a l l | port [attachments] . ran in Request

&& l one port [attachments] . ran
23 a l l port : Procedure | port [attachments] . ran in

Provide
24 a l l provideRole : Provide | lo ne System . attachments [

provideRole]
25 }

Listing 5. Part of (a) the component-and-connector (Cnc) and (b) object-oriented (OO) styles described
in Alloy.

it by comparing it to the meta-model of Fig. 3a. Each meta-element tagged with the Model stereotype
in the SCC metamodel has a corresponding Alloy signature definition, except for ApplicationDescription
whose instances denoting specific application models are mapped to separate Alloy modules. In particular,
three Alloy signatures (lines 3–12) represent basic elements of SCC application type, i.e. Actuator, Sensor
and Controller. Recall from Section 3.3, the elements tagged with Connection in the SCC metamodel,
i.e., Actuators and Sensors in our running example (cf. Fig 3a), represent as signature fields in the Alloy
representation (lines 7–8). That is, each of such meta-elements has a corresponding field declaration within
the definition of the signature relevant to the Connection source, here the Controller signature. The Alloy
module further defines two abstract signatures of dispatch_protocol and frequency, which are used in defining
the specific properties of Controller elements.

We describe later in section 4.4 that the automatically generated Alloy modules representing application
models explicitly import such application type Alloy modules, e.g., SCC module of Listing 4.

4.2. Architectural style: II

Architectural styles systematize successful architectural design practices in terms of constraints on architec-
tural elements and their composition into systems [SG96]. One can consider an architectural style as a domain
specific language (DSL), or more specifically, a DSL embedded in the Alloy language, where an architectural
model is defined in terms of elements within that language. Indeed, such tiny domain specific languages
provide specialized constructs for a particular domain for which the DSL was explicitly designed—here,
style-specific architecture synthesis—and eschews irrelevant features.

In some cases it is helpful to model one architectural style as inheriting rules from another. Here, we
specify the II style as an extension of more generic styles. An implicit invocation object (IIObject) is an
Object that provides both a collection of interfaces (as with Object) and a set of events. Procedures may also
be called in the usual way. So, an IIObject extends the definition of an Object. It can, in addition, register
some of its procedures with events of the system; so those procedures will be invoked when the events are
announced.

Listing 5 partially shows Alloy representations of (a) the component-and-connector (Cnc) style, adopted
from Wong et al. [WSWS08], and (b) the object oriented (OO) style that itself extends the Cnc style. The

12 H. Bagheri and K. Sullivan

1 module I I
2
3 open OO
4
5 a b s t r a c t s i g Publ i sh extends Role {}
6 a b s t r a c t s i g Subscr ibe extends Role {}
7 a b s t r a c t s i g PublishEvent extends Port {}{
8 one o : I I O b j e c t | t h i s in o . p o r t s
9 a l l port : PublishEvent | attachments . port . ran in Publ ish

10 }
11 a b s t r a c t s i g Subscr ibeEvent extends Port {}{
12 one o : I I O b j e c t | t h i s in o . p o r t s
13 a l l port : Subscr ibeEvent | attachments . port . ran in Subscr ibe
14 }
15 a b s t r a c t s i g I I O b j e c t extends Object {}{
16 some PublishEvent & p o r t s
17 }
18 a b s t r a c t s i g EventBus extends Connector {}{
19 r o l e s in Publ ish + Subscr ibe
20 }
21
22 pred PublishAnEvent (s : System , s ’ : System , pub : Component , conn : EventBus , port : PublishEvent) {
23 some r : Publ i sh |
24 some port & pub . p o r t s and r in conn . r o l e s and attached [s , s ’ , r , port]
25 }
26
27 pred SubscribeToEvent (s : System , s ’ : System , comp : Component , conn : EventBus , port : Subscr ibeEvent) {
28 some r : Subscr ibe |
29 some port & comp . p o r t s and r in conn . r o l e s and attached [s , s ’ , r , port]
30 }

Listing 6. Part of II style described in Alloy.

Cnc specification includes 5 top-level signatures: System, Component, Connector, Port, and Role. A System
contains two sets of components and connectors. The attachments field then specifies connections between
different components and connectors under the system configuration, where a connector Role is attached to
a component Port (lines 3–7). Each component represents a system’s computation entity, and contains a set
of ports as its interfaces to communicate with other components. It may also handle an element from the
application model (style independent). The keyword lone indicates that the handle element is optional. A
connector is similarly specified, yet contains a set of roles, used to describe a certain type of communication.

An Object (Listing 5b, lines 10–15), that extends the Component signature, includes two sets of procedures
and calls that collectively define its ports. A ProcedureCall is defined as a specific type of Connector (lines
16–20), and contains two roles: Provide and Request. Each Call port of an Object connects to at most one
Request role of a ProcedureCall connector (line 22). A Provide role of the connector is connected to at most
one Procedure port of an Object whose procedure will be called (lines 23–24).

Listing 6 (eliding details) describes the II style. The II Alloy module specifies six signatures: Publish,
Subscribe, PublishEvent, SubscribeEvent, IIObject and EventBus. IIObject, a component extension, has Publi-
shEvent and SubscribeEvent as its ports. EventBus is further a special kind of connector—explicitly extending
its definition—and has two roles, i.e. Publish and Subscribe.

The Alloy dot operator denotes a relational join. In expressions represented in lines 9 and 13, the attach-
ments is a relation of type System × Role × Port (cf. Listing 5, line 6). Therefore, the attachments.port
relation is from System to Role. The function ran, defined in the Alloy module util/relation, returns the
range of a binary relation. The “in” operator furthermore declares the subset relation. As such, the invariant
under consideration specifies that each PublishEvent port of an IIObject should be attached to a role of type
Publish, and each SubscribeEvent port of an IIObject, in a similar way, should be connected to a Subscribe
role of an EventBus.

The next predicate, i.e. PublishAnEvent (lines 22–25) ensures a connection between a PublishEvent port
of a component, given as an input parameter, and a Publish role of the given EventBus connector. Similarly,
the SubscribeToEvent predicate (lines 27–30) ensures a connection between a SubscribeEvent port of a
component, again given as an input parameter, and a Subscribe role of the given EventBus connector.

