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Abstract such as sensor fusion and correlation, which execute for ex-
tended periods of time and transmit intermediate results to
Aperiodic requests witlunknown execution times and be used by the base station or other mobile robots. Fre-
unknownarrival patterns are dynamically mapped to rate- quently a set of these long-running requests will arrive at
based execution (RBE) tasks with variable rates and schedsnce and it is desirable for them to time-share available pro-
uled such that the real-time tasks are guaranteed to meetessor capacity with each other and aperiodic tasks already
their deadlines. The aperiodic requests dynamically shareexecuting.

the available processor capacity without reserving a fixed  This work addresses the theory of integrating RBE tasks
processor capacity for any one aperiodic request (or classwith aperiodic requests on a uniprocessor. The only known
of requests). This approach was selected over the tradischeduling algorithm for RBE tasks is based on the earliest-
tional approach of using a static set of server tasks to pro-deadline-first (EDF) scheduling algorithm, which requires
cess aperiodic requests so that the available processor cathe specification of task parameters that are generally un-
pacity could be proportionally shared between active aperi-known for aperiodic requests (or too pessimistic to be useful
odic requests. in this case).

The canonical approach to supporting aperiodic requests
. in a uniprocessor real-time system has been to add a server
1. Introduction that processes the aperiodic (non-real-time) requests [17, 27,
The rate-based execution (RBE) task model was devel25, 10, 26, 8, 9, 1, 5, 4, 6, 16]. The server is allocated a
oped to support the real-time execution of event-driven taskportion of the CPU bandwidth such that it progresses at a
in which noa priori characterization of thactual arrival constant rate (or a fixed minimum rate). Within a server, the
rates of events is known; only ttexpectedarrival rates of  aperiodic requests are usually scheduled in FIFO order. An
events is known [14]. The RBE model is a generalization ofobvious drawback is that it neglects the aperiodic request’s
Mok’s sporadic task model [22] in which tasks are expectedurgency, which can be represented by weight. Other draw-
to execute with an average execution ratecdfimes every  backs of existent server methods is that a fixed number of
y time units, and was motivated, in part, by distributed mul- aperiodic request servers is assumed or they are allocated
timedia applications. A strength of the RBE task model isa “constant bandwidth.” Even moderately complex systems
that it supports théurstypacket arrival pattern common in  have dynamic work loads in which it is desirable to support a
networked environments. variable number of servers, servers with variable bandwidth,
The RBE model is an attractive execution model for sys-or both.
tems that execute in unpredictable environments where the |n many proportional-share algorithms, the concept of
arrival pattern of events is neither periodic nor sporadic. Fokirtual time was developed to solve the problem of dynamic
this reason, the RBE model was selected to model the workyork loads (e.g., [34, 24, 30]). Since virtual time maintains
load in a mobile robot, which interacts with peer robots andthe order of finish times or deadlines (depending on the pri-
a base station. Each robot has a small set of hard-real-timgrity mechanism) with respect to the order they occur in real
tasks that execute with well-defined average rates. Howevetime, it avoids priority adjustment when the system work-
the robots also receive aperiodic requests from the base st@ad changes. However, when hard real-time tasks (which
tion to transmit information about its state or to initiate taskshave hard deadlines in real time) are combined with aperi-
*Supported, in part, by grants from NASA (grant NCC5-169) and the 0diC requests (which are assigned soft deadlines in virtual
National Science Foundation (grant CCR-0208619). time), the priority of real-time tasks must be mapped to vir-
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tual time to satisfy their time constraints [31, 11]. Thus, Real-time tasks are modeled as a set of RBE tasks whose
the primary advantage of using virtual time is lost when themembership is static during the life of the system. Aperi-
number of real-time tasks is greater than the number of apeadic requests are mapped to a set of tasks whose member-
riodic requests in a dynamic system. ship changes over time. Thus, from a scheduling theory per-
The approach presented here combines elements of Easpective, the system consists of two distinct classes of tasks:
liest Eligible Virtual Deadline First (EEVDF) [30], Constant RBEtasks andaperiodictasks. Formally, the task system
Bandwidth Server (CBS) [1], and GRUB [18]. Instead of 7 (¢) at timet consists of the setl(¢) of aperiodic tasks at
creating a static set of servers for aperiodic requests, we dytimet and the seR of RBE tasks, which is independenttof
namically map aperiodic requests to RBE tasks with variableZ (t) = A(t)UR. The set of aperiodic requests over an inter-
rates (the rates change as the system workload changes). Thal of time[t1, t2] is specified asA([t1,t2]) = iitl A(t).
primary limitation with the method presented is that the al- Thus, over the intervak,, 2], the task system is specified
located bandwidth ratio between any two aperiodic serverasT ([t1,?2]) = A([t1,t2]) U R. When the context is clear
must remain constant. This limitation is an artifact of the the temporal parameter will be dropped from the notation:
system requirement that aperiodic requests share availablé = AU R.
processor capacity in proportion to an associated weight. The rest of this section provides a more detailed descrip-
Rather than using a weight to share processor capacity, tion of the model assumed for real-time and (non-real-time)
(variable) fraction of the processor capacity could be speciaperiodic tasks. Section 2.1 provides an overview of the
fied for each aperiodic request as long as an admission corRBE task model and the execution semantics of RBE tasks.
trol algorithm ensured the sum of the fractions did not ex-Section 2.2 describes the execution semantics assumed for
ceed the portion of processor capacity allocated to aperiaperiodic tasks.
odic requests. In this sense, the proportional sharing mech-
anism presented here could be applied to a set of aperiodi2.1. RBE Tasks
server tasks that dynamically change their size (e.g., a Total
Bandwidth Server [25]) or period (e.g., Constant Bandwidth A RBE task is specified by a four-tuple;, y, d, ¢) of in-
Sever [1])—assuming the bandwidth ratio between any twdeger constants. The pali, y) is referred to as theate
servers remained constant. The bandwidth ratio limitationsPecificationof a RBE task;z is the maximum number of

