
 1

DVSST: A Dynamic Voltage Scaling Algorithm for Sporadic Tasks∗∗∗∗

Ala′ Qadi Steve Goddard
Computer Science & Engineering
University of Nebraska - Lincoln

Lincoln, NE 68588-0115
{ aqadi,goddard}@cse.unl.edu

Shane Farritor
 Mechanical Engineering

University of Nebraska - Lincoln
Lincoln, NE 68588-0656

{ sfarritor}@unl.edu

Technical Report TR-CSE-UNL-2003-2

May 2003

Abstract

Dynamic voltage scaling (DVS) algorithms save energy by scaling down the processor

frequency when the processor is not fully loaded. Many algorithms have been proposed for

periodic and aperiodic task models but none support the canonical sporadic task model. A DVS

algorithm, called DVSST, is presented that can be used with sporadic tasks in conjunction with

the preemptive EDF scheduling algorithm. The algorithm is proven to guarantee each task

meets its deadline while saving the maximum amount of energy possible with processor

frequency scaling when tasks execute with their worst-case execution times.

DVSST was implemented in the µC/OS-II real-time operating system for embedded

systems and its overhead was measured using a stand-alone Rabbit 2000 test board. Though

theoretically optimal, the actual power savings realized with DVSST is a function of the

sporadic task set and the processor’s DVS support. It is shown that the DVSST algorithm

achieves 83% of the theoretical power savings for a Robotic Highway Safety Marker real-time

application. The difference between the theoretical power savings and the actual power savings

is due to the limited number of frequency levels the Rabbit 2000 processor supports.

1. Introduction

Many embedded real-time systems consist of a battery operated microprocessor system with a

limited battery life. Some of these systems use rechargeable batteries (like cellular phones and robots)

while others use dry batteries. In both cases it is very important to maximize the battery life. Dynamic

∗This work is sponsored, in part, by grants form the National Science Foundation (CCR-0208619) and the National

Academy of Sciences Transportation Board—NCHRP IDEA program (Project #90).

 2

Voltage Scaling (DVS) aims at reducing the power consumption of the system by operating the processor

at a lower frequency and thus on a lower voltage.

In CMOS circuits the power consumed by a CMOS gate is proportional to the square of the voltage

applied to the circuit, as shown by Equation (1) where CL is the gate load capacitance (output

capacitance),VDD is the supply voltage and f is the clock frequency [27]. The circuit delay td is given by

Equation (2) where k is a constant depending on the output gate size and the output capacitance and VT is

the threshold voltage [27]. The clock frequency is inversely proportional to the circuit delay; it is

expressed using td and the logic depth of a critical path as in Equation (3) where Ld is the depth of the

critical path [27].

PCMOS = CLVDD

2f (1)

2)(TDD

DD
d VV

V
kt

−
= (2)

dd tL
f

⋅
= 1

 (3)

It is clear form Equation (1) that reducing the supply voltage will reduce the power consumption,

however it also reduces the clock frequency, as shown by Equations (2) and (3), which slows down the

processor. Thus, the challenge in applying DVS algorithms to real-time systems is to save power while

still meeting all temporal requirements of the system.

In recent years significant research has been done in the area of DVS (e.g., [1, 4, 5, 7, 8, 9, 12, 13,

15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29]). These efforts have resulted in a number of DVS

algorithms supporting various task models for embedded and real-time systems. Successful DVS

implementations in commercial processors include Intel’s Xscale processor [6], Transmeta’s Crusoe

processor [2] and Rabbit Semiconductors’ Rabbit processor [21]. DVS algorithms in [1, 4, 5, 7, 9, 12, 13,

15, 18, 19, 22, 23, 24, 25, 29] support variations of the Liu and Layland periodic task model [14] under

Rate Monotonic (RM) scheduling or Earliest Deadline First (EDF) scheduling. Algorithms presented in

[15, 16, 20] considered task models that also support aperiodic requests with soft deadlines or non-

periodic tasks with hard deadlines in which job release times were known a priori.

However, to date, no DVS algorithms support the sporadic task model defined by Mok [17] in which

tasks have a minimal inter-execution time rather than a fixed period. In this work, a DVS algorithm is

presented and evaluated that supports the canonical sporadic task model executed under EDF scheduling.

Each task in a sporadic task set { }nTTT ,,, 21 �=Τ has three associated parameters, p, e, and d:

p is the minimum separation period between the release of two consecutive jobs of a task;

e is the worst-case execution time of the job;

d is the relative deadline for the job.

 3

It is assumed in this work that d = p for all tasks. Thus, each task can be described using the tuple (p,e).

The remainder of this paper is organized as follows. Section 2 describes related work. Section 3

presents our DVS algorithm. Section 4 proves the optimality of the algorithm in terms schedulability and

theoretical power savings. Section 5 presents the implementation and evaluation of the algorithm in a

stand-alone environment and in an embedded real-time system. We conclude with a discussion of results

in Section 6.

2. Related Work

The algorithms in [1, 18, 22, 23] assume the periodic task model and rely on the principles of intra-

task DVS. That is, they adjust the processor voltage level, and hence the processor speed, based on the

execution path a task takes and commonly rely on compiler support rather than operating system support

to conserve power.

The algorithms in [4, 5, 7, 8, 9, 12, 13, 19, 20, 24, 25, 29] also assume the periodic task model, but

rely on an alternative approach to intra-task DVS, called inter-task DVS. In general, inter-task DVS

algorithms determine the processor voltage on a task-by-task basis. That is, they adjust the supply voltage

at a task level such that idle time is removed from the schedule while guaranteeing that all tasks meet

their respective deadlines.

The approach used in this work falls into the category of inter-task DVS. Of the periodic inter-task

DVS work identified, the Static Voltage Scaling algorithm developed by Pillai and Shin in [19] is the

most closely related to this work. Their Static Voltage Scaling algorithm is an offline algorithm that

scales the processor voltage by a factor equal to α where α is the minimum utilization required for the

task to remain schedulable under EDF or RM scheduling. This technique is also used in this work to

remove deterministic idle time from the schedule, as computed using worst-case execution times (WCET)

for each task, but in a slightly different way. The other two on-line algorithms in [19], Cycle Preserving

and Look Ahead, conserve energy by first using Static Voltage Scaling to set the base processor

frequency and then further reduce the voltage level when a job executes for less than its WCET or by

deferring task execution as much as possible.

The algorithm presented by Shin and Choi in [24, 25] also sets the initial voltage level using Static

Voltage Scaling. They then lower the voltage level further whenever a single task is eligible for

execution. Lee et al. [13] developed their DVS algorithms using only two voltage levels and distributing

the tasks into two sets, each corresponding to one of the voltage levels: High and Low. Their work was

based on the results of Ishihara and Yasuura [11] who formulated the processor energy optimization

problem as a discrete optimization problem that could be solved using linear integer programming

techniques. They showed that, in theory, if the processor has a finite number of discrete voltage levels

then it is enough to have at most two voltage levels to minimize the energy consumption of the processor.

 4

Kawaguchi et al. [8] presented an approach to schedule a periodic task set by means of task slicing

and queues for fixed priority preemptive scheduling, which mainly makes use of the fact that tasks often

do not execute with their WCET.

Hong et al. [4, 5] proposed a synthesis technique for variable voltage core based systems containing

a set of independent, asynchronous periodic tasks with arbitrary start times (phases) that were scheduled

with non-preemptive fixed priority scheduling. Zhang and Chanson present three algorithms in [29] that

apply DVS to a periodic task model with non-preemptable sections. This work assumes all tasks are

independent and fully preemptive.

