
In: Embedded Software, Proceedings of the First International Workshop on Embedded Software
(EMSOFT 2001), Tahoe City, CA, October 2001,

Lecture Notes in Computer Science, Volume 2211, T. Henzinger, C. Kirsch, editors,
Springer Verlag, Berlin, 2001, pages 204-222.

Rate-Based Resource Allocation Models for
Embedded Systems*

Kevin Jeffay
Department of Computer Science

University of North Carolina at Chapel Hill
 Chapel Hill, NC 27599-3175 USA

jeffay@cs.unc.edu

Steve Goddard
Computer Science & Engineering
University of Nebraska - Lincoln
Lincoln, NE 68588-0115 USA

goddard@cse.unl.edu

Abstract: Run-time executives and operating system kernels for embedded
systems have long relied exclusively on static priority scheduling of tasks to
ensure timing constraints and other correctness conditions are met. Static priority
scheduling is easy to understand and support but it suffers from a number of
significant shortcomings such as the complexity of simultaneously mapping
timing and importance constraints onto priority values. Rate-based resource
allocation schemes offer an attractive alternative to traditional static priority
scheduling as they offer flexibility in specifying and managing timing and
criticality constraints. This paper presents a taxonomy of rate-based resource
allocation and summarizes the results of some recent experiments evaluating the
real-time performance of three allocation schemes for a suite of intra-kernel and
application-level scheduling problems encountered in supporting a multimedia
workload on FreeBSD UNIX.

1. Introduction
Run-time executives and operating system kernels for embedded systems have long
relied on static priority scheduling of tasks to ensure timing constraints and other
correctness conditions are met. In static priority scheduling tasks are assigned an
integer priority value that remains fixed for the lifetime of the task. Whenever a task
is made ready to run (e.g., when the arrival of an interrupt releases a waiting task), the
active task with the highest priority commences or resumes execution, preempting the
currently executing task if need be. There is rich literature that analyzes static priority
scheduling and demonstrates how timing and synchronization constraints can be met
using static priority scheduling (see [14] for a good summary discussion). For these
and other reasons virtually all commercial real-time operating systems, including
VxWorks [27], VRTX [17], QNX [22], pSOSystem (pSOS) [21], and LynxOS [16],
support static priority scheduling.

However, despite the popularity and simplicity of static priority scheduling, the
method has significant shortcomings. As discussed in greater detail in Section 2, static
priority scheduling suffers from a number of problems including:

• An inability to directly map timing or importance constraints into priority
values,

• The problem of dealing with tasks whose execution time is either unknown or
may vary over time,

• The problem of dealing with tasks whose execution time or execution rate
deviates significantly at run-time from the behavior expected at design-time,

• The problem of degrading system performance gracefully in times of overload,
and

* This work supported in parts by grants from the National Science Foundation (grants CDA-9624662,
ITR-0082870, and ITR-0082866), and the IBM and Intel corporations.

2

• The problem of ensuring full utilization of the processor or other system
resources in tightly resource constrained systems.
As a solution to these and other problems, we are investigating the use of rate-

based resource allocation methods for real-time and embedded systems. In a rate-based
system a task is guaranteed to make progress according to a well-defined rate
specification such as “process x samples per second,” or “process x messages per
second where each message consists of 3-5 consecutive network packets.”

Recently a number of rate-based resource allocation paradigms have been
developed and reported in the real-time systems and multimedia computing literature.
These include:

• The “constant-bandwidth” abstraction for a server algorithm for executing
aperiodic workloads [2, 23, 24],

• The Lottery [28], SMART [19], SFQ [6], EEVDF [25], and BERT [3] variants
of proportional share real-time resource allocation in UNIX, and

• A series of rate-based extension to the Liu and Layland theory of real-time
scheduling [5, 7, 9, 29].
This paper summarizes recent developments in rate-based resource allocation and

informally demonstrates how rate-based methods can provide a framework for the
natural specification and realization of timing constraints in embedded and real-time
systems. To structure the discussion, three dimensions of the basic resource allocation
problem are considered:

• The type of resource allocation problem. To fully explore the utility of rate-
based resource allocation three scheduling problems are considered: application-
level scheduling (i.e., scheduling of user programs or tasks/threads), scheduling
the execution of system calls made by applications (“top-half” operating system-
level scheduling), and scheduling asynchronous events generated by devices
(“bottom-half” operating system-level scheduling). This treatment is motivated
by the logical structure of traditional, monolithic real-time (and general purpose)
operating systems and kernels with hardware enforced protection boundaries.
Moreover, this simple taxonomy of scheduling problems emphasizes that in real
systems one must consider issues of intra-kernel resource allocation and
scheduling as well as application task scheduling.

• The type or class of rate-based resource allocation method. We consider three
broad classes of rate-based resource allocation paradigms: allocation based on a
fluid-flow paradigm, allocation based on a polling or periodic server paradigm,
and allocation based on a generalized Liu and Layland paradigm. For an instance
of the fluid-flow paradigm the proportional share scheduling algorithm earliest
eligible virtual deadline first (EEVDF) [25] is considered. For an instance of the
polling server paradigm, scheduling based on the constant bandwidth server
(CBS) server concept [2] is considered. Finally, for the generalized Liu and
Layland paradigm a rate-based extension to the original Liu and Layland task
model called rate-based execution (RBE) [9] is considered.

• The characteristics of the workload generated. For each rate-based allocation
scheme above, the likely expected real-time performance of an application is
considered under a set of execution environments where the applications execute
at various rates. Specifically, cases are considered wherein the applications
execute at “well-behaved,” constant rates, at bursty rates, and at uncontrolled
“misbehaved” rates. For well-behaved workloads, the three rate-based schemes
considered (and indeed virtually any real-time scheduling scheme) can execute a
given workload in real-time. However, the rate-based schemes perform quite
differently when applications need to be scheduled at bursty or uncontrolled rates.

The goal is demonstrate how rate-based methods naturally solve a variety of resource
allocation problems that traditional static priority scheduling methods are inherently

3

poorly suited to. However, it will also be argued that “one size does not fit all.” One
rate-based resource allocation scheme does not suffice for all scheduling problems that
arise within the layers of a real system. While one can construct an execution
environment wherein all of the rate-based schemes considered here perform well, for
more realistic environments that are likely to be encountered in practice, the best
results are likely to be achieved by employing different rate-based allocation schemes
at different levels in the operating system.