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 13

1 module SCC_II
2
3 open SCC
4 open I I
5
6 pred mapping () {
7 a l l n : needHandle | one o : I I O b j e c t | o . handle = n
8
9 a l l a : Actuator | one port : Port |

10 (port in (a . ~ handle . p o r t s & Procedure)) | |
11 (port in (a . ~ handle . p o r t s & Subscr ibeEvent))
12
13 a l l s : Sensor | one port : Port |
14 (port in (s . ~ handle . p o r t s & Procedure)) | |
15 (port in (s . ~ handle . p o r t s & PublishEvent))
16
17 # (C o n t r o l l e r . ~ handle . p o r t s & Subscr ibeEvent) =
18 # (Sensor . ~ handle . p o r t s & PublishEvent)
19
20 (#Subscr ibeEvent >0) =>
21 # (C o n t r o l l e r . ~ handle . p o r t s & PublishEvent) = 1
22 (#Procedure >0) =>
23 # (C o n t r o l l e r . ~ handle . p o r t s & Ca l l) = 1
24
25 a l l port : Procedure | one c o n e c t o r : p ro c e d u r e C a l l |
26 port [attachments] . ran = c o n e c t o r . r o l e s & Provide
27
28 C o n t r o l l e r . ~ handle . c a l l [attachments] . ran . connector =
29 Actuator . ~ handle . procedure [attachments] . ran . connector
30 + Sensor . ~ handle . procedure [attachments] . ran . connector
31
32 (C o n t r o l l e r . ~ handle . p o r t s &
33 Subscr ibeEvent) [attachments] . ran . ~ r o l e s=
34 (Sensor . ~ handle . p o r t s &
35 PublishEvent) [attachments] . ran . ~ r o l e s
36 . . .
37 }

Listing 7. Part of the mapping predicate for the pair of SCC application type and II architectural style.

4.3. Architectural Map: (SCC,II)

The architectural mapping process takes as inputs the abstract application model (transformed directly from
the concrete model to the Alloy module), an Alloy module specifying the application type (meta-model), an
architectural style Alloy module that specifies the constraints to which the computed results conform, and the
architectural mapping Alloy predicates that define relationships required to hold between the application
model and computed architectural models. Each mapping predicate for the given application type and
architectural style is responsible for confirming that the satisfying solutions refine the given application
model in conformance with the given style.

Listing 7 shows such a predicate for the SCC application type and the implicit invocation architectural
style. At the top, the specification imports the Alloy modules for the SCC application type and implicit
invocation architectural style (depicted in Listings 4 and 6, respectively). The mapping predicate then, in
line 7, states that for each sensor, actuator and controller, declared as subtype of the needHandle abstract
Signature, there is an IIObject that handles it. Expressions in lines 9–11, by using the Alloy inverse relation
operator ∼, state that each Actuator’s IIObject has a port of type SubscribeEvent or Procedure to be called
implicitly or explicitly. Likewise, each Sensor’s IIObject has a port of type PublishEvent or Procedure. The
number of SubscribeEvent ports of the Controller’s IIObject equals to the number of PublishEvent ports of
the Sensors’ IIObjects, as mentioned in lines 17–18. So, each SubscribeEvent port of the Controller could
be connected to a Sensor’s PublishEvent port to be called implicitly. In addition, the specification, in lines
20–23, states that the Controller’s IIObject has at most one PublishEvent port and one Call port so that
the procedures of Actuators’ IIObjects could be called explicitly or could register to be invoked when the
PublishEvent port of the Controller’s IIObject announces an event.

The II architectural style provides two ways of invoking methods: procedure call and implicit invocation.
For the purpose of the former method, lines 25–30 state that for each Procedure port, there is a ProcedureCall

14 H. Bagheri and K. Sullivan

Fig. 4. Lunar-Lander application model in our GME modeling Environment.

connector connected to it, and the Call port of the Controller’s IIObject is connected to the Procedure port of
the IIObjects handling Sensors and Actuators via a connector of type ProcedureCall. For an implicit invoca-
tion, the SubscribeEvent ports of the controller’s IIObject are connected to the PublishEvent ports of Sensors’
IIObjects via an EventBus connector, as mentioned in lines 32–35. In a similar way, the SubscribeEvent ports
of the Actuators’ IIObjects are connected to the PublishEvent port of the Controller’s IIObject through an
EventBus connector.

4.4. Application Model: Lunar Lander in SCC application type

In their textbook [TMD09], Taylor et al. describe the informal mapping of a lunar lander application to
architectures in a range of architectural styles. In this application, FlightControl maintains the state of a
spacecraft based on the information provided by various sensors: Altimeter, Gyroscope, Fuel level indicator
and the engine control switch. After processing control laws and computing values, FlightControl provides
them for various actuators: Descent engine controller, Attitude control thruster and Display. Taylor et al.
describe the lunar lander as an instance of a sense−compute−control application. The notion of application
type is implicit in their account. We make it explicit and formal in our theory. Figure 4 shows the lunar
lander’s application description modeled within GME using the generated modeling environment for our
SCC meta-model. What is also shown in the figure is a screenshot of the Monarch architecture-synthesizer
environment and how the synthesis process is started.