The algorithms in [15, 16, 20] consider variations of the periodic task model that support aperiodic

requests with soft deadlines or non-periodic tasks with hard deadlines in which job release times are

known a priori. Lou and Jha [15] presented an algorithm to schedule periodic tasks, soft aperiodic tasks

and hard aperiodic tasks with precedence constraints using task graphs, cyclic scheduling and slack

steeling. Manzak and Chankrabarti [16] used the method of Lagrange multipliers in an iterative way to

determine the minimum optimal voltage at which to execute the task set subject to both time and

minimum energy constraints. Their method can be applied to a periodic task set or to what they referred

to as Aperiodic Single Tasks, which is a system of tasks where each task releases a job once in a certain

period of time called Ttotal. They considered both EDF and RM and presented exact and approximate

algorithms to find the minimum voltage, with the exact algorithm having higher complexity. Quan et al.

[20] presented an algorithm that can be applied to a periodic task system or to a type of sporadic task

system in which all timing parameters, including task release times, are known a priori.

None of the existing algorithms support the canonical sporadic task model defined by Mok in [17].

The next section presents a DVS algorithm for Mok’s sporadic task model with preemptive EDF

scheduling, which assumes deadlines are equal to periods.

3. The Algorithm

The Dynamic Voltage Scaling for Sporadic Tasks (DVSST) algorithm presented here is classified as

an inter-task DVS algorithm for sporadic tasks. That is, it adjusts the processor voltage on a job-by-job

basis, where a job represents the release of a sporadic task. Recall from Equations (2) and (3) that the

processor frequency is proportional to the voltage level. As with most DVS algorithms, DVSST is defined

in terms of processor frequency, rather than voltage levels, since the relationship between the processor

frequency and task execution times can be expressed directly.

The DVSST maintains a frequency-scaling factor, α, that represents the percent of the maximum

processor frequency. Rather than using the Static Voltage Scaling algorithm of [19] to set the initial

frequency level, DVSST starts with a minimum possible frequency-scaling factor, which can be

theoretically zero, and scales the processor frequency up and down depending when jobs are released.

The scaling factor α is increased by an amount of ei/pi when task Ti is first released. Let r i be the last

 5

release time of task Ti. DVSST reduces α at time r i + pi (or any time after that) by the amount of ei/pi if

the next job if task Ti was not yet released. When task Ti later releases the job, α is increased by the same

amount. The algorithm is explained in detail after we introduce a few definitions.

Definition 1: The frequency-scaling factor, α, is defined as the ratio between the new processor

frequency and the maximum processor frequency:

maxf

fnew=α . (4)

Corollary 1: 1≤α .

Proof: The maximum value that we can scale the frequency to is fmax. Therefore 1
max

max
max ==≤

f

fαα . �

Definition 2: The idle-state scaling factor, αidle, is the minimum scaling factor possible that puts the

processor in a sleep mode when there is no job to execute.

Theoretically αidle = 0, but in many systems αidle must be greater than zero to support platform

requirements, or to interact with external devices that trigger the release of a sporadic task. In this section

it assumed that αidle = 0. This assumption is relaxed in the next section when we describe the

implementation of the algorithm on a real system.

Definition 3: The delayed release task set, TD, is a subset of the task set { }nTTT ,,, 21 �=Τ whose last

release was at least pi time units ago. That is, at any time t,)}(|{ iiii prtTTTD +≥∧Τ∈= where r i is the

last release time of task Ti or -∞ if task Ti has not yet released a job.

The DVSST is shown in Figure 1.

Initially, TD = Τ and the processor

frequency is set to αidle. When a task Ti

releases a job, the algorithm immediately

increases the scaling factor α by an

amount equal to
i

i

p

e
 and removes task Ti

from the set TD. If any task Ti does not

release a job at the end of its minimum

separation period pi, the algorithm reduces

the scaling factor α by an amount equal to

i

i

p

e
 and task Ti is added to the set TD. If

the algorithm detects that no job is

currently executing, then it sets α to the

DVSST():
set α = αidle and TD = Τ // set initial conditions
while(true) {

sleep until (∃ Ti : (Ti releases a job and Ti ∈TD) or
 (Ti ∉TD and current_time ≥ r i + pi)) or
 (no task is executing)

if Ti released a job and Ti ∈TD then
 // scale up the processor frequency

 set
i

i

p

e
+= αα and TD = TD − { Ti }

else if Ti ∉TD and current_time ≥ r i + pi
// scale down the processor frequency

 set
i

i

p

e
−= αα and TD = TD + { Ti }

else // set processor to idle mode
 set idleαα = and TD = Τ

}

Figure 1: The DVSST algorithm.

 6

minimum possible value αidle, or in other words, it sets the processor to the idle or sleep mode.

The value of α may depend on the previous value of α and since α changes with time, we use αn

to represent the nth change to α at time t. Equation (5) shows how, if at all, αn is changed at time t.

�
�
�
�

�

��
�
�

�

�

∈+

∉=+≥−

=

=

−

−

otherwisechangeno

TDTttimeatreleasedisT
p

e

TDTprt
p

e

executingistasknot

ii
i

i
n

iii
i

i
n

idle

n

 and,

 and0,

or0,

1

1

α

α

α

α

(5)

The following example illustrates how the DVSST algorithm scales the processor frequency

(voltage) under EDF scheduling.

Example 1: Let us consider the sporadic task set T1 = (1,4), T2 = (1,5), T3 = (3,10). The (un-scaled)

system utilization is U = 0.75. Let us consider scheduling the jobs that were released in the interval [0,

20) under preemptive EDF while using the DVSST algorithm to scale the processor frequency (voltage).

Assume that the tasks released jobs as follows: T1 at times 0, 4, 10, and 17; T2 at times 0, 6, and 11; and T3

at times 8 and 18. Let job Ji,j represent the j th release of task Ti. Figure 2 illustrates the execution of these

jobs without DVSST, and Figure 3 illustrates the same jobs executed with DVSST. The specific job

attributes for both executions are listed in Table 1.

Notice that in Figure 2 the processor is idle in the intervals [2,4), [5,6), and [13,17) under EDF

scheduling without DVSST. For this set of release times, the DVSST algorithm resulted in an execution

in which the processor was never idle during the observed period shown in Figure 3. However, no task

missed its deadline—a fact proven in the next section for all feasible task sets.

0 1 2 4 5 6 7 8 10 11 12 13 17 18 21

J1,1 J2,1 J1,2 J2,2 J3,1 J1,3 J2,3 J3,1 J1,4 J3,2

Figure 2: Executing the example task set under EDF without DVSST.

 J1,1
J2,1 J1,2

 J2,2

 J1,3 J2,3 J3,1

 J3,1

 J3,1 J1,4 J3,2

 J1,2 J2,2 J3,1

Figure 3: Executing the example task set under EDF with DVSST. The x-axis represents time and the y-
axis represents the frequency scaling factor α, which is set at the start of each execution interval.