could also be removed by Changing the deadline assignmerﬁxecutions eXpeCted to be requested in any interval of Iength
function. y. Parameter! is a response time parameter that specifies

The rest of this paper is organized as follows. Section othe maximum desired time between the release of a task

introduces the processing model assumed in this work. SedhsStance and the completion of its execution (iis the

tion 3 discusses related work in proportional share schedulfélative deadline of the task). Parametes the maximum

ing and canonical approaches to scheduling aperiodic re@mount of processor time required for any job of tdsto
quests in uniprocessor, real-time system. Section 4 presenfX€cute to completion on a dedicated processor.

the mapping of aperiodic requests to RBE specified tasks. A RBE task set is schedulable if there exists a schedule
Section 5 discusses the feasibility of scheduling the inteSuch that the” release of task; at timet; ; is guaranteed
grated RBE task set using a simple extension of the EDF0 complete execution by timb; (j), where

scheduling algorithm. The issue of fairness for aperiodic re-

guests is also discussed in Section 5. We conclude with aD ‘ {tij +d; ifl1<j<uaz

summary and discussion of future work in Section 6. i(7) = max(tij + di, Di(j — x:) + ;) i j > 2
2. The Model @

A uniprocessor system is assumed that consists of a set dthus the deadline of a job is the larger of the release time
two distinct classes of tasks: real-time tasks with hard deadef the job plus its desired deadline or the deadline of the
lines and tasks representing aperiodic requests without dead-" previous job plus the parameter of the task. There-
lines. All tasks are independent of each other (i.e., they ddore, up tozx jobs of a task may contend for the processor
not share resources) and are preemptable at arbitrary pointwith the same deadline. Note that for glideadlines of jobs
Real-time tasks make a sequence of requests that can be dé; andJ; ;.., of taskT; are separated by at leagtime
scribed with a RBE rate specification, as described in Secunits. Without this restriction, if a set of jobs of a task were
tion 2.1. Aperiodic requests consist of a single request withreleased simultaneously it would be possible to saturate the
unknowrduration that terminates (and leaves the system) afprocessor. With the restriction, the time at which a task must

ter its processing requirement has been fulfilled.aNwiori complete its execution is not wholly dependent on its release
characterization of the arrival rates of aperiodic requests igsime. This is done to bound processor demand. See [14] for
known. a more detailed discussion on the RBE task model.



2.2. Aperiodic Requests requests. In fact, we will show that, when aperiodic requests

Neither the arrival rate nor the execution cost of aperi-are mapped to variable-rate tasks and scheduled as described

odic requests is assumed a priori. However, it is assumeiﬂ Section 4, the lag of aperiodic requests is bounded such
that each aperiodic requests is associated with a weight. . i
request’s weight, relative to the weight of other aperiodic vt 20,0 € A(t) : lag;(t) < q(1 - fi)
requests, determines the rate at which the request is exgvheref; is the minimum non-zero fraction of the processor
cuted. This is equivalent to the approach taken by manllocated to aperiodic requess.
proportional-share resource allocation models to ensure fair- The next section relates the work presented here to prior
ness in resource sharing (e.g., [2, 21, 23, 30, 32, 33]). Theesearch results found in the literature.
term variable rate is used rather than proportional share to
be more consistent with the concept of the RBE model. 3. Related Work

More formally, a weightv; > 0 is associated with each  One obvious method for supporting aperiodic requests in
aperiodic requestl; € A. Let F' denote the fraction of the RBE model is to extend the theory of aperiodic servers
the CPU capacity allocated to processing aperiodic requestgg the RBE model. However, we did not want the aperi-
This fraction will be shared by the aperiodic tasks in propor-odic requests to execute in a FIFO manner with respect to
tion to their respective weights. Thus,.#(t) denotes the  each other. A preemptive aperiodic server could have been
set of aperiodic requests at timethe fractionf;(t) of the  implemented, as described for the Total Bandwidth Server
CPU each aperiodic requedt < A(t) should receive can  (TBS) in [26], but the execution cost of some of the aperi-

be computed as odic requests is unknown a priori.
) A better approach than using a TBS would be to use a
£ilt) = {0 . ) if A; ¢_“4(t) @) CBS [1], or a set of such servers, with each CBS repre-
mF otherwise senting a class of aperiodic requests. Each CBS could be