Listing 8 illustrates the Alloy representation of the lunar lander application model generated directly
from its concrete model by Monarch Interpreter developed for the SCC meta-model (cf. Section 3.3). A
synthesized Alloy module contains a signature definition for each element of type Model in the concrete
model as well as a set of facts corresponding to the properties of those elements. More specifically, it starts
by synthesizing the module name representing the name of the instance of the ApplicationDescription class
within the concrete model. It then imports the Alloy specification module(s) for application type(s). For
each instance of Sensor, Actuator, and Controller classes in a concrete model, it synthesizes a signature

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 15

1 module LunarLander_SCC
2
3 open SCC
4
5 one s i g c o n t r o l l e r _ c o d e extends f i l e A d d r e s s {}
6 one s i g Gyro extends Sensor {}
7 one s i g Alt imeter extends Sensor {}
8 one s i g FuelLeve l extends Sensor {}
9 one s i g EngineControlSwitch extends Sensor {}

10 one s i g Display extends Actuator {}
11 one s i g DescentEngContro l ler extends Actuator {}
12 one s i g Att i tudeContro lThruster extends Actuator {}
13 one s i g F l i g h t C o n t r o l extends C o n t r o l l e r {}{
14 s e n s o r s = FuelLeve l + EngineControlSwitch + Gyro + Alt imeter
15 a c t u a t o r s = DescentEngContro l ler + Display + Att i tudeContro lThruster
16 c o n t r o l l e r _ d i s p a t c h _ s t a t e = p e r i o d i c
17 f requency_state = f a s t
18 program = c o n t r o l l e r _ c o d e
19 }

Listing 8. Lunar Lander application model transformed automatically from its concrete model (cf. Fig. 4)
into the Alloy language.

definition that represents the inheritance of a concrete element from its corresponding abstract class. The
element’s properties (if any) are also specified as Alloy facts for the corresponding signature of that element,
e.g. FightControl has a periodic task with high frequency.

4.5. Satisfying Architectural Models

Using the Alloy Analyzer, Monarch computes architectural models, represented as satisfying solutions to the
constraints of a map applied to an application model. Alloy Analyzer guarantees that computed descriptions
conform to the given architectural style. The mapping predicates are responsible for ensuring that computed
architectural models refine given application models.

Mapping the SCC description of the Lunar Lander to the II architectural style yields a set of satisfying
solutions. Among them, for instance, Figure 5 depicts the internal structure of a result for the lunar lander
example. In this diagram, the architectural description has eight IIObjects. The FlightControl element along
with related sensors and actuators, inferred from the input specification, represents the Lunar Lander System.
Each IIObject handles an element. As a case in point, IIObject6 handles FuelLevel sensor and publishes a
notification of new value through PublishEvent1 that should be connected to an EventBus (connections are
omitted for the sake of readability). On the other hand, IIObject0, that handles FlightControl, subscribes
to input events through SubscribeEvents ports, and will be implicitly invoked. This allows it to update the
state of the spacecraft. This in turn causes Display, for example, to be invoked implicitly so that it refreshes
its display based on new data.

To make the outputs humanly readable and useful, the Alloy2ADL transformer converts the Alloy-
generated results, also available in an abstract XML-format (recall from Section 3.5), to a traditional archi-
tecture description language. Figure 6 represents one of the automatic computed instances of architecture
description models in ACME, transformed from the model shown in Figure 5. These architectural models
refine the Lunar Lander application description specified using the SCC application type, in conformance
with the fully formal definition of the implicit invocation architectural style. The result is a set of formally
derived architectural models for the given application in the selected architectural style.

According to the diagram, in this particular, arbitrarily selected case, the four top components, handling
sensors, are connected to FightControl through EventBus connectors, i.e., using implicit invocation. The
actuators components are also connected to the FlightControl through the EventBus4 connector.

The example illustrates the point that architectural styles, viewed as mappings to platforms, can be
one-to-N. In general, there are many possible architectures, consistent with a given style, for a given ap-
plication. This is mainly because style specifications to which application models were being mapped are
under-specified, and in turn their corresponding architectural maps leave a family of architectural spaces all
conforming to the target styles. Mappings to families of architectures could be useful in enabling optimizing
search for properties influenced by architecture but not constrained in the modeling stage. Alternatively,

16 H. Bagheri and K. Sullivan

Fig. 5. The internal structure of a result of mapping Lunar Lander application into the II style

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 17

Fig. 6. A computed instance of mapping SCC description of the Lunar Lander into the implicit invocation architectural style
in ACME.

one could strengthen the definition of the style or the application type and instance to limit the family of
conforming instances.

5. Evaluation

To evaluate our approach, we have designed and conducted a number of case studies following guidelines
from Kitchenham, Pickard and Pfleeger [KPP95]. Our evaluation addresses the following research questions:

RQ1. Does the approach enable formal, automatic synthesis of architectures from application descriptions
and choices of architectural styles for representative applications from the software architecture literature?

RQ2. What is the performance of our prototype tool implemented atop the SAT solving technology for the
considered applications?

To answer these questions, we use the Monarch apparatus we developed based on the synthesis approach
for carrying out the case studies.

5.1. Subject Systems

We synthesized architecture in a variety of styles for four subject systems.
KWIC. Our first experimental case is KWIC, long used in studying architectural styles and their prop-

erties [Par72]: “The KWIC [Key Word in Context] index system accepts an ordered set of lines, Any
line may be circularly shifted by repeatedly removing the first word and appending it at the end of the line.
The KWIC index system outputs a listing of all circular shifts of all lines in alphabetical order."

Lunar Lander. The Lunar Lander (LL) case study is adopted from Taylor et al’s textbook on software
architecture[TMD09]. The LL application description is discussed in the previous section.

MIDAS. Our third experimental subject is an alarm system of type sense-compute-control, called MI-
DAS [MSR+07]. This case study is inspired by Edwards et al. [ESM08]. They illustrated the structuring of
the MIDAS application [MSR+07] from a family of embedded applications at Bosch, in different architectural
styles, to assess the influence of architectural style on quality attributes.

EDS. Emergency Deployment System (EDS), adopted from Canavera et al. [CEM12], is designed for
the deployment and management of personnel in emergency response scenarios. This subject system is
representative of a class of component-based, distributed software systems, and has been deployed on more
than 100 computing nodes [CEM12]. Figure 7 depicts the EDS’s application model represented in the CF
application type along with the dependency relationships among its components.

18 H. Bagheri and K. Sullivan

Fig. 7. Emergency Deployment System’s application model.

5.2. Case Study Planning and Execution

We configured our tool by providing the input models. Specifically, we have developed formal specifications
for involved application types and architectural styles. We then formalized architectural maps, such as the
one shown in Listing 7, for these application types and architectural styles. For each experimental subject, we
then configured Monarch by providing their application models using our GME-based modeling environment.