α = .25
α = .3

α = .45
α = .5
α = .55

α = .75

0 2.22 4.44 5 6 7.13 8 9.21 10 11.33 12.66 15 16 17.18 18.87 24.32

 7

EDF without DVSST EDF with DVSST
Job Release

Time
Deadline Execution

Interval αααα
% of Job
Executed

Execution
Interval αααα

% of Job
Executed

J1,1 0 4 [0,1) 1 100% [0,2.22) .45 100%
J2,1 0 5 [1,2) 1 100% [2.22,4.44) .45 100%
J1,2 4 8 [4,5) 1 100% [4.44,5) .45 24.3%

 [5,6) .25 25%
 [6,7.13) .45 50.7%

J2,2 6 11 [6,7) 1 100% [7.13,8) .45 39.33%
 1 [8,9.21) .5 60.67%

J3,1 8 18 [8,10) 1 66.67% [9.21,10) .5 13.13%
 [12,13) 1 33.33% [12.66,15) .75 58.34%
 [15,16) .5 16.66%
 [16,17.18) .3 11.87%

J1,3 10 14 [10,11) 1 100% [10,11.33) .75 100%
J2,3 11 16 [11,12) 1 100% [11.33,12.66) .75 100%
J1,4 17 21 [17,18) 1 100% [17.18,18.87) .55 100%
J3,2 18 28 [18,21) 1 100% [18.87,24.32) .55 100%

Table 1: Job attributes of the example task set when executed under EDF with and without DVSST. The
scaling factor α is set at the start of each execution interval.

4. Theoretical Validation

This section addresses the temporal correctness and energy savings possible when sporadic task sets

are executed under EDF with DVSST. Section 4.1 presents the temporal correctness and optimality of

EDF with DVSST. Section 4.2 quantifies the power savings possible when both the processor voltage

and frequency can be scaled, as well as when only the processor frequency can be scaled. It is shown that

DVSST is optimal with respect to power savings when only the frequency can be scaled and all tasks

execute with their WCET. While this may seem like a strict constraint on the processor and task set,

Section 5 presents an implementation on a Rabbit 2000 processor for which these constraints hold.

4.1 Temporal Correctness

A voltage (frequency) scaling scheduling algorithm for real-time systems is correct if it guarantees

that all jobs meet their deadlines under a specified scheduling algorithm. Example 1, in Section 3

demonstrated that scaling the processor frequency results in new task execution times that are

proportional to the frequency-scaling factor. Theorem 1 states that under DVSST, these scaled task

execution times results in a scaled processor utilization of one if the sporadic tasks execute at their

maximum rate. This theorem provides an intuitive understanding of Theorem 4, which states that (un-

scaled) processor utilization less than or equal to one is a necessary and sufficient feasibility condition for

sporadic task sets. Before presenting these theorems, however, new definitions are required.

 8

Definition 4: Scaled-Mode Execution Time, es, is the execution time needed to execute a job under a

frequency-scaling factor.

Over any time interval where the scaling factor α is constant then es can be calculated by Equation

(6) where esi is the scaled execution time of task Ti, ei is the normal execution time of Ti, and αc is the

current scaling factor.

c

i
si

e
e

α
= (6)

Definition 5: Scaled Mode Utilization, Us, is the processor utilization while executing at a scaled

frequency.

Us can be calculated over any time interval τ by Equation (7) where α is constant over τ.

�
∉

=

=
n

TDT
i i

si
s

i

p

e
U

1
τ (7)

Definition 6: Scaling Factor Change Interval, τSi, is the time interval between two consecutive scaling

factor changes αi and αi+1.

Theorem 1: If �
=

≤
n

i i

i

p

e

1

1 and the DVSST algorithm is used to scale the processor frequency then the

processor scaled-mode utilization is always equal to 1 if the tasks are released at their maximum rate.

Proof: Let τS be the set of all scaling-factor change intervals between the end of any idle interval and the

beginning of the next idle interval where { }SmSSS ττττ ,,, 10 �= . If there are no idle intervals, then let τS be

equal to the length of the hyperperiod of the task set and begin at a hyperperiod boundary. Let

{ }SmSSS αααα ,,, 21 �= be the set of all the scaling factors corresponding to the time intervals in τS. From

Equation (7), the scaled utilization over any scaling-factor change interval τSj is �
∉

=
=

n

TDT
i i

si
s

i

j p

e
U

1
τ , with

js

i
si

e
e

α
= by Equation (7). Substituting for esi we have ���

∉
=

∉
=

∉
=

=
⋅

==
n

TDT
i i

i

s

n

TDT
i si

i
n

TDT
i i

si
s

i

j

i

j

i

j p

e

p

e

p

e
U

111

1

αατ but

�
∉

=
=

n

TDT
i i

i
s

i

j p

e

1

 α since TD contains all the tasks that did not release a job at its minimum time separation

before the start of the interval τSj. Substituting for αsj we have 1
1

1

1

== �
� ∉

=

∉
=

n

TDT
i i

i
n

TDT
i i

i
s

i

i

j p

e

p

e
U τ .

 9

The scaled-mode utilization over the whole time interval τS can be calculated as a sum of the

products of the utilizations over subintervals times the ratio of the interval to the sum of all intervals, as

expressed in the following equation.

1

1 since
1

summationouter therespect toith constant w a is since
1

1

1

11

1

1

1

=

=⋅=

⋅⋅=

⋅=

�
�

��
�

�
�

=

=

==

=

=

=

j

j

j

S

m

j
sjm

j
sj

m

j
sjS

m

j
sjm

j
sj

S

m

j
m

j
sj

sj
S

U

U

UU

τ

τ

ττ

τ
τ

ττ
τ

τ

τ

�

From Theorem 1, one might suspect that U ≤ 1 is a necessary and sufficient feasibility condition for

preemptive EDF scheduling with the DVSST algorithm. We will prove this after we introduce a few

definitions and concepts.

Definition 7: Job Inter-Release Time is the time interval between the release of any job of task Ti and the

release of the next job of the same task. That is the time interval between the release of job Ji,j and the

release of job Ji,j+1.

We use the notation δi,j to denote the inter-release time between jobs Ji,j and Ji,j+1 where r i,j is the

release time of job Ji,j:

jijiji rr ,1,, −= +δ (8)

Corollary 2: iji p≥,δ

This corollary follows directly from the definition of the sporadic task in which tasks must have a

minimum separation p between the releases of jobs. Therefore the job inter-release time cannot be less

than pi.

Definition 8: Unreleased Jobs are all the jobs that could have been released in a time interval τ at their

corresponding minimum separation periods but were not released at that time.

Theorem 2: Let { }nTTTT ...,, 21= be a set of sporadic tasks with deadlines equal to their periods. Let τ

be an interval in time and { }
nmnnnmR JJJJJJJ ,2,1,,12,11,1 ...,,...,...,

1
= be the set of all the jobs released

in τ, where Ji,1 denotes the first job that was released by task Ti in τ. Let

{ }
nmnnnmR ,1,0,,11,10,1 ,...,,,...,,...,,

1
δδδδδδ=∆ be the set of the corresponding job inter-release time

intervals corresponding to the jobs in JR except for δi,0 and
imi ,δ . Define δi,0 for each job to be the time

 10

interval between the beginning of the time interval τ and the release of job Ji,1. Define
imi ,δ to be the

interval between the release job
imiJ . and the end of the interval τ . The number of unreleased jobs N in τ

is given by

��
= =

�
�

�

	

�

�
−

�
�
�

�
=

n

i

m

j i

ji
i

p
N

1 0

, 1
δ

 (9)

Proof: We know that

jijiji rr ,1,, −= +δ

The number of unreleased jobs in interval (r i,j,r i,j+1) is the same number of jobs that would have

been released by task Ti if Ti was a periodic task. If Ti was periodic and δi,j was a multiple of pi then the

number of jobs that would have been released is 1, −
i

ji

p

δ
, we have the −1 here because we are

considering the open interval (r i,j,r i,j+1) and because we already know that a job has been released at r i,j+1;

It is clear that we need to exclude that job because it was released when it was expected to be released.