modeled as a RBE task with a server bud@et= ¢ and

The goal in scheduling aperiodic requests is to achieve & period7, = £ whereq is a system specified parame-
variable rate of execution based on a proportional sharing ofer that defines the request quantum used to execute aperi-
the CPU capacity allocated for aperiodic requests. In anydic requests and, is the fraction of the processor capac-
interval of time L, aperiodic taskA; would receivef;(t)L. ity allocated to CBS. The RBE parameters would then be
time units in aperfectly fair system However, the model (1,75, T, Q,). Whenever the CBS budget was exhausted,
only approximates a perfectly fair system in that the CPUthe server would be preempted and a new deadline set with
will be allocated to aperiodic requests in discrete quanta lesgquation (1) as though one RBE job had terminated and an-
than or equal to a maximum system specified quangum other was released. Doing so results in the same deadline
(Real-time tasks are not so restricted.) assignments described in [1] as long as only one aperiodic

Generally following the terminology and notation intro- request was ever processed by a CBS at a time. However,
duced by Stoicat al. in [30], the CPU time aperiodic re- this requires reserving a fixed fraction of CPU capacity for
questA; would receive in a perfectly fair system during the each CBS, which would go unclaimed if there was no pend-

time interval[t, 2] is ing aperiodic request for that server. The unused capacity
' would then be shared kall tasks in the system, including
Sity, ) = fi(t)dt (3) real-time tasks. The CASH algorithm presented in [4] could
Ji, be used to share unused capacity with another CBS server.

However, the CASH algorithm allocates the unused capac-
ity of one server to the next server that needs it, independent
dpf the classification of the server. In our case, it was more
desirable to share the available capacity between active ape-
riodic requests in proportion to their weight, which results in
a variable number of aperiodic request servers with dynamic
execution rates.

lag,(t) = Si(ti,t) — si(ti,t) “) Most research in proportional share resource allocation
where A; first becomes eligible for execution at tintg (e.g., [21, 23, 32, 33, 3, 15, 30, 28, 29]) is based on the
Since a perfectly fair system cannot be implemented withseminal work in bandwidth allocation for packet-switched
discrete allocation quanta, the goal in scheduling will be tonetworks by Demers et al. [7], Golestani [13], and Parekh
bound the lag for all aperiodic requests such that 0,7 € and Gallager [24]. Weighted Fair-Queueing (WFQ) (also
A(t) : lag,;(t) < g whereg is a system specified parameter known as packet-by-packet generalized processor sharing)
that defines the request quantum used to execute aperiodadlocates a proportional share of a network’s bandwidth to

time units. Lets;(¢1,t2) be the actual number of time units
allocated to aperiodic requedt in the same interval. The
difference between the amount of time the request woul
receive in a perfectly fair system and the time it actually re-
ceives in a given interval is callddg. The lag ofA; at time
tIs



a session by employing a two-level hierarchical schedulerified. The total processor share of all aperiodic servers is
The WFQ scheduler creates a queue for each session. Eafiked, equal to the share allocated to aperiodic requests.
gueue is parameterized by a weight and an expected finish . o
time for its first packet. When the first packet in queue 4. Scheduling Aperiodic Requests
departs, the expected finish tinfe; is recomputed for the Rather than creating a dedicated server process to sched-
next packet ag't; = max(r;, ft;) + #-, whereB; isthe  ule a class of aperiodic requests, each aperiodic request in
bandwidth reserved for sessian! is the size of the next 4 is dynamically mapped to a variable-rate RBE task when
packet,; is the arrival time of the next packet, ajfit} isthe  the request arrives and scheduled with the RBE task® of
finish time of the packet. Packets within a queue are schedasing a simple EDF algorithm. Since the actual computa-
uled under the FIFO principle, which can be substituted withtion time of an aperiodic request is not known a priori we
other scheduling policies as described in [3]. Although orig-model the aperiodic request as a variable-rate RBE task with
inally proposed as a non-preemptive scheduling algorithmeach job requiring time units until the request terminates.
(for network packets), WFQ can be easily modified to sup-A timer will be used to enforce a maximum request duration
port preemptive task scheduling [19]. of ¢ time units for each release of an aperiodic request.
Rather than employing the two-level WFQ hierarchy, the  The mapping is achieved by setting the RBBarameter
EEVDF algorithm [30] schedules tasks according to theirto 1 and the RBE: parameter t@. Using the same concept
eligible times and deadlines in the virtual-time time domain proposed by Spuri and Buttazzo in [25], the response time
(as proposed by Zhang [34] and independently by Parekiparameter is set to+%;. To complete the RBE specifi-
and Gallager [24]) using a simple EDF algorithm. Based oncation, they parameter is set to the same valyéys. In
the weights of the tasks in the system, virtual time is COM-5y interval between aperiodic requests arriving or terminat-
puted; virtual time may progress faster, slower or at the Same,q. £,(¢) is equal to some constayfit and these parameters

rate as real time. According to task weights, release time and .o equal to the more familiar looking constaﬁqtfrom [25]
execution time, the virtual eligible time: and virtual dead- whereg is the duration of the aperiodic requeist.