To be sure, rate-based resource allocation methods are not a panacea. There are
other scheduling architectures based on extensions to (or indirect uses of) static
priority scheduling that can also provide effective solutions for many of the problems
considered herein (see [14]), however, because of space constraints, in this paper only
rate-based methods are considered.

The following section describes the shortcomings of static priority scheduling in
more detail. Section 3 presents a taxonomy of rate-based resource allocation methods.
Three classes of rate-based resource allocation are described and the strengths and
weaknesses of each approach are discussed. The results of some recent experiments
performed to evaluate specific instances of rate-based schedulers are reviewed in
Section 4. Section 5 proposes and evaluates a hybrid scheme that combines different
forms of rate-based resource allocation within different layers of the operating system
and application. Section 6 summaries the results and concludes with a discussion of
directions for further study in rate-based resource allocation.

2. Traditional Static Priority Scheduling
Traditional models of real-time resource allocation are based on the concept of a
discrete but recurring event, such as a periodic timer interrupt, that causes the release
of task. The task must be scheduled such that it completes execution before a well-
defined deadline. For example, most real-time models of execution are based on the
Liu and Layland periodic task model [15] or Mok’s sporadic task model [18]. In these
models each execution of a task must complete before the next instance of the same
task is released. The challenge is to assign priority values to tasks such that all
releases of all tasks are guaranteed to complete execution before their respective
deadlines when scheduled by a preemptive priority scheduler. Common priority
assignment schemes include the rate-monotonic scheme [15] wherein tasks that recur
at high rates have priority over tasks that recur at low rates (i.e., a task’s priority is
equal to its recurrence period), and the deadline monotonic scheme [13] wherein a
task’s priority is related to its response time requirement (it’s deadline).1 In either
case, static assignment of priority values to tasks leads to a number of problems.

2.1. Mapping performance requirements to priorities
Simple timing constraints for tasks that are released in response a single event, such
as a response time requirement for a specific interrupt, can be easily specified in a
static priority system. More complex constraints are frequently quite difficult to map
into priority values. For example, consider a signal processing system operating on
video frames that arrive over a LAN from a remote acquisition device. The
performance requirement may be to process 30 frames/second and hence it would be
natural to model the processing as a periodic task and trivial to schedule using a static

1 We assume throughout that low priority values indicate high scheduling priority.

4

priority scheduler. However, it is easily the case that each video frame arrives at the
processing node in a series of network packets that must be reassembled into a video
frame and it is not at all obvious how the network packet and protocol processing
should be scheduled. That is, while there is a natural constraint for the application-
level processing, there is no natural constraint (e.g., no unique response time
requirement) for the processing of the individual events that will occur during the
process of realizing the higher-level constraint. Nonetheless in a static priority
scheduler the processing of these events must be assigned a single priority value.

The problem here is that the system designer implicitly creates a response time
requirement when assigning a priority value to the network processing. Since there is
no natural unique value for this requirement a conservative (e.g., short response time)
value is typically chosen. This conservative assignment of priority has the effect of
reserving more processing resources for the task than will actually ever be consumed
and ultimately limits the either the number or the complexity of tasks that can be
executed on the processor.

2.2. Managing “misbehaved” tasks
In order to analyze any resource allocation problems, assumptions must be made about
the environment in which the task executes. In particular, in virtually all real-time
problems the amount of resources required for the execution of the task (e.g., the
amount of processor time required to execute the task) is assumed to be known in
advance. A second problem with static priority resource allocation occurs when
assumptions such as these are violated and a task “misbehaves” by consuming more
resources than expected. The problem is to ensure that a misbehaving task does not
compromise the execution of other “well-behaved” tasks in the system.

An often-touted advantage of static priority systems is that if a task violates its
execution assumptions, higher priority tasks are not affected. While it is true that
higher priority tasks are not affected by misbehaving lower priority tasks (unless
higher priority tasks share software resources with the lower priority tasks), all other
tasks have no protection from the misbehaving task. For example, a task that is
released at a higher rate than expected can potentially block all lower priority tasks
indefinitely.

The issue is that static priority scheduling fundamentally provides no mechanism
for isolating tasks from the ill-effects of other tasks other than the same mechanism
that is used to ensure response time properties. Given that isolation concerns typically
are driven by the relative importance of tasks (e.g., a non-critical task should never
effect or interfere with the execution of a mission-critical task), and importance and
response time are often independent concepts, attempting to manage both concerns
with a single mechanism is inappropriate.

2.3. Providing graceful/uniform degradation
Related to the task isolation problem is that of providing graceful performance
degradation under transient (or persistent) overload conditions. The problem of graceful
degradation can be considered a generalization of the isolation problem; a set of tasks
(or the environment that generates work for the tasks) misbehaves and the processing
requirements for the system as a whole increase to the point where tasks miss
deadlines. In these overload situations it is again useful to control which tasks’
performance degrades and by how much.

Static priority scheduling again has only a single mechanism for managing
importance and response time. If the mission-critical tasks also have the smallest
response-time requirements then they will have the highest priority and will continue

5

to function. However, if this is not the case then there is no separate mechanism to
control the execution of important tasks. Worse, even if the priority structure matches
the importance structure, in overload conditions under static priority scheduling only
one form of degraded performance is possible: high priority tasks execute normally
while the lowest priority task executes at a diminished rate if at all. That is, since a
task with priority p will always execute to completion before any pending task with
priority less than p commences or resumes execution, it is impossible to control how
tasks degrade their execution. (Note however, as frequently claimed by advocates of
static priority scheduling, the performance of a system under overload conditions is
predictable.)

2.4. Achieving full resource utilization
The rate-monotonic priority assignment scheme is well known to be an optimal static
priority assignment. (Optimal in the sense that if a static priority assignment exists
which guarantees periodic tasks have a response time no greater than their period, then
the rate-monotonic priority assignment will also provide the same guarantees.) One
drawback to static priority scheduling, however, is that the achievable processor
utilization is restricted. In their seminal paper, Liu and Layland showed that a set of n
periodic tasks will be schedulable under a rate-monotonic priority assignment if the
processor utilization of a task set does not exceed n(21/n – 1) [15]. If the utilization of
a task set exceeds this bound then the tasks may or may not be schedulable. (That is,
this condition is a sufficient but not necessary condition for schedulability). Moreover,
Liu and Layland showed that in the limit the utilization bound approached ln 2 or
approximately 0.69. Thus 69% is the least upper bound on the processor utilization
that guarantees feasibility. A least upper bound here means that this is the minimum
utilization of all task sets that fully utilize the processor. (A task set fully utilizes the
processor if increasing the cost of any task in the set causes a task to miss a deadline.)
If the utilization of the processor by a task set is less than or equal to 69% then the
tasks are guaranteed to be schedulable.