In order to extend this to the general case where δi,j is not a multiple of pi we add a ceiling

function to
i

ji

p
,δ

 to extend r i,j+1 to the next multiple of pi and exclude the job that would be released at

the end of the interval. Hence we have the following expression for the jobs that where not released by

task Ti in δi,j.

1,

, −

�
�
�

�
=

i

ji
jii p

inTByJobsdeleaseUnrOfNumber
δ

δ (10)

 To find the number of all unreleased jobs in τ we sum Equation (10) over all δi,j in ∆R , therefore we have

��

= =
�
�
�

	

�

�
−

�
�
�

�
=

n

i

m

j i

ji
i

p
N

1 0

, 1
δ

 �

The following two examples help to clarify the theorem

Example 2: Let T1 = (1,.2) with J1,1 released at t = 0 and J1,2 released at t = 3.2. If T1 was periodic then it

would have released 3 jobs in (0,3.2), if we use Equation (9) we get the same answer

3141
1

2.3 =−=−
�

��

�=N

Example 3: Let T1 = (1,.2) with J1,1 released at t = 0 and J1,2 released at t = 3. If T1 was periodic then it

would have released 2 jobs in (0,3), if we use Equation (9) we get the same answer

 11

2131
1

3 =−=−
�

��

�=N

Now we will introduce the definition of Processor Time Capacity, because if we are scaling the

processor frequency then there are two ways to look at the system: we can either look at the system

running in real time and the execution times of jobs are scaled, or as though the execution times are the

same but time itself is scaled.

Definition 9: Processor Time Capacity ρ is the amount of scaled time available in any real time interval

when the processor is running in scaled mode.

Over an any time interval [t1,t2) where α is constant, the processor time capacity ρ, or the scaled time, is

the product of the length of the interval times the scaling factor as given in Equation (11).

)(12 tt −= αρ (11)

Now let τ be an interval of time. Let τS be the set of all Scaling Factor Change Intervals

where { }SmSSS ττττ ,...,, 10= and let { }SmSSS αααα ,...,, 21= be the set of all the scaling factors

corresponding to the time intervals in τS. Then the processor time capacity ρ over τ is given by

is

m

i
is ταρ �

=

⋅=
1

 (12)

Another way to evaluate the value of ρ is to look at it as the sum of all products of the positive

changes in α times the change interval.

 � ×= ChangeForTheIntervalTimeinChangePostive αρ (13)

Example 4 shows how Equations (12) and (13) give the same answer for calculating the processor time

capacity.

Example 4: Let us consider the scaling factor αi plotted against time t in Figure 4 for a task set, where

{ }54321 ,,,, τττττ are the scaling factor change intervals, { }54321 ,,,, ααααα are the scaling factors

corresponding to { }54321 ,,,, τττττ . Let { }4321 ,,, αααα ∆∆∆∆ be the positive changes in α and

{ }4321 ,,, δδδδ be the time intervals corresponding to { }4321 ,,, αααα ∆∆∆∆ .

 12

From Figure 4, we can derive the following equations.

415

14

3213

212

11

ααα
αα

αααα
ααα

αα

∆+∆=
∆=

∆+∆+∆=
∆+∆=

∆=

54

33

322

543211

τδ
τδ

ττδ
τττττδ

=
=

+=
++++=

α4

α5

αi

t

Figure 4: αi for a task set.

 τ1 τ2 τ3 τ4 τ5

α2

α1

α3

∆α1

∆α3

∆α2 = ∆α4

1δ

2δ

3δ

4δ

 13

We not that 42 αα ∆=∆ because both of these changes are the result of releasing different jobs from the

same task. Using the previous equations we can calculate the processor time capacity

() () ()
() ()

�

�

×=

⋅∆+⋅∆+⋅∆+⋅∆=

⋅∆+⋅∆++⋅∆+++++⋅∆=
⋅∆+∆+⋅∆+⋅∆+∆+∆+⋅∆+∆+⋅∆=

⋅+⋅+⋅+⋅+⋅=

⋅=
=

ChangeForTheIntervalTimeinChange

i
i

i

α
δαδαδαδα

ταταττατττττα
τααταταααταατα

τατατατατα

ταρ

44332211

5433322543211

54141332122111

5544332211

5

1

Definition 10: Let Ji,j be a job released in any time interval with an execution time of ei and a minimum

separation period pi. Then the Job Scaling Factor Active Interval is the time interval starting at the

instant when the processor frequency was scaled up by a factor equal to
i

i

p

e
 until the instant where the

frequency is scaled down by a factor of
i

i

p

e
.

Theorem 3: The Job Scaling Factor Active Interval δ is a multiple of the minimum separation period pi

of the task that released the job.

Proof:

The frequency is scaled up by a factor of
i

i

p

e
 only if Ji,j was released after it has not been released at least

once at its minimum separation period. The frequency would be decreased by
i

i

p

e
 only at the end of the

minimum separation period if the job Ji,j was not released. Let us assume that job Ji,j was not released

prior to t1, then it was released at time t1. Assume that Ti has released k jobs at their minimum separation

consecutively where job Ji,j+k was released at time t2. Let t3 be the first moment after t1 for Ti not to release

a job when it was expected to be released, as shown in Figure 5. The length of the Job Scaling Factor

Active Interval is equal to t3 –t1, because we will increase α by
i

i

p

e
 at t1 and not decrease it until t3 . Ti

has released all its jobs in [t1 ,t2) at their minimum separation periods. Therefore [t1 ,t2) is a multiple of pi

. It is also clear that t3 is at the end of a minimum separation period because we reduced the frequency at

t3, therefore (t3 –t2) must be equal to pi. Hence the total period [t1 ,t3) is a multiple of pi . �

 14

We now introduce a way of calculating the processor time capacity.

 Let { }
nmnnnmR JJJJJJJ ,2,1,,12,11,1 ...,,...,...,

1
= be the set of all the jobs released in an interval

τ, where Ji,1 denotes the first job that was released by task Ti in τ. Let

{ }
nmnnnmR ,1,0,,11,10,1 ,...,,...,,...,,

1
δδδδδδ=∆ be the set of the corresponding job inter-release time

intervals corresponding to the jobs in JR except for δi,0 and
imi ,δ . Define δi,0 for each job to be the interval

between the beginning of the time interval τ and the release of job Ji,1. Define
imi ,δ to be the interval

between the release job Ji,n and the end of the interval τ. Let

{ }1,2,1,1,12,11,1 ,...,,...,.,...,
1 −−=∆

nknnnkR δδδδδδ be the set of all job scaling factor active intervals in τ. Let

{ }1,2,1,1,12,11,1 ...,...,...,
1 −−=

nkRnRnRnkRRRR ααααααα be the scaling factors corresponding to the intervals

in R∆ where αRi,j is defined as the scaling factor resulting from the fact that only job Ji,j was released.

i

i
jRi p

e
=,α (14)

 Figure 5: Illustration of scaling factor active interval.

. . .

 α

 Ji,j+k

Scaling

Factor

Job

Releases

 Ji,j

 pi t2 t1

i

i

p

e+α

t3

 15

Now we can calculate ρ using these new parameters as follows.