line vd of a task is computed using equations presented in ;oo formally, the functions(A;) : A; — T, maps ape-
[30] and summarized as follows: riodic requestd; € A(t) to variable-rate RBE task; as

(k) “ follows:
1:Vti. dk: k . k+1: dk. R
ve (to); v ver w; e ! P(A;) : A — T = (w4, 9:(t), di(t), ci)
5
Tasks are scheduled by observing the Earliest Eligible Vir- = (1, %, %,q) ®)
tual Deadline First rule. Eligible time was introduced to pre- fit)” fi®)

vent a task from being executed earlier than when it Shou'd/vherefi(t), defined by Equation (2) in Section 2.2, is the
in the generalized processor share model, which is similar tgraction of the CPU allocated to aperiodic tadk € A(t)
WE?Q [3]. andgq is the maximum allocation quantum for aperiodic re-

Virtual time is widely used in proportional-share algo- guests. Sincel; (t) = y;(t), the fraction of the processor

rithms to cancel the affect of dynamic work loads. Since vir- yeserved for tas} is zic. This is the same share of the
tual time maintains the order of deadlines with respect to th%rocessor that needs ;{0( t))e allocated to aperiodic reguest
order they occur in real time, it avoids deadline adjustmentyi weightw;:

when system workload changes. However, when hard real-
time tasks are combined with aperiodic requests (which do TG _ 9 ) = Wi B
ZjEA(t) wj

not have hard deadlines), deadlines of real-time tasks must vt 7
be recomputed to preserve the share they require with re- . o
spect to the aperiodic requests [31, 11]. Thus, the primar)se.e Section 4.3.1 for an example of two aperiodic requests
advantage of using virtual time is lost when the number of?€ing executed as RBE tasks. . o
real-time tasks is greater than the number of aperiodic re- [N its simplest form, the scheduling of an aperiodic re-
quests. guest proceeds as follows. When aperiodic requigsar-

The work presented here combines elements from WFQ[IVeS at time;, it is mapped to a variable-rate RBE task and
EEVDF, CBS and GRUB. In some sense, it is a generaliza2SSigned a deadline using Equation (1). Thawigd;) :
tion of the CBS to support variable execution periods andi —. 7i maps aperiodic request; to variable-rate RBE
a variable number of servers in the system, but the exten@SK 7i and the f'rft job off; is assigned a deadline of
sion does not yet support resource sharing. The mapping df i (ti) = ti + 7 {5y Since the processor share allocated
ape.”O(IjIC reques.ts t(.) Yarlable-rate RBE tq&;}ks appeglrs to be IRather than inserting examples after each new concept, Section 4.3
equivalent to maintaining a CBS server with a variable rat€poviges an extended example composed of subsections that illustrate each
for each aperiodic request, though this has not yet been veroncept separately but with a common context.




to aperiodic request; does not change until the member- denotes the amount of remaining service time jgpbwould
ship of A changesf; = f;(t;) andD;(1) = t; + fi until have in a perfectly fair system. Since aperiodic requést
an existing aperiodic request terminates or a new aperiodics modeled as variable-rate RBE tagkwith x; = 1 and

request arrives. yi(t) = d,(t), the new deadline for the current jab; of
The taskT; is inserted into the ready queue with other task7’ is computed using Equation (6).

RBE tasks and scheduled with the EDF scheduling algo- r;

rithm. When job.J;; of task T} is dispatched (i.e., begins D'i(j) = to + = (6)

%

to execute), an execution timer is set to preempt the execu- ) o o
tion of job .J;; after ¢ time units. If task7} is preempted !n a perfectly fair system, the remaining service timdor
by another task, the execution timer state is saved with thdPP Ji; is computed as
context of taskl; and restored when jolj;; resumes exe- _ _ Di(5) . .
cution. When the timer set for jo;; expires, taskl; is ri = 5i(t, Di(j)) = /tl fitydt = (Di(j) = ta) - f - (7)
preempted and, as though one job had completed and a new _ L .
job released, a new deadline is set for jop; ; using Equa-  Wheresi(t1,t2) denotes the service time tagk would re-
. - A ceive in a perfectly fair system if none of the weights were
tion (1) and the RBE parameters Bf, which is similar to . ) .