Lehoczky, Sha, and Ding formulated an exact text for schedulabilty under a rate-
monotonic priority assignment and showed that ultimately, schedulability is not a
function of processor utilization [12]. However, nonetheless, in practice the utilization
test remains the dominant test for scheduability as it is both a simple and an intuitive
test. Given this, a resource allocation scheme wherein scheduability was more closely
tied to processor utilization (or a similarly intuitive metric) would be highly desirable.

3. A Taxonomy of Rate-Based Resource Allocation Models
The genesis of rate-based resource allocation schemes can be traced to the problem of
supporting multimedia computing and other soft-real-time problems. In this arena it
was observed that while one could support the needs of these applications with
traditional real-time scheduling models, these models were not the most natural ones
to apply [6, 8, 11, 28]. Whereas Liu and Layland models typically dealt with response
time guarantees for the processing of periodic/sporadic events, the requirements of
multimedia applications were better modeled as aggregate, but bounded, processing
rates.

From our perspective three classes of rate-based resource allocation models have
evolved: fluid-flow allocation, server-based allocation, and generalized Liu and Layland
style allocation. Fluid-flow allocation derives largely from the work on fair-share
bandwidth allocation in the networking community. Algorithms such as generalized

6

processor sharing (GPS) [20], packet-by-packet generalized processor sharing (PGPS)
[20] (better known as weighted fair queuing (WFQ) [4]), were concerned with
allocating network bandwidth to connections (“flows”) such that for a particular
definition of fairness, all connections continuously receive their fair share of the
bandwidth. Since connections were assumed to be continually generating packets,
fairness was expressed in terms of a guaranteed transmission rate (i.e., some number
of bits per second). These allocation policies were labeled as “fluid flow” allocation
because since transmission capacity was continuously available to be allocated,
analogies were drawn between conceptually allowing multiple connections to transmit
packets on a link and allowing multiple “streams of fluid” to flow through a “pipe.”

These algorithms stimulated tremendous activity in both real-time CPU and
network link scheduling. In the CPU scheduling realm numerous algorithms were
developed, differing largely in the definition and realization of “fair allocation” [19, 25,
28]. Although fair/fluid allocation is in principle a distinct concept from real-time
allocation, it is a powerful building block for realizing real-time services [26].

Server-based allocation derives from the problem of scheduling aperiodic tasks in
a real-time system. The salient abstraction is that a “server process” is invoked
periodically to service any requests for work that have arrived since the previous
invocation of the server. The server typically has a “capacity” for servicing requests
(usually expressed in units of CPU execution time) in any given invocation. Once
this capacity is exhausted, any in-progress work is suspended until at least the next
server invocation time. Numerous server algorithms have appeared in the literature;
differing largely in the manner in which the server is invoked and how its capacity is
allocated [2, 23, 24]. Server algorithms are considered to be rate-based forms of
allocation as the execution of a server is not (in general) directly coupled with the
arrival of a task. Moreover, server-based allocation has the effect of ensuring aperiodic
processing progresses at a well defined, uniform rate.

Finally, rate-based generalizations of the original Liu and Layland periodic task
model have been developed to allow more flexibility in how a scheduler responds to
events that arrive at a uniform average rate but unconstrained instantaneous rate.
Representative examples here include the (m, k) allocation models that requires only
m out of every k events be processed in real-time [5], the window-based allocation
(DWYQ) method that ensures a minimum number of events are processed in real-time
within sliding time windows [29], and the rate-based execution (RBE) algorithm that
“reshapes” the deadlines of events that arrive at a higher than expected rate to be those
that the events would have had had they arrived at a uniform rate [9].

To illustrate the utility of rate-based resource allocation, one algorithm from the
literature from each class of rate-based allocation methods will be discussed in more
detail. The choice is motivated by the prior work of the authors, specifically our
experience implementing and using these algorithms in production systems [7, 10].
For an instance of the fluid-flow paradigm the proportional share scheduling algorithm
earliest eligible virtual deadline first (EEVDF) [25] will be discussed. For an instance
of the polling server paradigm the constant bandwidth server (CBS) server concept [2]
will be discussed. For the generalized Liu and Layland paradigm the rate-based
execution (RBE) model [9] will be discussed. Although specific algorithms are chosen
for discussion, ultimately the results presented are believed to hold for each algorithm
in the same class as the algorithm discussed.

7

3.1. Fluid-Flow Resource Allocation: Proportional Share Scheduling
In a proportional share (PS) system each shared resource r is allocated in discrete
quanta of size at most qr. At the beginning of each time quantum a task is selected to
use the resource. Once the task acquires the resource, it may use the resource for the
entire time quantum, or it may release the resource before the time quantum expires.
For a given resource, a weight is associated with each task that determines the relative
share of the resource that the task should receive. Let wi denote the weight of task i ,
and let A(t) be the set of all tasks active at time t. Define the (instantaneous) share fi(t)
of task i at time t as

f t
w

wi
i

jj A t

()
()

=
∈∑ (1)

A share represents a fraction of the resource’s capacity that is “reserved” for a
task. If the resource can be allocated in arbitrarily small sized quanta, and if the task’s
share remains constant during any time interval [t1, t2], then the task is entitled to use
the resource for (t2 – t1)fi(t) time units in the interval. As tasks are created/destroyed or
blocked/released, the membership of A(t) changes and hence the denominator in (1)
changes. Thus in practice, a task’s share of a given resource will change over time. As
the total weight of tasks in the system increases, each task’s share of the resource
decreases. As the total weight of tasks in the system decreases, each task’s share of the
resource increases. When a task’s share varies over time, the service time S that task i
should receive in any interval [t1, t2], is

Si(t1, t2) =

f t dti
t

t
()

1

2∫ (2)

time units.
Equations (1) and (2) correspond to an ideal “fluid-flow” system in which the

resource can be allocated for arbitrarily small units of time. In such a system tasks
make progress at a uniform rate as if they were executing on a dedicated processor with
a capacity that is fi(t) that of the actual processor. In practice one can implement only
a discrete approximation to the fluid system. When the resource is allocated in discrete
time quanta it is not possible for a task to always receive exactly the service time it is
entitled to in all time intervals. The difference between the service time that a task
should receive at a time t, and the time it actually receives is called the service time
lag (or simply lag). Let t0 be the time at which task i becomes active, and let s(t0 , t)
be the service time task i receives in the interval [t0 , t]. Then if task i is active in the
interval [t0 , t], its lag at time t is defined as

lagi(t) = Si(t i
0 , t) – si(t i

0 , t). (3)

Since the lag quantifies the allocation accuracy, it is used as the primary metric
for evaluating the performance of PS scheduling algorithms. Previously we have
shown that one can schedule a set of tasks in a PS system using a “virtual time”
earliest deadline first rule such that the lag is bounded by a constant over all time
intervals [25]. By using this algorithm, called earliest eligible virtual deadline first
(EEVDF), a PS system’s deviation from a system with perfectly uniform allocation is
bounded and thus, as explained below, real-time execution is possible.