To address the first research question, we apply the formally specified architectural maps to case stud-
ies from the architecture literature [GKN92, TMD09, Par72, SG96], and test the consistency of formally
generated results with the informal, manually derived architectures in the literature. To address the second
research question, we measure the computational time required for deriving architectural models.

5.3. Results

In this section, we report and interpret data from our case studies. Table 2 summarizes a set of case studies
formally replicating prominent earlier architectural studies from the literature. Each non-empty cell indicates
an architectural map that we have implemented for the given type-style pair, and a corresponding experiment
using the map. The entries in the table indicate the case studies from the literature to which we have applied
our maps, to test the consistency of our results with the informal, manually derived results in the literature.

We have developed maps for four application types and four architectural styles. The types are
composition-of-functions (CF), state-driven behavior (SD), sense-compute-control (SCC) and aspect-enabled
composition-of-functions(ACF). The styles are pipe-and-filter (PF), object-oriented (OO), implicit invocation
(II) and the C2 architectural style.

These case studies attempt to replicate previously reported informal architectural mappings. In the
following we first summarize the mapping results for the experiments, and then focus on the two experiments
where the informally and manually produced results documented in the literature are not consistent with
our formal and automated computations. That is, such architectural models do not properly refine the
application model in conformance with the given architectural style (cf. Definition 2).

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 19

Table 2. Maps defined and experiments performed. (Rows represent architectural styles; Columns represent application types.)

Comp. Fun. State-Driven SCC ACF

PnF KWIC, EDS KWIC

OO KWIC, EDS KWIC MIDAS, LL

II KWIC, EDS MIDAS, LL

C2 KWIC, EDS MIDAS, LL

(a) (b)

Fig. 8. Examples of computed results for two experiments: (a) (CF, P nF, KW IC) and (b) (SCC, II, MIDAS).

Figure 8a illustrates the computed result for the (CF, PnF, KWIC) experiment. The diagram, that
shows an intermediate representation of the generated architectural model, is accurate for the result that
Alloy computed, but we have edited it to omit some details for readability (ports of filters, and roles of pipes,
for example). In this diagram, DataSource, a specific type of Filter, handles the KWIC input function. Its
output port is connected to Pipe0. Filter1 handles the CS function. Its input and output ports are connected
to Pipe0 and Pipe1, respectively. Similarly, the other filters handle alph and output functions.

In the (CF, OO, KWIC) experiment, which is attempted to reproduce previous informal studies by
Parnas [Par72] and later studies by Shaw and Garlan [SG96], we map a CF description of KWIC to an
architectural description in the OO style. The (SD, OO, KWIC) experiment addresses the work of Garlan,
Kaiser & Notkin [GKN92], who explored, among other things, how changing the KWIC application from
batch-sequential to interactive might demand corresponding changes in architectural style. We note that
change can be seen as involving, at a more abstract level, a change in the type of application description,
and that this change is what really drives the need for a new architectural style. We employ state-driven
behavior as an application type for interactive application description.

Figure 8b represents one of the formally derived architectural models in ACME for the
(SCC, II, MIDAS) experiment. According to the model, among others, the FireAlarmAnalyzer compo-
nent subscribes to the events of FireAlarmSensor and will be implicitly invoked. This allows it to perform
the fire detection analysis, and in turn, causes the actuator component (FireAlarmActuator) to be invoked
implicitly. The results of our formal and automated computations are consistent with the informally and
manually produced results documented in the literature, except for two experiments of (SCC, OO, LL) and
(CF, C2, EDS).

The rest of this section reports on the execution and results of these two experiments. We elide discussion
of the others, as they do not add anything new. For the (SCC, OO, LL) experiment, we note that Taylor
et al., indicate that the application description of the lunar lander that they use in discussing the OO
architectural style is not exactly the same as the one illustrated in the OO style section of the book.

We also applied similar experiments to the EDS system, formally mapping its application description (cf.

20 H. Bagheri and K. Sullivan

Fig. 9. Two versions of the EDS architectures: (a) the manually-developed version adopted from [EM12]; (b) formally-derived
one computed through mapping of the component-dependency diagram (Figure 7) of the EDS into the C2 style.

Figure 7) into architectural models in different styles. In [CEM12], Canavera et al. provide the component-
dependency diagram of the EDS system. The same authors, later, provide the EDS architecture in the C2
style [EM12], which in turn enables us to check consistency of the formally synthesized architecture with its
manually-developed counterpart. Figures 9a and b depict the manually and formally-derived architectures
for the EDS system, respectively.

Manual Inspection reveals inconsistencies between component-dependency diagram—from which we for-
mally derived architecture—and the manually-developed architecture in C2 style. For example, in the
component-dependency diagram, the WeatherAnalyzer component depends, among other things, on the
map component, while in the C2 style architecture it is not connected to an appropriate connector that
supports this component dependency. According to the C2 style specification [TMA+95], a component can
send request messages only through its top interfaces, and notifications can only be sent through the bot-
tom interfaces. Similarly, the ResourceManager component depends on the ResourceMonitor component,
as shown in the component-dependency diagram of Figure 7, but the former component could not access
the latter through its top interface, preventing it from sending request messages to the ResourceMonitor
component.

Our discovery of such inconsistencies provides an example of how our formal synthesis technique can
help designers in an error-prone task of developing architectures that refine the application model while
complying with the rules implied by the target architectural style. A complete list of these case studies,
including complete versions of Alloy models, are available for download [Mon15].

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 21

Table 3. Statistical results for architecture synthesis across subject systems.