. changed at time, (and f; is the fraction of the processor
the method used by a CBS in [1] when a request overrun.?h - )
the server's budget at would h_aye aIIocatgd G in the interval). .
: By combining Equations (6) and (7), the deadline for

The actual scheduling of aperiodic requests is a litlepending aperiodic requests can be rewritten using Equa-
more complicated in practice than described above, and iltjon (8).

lustrated in the simple example of Section 4.3.1, because _

the set of aperiodic requests is dynamic. The next section D’;(j) =t, + Silte, Dily)) Dilg) ~te) - fi

addresses the complexities of scheduling dynamic sets of fi 5 (8)
aperiodic requests with a deadline driven algorithm, such as =ty + (Di(j) — tz) - ﬁ/

EDF. fi

4.1. Dynamic Deadline Adjustment See Section 4.3.2 for an example of deadline adjustments

made when a new aperiodic request joins the system.
When a new aperiodic request arrives, the processor share Case 2: Aperiodic request, terminates at time/. Af-
of existing aperiodic requests decreases. When the procesgr A, terminates at time/, the processor share allocated
ing required for an aperiodic request represented byfask to each pending aperiodic request should increase since the
completes and the task leaves the system, the processor shaggal weight of all aperiodic requests decreases. In a per-
of other aperiodic requests increases. In both cases, the fragectly fair system, the change in processor shares would hap-
tion f; of the processor allocated to each existing aperiodiqgpen immediately and the deadlines of pending aperiodic jobs
request must be recomputed using Equation (2). The changgould be updated using Equation (8) by substitutipgvith
in processor share results in a change in the rate at whick/. However, Equation (8) can only be used to update dead-
each aperiodic request is executed and, consequently, in thies whenA,, terminates withag, (tf) = 0.
deadline for all pending aperiodic jobs. (Note that the dead- Aperiodic requestd, may terminate with non-zero lag
lines for jobs of real-time applications remain unchanged.) since a perfectly fair system can only be approximated. To
We show in Section 5 that if the task set was schedulableaccommodate this approximation, the termination of aperi-
before the deadline changes, it will be schedulable after thedic request4,, is treated as though it occurred at an ex-
deadline change and no task will miss its deadline. pected finish time¢ such thatlag, (t¢) = 0. Deadlines of
There are two cases to be considered. The first is whepending aperiodic requests can then be adjusted by substi-
an aperiodic request joins the system, which moves the deaduting ¢, with ¢¢ in Equation (8). The deadline updates are
lines of pending aperiodic jobs back (i.e., their deadlines ocimade at time/ and request,, is allowed to leave the sys-
cur later). The second is when an aperiodic request termitem immediately. However, the change in processor shares
nates and leaves the system, which moves the deadlines &r the remaining aperiodic requests does not take effect un-
pending aperiodic jobs up (i.e., their deadlines occur earlier)til the expected finish timeS of requestA4,. In what fol-
Case 1: Aperiodic request,, joins the system at timg. lows, we show from a proportional share perspective that the
Let f/ be the new fraction computed fet; # A, € A(t,) deadlines of pending aperiodic jobs are changed to the same
using Equation (2) at time,. Pending deadlines at tintg value whether we wait until timé& to make the updates or
are re-computed by dividing the expected remaining servicéf we update the deadlines immediately at tithe
time required to complete pending job; by its new fraction The request is expected to terminate at its deadline. That
f!and adding this to time,. Letr; be the expected remain- is, t¢ = D,(l) whereD,(I) is the deadline whed, termi-
ing service time required to complete job;. That is,r; nates. Note:D, (1) > t/ always holds if all deadlines are



met, and a sufficient condition for determining the schedu-et al in [30]. However, in this work the lag is distributed
lability of the task set is presented and proven in Section 5proportionally to the remaining aperiodic requests through
Since the actual service time is the same and only the exdeadline adjustments. The main difference between our ap-

pected service times differ, the lag 4f, at time D,.({) can
be expressed as

lag:(Dx(1)) = lagw(ti) + Sac(t{va(l))

D (1)
= lag,(t)) + / , fe(t)dt 9)

x

= lag,(t]) + (Dz (1) = t]) - fo(t]).
Therefore, the lag ofl,, at timet/ can be expressed as

lag, (t]) = lage(Dy (1)) — (Du (1) — 1) - fu(t])

10
=mwmm+@—mmym@.()

ThusD, () =t} — % becauseéag, (D, (1)) = 0 when
the task set is schedulable.

D, (I) can now be substituted far, in Equation (8) to

proach and that used in [30] is that our method operates in
real time and not in virtual time. The approaches are sim-
ilar in that each pending aperiodic requektwill have its
lag adjusted byag;, = lag,(t]) - & . In real-time this is

accomplished by subtractin@‘f’j—i from the updated dead-
line computed by Equation (é) for each pending aperiodic
request represented by job;. Sincef/ = {,”VF a pro-
portional distribution of the remaining lag of request to
pending aperiodic requests by modifying Equation (8) (with
t, = t1) reduces to Equation (11).

Thus, using Equations (8) and (11) the deadlines of all ex-
isting aperiodic jobs can be updated whenever an aperiodic
request enters or leaves the system (respectively). More-
over, Equation (11) shows that, in an implementation, one
can distribute lag proportionally by updating pending dead-
lines without actually tracking the lag; the new deadlines

compute the new deadlines for pending aperiodic request$:an be computed using the deadline of the leaving request,
Let T represent the weight summation of aperiodic re-as shown in the first form of the equality expressed by Equa-

guests, includingu,, of requestA,, and W’ represent the
weight summation excluding,.. The new deadlines for
pending aperiodic requests are computed as follows.