Scheduling to Minimize Lag
The goal in proportional share scheduling is to minimize the maximum possible lag.
This is done by conceptually tracking the lag of tasks and at the end of each quantum,
considering only tasks whose lag is positive [25]. If a task’s lag is positive then it is
“behind schedule” compared to the perfect fluid system — it should have accumulated

8

more time on the CPU than it has up to the current time. If a task’s lag is positive it
is considered eligible to execute. If its lag is negative, then the task has received more
processor time than it should have up to the current time and it is considered ineligible
to execute

When multiple tasks are eligible, in EEVDF they are scheduled earliest deadline
first, where a task’s deadline is equal to its estimated execution time cost divided by its
share of the CPU, ƒi(t). This deadline represents a point in the future when the task
should complete execution if it receives exactly its share of the CPU. For example, if
a task’s weight is such that its share of the CPU at the current time is 10% and it
requires 2 ms of CPU time to complete execution, then its deadline will be 20 ms in
the future. If the task actually receives 10% of the CPU, over the next 20 ms it will
execute for 2 ms.

Proportional share allocation is realized through a form of weighted round-robin
scheduling wherein in each round the task with the earliest deadline is selected. In [25]
it was shown that the EEVDF algorithm provides optimal (i.e., minimum possible)
lag bounds.

Realizing Real-Time Execution
In principle, there is nothing “real-time” about proportional share resource allocation.
Proportional share resource allocation is concerned solely with uniform allocation
(often referred to in the literature as “fluid” or “fair” allocation). A PS scheduler
achieves uniform allocation if it can guarantee that tasks’ lags are always bounded.

Real-time computing is achieved in a PS system by (i) ensuring that a task’s
share of the CPU (and other required resources) remains constant over time, and by (ii)
scheduling tasks such that each task’s lag is always bounded by a constant. If these
two conditions hold over an interval of length t for a task i , then task i is guaranteed
to receive (fi × t) ± ε units of the resource’s capacity, where fi is the fraction of the
resource reserved for task i, and ε is the allocation error, 0 ≤ ε ≤ δ, for some constant
δ (for EEVDF δ = the quantum size q) [25]. Thus, although real-time allocation is
possible, it is not possible to provide hard and fast guarantees of adherence to
application-defined timing constraints. Said another way, all guarantees have an
implicit, and fundamental, “± ε” term. In FreeBSD-based implementations of EEVDF,
ε has been a tunable parameter and was most commonly set to 1 ms [7].

The deadline-based EEVDF proportional share scheduling algorithm ensures that
each task’s lag is bounded by a constant [25] (condition (i)). To ensure a task’s share
remains constant over time (condition (ii)), whenever the total weight in the system
changes, a “real-time” task’s weight must be adjusted so that its initial share (as given
by equation (1)) does not change. For example, if the total weight in the system
increases (e.g., because new tasks are created), then a real-time task’s weight must
increase by a proportional amount. Adjusting the weight to maintain a constant share
is simply a matter of solving equation (1) for wi when fi(t) is a constant function.
(Note that wi appears in both the numerator and denominator of the right-hand side of
(1).) If the sum of the processor shares of the real-time tasks is less than 1.0 then all
tasks will execute in real-time (i.e., under EEVDF real-time scheduablity is a simple
function of processor utilization).

3.2. Liu and Layland Extensions: Rate-Based Execution (RBE)
The traditional Liu and Layland model of periodic real-time execution has been
extended in a number of directions to be more flexible in way in which real-time
requirements were modeled and realized. For example, all of the traditional theory

9

assumes a minimum separation in time between releases of instances of the same
task. This requirement does not map well in actual systems that, for example, receive
inputs over a network. For example, in a video processing application, video frames
may be transmitted across an internetwork at precise intervals but arrive at a receiver
with arbitrary spacing in time because of the store-and-forward nature of most network
switches. Although there is explicit structure in this problem (frames are generated at
a precise rate), there is no way to capture this structure in a Liu and Layland model.

The RBE paradigm is one extension to the Liu and Layland model to address this
problem. In RBE, each task is associated with three parameters (x, y, d) which define a
rate specification. In an RBE system, each task is guaranteed to process at least x
events every y time units, and each event j will be processed before a relative deadline
d. The actual deadline for processing of the j th event for task i is given by the
following recurrence. If tij is the time of the arrival of the j th event, then the instance
of task i servicing this event will complete execution before time:

D j
t d j x

t d D j x y j xi
ij i i

ij i i i i i
()

max((–))
=

+ ≤ ≤
+ +

if 1

, if >
(4)

The deadline for the processing of an event is the larger of the release time of the
job plus its relative deadline, or the deadline of the xth previous job plus the y
parameter (the averaging interval) of the task. This deadline assignment function
confers two important properties on RBE tasks. First, up to x consecutive jobs of a
task may contend for the processor with the same deadline and second, the deadlines for
processing events j and j+x for task i are separated by at least y time units. Without
the latter restriction, if a set of events for a task arrive simultaneously it would be
possible to saturate the processor. However, with the restriction, the time at which a
task must complete its execution is not wholly dependent on its release time. This is
done to bound processor demand. Under this deadline assignment function, requests for
tasks that arrive at a faster rate than x arrivals every y time units have their deadlines
postponed until the time they would have been assigned had they actually arrived at
the rate of exactly x arrivals every y time units [9].

The RBE task model derives from the linear bounded arrival process (LBAP)
model as defined and used in the DASH system [1]. In the LBAP model, tasks specify
a desired execution rate as the number of messages to be processed per second, and the
size of a buffer pool used to store bursts of messages that arrive for the task. The RBE
model generalizes the LBAP model to include a more generic specification of rate and
adds an independent response time (relative deadline) parameter to enable more precise
real-time control of task executions.