Subj. Sys. Arch. Style. #Vars #Clauses Synthesis Time (Seconds)
(thousands) (thousands) SAT Construction SAT Solving

MiniSAT SAT4J MiniSAT SAT4J

KWIC
PnF 73.086 136.306 1.218 0.191 0.81 0.150
OO 39.034 93.573 0.174 0.111 0.42 0.090
II 70.174 127.263 0.554 0.209 0.126 0.201
C2 87.458 153.775 1.172 0.400 0.132 0.408

Lunar Lander
OO 196.087 600.119 0.875 0.476 1.219 1.867
II 270.051 849.376 2.943 2.285 3.050 5.091
C2 204.875 371.220 0.761 0.532 0.150 1.103

MIDAS
OO 222.648 696.725 0.952 0.526 0.486 2.529
II 306.214 982.545 3.609 2.837 4.274 9.003
C2 212.984 387.000 0.821 0.535 0.275 2.094

EDS
PnF 660.615 1372.933 3.412 2.636 7.257 21.361
OO 526.187 1681.527 3.223 2.167 13.745 17.686
II 1091.963 1987.840 3.623 3.343 3.462 147.372
C2 823.166 1549.486 4.969 3.420 7.711 6.085

1 module performanceBenchmark
2
3 open CF as AppType
4 open C2 as ArchStyle
5 open CF_C2 as Map
6
7 pred show{
8 mapping []
9 }

10
11 run show f o r 40 but 1 System

Listing 9. A performance benchmark predicate for the CF and C2 architectural map.

5.4. Performance

The next evaluation criterion is the performance benchmark of the architecture synthesis technology based
on underlying SAT solver engines. We used a PC with an Intel Core i7 2.4 GHz CPU processor and 4 GB
of main memory, and leveraged MiniSat and SAT4J as SAT solvers during the experiments. Table 3 shows
statistical results for architecture synthesis across experiments targeting various architectural styles. Recall
from Section 3, synthesizing architectural models using Monarch framework consists of four steps: (1) The
application model is automatically transformed into an Alloy model from its concrete representation in the
GME modeling environment (cf. section 3.3); (2) the Alloy model is automatically transformed into 3-SAT
clauses using the Alloy Analyzer; (3) A SAT solver explores the space to find satisfying models; (4) The
Alloy to ADL transformer automatically translates satisfying models to architectures in standard ADLs.
Table 3 represents computational time involved in steps 2 and 3; the front- and back-end transformation
time is trivial, thus omitted.

The # Vars and # Clauses columns delineate the number of variables and clauses generated in the
boolean formula for the SAT-solver. These measured numbers for each experiment are representative of the
size of the corresponding SAT-based synthesis problem. The next two columns, SAT Construction and SAT
Solving, then present the computational time involved in steps 2 and 3 of our approach, respectively. The
computation time is given for both MiniSAT [Min15] and SAT4J [SAT15] solvers.

The experimental data shows that both the choice of SAT solver and changes in a specification, e.g.,
simply swapping between architectural maps for the same application, have an impact on the synthesis time.
It is also known that other parameters, such as the order of variables, have an influence on the performance
of SAT solvers. However, regardless of the SAT solver employed, the results show that Monarch is able to
formally generate architectures for all subject systems in less than 3 minutes.

22 H. Bagheri and K. Sullivan

Fig. 10. Average architecture synthesis time over an increasing bound (Scope) for top-level element types.

We then evaluate scalability of Monarch’s synthesis over the architectural mappings. Specifically, we
measure how variation in size of an application affects the computational time required for deriving valid
architectural models. As already mentioned, the synthesis relies on constraint solving over finite domains,
and so it must be given an explicit scope to bound the number of elements of each top signature, such as
components, connectors and ports. To instruct the analyzer to generate valid instances with specific number
of elements, we formulate performance benchmark Alloy modules for various architectural maps, and run
them several times within a scope increasing in each iteration. Listing 9 shows a performance benchmark
predicate for the (CF,C2) architectural map. The but keyword specifies a separate bound for a signature
following the keyword, here System. So it forces an upper bound of 40 elements for each top signature, but
exactly within one System, for generated models.

Figure 10 shows the average synthesis time as the maximum number of elements varies from 2 to 40,
with MiniSAT as the SAT solver. The results show that the synthesis time increases with increasing bound
as expected. In the worst case, this increase could be exponential. While the experimental results confirm
that the proposed technology based on a bounded model finder is feasible, given the apparent trend of
advancements in SAT solvers we were witnessing in recent years, we expect that performance of synthesis
techniques that leverages underlying off-the-shelf SAT solvers will likewise continue to improve.

6. Observations and lessons learned

This work provides evidence in support of the applicability of a specification-driven MDD in formally precise
development of stylized software architectures from high-level application structures. It further enables the
reuse of formal specifications for synthesis, including previously published specifications of architectural
styles as well as mapping rules (cf. section 5). Reusing published style specifications is also important in
validating consistency of synthesized architectures with contemporary formal accounts of architectural style.
This work, thus, incorporates benefits of formal specifications of architectural styles to reliably synthesize
style-specific architectural models.

6.1. Analyzable specification language

The main motivations for the use of Alloy as the back-end synthesis engine in this work are the gains
in expressiveness and abstraction together with its automatic analysis capabilities favoring its adoption in
implementation of our approach. More precisely, its simple set theoretic language was sufficiently expressive
for formally defining syntax and semantics of languages for application and architecture modeling [KM08].
We find it very helpful to formalize both modeling languages, such as AIML (cf. section 3), and model
instances. Furthermore, its ability to compute solutions that satisfy complex sets of constraints is useful as
an automated synthesis mechanism.

Its effective module mechanism also facilitates reusing specifications and constraints in different contexts,
and allows us to split the overall synthesis model among several tractable modules. Architectural maps and

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 23

styles are strictly separated and modularized in different specifications, which further facilitates reusability
of such specifications. Specifically, this paper shows the promise of paying a one-time cost to formally specify
them in an analyzable specification language to enable synthesis of stylized, application-specific software
architecture.

Finally, we use the simulation capability of the Alloy Analyzer to compute application model instances,
represented as satisfying solutions to application specifications automatically generated by our GME inter-
preters (cf. Section 3.3). This shows the validity of such transformed models, confirming that the application
specifications are self-consistent, mutually compatible and consistent with the application type specification
modeled in a separate module.

6.2. Architectural map: a means of reconciliation

Our experiments show that architectural maps can be formalized and implemented as executable specifica-
tions. We have used this technology to recapitulate studies of architectural style and choice from the research
literature. The results of our formal and automated computations are either consistent with manually pro-
duced results documented in the literature, or revealed certain inconsistencies.