D(3) = Da(t) + (D) - D) -
= (2 - mg}%@)*'([)i(j)—(tﬁ—%%i))).%
:tf—f—(Di(])_tﬁ).%_%%@(l_%)
:tﬁ—i—(Di(g)_tﬁ).%_%%@(l_%)
:t5+(Di(J)—t£).%_lag;%@(%)

fi lagz(ti)(&)
fi R W
filag, ()

fi F

()

Observe that if aperiodic request, terminates with

tion (11).

See Section 4.3.3 for an example of deadline adjustments
made when an aperiodic request terminates and leaves the
system.

4.2. Deadline Assignments

The previous section presented a method for dynamically
adjusting the deadline of pending aperiodic requests when
the membership ofd changes. We now address the issue
of initial deadline assignment and then summarize the com-
putation of deadlines for all aperiodic requests with a single
deadline assignment function, Equation (15).

When a new aperiodic requedt enters the system with
existing aperiodic requests, it is assigned a deadlirtg -6f
d;(t;) = t; + % However, if the last aperiodic jol,,
in the system finishes and then another aperiodic request
arrives before the deadline of joly;, the deadline of jol,,;
will be set too early unless the lag of requést is tracked
and transferred to the new request.

Let D,(I) be the deadline of jobJ,, (recall that
lag, (D (1)) = 0), t/ be the actual finish time, ang, be
the arrival time of request,,. To simplify notation, let
d, = d,(t,). Intuitively, if request4,, arrives at timef,,
such that/ < t,, < D,(1), the deadline of jol,,; should

lag,,(t]) = 0, then D, (1) = t] and Equation (11) reduces o oy toD,.(1) + d,, rather thart,, + d,,. Observe that
to Equation (8), just as one would expect to occur under this

condition.
The effect of Equation (11) is to distribute non-zerolagto  "* < [t2, Da(D)] : lago () = Su(test) = sa(te, 1)
the remaining aperiodic requests and allow requests to leave = Soltath) + (t = t]) fo — s2(ta,t])
the system as soon as they terminate even though changes in = Sp(to,t]) — splte,t]) + (t — t0) fo
processor share do not take effect until the deadline of the
completed request. The same concept was used by Stoica = lag,(t]) + (t —tD)f. (12)



Thus, the intuitive deadline assignment equatian(1) = ) L.@ .® P.®
D, (1) + d,, can be derived from Equation (1) such that the #: = | e ! =z | = !
remaining lag of request, at timet,, is transferred to re- 4, i i Z] 1P
guestA,, as follows. 100 225 350 475 600

Dy(1) =ty +dp — lag%(tn)
f— 4t
b 0o D0) (6 DelO)fe 4 tn = 1D
— t, +d, — [492DsV) +P£tn — D, (1))
=tp+dy,—(t,—D,(l)) sincef, = F andlag,(D.(l)) =0
=D,()+d, (13)

If requestA,, arrives after timeD,. (1) (i.e.,t, > D.(1)),

Figure 1. Execution pattern when no change
in share allocations occur.

request quantum for aperiodic requests is 10 (§.e= 10).
Neither values will change during the life of the system. Ini-
tially, the weight summation of all aperiodic requestsiiis
70, which will change over time.

4.3.1. Nominal execution ofd; and A,

At time 1004, and A, join the system withw; = 20 and
wg = 10. The summation of weights in the systeii, now

then Equation (1) should be used to assign a deadline to jobhanges from 70 to 100. By Equation (2), the fraction of
Jn1 sincelag, (t,) = 0 (and hence, the system lag is also the processor allocated to each requesf;is= %0.4 =
zero). 0.08 and f; = %0.4 = 0.04 respectively. Using Equa-
Thus, the auxiliary variablé is introduced to record the tion (5), A; and A; are mapped to variable-rate RBE tasks
point in time at which the system lag reaches zero. Initially 7y = (1,125,10,125) andT, = (1,250, 10,250). If no re-

6 = 0. Each time the last aperiodic job in the system termi-quest enters or leaves the system after time #30and A,

nates, the expected finish time of that jéb, (1), is recorded
asf = D,(I). Using the auxiliary variablé, the deadline of
job J;; for each newly arriving aperiodic request at time
t; is computed using Equation (14).

Dz<1) = II?[BJX(H7 tl) + di (14)

will follow the execution pattern shown in Figure 1.

4.3.2. A New Aperiodic Request Arrives

To illustrate deadline adjustment when a new aperiodic re-
guest arrives, assumk, arrives at time 250 witlw,, = 100.
W now changes from 100 to 200. Consequently the frac-

See Section 4.3.4 for an example using Equation (14) tGjons of the CPU capacity allocated tby, A,, and A, at

set the deadline of an aperiodic request.

To summarize, Equations (1), (8), (11), and (14) for
computing deadlines of aperiodic requests are combined in
Equation (15) to form a single expression for computing /1

deadlines off; = ¢(4;).

max(@,ti) + dz(tz) |f ] =1
max(ti; + di(ti;), Di(j — 1) +yi(tiz)) ifj>1
te + (D:i(j) — tm)% if A, arrives att,,

Do (1) + (D;(j) — Dx(l))%

Di(j) =
if A, terminates at/

(15)

When the task set is schedulable, the second line of Equap, (1) = 250 + (350 — 250) - 200 = 450.

tion (15) can be reduced @, (j — 1) +y;(¢;;) since job.J;;
of T; is released as soon as jé@l_; has executed fartime
units.