RBE tasks can be scheduled by a simple earliest-deadline-first rule so long as the
combined processor utilization of all tasks does not saturate the processor. (Hence
there are no undue limits on the achievable processor utilization.) Although nothing
in the statement of the RBE model precludes static priority scheduling of tasks, it
turns out that the RBE model points out a fundamental distinction between deadline-
based scheduling methods and static priority based methods. Analysis of the RBE
model has shown that under deadline-based scheduling, feasibility is solely a function
of the distribution of task deadlines in time and is independent of the rate at which
tasks are invoked. In contrast, the opposite is true of static priority schedulers. For
any static priority scheduler, feasibility is a function of the rate at which tasks are
invoked and is independent of the deadlines of the tasks [9]. Said more simply, the
feasibility of static priority schedulers is solely a function of the periodicity of tasks,

10

while the feasibility of deadline schedulers is solely a function of the periodicity of the
occurrence of a task’s deadlines. Given that it is often the operating system or
application that assigns deadlines to tasks, this means that the feasibility of a static
priority scheduler is a function of the behavior of the external environment (i.e. arrival
processes), while the feasibility of a deadline driven scheduler is a function of the
implementation of the operating system/application. This is a significant observation
as one typically has more control over the implementation of the operating system
than they do over the processes external to the system that generate work for the
system. For this reason deadline based scheduling methods have a significant and
fundamental advantage over static priority based methods when there is uncertainty in
the rates at which work is generated for a real-time system, such as is the case in
virtually all distributed real-time systems.

3.3. Server-Based Allocation: The Constant Bandwidth Server (CBS)
The final class of rate-based resource allocation algorithms are server algorithms. At a
high-level, the CBS algorithm combines aspects of both EEVDF and RBE scheduling
(although it was developed independently of both works). Like RBE it is an event
based scheduler, however, like EEVDF it has a notion of a quantum. Like both, it
achieves rate-based allocation by a form of deadline scheduling

In CBS, and its related cousin the total bandwidth server (TBS) [23, 24], a
portion of the processor’s capacity, denoted US, is reserved for processing aperiodic
requests of a task. When an aperiodic request arrives it is assigned a deadline and
scheduled according to the earliest-deadline- first algorithm. However, while the server
executes, its capacity linearly decreases. If the server’s capacity for executing a single
request is exhausted before the request finishes, the request is suspended until the next
time the server is invoked.

A server is parameterized by two additional parameters CS and TS, where CS is the
execution time available for processing requests in any single server invocation and TS

is the inter-invocation period of the server (US = CS/TS). Effectively, if the kth aperiodic
request arrives at time tk, it will execute as a task with a deadline

dk = max(tk, dk–1) + ck/US (5)

where ck is the worst case execution time of the kth aperiodic request, dk–1 is the
deadline of the previous request from this task, and US is the processor capacity
allocated to the server for this task.

CBS resource allocation is considered a rate-based scheme because deadlines are
assigned to aperiodic requests based on the rate at which the server can serve them and
not (for example) on the rate at which they are expected to arrive. Note that like
EEVDF and RBE, scheduability in CBS is solely a function of processor utilization.
Any real-time task set that does not saturate the processor is guaranteed to execute in
real-time under any of these three algorithms.

4. Using Rate-Based Scheduling
To see how rate-based resource allocation methods can be used to realize real-time
constraints and overcome the shortcoming of static priority scheduling, the three
algorithms above were used to solve various resource allocation problems that arose in
FreeBSD UNIX when executing a set of interactive multimedia applications. The
details of this study are reported in [10]. The results are summarized here.

11

4.1. A Sample Real-Time Workload
To compare the rate-based schedulers, three simple multimedia applications were
considered. These applications were chosen because they illustrate many of the
essential resource allocation problems found in distributed real-time and embedded
applications. The applications are:

• An Internet telephone application that handles incoming 100 byte audio
messages at a rate of 50/second and computes for 1 millisecond on each message
(requiring 5% of the CPU on average),

• A motion-JPEG video player that handles incoming 1,470 byte messages at a
rate of 90/second and computes for 5 milliseconds on each message (requiring
45% of the CPU on average), and

• A file transfer program that handles incoming 1,470 byte messages at a rate of
200/second and computes for 1 millisecond on each message (requiring 20% of
the CPU on average).
The performance of different rate-based resource allocation schemes was

considered under varying workload conditions. The goal was to evaluate how each rate-
based allocation scheme performed when the rates of tasks to be scheduled varied from
constant (uniform), to “bursty” (erratic instantaneous rate but constant average rate), to
“mis-behaved” (long-term deviation from average expected processing rate).

4.2. Rate-Based Scheduling of Operating System Layers
Our experiments focused on the problem of processing inbound network packets and
scheduling user applications to consume these packets. Figure 1 illustrates the high-
level architecture of the FreeBSD kernel. Briefly, in FreeBSD, packet processing
occurs as follows. (For a more complete description of these functions see [30].)
When packets arrive from the network, interrupts from the network interface card are
serviced by a device-specific interrupt handler. The device driver copies data from
buffers on the adapter card into a chain of fixed-size kernel memory buffers sufficient
to hold the entire packet. This chain of buffers is passed on a procedure call to a
general interface input routine for a class of input devices. This procedure determines
which network protocol should receive the packet and enqueues the packet on that

User Process

Socket Layer

Interface/Device Driver Layer

Protocol Layer (UDP/IP)

Network Device

System Calls

Protocol
input
queue

Socket
receive
queues

Application-Level
Process Scheduling

User Process User Process

Top-Half Kernel
(System call) Scheduling

Bottom-Half Kernel
(Device driver) Scheduling

Figure 1: Architectural diagram of UDP/IP protocol processing in FreeBSD.

12

protocol’s input queue. It then posts a software interrupt that will cause the protocol
layer to be executed when no higher priority hardware or software activities are
pending.

Processing by the protocol layer occurs asynchronously with respect to the
device driver processing. When the software interrupt posted by the device driver is
serviced, a processing loop commences wherein on each iteration the buffer chain at
the head of the input queue is removed and processed by the appropriate routines for
the transport protocol. This results in the buffer chain enqueued on the receive queue
for the destination socket. If any process is blocked in a kernel system call awaiting
input on the socket, it is unblocked and rescheduled. Normally, software interrupt
processing returns when no more buffers remain on the protocol input queue.