 � ×= ChangeTheForIntervalTimeinChangePostive αρ

We know that over a job scaling factor active interval ji ,δ , a change of jRi ,α occurred over ji ,δ

regardless of any other change in α. Because this change is independent of all other changes we can sum

all these changes over all ji ,δ , substituting these parameters in Equation (13) we get Equation (15).

ji

i

Rji

n

i

k

j
,

1

,
1 1

αδρ ⋅=��
= =

−

 (15)

From Equation (14) we have
i

i
jRi p

e
=,α therefore

� �

��

= =

= =

�
�

�

	

�

�
⋅=

⋅=

−

−

n

i

k

j
ji

i

i

i

i
n

i

k

j
ji

i

i

p

e

p

e

1 1
,

1 1
,

1

1

δ

δρ

From Theorem 3 we know that ji ,δ is always a multiple of pi. Therefore we can express ji ,δ as

ijiji pM ⋅= ,,δ (16)

where Mi,j is the number of jobs released in ji ,δ . If we let Mi represent the number of all the released jobs

of task Ti in τ then we have

ii

k

j
ji pM

j

⋅=�
−

=

1

1
,δ (17)

Now we can substitute Equation (17) in Equation (15) to calculate the value of ρ

 �

=
��
�

	

�

�
⋅⋅=

n

i
ii

i

i pM
p

e

1

 ρ

i

n

i
i eM ⋅=�

=1

ρ (18)

Mi can be calculated as

Mi = Maximum Number Of Jobs That Can Be Released in τ By Ti − Number Of Unreleased Jobs of Ti in τ.

The maximum number of jobs that can be released in τ is

�
�
�

�

ip

�

. The number of unreleased jobs by Ti in τ

can be calculated using Equation (9). Therefore we have

 �

=
�
�

�

	

�

�
−

�
�
�

�
−

�
�
�

�
=

im

j i

ji

i
i pp

�

M
0

, 1
δ

 16

Substituting this value in Equation (15) we get

i

m

j i

ji
n

i
i

i

n

i

i

m

j i

ji

i

n

i

e
p

e
p

�

e
pp

�

i

i

⋅
�
�

�

	

�

�
−

�
�
�

�
−⋅

�
�
�

�
=

⋅

�

�

�
�

�

�

�
�

�

	

�

�
−

�
�
�

�
−

�
�
�

�
=

���

��

===

==

0

,

11

0

,

1

1

1

δ

δ
ρ

(19)

Now we can proceed to the proof of correctness of the DVSST algorithm. We will state the correctness

Theorem and prove it.

Theorem 4: Let { }nTTT ,,, 21 �=Τ be a sporadic task set with di = pi. Preemptive EDF with DVSST will

succeed in schedulingτ if and only if �
=

≤
n

i i

i

p

e

1

1 .

Proof: Establishing the contrapositive shows necessity, i.e. a negative result from the equation implies

that T is not feasible. Let us assume a negative result for the equation, that is, .1>U But we know that if

1>U then EDF will not find a feasible schedule, therefore DVSST combined with EDF will not find a

feasible schedule.

To show the sufficiency of the theorem, we assume that 1≤U and DVSST and EDF are used to

schedule T yet there is a job that misses its deadline.

Let job Jd be the first job to miss its deadline at time td. Let t0 denote the last processor idle

instant. We note that at the worst case, we will at least have an idle instant at t = 0. Let τ be the time

interval [t0,td) and let { }
nmnnnmR JJJJJJJ ,2,1,,12,11,1 ...,,...,...,

1
= be the set of all the jobs released in τ,

where Ji,1 denotes the first job that was released by task Ti in [t0,td). Let

{ }
nmnnnmR ,1,0,,11,10,1 ,...,.,...,,...,,

1
δδδδδδ=∆ be the set of the corresponding job inter-release time

intervals corresponding to the jobs in JR except for δi,0 and
imi ,δ . Define δi,0 for each job to be the time

interval between the beginning of the time interval τ and the release of job Ji,1. Define
imi ,δ to be the

interval between the release of job
imiJ . and the end of the interval τ. If job Jd missed its deadline at td

then the demand in [t0,td) must have been greater than the processor time capacity in [t0,td). That is

demandcapacitytimeprocesser < (20)

From Equation (19) we have

i

m

j i

ji
n

i
i

i

d
n

i

e
p

e
p

tt
capcitytimeprocesser

i

⋅�
�

�

	

�

�
−

�
�
�

�
−⋅

�
�
�

� −
= ���

=== 0

,

1

0

1

1
δ

(21)

 17

The demand can be calculated as

�
�

	

�

� ×−

�
�

	

�

� ×≤=

�

�

=

=

n

i
idi

n

i
iddi

ettinTbyjobsunreleasedofnumber

etdeadlineswithttinTbyreleasedjobsofnumberpossibleMaximumdemand

1
0

1
0

),[

),[

Equation (9) gives the number of unreleased jobs by each task. Substituting Equation (9) in the above

equation we have

i

n

i

m

j i

ji
i

n

i i

d e
p

e
p

tt
demand

i

⋅��
�

	

�

�
−

�
�
�

�
−⋅

�

�
�

� −= ���
= == 1 0

,

1

0 1
δ

 (22)

Substituting Equations (21) and (22) in (20) we have

i

n

i

m

j i

ji
i

n

i i

d
i

n

i

m

j i

ji
i

n

i i

d e
p

e
p

tt
e

p
e

p

tt ii

⋅��
�

	

�

�
−

�
�
�

�
−⋅

�

�
�

� −<⋅��
�

	

�

�
−

�
�
�

�
−⋅

�
�
�

� −
������

= === == 1 0

,

1

0

1 0

,

1

0 11
δδ

i

n

i i

d

i

d

i

n

i i

d
n

i i

d

i

n

i i

d
i

n

i i

d

e
p

tt

p

tt

e
p

tt
e

p

tt

e
p

tt
e

p

tt

⋅��
�

	

�

�

�
�
�

� −
−

�

�
�

� −
<

⋅

�
�
�

� −
−⋅

�

�
�

� −
<

⋅
�

�
�

� −
<⋅

�
�
�

� −

�

��

��

=

==

==

1

00

1

0

1

0

1

0

1

0

0

0

 (23)

We know that ei is always positive, and
i

d

p

tt 0−
is always positive. From basic mathematics we know

that � � � � 0,0, ≤−>ℜ∈∀ xxxx . Therefore i

n

i i

d

i

d e
p

tt

p

tt ⋅��
�

	

�

�

�
�
�

� −−
�

�
�

� −
�

=1

00 must be less or equal to zero,

which contradicts Equation (23). This means that under DVSST no task will miss its deadline because

demand cannot be greater than processor time capacity if the task set is feasible under EDF. �

4.2 Power Savings

The amount of power that can be saved depends on whether both frequency and voltage are scaled or

frequency alone is scaled. Some processors, such as the Crusoe processor [2], have a feed back loop to

scale voltage when the frequency is scaled. Other processors, such as the Rabbit processor [21], can

operate on multiple voltage levels but cannot scale the voltage with frequency changes.

 18

Equation (1) shows that power is linearly proportional to the frequency and quadratically

proportional to the voltage. If the processor automatically scales the voltage when the frequency is scaled,

then there will be a voltage level corresponding to each frequency level. Let α be the frequency-scaling

factor and β be the voltage-scaling factor corresponding to α. From Equation (2) it is clear that the

frequency and voltage are related, but the relation between α and β depends on the gate threshold voltage

VT and the voltage itself, V. Equation (24) shows the relation between α and β.

2

2

)(

)(

T

T

VV

VV

−
−=

β
βα (24)

Let us compute the power savings of the DVSST algorithm in both cases. First consider the case

where only the frequency is scaled, which is the case for the Rabbit processor used in the application

described in Section 5. Over any interval in time τ, the normalized power savings will be given by

max

max

P

PP
SavingsPower DVSST−

= (25)

where Pmax is the average power consumed by the processor operating at frequency fmax and PDVSST is the

average power consumed by the processor operating under the DVSST algorithm. Let τS be the set of all

scaling-factor change intervals in τ where { }nS ττττ ,,, 10 �= . Let { }nS αααα ,,, 21 �= be the set of all

scaling factors corresponding to the intervals in τS. The power savings can be calculated as follows where

Pi is the average power consumed during interval τi.