A particularly important idea is that these reusable maps can be subject to one-time rigorous analysis
to show that they properly preserve stated application properties. This use of validated maps is the key to
enabling designers to work at the application level with confidence that architectures will preserve stated
application properties.

This work also suggests that the concept of application type is important. The concept of application
type leads naturally to an abstract, user-friendly approach to application modeling. We have demonstrated
an approach taking fully formal specifications of application models and architectural styles as inputs and
producing software architectures as outputs within the framework of MDD.

6.3. Supports for extension

The proposed framework tool suite supports reasonable extension for new types and mappings. To that
end, one specifies an application type and its corresponding GME meta-model, as well as the architectural
mapping predicates for relevant styles, so that by swapping between implementations of architectural maps,
one can produce architectures in a range of styles for a given system from a high-level application description.
This work appears to support the idea that being able to treat architectural style as a separate variable is a
plausible aspiration. With automated architectural mapping, the software architect may also readily examine
the feasibility of various architectural alternatives. The ease of examining more architectural alternatives will
also increase the quality of software architecture. The more various alternatives are studied, the more likely
it is that the most satisfying option will be found.

6.4. Multiple specification languages

To date the work has mainly considered structural refinements, and system behavior is addressed only to
the extent that constraints on behavior are implicit or explicit in the specifications, e.g. of the employed
architectural styles. As Alloy’s emphasis is on specification and automatic analysis of structural properties
of systems, it may not be the best option to address behavioral aspects of systems. We envisage that in
an ultimate implementation of this technology, one uses several specification languages and corresponding
synthesis technologies handling different aspects of the system. Utilizing heterogeneous modeling notations,
however, calls for a modularization mechanism so that different models can be changed independently within
certain constraints without breaking the whole system. Important steps in this direction are provided by the
work on weaving aspect mechanisms in multi-language aspect-oriented frameworks [KL07].

Overall, the intellectual contribution of this work is the insight that software architectural styles can
serve as analogs to choices of platforms in model-driven development. This idea then leads naturally to a
new kind of tool: one that allows for modeling of applications independent of subsequent architectural style
choices, and for the automated mapping of models to architectures once such style choices are made. Whereas
traditional MDD work seeks to replace the programmer, this work points the way to a future in which MDD
replaces at least some of the work of the software architect.

24 H. Bagheri and K. Sullivan

7. Related Work

We can identify in the literature four categories of research that are related to ours: research on formalization
of architectural styles, architecture optimization research efforts, formal approaches to model transformation
with special focus on software architecture, and approaches to separating application and architectural
concerns.

Formalization of Architectural Styles. The notion of architectural styles has been present since the
identification of software architecture as a discipline within software engineering [BCK03, PW92, SG96].
A variety of approaches have been proposed to model and analyze architectural styles. In this context,
Alloy has been applied by numerous researchers to formal work in software architecture [GMK02, BS12,
KG10, WSKW06, BS11, WSWS08]. Kelsen and Ma [KM08], comparing the traditional methods of formal
specifications for modeling languages with an approach based on the Alloy language, argue that because of
both lower notational complexity and automatic analyzability, Alloy provides more convenient facilities for
defining the formal semantics of modeling languages. Wong et al. [WSWS08] proposed an approach based on
the Alloy language for modeling and verification of complex systems that exploit multi-style structures. Our
work differs in its focus on separating application description from style choices. Furthermore, we use Alloy
not only to check the consistency of a given description against the rules of a style, but also to synthesize
spaces of architectural models consistent with given styles. More recently, Maoz et al. [MRR13] developed
a model merging approach for architecture synthesis. Given a set of component-and-connector views, each
one essentially representing a partial model of the system, their approach, using Alloy, generates a satisfying
component-and-connector model. We share with this approach the emphasis on leveraging constraint solving
for architecture synthesis. However, our work differs fundamentally in its emphasis on the generation of
stylized architectural models from architecture-independent application models.

Along the same line, Kim and Garlan [KG10] proposed an approach to translate architectural styles
described formally in an architecture description language to the Alloy language, and in turn, to verify
properties implied by architectural styles. Their focus is on transforming description of architectural styles
to a relational model that can be automatically checked, whereas we concentrate on extending the concept
of the software architectural style to include mappings from abstract problem descriptions to target software
architectures.

Architecture Optimization. The other relevant line of research focuses on architecture optimization.
Bondarev et al. [BCd07] proposed a framework, called DeepCompass, that analyzes architectural alternatives
in dimensions of performance and cost to find Pareto-optimal candidates. Their approach, however, requires
a manual specification of architectural alternatives, and provides no support for architecture synthesis.

Along the same line, Aleti et al. [ABGM09] developed ArcheOpterix for optimizing an embedded sys-
tem’s architecture. They applied an evolutionary algorithm to optimize architectures modeled in the AADL
language with special focus on component deployment problems. Martens et al. [MKBR10] also developed
PerOpteryx to automatically improve an initial software architectural model through searching for Pareto-
optimal solution candidates. They applied a genetic algorithm to the Palladio Component Models of given
software architectures.

Like many other research work we studied, these research efforts do not support architectural style as a
co-domain for architecture synthesis. However, we believe this line of research is complementary to ours in
that one can apply an optimizing search step to the synthesized architectural space to find Pareto-optimal
solutions.

Architectural Transformation. A number of researchers have proposed formal approaches that can
model architecture transformation [BG08, BS13, AK02, GBSC09, Gru05]. Among others, Ambriola and
Kmiecik [AK02], described how preliminary architectural sketches can be incrementally refined into more
mature architectural descriptions by the use of architectural transformations that add, remove, and move
architectural elements and relationships. Their work focuses on horizontal architectural changes over time:
from one architectural description to another. Our work by contrast focuses on vertical mappings: how
architectural style choices map structured application descriptions to architectural descriptions.

Tamzalit and Mens [TM10] proposed an approach for the evolution of an architecture description under
the guidance of architectural style, rooted in the idea that the evolution follows certain common patterns,
which they identified as architectural evolution patterns. To this extent, they rely on a formalism based
on graph transformation. This work shares with ours an emphasis on applying architectural styles, but our
work differs in its focus on formal mappings of architecture-independent application models to a diversity of
realized architectural models.