The kernel socket layer code executes when an application task invokes some
form of receive system call on a socket descriptor. When data exists on the appropriate
socket queue, the data is copied into the receiving task’s local buffers from the buffer
chain(s) at the head of that socket’s receive queue. When there is sufficient data on the
socket receive queue to satisfy the current request, the kernel completes the system call
and returns to the application task.

The problem of processing inbound network packets was chosen for study
because it involves a range of resource allocation problems at different layers in the
operating system. Specifically, there are three distinct scheduling problems:
scheduling of device drivers and network protocol processing within the operating
system kernel, scheduling system calls made by applications to read and write data to
and from the network, and finally the scheduling of user applications. These are
distinct problems because the schedulable work is invoked in different ways in
different layers. Asynchronous events cause device drivers and user applications to be
scheduled but synchronous events cause system calls to be scheduled. Systems calls
are, in essence, extensions of the application’s thread of control into the operating
system. Moreover, these problems are of interest because of the varying amount of
information that is available to make real-time scheduling decisions at each level of
the operating system. At the application and system call-level it is known exactly
which real-time entity should be “charged” for use of system resources while at the
device driver-level one cannot know which entity to charge. For example, in the case
of inbound packet processing, it cannot be determined which application to charge for
the processing of a packet until the packet is actually processed and the destination
application is discovered. On the other hand, the cost of device processing can be
known exactly as device drivers typically perform simple, bounded-time functions
(such as placing a string of buffers representing a packet on a queue). This is in
contrast to the application-level where often one can only estimate the time required
for an application to complete.

The challenge is to allocate resources throughout the operating system so that
end-to-end system performance measures (i.e., network interface to application
performance) can be ensured.

4.3. Workload Performance Under Proportional Share Allocation
A version of FreeBSD was constructed that used EEVDF proportional share
scheduling (with a 1 ms quantum) at the device, protocol processing, and the
application layers. In this system each real-time task is assigned a share of the CPU
equal to its expected utilization of the processor (e.g., the Internet phone application
requires 5% of the CPU and hence is assigned a weight of 0.05). Non-real-time tasks
are assigned a weight equal to the unreserved capacity of the CPU. Network protocol

13

processing is treated as a real-time (kernel-level) task that processes a fixed number of
packets when it is scheduled for execution.

In the well-behaved senders case all packets are moved from the network interface
to the socket layer to the application and processed in real-time. When the file transfer
sender misbehaves and sends more packets than the ftp receiver can process given its
CPU reservation, EEVDF does a good job of isolating the other well-behaved
processes from the ill-effects of ftp. Specifically, the excess ftp packets are dropped at
the lowest level of the kernel (at the IP layer) before any significant processing is
performed on these packets. These packets are dropped because the kernel task
associated with their processing is simply not scheduled often enough (by design) to
move the packets up to the socket layer. In a static priority system (such as the
unmodified FreeBSD system), network interface processing is the second highest
priority task. In this system, valuable time would be “wasted” processing packets up
through the kernel only to have them later discarded (because of buffer overflow)
because the application wasn’t scheduled often enough to consume them.

The cost of this isolation comes in the form of increased packet processing
overhead as now the device layer must spend time demultiplexing packets (typically a
higher-layer function) to determine if they should be dropped. Performance is also
poorer when data arrives for all applications in a bursty manner. This is an artifact of
the quantum-based allocation nature of EEVDF. Over short intervals, data arrives
faster than it can be serviced at the IP layer and the IP interface queue overflows. With
a 1 ms quantum, it is possible that IP processing can be delayed for upwards of 8-10
ms and this is sufficient time for the queue to overflow in a bursty environment. This
problem could be ameliorated to some extent by increasing the length of the IP queue,
however, this would also have the effect of increasing the response time for packet
processing.

4.4. Workload Performance Under Generalized Liu and Layland
Allocation
When RBE scheduling was used for processing at the device, protocol, and application
layers, each task had a simple rate specification of (1, p, p) (i.e., one event will be
processed every p time units with a deadline of p) where p is the period of the
corresponding application or kernel function.

Perfect real-time performance is realized in the well-behaved and bursty arrivals
cases but performance is significantly poorer than EEVDF in the case of the
misbehaved file transfer application. On the one hand, RBE provides good isolation
between the file transfer and the other real-time applications, however, this isolation
comes at the expense of the performance of non-real-time/background applications.
Unlike EEVDF, as an algorithm, RBE has no mechanism for directly ensuring
isolation between tasks as there is no mechanism for limiting the amount of CPU
time an RBE task consumes. All events in an RBE system are assigned deadlines for
processing. When the work arrives at a faster rate than is expected, the deadlines for
the work are simply pushed further and further out in time. Assuming sufficient
buffering, all will eventually be processed.

In the FreeBSD system, packets are enqueued at the socket layer but with
deadlines that are so large that processing is delayed such that the socket queue quickly
fills and overflows. Because time is spent processing packets up to the socket layer
that are never consumed by the application, the performance of non-real-time
applications suffers. Because of this, had the real-time workload consumed a larger
cumulative fraction of the CPU, RBE would not have isolated the well-behaved and

14

misbehaved real-time applications. (That is, the fact that isolation was observed in
these experiment is an artifact of the specific real-time workload.)

Nonetheless, because the RBE scheduler assigns deadline to all packets, and
because the system under study was not overloaded, RBE scheduling results in the
smaller response times for real-time events than seen under EEVDF (at the cost non-
real-time task performance).

4.5. Workload Performance Under Server Based Allocation
When CBS server tasks were used for processing throughout the operating system and
at the application layers, each server task was assigned a capacity equal to its
application’s/function’s CPU utilization. The server’s period was made equal to the
expected interarrival time of data (packets). Non-real-time tasks were again assigned to
a server with capacity equal to the unreserved capacity of the CPU.

As expected, performance is good when work arrives in a well-behaved manner.
In the case of the misbehaved file transfer, CBS also does a good job of isolating the
other well-behaved tasks. The excess ftp packets are dropped at the IP layer and thus
little overhead is incurred. In the case of bursty senders CBS scheduling outperforms
EEVDF scheduling. This is because like RBE, scheduling of CBS tasks is largely
event driven and hence CBS tasks respond quicker to the arrival of packets. Under
EEVDF the rate at which the IP queue can be serviced is a function of the quantum
size and the number of processes currently active (which determines the length of a
scheduling “round” [4]). In general these parameters are not directly related to the real-
time requirements of applications. Under CBS the service rate is a function of the
server’s period which is a function of the expected arrival rate and thus is a parameter
that is directly related to application requirements. For the choices of quantum size for
EEVDF, and server period for CBS, good performance under CBS and poor
performance under EEVDF results. However, we conjecture that is likely the case that
these parameters could be tuned to reverse this result.