Now consider the case where both frequency and voltage are scaled. In the case let us keep all the

previous assumptions but add { }nS ββββ ,,, 21 �= where βS is the set of voltage-scaling factors

corresponding to the intervals in τS. The normalized power savings is then computed as follows.

maxmax2
maxmax

0

22
maxmax

max

0
max

andbut

11

VVff
VCf

VCfVCf

P

PP

SavingsPower iiii

n

i
iii

n

i
ii

βα
τ

τ
τ

τ
==

⋅−
=

⋅−
=

��
==

τ

τα
τ

τα
τ

τα
τ

α
τ

τ
τ

τ

s

n

i
ii

n

i
ii

n

i
ii

ii

n

i
ii

n

i
ii

U

VCf

VCf
VCf

VCf

VfCVCf

ff
VCf

VCfVCf

P

PP
SavingsPower

−=

⋅−=

⋅−
=

⋅−
=

=
⋅−

=
⋅−

=

�

��

��

=

==

==

1

1
1

1

but

11

0

2
maxmax

0

2
maxmax2

maxmax

2
maxmax

0

2
maxmax

2
maxmax

max2
maxmax

0

2
max

2
maxmax

max

0
max

 19

2
maxmax

0

2
maxmax

22
maxmax

1

VCf

VfCVCf
n

i
iii�

=
⋅−

=
τβα

τ

�
�

=

= −=
−

=
n

i
iii

n

i
iii

VCf

VCf
VCf

0

2
2

maxmax

0

2
2

maxmax2
maxmax

1
1 τβα

τ

τβα
τ

We note that in this case the power savings is not equal to τsU−1 because of the voltage-scaling

factor βi. However, the maximum power that can be saved is still achieved by operating the processor at

a frequency equal to the processor utilization.

Theorem 5: If only the frequency can be scaled and the task set is feasibly scheduled, then the processor

will save the maximum possible amount of power under DVSST when all tasks execute with the their

WCET.

Proof: If the processor only scales the frequency, then the minimum average power consumed in any

feasible time interval occurs when the processor is run at a frequency equal to the system utilization over

that time interval, assuming WCET is realized. Equation (26) shows the power consumed in this case.

i

n

i
i

i

n

i
i

fVC
P

ffVfCP

τα
τ

τα
τ

⋅
⋅⋅

=

⋅⋅=⋅⋅=

�

�

=

=

1

max
2

max
1

2 1
but

(26)

If the processor is running the DVSST algorithm then average power consumed can be computed using

Equation (27).

i

n

i
i

i

n

i

iiii

n

i

i

n

i
i

fVC
P

fVCP

fffVCP

PP

τα
τ

τα
τ

ατ
τ

τ
τ

⋅
⋅⋅

=

⋅⋅⋅⋅=

⋅=⋅⋅⋅=

⋅=

�

�

�

�

=

=

=

=

1

max
2

max
1

2

max
1

2

1

1

but
1

1

(27)

Equations (26) and (27) are equal. This proves that if the processor runs the DVSST algorithm, it will

consume the same amount of power as if it was running on a single frequency equal to the task utilization

over the whole time interval τ. Thus, DVSST achieves maximum power savings when only the processor

frequency can be dynamically scaled. �

 20

Theorem 4 states that U ≤ 1 is a necessary and sufficient condition for schedulability under EDF with

DVSST. Thus, DVSST does not affect the optimality of EDF scheduling for sporadic task sets. Theorem

5 shows that, in theory, DVSST is optimal with respect to power savings when only the frequency can be

scaled and all tasks execute with their WCET. However, in practice, it is much harder to achieve optimal

power savings due to algorithm overhead and limited frequency levels supported by many processors.

The next section discusses these implementation issues.

5. Implementation and Evaluation

The DVSST algorithm was implemented in a modified version of Jean Labrosse’s µC/OS-II

(MicroC/OS-II) real time operating system [10]. The original version of µC/OS-II uses the RM algorithm

to preemptively schedule up to 64 tasks. The modified version used in this study also supports EDF

scheduling of up to 64K tasks [11]. Algorithm overhead was measured using a stand-alone Rabbit 2000

test board [21]. The actual power savings realized with DVSST is a function of the sporadic task set and

the processor. Rather than create random task sets, we measured the power savings produced by a

specific application, the Robotic Highway Safety Marker.

Section 5.1 describes frequency scaling in the Rabbit 2000. Section 5.2 presents slight modifications

to the DVSST algorithm required in practice since currently available embedded processors have a

limited number of frequency scaling levels. The overhead created by DVSST under EDF scheduling on

the Rabbit 2000 is reported in Section 5.3. Section 5.4 describes the Robotic Highway Safety Marker and

power savings realized for that application.

5.1 Frequency Scaling in the Rabbit 2000

There are two crystal oscillators built into the Rabbit 2000. The main oscillator accepts crystals up to

a frequency of 29.4912 MHz and is used to derive the clock for the processor and peripherals. The low

power clock oscillator requires a 32.768 kHz crystal, and is used to clock the watchdog timer, a battery

backed time/date clock, and a periodic interrupt. The main oscillator can be shut down in a special low-

power mode of operation, and the 32.768 kHz oscillator is then used to clock all the things normally

clocked by the main oscillator.

The main oscillator can be doubled in frequency and/or divided by 8. If both doubling and dividing

are enabled, then there will be a net frequency division by 4. Our model of the Rabbit 2000 has an 18.532

MHz main oscillator. Thus, there are four frequency levels available from the main oscillator:

18.532MHz, 9.266MHz, 4.633MHz and 2.3165MHz— which correspond to 100%, 50%, 25% and 12.5%

of the maximum frequency. Since the maximum frequency at which we can operate the processor is

18.532 MHz and the low power mode frequency is 32.768 kHz, the idle-state scaling factor used by

 21

DVSST is 00176.
532.18

768.32 ==
MHz

kHz
idleα . In practice, the value of αidle can be close to zero but never

zero as assumed in the theoretical presentation of DVSST.

The Rabbit 2000 processor can operate at different voltages but it does not change the voltage level

dynamically when the frequency level is changed. Thus, only the processor frequency will be scaled

dynamically, which will result in a linear savings in average power as explained in Section 4.2.

5.2 Modifying DVSST for the Rabbit Processor

There are four non-idle scaling levels available on the Rabbit 2000, rather than the infinite number of

levels often assumed in theory. Fortunately, the algorithm can be modified slightly to allow scaling the

frequency to a discrete number of levels by rounding the value of α to the next upper scaling level. For

example, if we have a processor with scaling levels 0.25, 0.5, 0.75, and 1.0 and the value of αn at some

point in time t as calculated by DVSST is 0.58, then the next upper scaling level to which we set αn is

0.75.

Another challenge in implementing DVSST on the Rabbit 2000 is that serial communication baud

rates cannot be derived from the low-power oscillator. Thus, αidle = 0.00176 cannot be used with any

application that requires serial communication. Since the wireless transceiver used in the Robotic

Highway Safety Marker uses a serial interface to the processor, we use 125.0min == αα idle so that the

application will not lose communication with the other robots.

5.3 Algorithm Overhead

There are two primary sources of overhead created by DVSST: changing frequency levels and

detecting when the frequency can be scaled. Changing the processor frequency from one level to another

is (approximately) constant, and was measured on the Rabbit 2000 processor to be 120 µs per frequency

change with the main oscillator.