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 25

The other similar work is the recent work of Garlan et al. [GBSC09] on the evolution of one fully developed
architectural description with respect to architectural style. The premise of this work is that it is sometimes
necessary to change an architecture developed in one architectural style into a related architecture in another
style. The approach they proposed involves incremental steps between models, each step being affected by
the application of a well defined incremental architectural operator. The key ideas that remain implicit
in Garlan et al., and which are the central focuses of our work, are (1) we are dealing with one or more
architecture-independent application models, (2) architectural models are obtained from application models
by way of architectural maps, and (3) making architectural maps explicit.

Finally, these research efforts both focus on horizontal architectural evolution, whereas ours is on a
formal study of the diversity of possible mappings from structured application specifications to architectural
descriptions. That is, beyond just evolutionary transitions between pairs of architectural models, we focus on
architectural style as a separate variable in design. Research efforts on horizontal and vertical mappings are
complementary, in that success in understanding architectural style as a separate variable could, in practice,
help to explain and perhaps automate horizontal evolution by treating the starting and ending points of
horizontal evolution as images of a given application under different styles.

Separation of Application and Architecture Concerns. Researchers and practitioners have long
separated application descriptions from choices of architectural form. Parnas’s 1972 paper make this distinc-
tion [Par72], showing how one application, key word in context (KWIC), could be mapped to two distinct
architectures: one based on a functional decomposition, and one on information hiding. In analogous work
published in 2009, Taylor et al. [TMD09] described a landing control system and showed how it could be
realized in a wide variety of architectural styles. Deline’s work on Flexible Packaging (FP) [DeL99] is also
related to our work. The basic idea was that a given function can be packaged up in different ways to work
in systems with different architectural styles. He furthermore assumed that the stylistic differences mostly
involved the ways in which a core function implementation would interact with its surrounding environment,
or packaging. The FP method thus separates the interactive aspects of a component (packaging), from its
core function (the ware).

In these research efforts, however, the mapping process has remained implicit, informal, and not itself
subject to rigorous investigation or explicit representation and analysis. In most work to date, the focus is
on ex post analysis of the relevant properties of the resulting architectures (e.g., performance). Key applica-
tion properties are inadequately addressed until it is too late. Our work aims to move consideration of all
essential application properties to the application description level, and to precisely determine a priori the
checkable conditions under which particular architectural mappings are allowed. This change in perspective
is significant.

8. Conclusion

This paper makes several contributions. First, we identified the treatment of architectural style as a separate
variable as a key problem area and goal for software engineering. Second, we developed the concepts of
application type and architectural map as key constructs needed, in addition to that of architectural style,
to achieve such a separation of concerns. We showed that this separation of concerns gives rise to a natural
form of model-driven development for synthesis of architectural models from abstract application descriptions
and architectural styles expressed in Alloy. Third, we presented experimental data and a framework that
support our claims of feasibility and the proposition that these ideas are worth pursuing.

References
[ABGM09] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya. Archeopterix: An extendable tool for architecture optimiza-

tion of aadl models. In Proceedings of the International Workshop on Model-Based Methodologies for Pervasive
and Embedded Software (MOMPES), pages 61–71, February 2009.

[AK02] Vincenzo Ambriola and Alina Kmiecik. Architectural transformations. In Proceedings of the 14th international
conference on Software engineering and knowledge engineering, pages 275–278, 2002.

[BCd07] E. Bondarev, M. R. V. Chaudron, and E. A. de Kock. Exploring performance trade-offs of a jpeg decoder using
the deepcompass framework. In Proceedings of WOSP’07, pages 153–163, February 2007.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-Wesley Professional, 2nd
edition, 2003.

26 H. Bagheri and K. Sullivan

[BG08] Antonio Bucchiarone and Juan P. Galeotti. Dynamic software architectures verification using DynAlloy. In
Proceedings 7th International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT
2008), 2008.

[BS10a] Hamid Bagheri and Kevin Sullivan. Architecture as an independent variable for Aspect-Oriented application
descriptions. In Abstract State Machines, Alloy, B and Z (ABZ 2010), (LNCS 5977), Canada, 2010.

[BSS10] Hamid Bagheri, Yuanyuan Song, and Kevin Sullivan. Architectural style as an independent variable. In Proceedings
of the 25th IEEE/ACM International Conference on Automated Software Engineering (ASE’10), pages 159–162,
2010.

[BS10b] Hamid Bagheri and Kevin Sullivan. Monarch: Model-based Development of Software Architectures. In Proceedings
of the 13th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS
2010), Lecture Notes in Computer Science 6395, pages 376–390, 2010.

[BS11] Hamid Bagheri and Kevin Sullivan. A Formal Approach for Incorporating Architectural Tactics into the Soft-
ware Architecture. In Proceedings of the 23rd International Conference on Software Engineering and Knowledge
Engineering, pages 770–775, 2011.

[BS12] Hamid Bagheri and Kevin Sullivan. Pol: Specification-Driven Synthesis of Architectural Code Frameworks for
Platform-Based Applications. In Proceedings Proceedings of the 11th ACM SIGPLAN International Conference
on Generative Programming and Component Engineering (GPCE’12), pages 93–102, 2012.

[BS13] Hamid Bagheri and Kevin Sullivan. Bottom-up Model-driven Development. In Proceedings of the International
Conference on Software Engineering (ICSE’13), pages 1221–1224, 2013.

[CEM12] Kyle R. Canavera, Naeem Esfahani, and Sam Malek. Mining the execution history of a software system to infer the
best time for its adaptation. In Proceedings of the International Symp. on the Foundations of Software Engineering,
pages 1–11, November 2012.

[DeL99] Robert DeLine. Avoiding packaging mismatch with flexible packaging. In Proceedings of the 21st international
conference on Software engineering, pages 97–106, 1999.

[DGJN98] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Towards a formal treatment of implicit invocation. Formal Aspects
of Computing, 10:193–213, 1998.