Although CBS outperforms EEVDF in terms of throughput, the results are
mixed for response times for real-time tasks. Even when senders are well behaved
some deadlines are missed under CBS. This results in a significant number of packets
being processed later than with EEVDF or RBE scheduling. This is problematic since
in these experiments the theory predicts that no deadlines should be missed. The cause
of the problem here relates to the problem of accounting for the CPU time consumed
when a CBS task executes. In the implementation of CBS, the capacity of a CBS task
is updated only when the task sleeps or is awaken by the kernel. Because of this,
many other kernel related functions that interrupt servers (e.g., Ethernet driver
execution) are inappropriately charged to CBS tasks and hence bias scheduling
decisions. This accounting problem is fundamental to the server-based approach and
cannot be completely solved without significant additional mechanism (and overhead).

5. Hybrid rate-based scheduling
The results of applying a single rate-based resource allocation policy to the problems
of device, protocol, and application processing were mixed. When processing occurs at
rates that match the underlying scheduling model (e.g., when work arrives at a
constant rate), all the policies considered achieved real-time performance. When work
arrives for an application that exceeds the application’s rate specification or resource
reservation, then only the CBS server-based scheme and the EEVDF proportional
share scheme provide true isolation between well-behaved and misbehaved

15

applications. When work arrives in a bursty manner, the quantum-based nature of
EEVDF leads to less responsive protocol processing and more (unnecessary) packet
loss. CBS performs better but suffers from the complexity of the CPU-time
accounting problem that must be solved. RBE provides the best response times but
only at the expense of decreased throughput for the non-real-time activities. The
obvious question is whether or not there is utility in applying different rate-based
resource allocation schemes in different layers of the kernel to better match the
solution to a particular resource allocation problem to the characteristics of the
problem.

To test this conjecture two hybrid rate-based FreeBSD systems were constructed.
For application and system call level processing EEVDF scheduling was used. This
choice was made because the quantum nature of EEVDF, while bad for intra-kernel
resource allocation, is a good fit given the existing round-robin scheduling architecture
in FreeBSD (and many other operating systems such as Linux). It is easy to
implement and to precisely control and gives good real-time response when
schedulable entities execute for long periods relative to the size of a quantum. For
device and protocol processing inside the kernel both CBS and RBE scheduling were
considered. Since the lower kernel layers operate more as an event driven system, a
paradigm which takes into account the notion of event arrivals is appropriate. Both of
these policies are also well-suited for resource allocation within the kernel because, in
the case of CBS, it is easier to control the levels and degrees of preemption within the
kernel and hence it is easier to account for CPU usage within the kernel (and hence
easier to realize the results predicted by the CBS theory). In the case of RBE,
processing within the kernel is more deterministic and hence RBE’s inherent inability
to provide isolation between tasks that require more computation than they reserved is
less of a factor.

The forms of hybrid rate-based resource allocation described here remains the
topic of active study. Preliminary results show that when work arrives at well-behaved
rates both CBS+EEVDF and RBE+EEVDF systems perform flawlessly. (Thus hybrid
allocation performs no worse than the universal application of a single rate-based
scheme throughput the system.) In the misbehaved ftp application case, both hybrid
implementations provide good isolation, comparable to the best single-policy
systems. However, in both hybrid approaches, response times and deadline miss ratios
are now much improved. In the case of bursty arrivals, all packets are eventually
processed and although many deadlines are missed, both hybrid schemes miss fewer
deadlines than did the single-policy systems. Overall the RBE+EEVDF system
produces the lowest overall deadline miss ratios. While we do not necessarily believe
this is a fundamental result (i.e., there are numerous implementation details to
consider), it is the case that the polling nature of the CBS server tasks increases
response times over the direct event scheduling method of RBE.

6. Summary, Conclusions, and Future Work
Rate-based resource allocation schemes are a good fit for providing real-time services
in distributed real-time and embedded systems. Allocation schemes exist that are a
good fit for the scheduling architectures used in the various layers of a traditional
monolithic UNIX kernel such as FreeBSD. Three such rate-based schemes were
considered: the earliest eligible virtual deadline first (EEVDF) fluid-flow paradigm, the
constant bandwidth server (CBS) polling server paradigm, and the generalization of
Liu and Layland scheduling known as rate-based execution (RBE). We compared their

16

performance for three scheduling problems found in FreeBSD: application-level
scheduling of user programs, scheduling the execution of system calls made by
applications in the “top-half” of the operating system, and scheduling asynchronous
events generated by devices in the “bottom-half” of the operating system. For each
scheduling problem we considered the problem of network packet and protocol
processing for a suite of canonical multimedia applications. We tested each
implementation under three workloads: a uniform rate packet arrival process, a bursty
arrival process, and a misbehaved arrival process that generates work faster than the
corresponding application process can consume it.

The results were mixed. When work arrives at rates that match the underlying
scheduling model (the constant rate senders case), all the policies we considered
achieve real-time performance. When work arrives that exceeds the application’s rate
specification, only the CBS server-based scheme and the EEVDF proportional share
scheme provide isolation between well-behaved and misbehaved applications. When
work arrives in a bursty manner, the quantum-based nature of EEVDF gives less
responsive protocol processing and more packet loss. CBS performs better but suffers
from CPU-time accounting problems that result in numerous missed deadlines. RBE
provides the best response times but only at the expense of decreased throughput for
the non-real-time activities.

We next investigated the application of different rate-based resource allocation
schemes in different layers of the kernel and considered EEVDF proportional share
scheduling of applications and system calls combined with either CBS servers or RBE
tasks in the bottom half of the kernel. The quantum nature of EEVDF scheduling
proves to be well suited to the FreeBSD application scheduling architecture and the
coarser-grained nature of resource allocation in the higher-layers of the kernel. The
event driven nature of RBE scheduling gives the best response times for packet and
protocol processing. Moreover, the deterministic nature of lower-level kernel
processing avoids the shortcomings observed when RBE scheduling is employed at the
user-level.