4.3. Examples

time 250 are set using Equation (2) as follows:

w1 ~ 20 10
— 1P 2 04=004, f, = —0.4=0.02, and
h= 200 » f2= 550 ’
wy ~ 100
= TP = (.40 = 0.2.
Jz w 200O 0=0

The RBE specifications are then changed usjr{g, de-
fined by Equation (5): 7% = (1,250,10,250), Tb =
(1,500, 10,500), T, = (1,50,10,50). Finally, the dead-
lines of pending aperiodic requests are modified. Deadlines
D1(2) and D, (1) are modified as follows and illustrated

in Figure 2: D1(2) = 250 + (350 — 250) - 200 = 450,

100

4.3.3. An Aperiodic Request Terminates

Assume aperiodic requedt, terminated at some point be-
tween time 350 and time 475, with no other changes in the

This section provides an extended example composed dfet of aperiodic requests, and deadlines were adjusted ac-
subsections that illustrate each concept separately with aordingly withW = 100. Then at time 670, assume ape-
common context. The fraction of the CPU allocated to aperi-riodic request4; terminates. At this point, the summa-
odic request processing I8 = 0.4 and the system assigned tion of weights in the systeni}’, changes from 100 to 80.
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Figure 2. Deadline adjustments when a new
aperiodic request arrives.
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Figure 3. Deadline adjustment when an aperi-
odic request terminates.

Let W’ = 80 represent the new weight summation. The
fraction of the CPU allocated to requedt is changed to
f5 = 2 = 180.4 = 0.05 and the deadline of, needs to
be changed. Usmg Equation (15), the new deadline is

Da(2) = Dy (5) + (Da(2) — Di (5 >>§j
= 775 + (900 — 775)8 8;1 — 875.

Figure 3 illustrates this change.

4.3.4. Deadline Assignment with Variabled

Assume the last aperiodic requekt terminates and leaves
the system at tim&840. The deadline ofd, is recorded by
60 = Do(l) = 855. If a new aperiodic request,, with
weightw,, = 50 arrives at timed43, it will take over thef' =

0.4 fraction of the CPU allocated to aperiodic processing.

The RBE specification oft,, will be 7,, = (1,25, 10,25)
and its first deadline i®,, (1) = maxz (843, 855)+25 = 830
as shown in Figure 4.

A, b iDZ(I)=855
! b, D, D3 D@
A, ‘ T | EA i‘ %$ R %$
830 ‘ 880 905 930 955

Figure 4. Deadline adjustment when an aperi-
odic request joins the system with no aperi-
odic requests pending.

5. Schedulability and Bounding Lag

A task set is schedulable if there exists a schedule
such that no task instance misses its deadline. Thus, if
Demand(L) represents the total processor demand in an
interval of lengthL, a task set is schedulable >
Demand(L) for all L > 0. Section 5.1 summarizes a
prior result from [14] that bounds the processor demand of
RBE tasks in an interval. Section 5.2 bounds the proces-
sor demand created by aperiodic requests. Section 5.3 com-
bines the results of the first two subsections to create a suf-
ficient schedulability condition for a task sét = AU R
where A is the set of aperiodic tasks at any time> 0
andR = {(z1,y1,d1,¢1)y... (Tn,Yn,dn,cn)} is the set
of real-time RBE tasks. Section 5.4 presents a least upper
bound on the lag of any aperiodic request that holds when
the task set is schedulable.

5.1. Bounding Demand for RBE Tasks

Lemma 5.1 was presented as Lemma 4.1 in [14] to bound
the processor demand of a RBE tagkin an interval. It is
reproduced here (in a slightly different form) since it is used
in the sufficient condition of Theorem 5.6 for the set of tasks
7 considered in this work.

Lemma 5.1. For a RBE taskl’; = (x;,v;,d;, ¢;),

0 ift € 0, d;
Vi >0, dbfz(f) = {Ltdﬁ*yfj [ )
Yi

16

is a least upper bound on the number of units of processor
time required to be available in the intervfl, L] to ensure
that no job ofT; misses a deadline i, L].

5.2. Bounding Demand for Aperiodic Requests

The demand bound function defined by Equation (16) as-
sumes that the task may begin executing at tinaad will
continue to execute for the life of the system with fixed RBE
parameters. Aperiodic requests enter and leave the system
dynamically, which results in changing RBE parameters dur-
ing the life of an aperiodic request;.

Let ¢; denote the arrival time of aperiodic request,

T; = (4;), and D;(l) be the deadline time of the last
job J;; of T; representing aperiodic requedt. Under
these assumptions, the processor demandfan the in-
tervals|0,t;) and (D;(l), oc] is 0 since the first job is not
released until time; and the last jobJ;; of T completes
by time D;(l). It should be the case, since we are trying
to give each aperiodic requedt a portion of the CPU ca-
paC|ty equal tof;(t) that the processor demand created by
T; is never greater thagﬁt fi(®)dt for all I € [t;, D;(1)].
Lemma 5.2 shows that this is indeed the case. Observe that
when f; = f;(t) is constant over the intervat;, [], then

ftl fi(t)dt = (I —t;) f;, which yields the expected demand
for a fixed interval and processor share.