 22

The second source of overhead is largely dependent on how the algorithm detects when it is possible

to scale the processor frequency. When a task is released, a check is made to see if the frequency needs to

be increased (i.e., if the task ∈ TD). A timer list is used to detect when it is possible to scale down the

processor frequency. A timer is set when the task is released and canceled if the task is released again

before the timer expires. The processor frequency is scaled down by ei/pi whenever a timer expires for

task Ti.

The timer list is implemented as a sorted linked list with no effort made to optimize list insertion

since most applications that use the Rabbit 2000 have very few tasks; our application has only six tasks

and the version of µC/OS-II that comes with the board only supports 64 tasks. Thus, insertion into a list

of size n has cost Ο(n). The worst case occurs when an entry needs to be inserted at the end of the list.

The list insertion time was measured for up to 512 tasks with random deadlines. For each list length from

one to 512, the test was repeated a number of times equal to the list length with random timer values to be

inserted. The insertion time was measured for each insertion and the average time of these values for

each list length was recorded. The graph shown in Figure 6 plots the average timer list insertion time

verses the number of tasks from 20 such experiments. Time is measured in terms of periodic clock ticks

on the Rabbit 2000, which occur at a rate of 2kHz or one clock tick every 488µS.

The average insertion time is less than 1 clock tick for a list with less than 125 entries, as shown in

Figure 4. The insertion time is about 4 clock ticks (2 ms) for 512 entries. Clearly a more efficient

implementation of the timer list should be used for large task sets.

Figure 6: Timer list insertion overhead.

 23

5.4 Power Savings for a Robotic Highway Safety Marker

The Robotic Highway Safety Marker (RSM) is an automated safety devices designed to improve

road construction work-zone design and safety. A RSM is a semi-autonomous mobile robot that carries a

highway safety marker, commonly called a barrel. The RSMs operate in groups that consist of a single

lead robot—called the foreman—and worker robots. To date, one foreman and six worker prototype

RSMs have been developed. Each worker RSM has a Rabbit 2000 processor running our modified

µC/OS-II. The prototype foreman is more sophisticated than the worker RSMs.

 Control of the RSM group is hierarchical and broken into two levels—global and local control—

to reduce the per-robot cost. The foreman robot performs global control. To move the robots, the foreman

locates each RSM, plans its path, communicates destinations points (global waypoints), and monitors

performance. Local control is distributed to each individual RSM, which do not have knowledge of other

robots and only performs local tasks.

The code for the RSM is implemented as a sporadic task set. The task set only executes after it

receives a new waypoint from the foreman. A path from the initial position of the RSM to the new

waypoint is computed as a parabola decomposed into multiple local waypoints. The number of local

waypoints depends on the length of the path. The following six sporadic tasks comprise the RSM task

set.

• Serial Task: reads commands from the foreman via a RF transceiver, converts the command to

target destinations, and stores the destinations in a shared queue data structure.

• Length Task: calculates the path length, number of iterations, and other values for each target

destination.

• Waypoint Task: calculates the desired wheel angles for each iteration of a PID control loop.

• PID Task: does the PID control for each iteration.

• Encoder Task: reads the current wheel angles.

• Motor Task: sends commands to each motor.

An abstract processing graph for this task set is shown in Figure 7. The precedence relations shown

in Figure 7 represent the logical precedence constraints on the data processing and do not reflect actual

Figure 7: RSM processing graph.

Serial Task Length Task Waypoint
Task

Encoder
Task

PID Task
Motor
Task

k Releases

 24

release patterns. For example, to reduce latency in the processing graph, the last four nodes in the

processing graph can be released simultaneously with deadline ties broken in favor of producer nodes, as

described in [3]. The Serial task is released when data is available on the serial port. When data arrives,

the Serial task converts it to a target destination, places it in a shared data structure and releases the

Length task. Semaphores are not need to synchronize access to the data structure, which results in a fully

preemptable task set. The Length task calculates the first two local waypoints before the robot begins to

move. As the robot moves to waypoint i, waypoint i+2 is computed. The design ensures that waypoint

i+2 is computed before waypoint i is reached.

This task set is modeled as a sporadic task set because the serial task receives commands with a

minimum separation of 7.8125ms. The length task is executed the same number of times the serial task is

executed. The number of times that Waypoint, PID, Encoder and Motor are executed depends on the

number of local waypoints that need to be computed to reach the next global waypoint, which is

dependent on the path length. Thus, for each execution of the serial task there may be a different number

of executions for the Waypoint, PID, Encoder and Motor tasks. However, each task has a minimum

separation period, as shown in Table 2.

The execution time for these tasks is very deterministic for two reasons. First the Rabbit 2000

has no cache memory, which eliminates memory-caching effects on execution time. Second the tasks

repeat almost the same operation each time, with the exception of system initialization where some of the

tasks execute a few more lines. Therefore the execution time of these tasks is usually very close to their

WCET. The task execution times, shown in Table 2, were determined using an oscilloscope and free I/O

pins on the processor.

Task Period Execution Time ei /pi
Serial 7.8125ms 100µs .0128
Length 7.8125ms 1ms .128

Way Point 3 ∗7.8125ms 2.5ms .1066
Encoder 3 ∗7.8125ms 350µs .0149

PID 3 ∗7.8125ms 1.06ms .04522
Motor 3 ∗7.8125ms 250µs .0106

Table 2: RSM sporadic task set parameters.

The maximum utilization for the task set is U = 0.31812, which occurs when all of the tasks execute

in a periodic mode for an extended interval of time. If we have no idle periods over an extended interval

of time, the lower bound on utilization is when we have only one execution of the serial and length task

followed by a very large number of executions of the other tasks. This will result in a processor utilization

slightly greater than

17732.
int

int =+++
Motor

Motor

PID

PID

Encoder

Encoder

Waypo

Waypo

p

e

p

e

p

e

p

e

 25

Depending on when commands arrive and the length of the path to be computed, a wide range of

utilization values is possible. For any case, the theoretical maximum power savings will be τU−1 (as

shown in Section 4.2), where Uτ is the utilization over the time interval τ. The actual power savings

achieved is less because we cannot scale the frequency to the desired value; instead we scale it to the

nearest upper level of frequency available on the Rabbit 2000, as described in Section 5.2.

As mentioned in Section 5.1, the Rabbit 2000 provides frequency scaling but does not directly adjust

the voltage with the frequency. Thus, power savings can be linearly proportional to frequency scaling at

best. However, since the Rabbit 2000 provides only a limited number of levels, rather than the unlimited

number assumed in theory, there will be a difference between the actual savings and the theoretical power

savings.

Figures 8a and 8b show the difference between the actual and the theoretical power savings. The

normalized average power savings is plotted against relative utilization values, where the relative

utilization is the ratio of a possible task utilization value to the maximum task utilization (0.31812).

Figure 8a shows the normalized theoretical and actual power savings for the task set verses the relative

utilization when there are no idle periods. That is, the robot is constantly moving but with destination

commands of varying distance. In this case, the minimum relative utilization is 0.55739. Figure 8b shows

the normalized theoretical and actual power savings when we have idle periods. That is, when the robot

stops for intervals of time.

Note that the actual power savings deviate from a linear pattern even though only the processor

frequency is scaled and the voltage remains constant. This is because when the frequency is scaled on the

Rabbit 2000, it draws less current and the rate at which the current increases or decreases with each

frequency level is not exactly linear.