In summary, we conclude that more research is needed on the design of rate-based
resource allocation schemes that are tailored to the requirements and constraints of
individual layers of an operating system kernel. All of the schemes we tested worked
well for application-level scheduling (the problem primarily considered by the
developers of each algorithm). However, for intra-kernel resource allocation, these
schemes give significantly different results. By combining resource allocation schemes
we are able to alleviate specific shortcomings, however, this is likely more accidental
than fundamental as none of these policies were specifically designed for scheduling
activities within the kernel. By studying these problems in their own right, significant
improvements should be possible.

References
1. D. Anderson, Tzou, S., Wahbe, R., Govindan, R., Andrews, M., Support for

Live Digital Audio and Video, Proc. 10th Intl. Conf. on Distributed Computing
Systems, Paris, France, May 1990, pp. 54-61.

2. L. Abeni, G. Buttazzo, Integrating Multimedia Applications in Hard Real-Time
Systems, Proc. of the 19th IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998, pp. 4-13.

17

3. A. Bavier, and L.L. Peterson, BERT: A Scheduler for Best Effort and Real-time
Tasks, Technical Report, Department of Computer Science, Princeton University,
2001.

4. A. Demers, S. Keshav, and S. Shenkar, Analysis and Simulation of a Fair
Queueing Algorithm, Jour. of Internetworking Research & Experience, October
1990, pp. 3-12.

5. M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for
streams with (m,k)-firm deadlines, IEEE Transactions on Computers, April 1995.

6. P. Goyal, X. Guo, H. Vin, A Hierarchical CPU Scheduler for Multimedia
Operating Systems, USENIX Symp. on Operating Systems Design &
Implementation, Seattle, WA, Oct. 1996, pp. 107-121.

7. K. Jeffay, F. D. Smith, A. Moorthy, J. Anderson, Proportional Share Scheduling
of Operating Systems Services for Real-Time Applications, Proc. of the 19th
IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998, pp. 480-
491.

8. K. Jeffay, D. Bennett, Rate-Based Execution Abstraction for Multimedia
Computing, Proc. of the Fifth Intl. Workshop on Network & Operating System
Support for Digital Audio & Video, Durham, NH, April 1995, Lecture Notes in
Computer Science, Vol. 1018, pp. 64-75, Springer-Verlag, Heidelberg.

9. K. Jeffay, S. Goddard, A Theory of Rate-Based Execution, Proc. 20th IEEE Real-
Time Systems Symposium, Dec. 1999, pp. 304-314.

10. K. Jeffay, G. Lamastra, A Comparative Study of the Realization of Rate-Based
Computing Services in General Purpose Operating Systems, Proceedings of the
Seventh IEEE International Conference on Real-Time Computing Systems and
Applications, Cheju Island, South Korea, December 2000, pages 81-90.

11. M.B. Jones, D. Rosu, M.-C. Rosu, CPU Reservations & Time Constraints:
Efficient, Predictable Scheduling of Independent Activities, Proc., Sixteenth
ACM Symposium on Operating Systems Principles, Saint-Malo, France,
October 1997, pp. 198-211.

12. Lehoczky, J., Sha, L., Ding, Y., The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior, Proc. of the 10th IEEE Real-
Time Systems Symp., Santa Monica, CA, December 1989, pp. 166-171.

13. J. Leung, and J. Whitehead, On the complexity of fixed-priority scheduling of
periodic, real-time tasks, Performance Evaluation, 2, 1982, pp. 237-50.

14. J.W. S. Liu, Real-Time Systems, Prentice Hall, 2000.
15. C. L. Liu and J. W. Layland, Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment, Journal of the ACM, Vol. 20, No. 1, January
1973, pp. 46-61.

16. LynuxWorks, LynxOS and BlueCat real-time operating systems,
http://www.lynx.com/index.html.

17. Mentor Graphics, VRTX Real-Time Operating System.
18. A.K.-L., Mok, Fundamental Design Problems of Distributed Systems for the

Hard Real-Time Environment, Ph.D. Thesis, MIT, Dept. of EE and CS,
MIT/LCS/TR-297, May 1983.

19. J. Nieh, M.S. Lam, Integrated Processor Scheduling for Multimedia, Proc. 5th

Intl. Workshop on Network and Operating System Support for Digital Audio &

18

Video, Durham, N.H., April 1995, Lecture Notes in Computer Science, T.D.C.
Little & R. Gusella, eds., Vol. 1018, Springer-Verlag, Heidelberg.

20. A. K. Parekh and R. G. Gallager, A Generalized Processor Sharing Approach To
Flow Control in Integrated Services Networks-The Single Node Case,
ACM/IEEE Transactions on Networking, Vol. 1, No. 3, 1992, pp. 344-357.

21. pSOS+TM/68K Real-Time Executive, User’s Manual, Motorola, Inc.
22. QNX Operating System, System Architecture and Neutrino System Architecture

Guide, QNX Software Systems Ltd, 1999.
23. M. Spuri, G. Buttazzo, Efficient Aperiodic Service Under the Earliest Deadline

Scheduling, Proc. 15th IEEE Real-Time Systems Symp., Dec. 1994, pp. 2-11.
24. M. Spuri, G. Buttazzo, F. Sensini, Robust Aperiodic Scheduling Under Dynamic

Priority Systems, Proc. 16th IEEE Real-Time Systems Symp., Dec. 1995, pp.
288-299.

25. I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, C. Plaxton, A
Proportional Share Resource Allocation Algorithm for Real-Time, Time-Shared
Systems, Proc. 17th IEEE Real-Time Systems Symposium, Dec. 1996, pp. 288-
299.

26. I. Stoica, H. Abdel-Wahab, K. Jeffay, On the Duality between Resource
Reservation and Proportional Share Resource Allocation, Multimedia Computing
& Networking ‘97, SPIE Proceedings Series, Vol. 3020, Feb. 1997, pp. 207-
214.

27. VxWorks Programmer’s Guide, WindRiver System, Inc., 1997.
28. C.A. Waldspurger, W.E. Weihl, Lottery Scheduling: Flexible Proportional-Share

Resource Management, Proc. of the First Symp. on Operating System Design
and Implementation, Nov. 1994, pp. 1-12.

29. R. West, K. Schwan, and C. Poellabauer, Scalable scheduling support for loss
and delay constrained media streams, Proceedings of the 5th IEEE Real-Time
Technology and Applications Symposium, Vancouver, Canada, June 1999.

30. G.R. Wright, W.R. Stevens, TCP/IP Illustrated, Volume 2, The Implementation,
Addison-Wesley, Reading MA, 1995.