[EM12] Naeem Esfahani and Sam Malek. Utilizing architectural styles to enhance the adaptation support of middleware
platforms. Inf. Softw. Technol., 54(7):786–801, July 2012.

[ESM08] George Edwards, Chiyoung Seo, and Nenad Medvidovic. Model interpreter frameworks: A foundation for the
analysis of domain-specific software architectures. Journal of Universal Computer Science, 14(8):1182–1206, 2008.

[Fre] Freemarker java template engine. http://freemarker.org/.
[GBSC09] David Garlan, Jeffrey M. Barnes, Bradley Schmerl, and Orieta Celiku. Evolution styles: Foundations and tool sup-

port for software architecture evolution. In Joint 8th Working International Conference on Software Architecture
and 3rd European Conference on Software Architecture, Cambridge, UK, September 2009.

[GCB+06] Alessandro Garcia, Christina Chavez, Thais Batista, Claudio Santanna, Uira Kulesza, Awais Rashid, and Carlos
Lucena. On the modular representation of architectural aspects. In Proceedings of the European Workshop on
Software Architecture, pages 82—97, Nantes, France, 2006. Lecture Notes in Computer Science.

[GKN92] D. Garlan, G. Kaiser, and D. Notkin. Using tool abstraction to compose systems. Computer, 25(6):30–38, June
1992.

[GMK02] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising software architectures for distributed systems. In
Proceedings of the first workshop on Self-healing systems, pages 33–38, 2002.

[GMW00] David Garlan, Robert T. Monroe, and David Wile. Acme: architectural description of component-based systems.
In Foundations of component-based systems, pages 47–67. 2000.

[Gru05] L. Grunske. Formalizing architectural refactorings as graph transformation systems. In Proceedings of the Sixth
International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing and First ACIS International Workshop on Self-Assembling Wireless Networks SNPD/SAWN’05,
pages 324–329, 2005.

[Jac02] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(2):256–290, 2002.

[Jac12] Daniel Jackson. Software Abstractions, 2nd ed. MIT Press, 2012.
[KG10] Jung Soo Kim and David Garlan. Analyzing architectural styles. Journal of Systems and Software, 83(7):1216–

1235, 2010.
[KL07] Sergei Kojarski and David H. Lorenz. Identifying feature interactions in multi-language aspect-oriented frameworks.

In Proceedings of the 29th international conference on Software Engineering, ICSE ’07, pages 147–157, Washington,
DC, USA, 2007. IEEE Computer Society.

[KM08] Pierre Kelsen and Qin Ma. A lightweight approach for defining the formal semantics of a modeling language.
In Proceedings of the 11th international conference on Model Driven Engineering Languages and Systems, pages
690–704, 2008.

[KPP95] Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger. Case studies for method and tool evaluation.
IEEE Softw., 12(4):52–62, 1995.

[LBM+01] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg Nordstrom, Jonathan Sprinkle, and Gábor Karsai.
Composing Domain-Specific design environments. Computer, 34(11):44–51, 2001.

[Met10] MetaEdit+. http://www.metacase.com/.
[Min15] MiniSat. Minisat website, 2015.
[MKBR10] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner. Automatically improve software models for performance,

reliability and cost using genetic algorithms. In Proceedings of the 1st Int. Conf. on Performance Engineering,
pages 105–116, February 2010.

Model-Driven Synthesis of Formally Precise, Stylized Software Architectures 27

[MM03] J. Mukerji and J. Miller. MDA guide version 1.0.1. omg/2003-06-01. Technical report, 2003.
[Mon15] Monarch tool suite. http://www.cs.virginia.edu/~hb2j/Downloads/Monarch-ToolSuite.zip.
[MRR13] S. Maoz, J. O. Ringert, , and B. Rumpe. Synthesis of component and connector models from crosscutting structural

views. In Proceedings of the European software engineering conference held jointly with the ACM SIGSOFT
international symposium on Foundations of software engineering (ESEC/FSE’13), pages 444–454, 2013.

[MSR+07] Sam Malek, Chiyoung Seo, Sharmila Ravula, Brad Petrus, and Nenad Medvidovic. Reconceptualizing a family of
heterogeneous embedded systems via explicit architectural support. In Proceedings of the International Conference
on Software Engineering, 2007.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for software architecture
description languages. IEEE Transactions on Software Engineering, 26(1):70–93, 2000.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communications of the ACM,
15:1053–1058, 1972.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40–52, 1992.

[SAT15] SAT4J. Sat4j website, 2015.
[Sch06] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39(2):25–31, 2006.
[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall,

1996.
[TM10] D. Tamzalit and T. Mens. Guiding architectural restructuring through architectural styles. In Proceedings of the

17th IEEE International Conference and Workshops on Engineering of Computer Based Systems, pages 69–78,
2010.

[TMA+95] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, Jr E. James Whitehead, and Jason E. Robbins.
A component- and message-based architectural style for GUI software. In Proceedings of the 17th international
conference on Software engineering, pages 295–304. ACM, 1995.

[TMD09] Richard N. Taylor, Nenad Medvidovic, and Eric Dashofy. Software Architecture: Foundations, Theory, and Prac-
tice. Wiley, 2009.

[Tor09] Emina Torlak. A Constraint Solver for Software Engineering: Finding Models and Cores of Large Relational
Specifications. PhD thesis, MIT, February 2009.

[WSKW06] Ian Warren, Jing Sun, Sanjev Krishnamohan, and Thiranjith Weerasinghe. An automated formal approach to
managing dynamic reconfiguration. In Proceedings of the 21st IEEE/ACM International Conference on Automated
Software Engineering, pages 37–46, 2006.

[WSNW07] Jules White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner. Introduction to the generic eclipse
modelling system. Eclipse Magazine, 2007(6):11–18, 2007.

[WSWS08] Stephen Wong, Jing Sun, Ian Warren, and Jun Sun. A scalable approach to multi-style architectural modeling and
verification. In Proceedings of the 13th IEEE International Conference on on Engineering of Complex Computer
Systems, pages 25–34. IEEE Computer Society, 2008.