The average ratio of the actual savings to the theoretical savings in both cases is about 83%. This

means that DVSST achieved 83% of the theoretical power savings on the Rabbit 2000 for this

application.

 26

If the task set were executed at a periodic rate, the DVSST would run the processor at a frequency

equal to the task utilization, which is the same as the Static Voltage Scaling algorithm of [19]. Other DVS

algorithms from the literature are unlikely to improve power savings much, even if the task set executes

periodically, because they try to take advantage of the case when tasks do not execute with their WCET.

In this application, however, task execution time is very deterministic and there is very little difference

between average execution time and WCET.

6. Conclusion

 A dynamic voltage-scaling algorithm called DVSST was presented for sporadic task sets

executed under EDF scheduling. It was shown that U ≤ 1 is a necessary and sufficient schedulability

condition for fully preemptive task sets. DVSST is an inter-task DVS algorithm and the only attempt to

save power when jobs execute for less than their WCET is to scale the processor to a minimum frequency

level whenever no jobs are pending. DVSST assumes that resources are not shared between tasks; DVS

for resource-sharing sporadic tasks remains an open problem.

DVSST has been implemented in a modified version of µC/OS-II that supports EDF scheduling, and

tested with a real-time embedded application, the Robotic Highway Safety Marker (RSM). Though

DVSST is theoretically optimal, results shows that DVSST saves an average of 83% of the maximum

possible theoretical power savings for that application on the Rabbit 2000 processor. Differences

between theoretical and actual savings are due to the limited number of frequency levels supported by the

Rabbit 2000 processor.

References

[1] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt. A. Veidenbaum, and A. Nicolau. Profile-Based Dynamic
Voltage Scheduling Using Program Checkpoints in the COPPER Framework. Proceeding of Design,
Automation and Test in Europe Conference (DATE), March 2002.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Relative Utilization

N
o

rm
liz

ed
 P

o
w

er
 S

av
in

g
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relative Utilization

N
o

m
al

iz
ed

 P
o

w
er

 S
av

in
g

s

Theoretical
Power
Savings
Actual Power
Savings

Figure 8a: Power savings with robot
constantly moving.

Figure 8b: Power savings with robot
not constantly moving.

 27

[2] M. Fleischmann. Crusoe Processor Products and Technology, LongRun Power Management - Dynamic Power
Management for Crusoe Processors. http://www.transmeta.com/pdf/white_papers/paper_mfleischmann_17jan01.pdf,
Transmeta Inc., January 17, 2001.

[3] S. Goddard and K. Jeffay. Analyzing the Real-Time Properties of a Data flow Execution Paradigm using a
Synthetic Aperture Radar Application. Proc. 3rd IEEE Real-Time Technology & Applications Symp., Montreal,
Canada, pp. 60–71, June 1997.

[4] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power Optimization of Variable-Voltage
Core-Based Systems. IEEE Trans. Computer-Aided Design, vol. 18, no. 12, pp. 1702-1714, Dec. 1999.

[5] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis Techniques for Low-Power Hard Real-Time
Systems on Variable Voltage Processors. Proceedings of the IEEE Real-Time Systems Symposium, pp. 178–
187, December 1998.

[6] Intel XScale microarchitecture, http://developer.intel.com/design/intelxscale.

[7] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for Dynamically Variable Voltage Processors. Proc.
of ISLPED, pp. 197–202, Aug. 1998.

[8] H. Kawaguchi, Y. Shin, and T. Sakurai. Experimental Evaluation of Cooperative Voltage Scaling (CVS): A
Case Study. Proceedings of IEEE Workshop on Power Management for Real-Time and Embedded Systems, pp.
17-23, May 2001.

[9] W. Kim, J. Kim and S –L. Min. A Dynamic Voltage Scaling Algorithm for Dynamic-Priority Hard Real-Time
Systems Using Slack Time Analysis. Proceedings of Design Automation and Test in Europe (DATE'02), Paris,
France, March 2002.

[10] J. Labrosse. The Real Time Kernel MicroC/OS-II, CMP Books, May 2002.

[11] C-M. Lee, Implementing Rate-Based Execution in MicroC/OS-II. Mater’s Project, Dept. of CSE, University of
Nebraska-Lincoln, November 27, 2002.

[12] Y.-H. Lee and C. M. Krishna. Voltage-Clock Scaling for Low Energy Consumption in Real-Time Embedded
Systems. Proceedings of the Sixth Int’ l Conf. on Real Time Computing Systems and Applications, pp. 272-279,
1999.

[13] Y-H. Lee, Y. Doh and C. M. Krishna. EDF Scheduling Using Two-Mode Voltage-Clock-Scaling for Hard
Real-time Systems. Proc. of CASES 2001, pp. 221-228, 2001.

[14] C.L.Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment.
Journal of the ACM, Vol.20, pp.46–61, 1973.

[15] J. Luo and N. K. Jha. Power-conscious Joint Scheduling of Periodic Task Graphs and Aperiodic Tasks in
Distributed Real-time Embedded Systems. Proceedings of ICCAD, pages 357--364, Nov 2000.

[16] A. Manzak and C. Chakrabarti. Variable Voltage Task Scheduling for Minimizing Energy or Minimizing
Power. Proceedings IEEE Int. Conf. on Acoustic, Speech, and Signal Processing (ICASSP'00), pp. 3239–3242,
June 2000.

[17] A.K.-L. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real Time Environment.
Ph.D. Thesis, MIT, Dept. of EE and CS, MIT/LCS/TR-297, May 1983.

[18] D. Mosse, H. Aydin, B. Childers and R. Melhem, Compiler-Assisted Dynamic Power-Aware Scheduling for
Real-Time Applications. Workshop on Compilers and Operating Systems for Low-Power (COLP’00),
Philadelphia, PA, Oct. 2000.

 28

[19] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating Systems.
Proc. of the 18th ACM Symp. on Operating Systems Principles, 2001.

 [20] G. Quan and X. Hu. Energy Efficient Fixed-Priority Scheduling for Real-Time Systems on Variable
Voltage Processors. Proceedings of DAC'01: IEEE/ACM Design Automation Conference, pp. 828-833, June
2001.

[21] Rabbit Semiconductors. Rabbit 2000 Microprocesser User’s Manual,
http://www.rabbitsemiconductor.com/documentation/docs/manuals/Rabbit2000/UsersManual

[22] D. Shin and J. Kim. A Profile-Based Energy-Efficient Intra-Task Voltage Scheduling Algorithm for Hard Real-
Time Applications, Proc. of ISLPED, 2001.

[23] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for Low-Energy Hard Real-Time Applications.
IEEE Design and Test Computers, 18(2):20–30, 2001.

[24] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems. Proceedings of
the Design Automation Conference, pp. 134–139, June 1999.

[25] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-Time Embedded Systems on Variable Speed
Processors. Proceedings of the International Conference on Computer-Aided Design, pp. 365–368, November
2000.

[26] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for Reduced CPU Energy. Proceedings of the
Symposium on Operating Systems Design and Implementation (OSDI), pp. 13–23, November 1994.

[27] W. Wolf. Modern VLSI Design, Prentice Hall Modern Semiconductor Design Series, Third Edition 2002.

[28] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU Energy. IEEE Symposium on
Foundations Computer Science, pp. 374–382, Oct. 1995.

[29] F. Zhang and S. T. Chanson, Processor Voltage Scheduling for Real-Time Tasks with Non-Preemptable
Sections. Proceedings of the 23rd IEEE International Real-Time Systems Symposium, Austin, Texas, pp. 235–
245, Dec. 2002.