Lemma 5.2. LetT; = ¥(A;) represent the aperiodic re- 5.3. A Sufficient Schedulability Condition
questA; € A(t). If no job ofT; released before timg > 0
requires processor time in the intervia, /] to meet a dead-
line in the intervalto, ], then

The following Theorem presents a sufficient condition for
determining the schedulability of the task §et= AU R
where A is the set of aperiodic tasks at any time> 0

- l andR = {(z1,y1,d1,¢1),- - (Tn,Yn,dn, cn)} is the set of
Vi >tg, dbf;([to,l]) = [ fi(t)dt (17)  real-time RBE tasks. Corollary 5.7 shows that the schedula-
to bility of the task set7” can be evaluated efficiently in poly-

is an upper bound on the processor demand in the intervanomial time when all RBE/ parameters are equal to their
[to, 1] created byl wherey(4;) is defined by Equatio(s) ~ "€SPectivey parameters.

and f;(t) is defined by Equatio(®). Theorem 5.6. Let the task se? = A U R be the set

Proof: For space considerations, the proofs of this sectiond = U;—y-A(t) of aperiodic tasks and the s =
are contained in [12]. 0 {lnydia),. o (@n,yn, dn, cn)} of RBE tasks. Pre-
emptive EDF will succeed in schedulidgif
Clearlyt, = 0 satisfies the requirement specified fgin

Lemma 5.2. Thus, with the simple substitutiort@f= 0 and n .
[ = L, Corollary 5.3 follows immediately from Lemma 5.2. VL>0, L= Z dbfi(L) + LF (19)
=1

Corollary 5.3. LetT} = ¥(A;) represent the aperiodic re- . . _
questA; € A(t). The processor demand createdHywill wherefl' is the portion of the CPU capacity allocated to ape-

- L Proof: See [12]. O

¥L >0, @f(0.L) = [ ity
0 Corollary 5.7. Let the task sef’ = A U R be the set

is an upper bound on the processor demand in the intervatt = U A(t) of aperiodic tasks and the s&t =
[0, L] wherey(4;) is defined by Equatiots) and f;(t) is ~ {(1,41,d1,¢1), .- (%n,Yn,dn,cn)} Of RBE tasks with
defined by Equatio(2). d; = y;,1 < i < n. Preemptive EDF will succeed in

schedulingZ” if Equation(20) holds wheref’ is the portion
Lemma 5.2 bounds the processor demand created byfthe CPU capacity allocated to aperiodic requedts
a single aperiodic requests in an interval. The following
lemma extends this result to bound the processor demand LS
created by all aperiodic requests in an interval. 21

< (20)
Yi

Lemma 5.4. If no job of an aperiodic request released be-
fore timet, > 0 requires processor time in the interviad, /| 5.4. Bounding Lag

to meet a deadline in the intervi, [], then _ _ o _
The goal in scheduling aperiodic requests is to execute

Vi >tg, (I—to)F (18) each request with a variable-rate such that it makes progress
relative to other aperiodic requests in proportion to its asso-
is an upper bound on the processor demand in the intervatiated weight. By breaking the request into a sequence of
[to, ] created by the set of aperiodic request§t, []). request, each of duratigrtime units, we are able to identify
exact points in time at which the request will have received
Proof:  See [12]. O its processor share. It is shown in [12] that if the task set is
With the simple substitution of, = 0 andl = L, Corol- schedulable, the lag of aperiodic requdsts guaranteed to
lary 5.5 follows immediately from Lemma 5.4 be less than or equal to zero at the deadline of each job of
T; = ¢ (A;). The lag may be less than zero when, for exam-
Corollary 5.5. The processor demand created by the set ofple, real-time RBE tasks execute at lower rates than speci-
aperiodic requestst will never exceed its processor share, fied or for less than their worst-case execution times. When
F. Thatis, that happens, the aperiodic requests execute at faster rates
) than specified, receiving more than their “expected share”
VL >0, LF of the processor. Without using eligible times to control the
rate of execution of an aperiodic request, its lag can become

is an upper bound on the processor demand in the intervay, o ative hecause it receives more processor time than would
[0, L] created by the set of aperiodic request§0, L)). otherwise be possible



In this work, we are not interested in completely bound- can be applied to periodic and sporadic task models by en-
ing fairness; we are only interested ensuring aperiodic reforcing an inter-release time for jobs of an aperiodic request.
guests receive a minimum processor share while real-time Rather than a weight, a fraction of the processor capac-
tasks meet all deadlines. Only an upper bound on the maxity could be specified for each aperiodic request as long as an
imum lag that can accumulate for any aperiodic request camdmission control algorithm ensured the sum of the fractions
be derived when it is scheduled under the RBE model sincelid not exceed the portion of processor capacity allocated to
tasks are allowed to execute faster than their rate specificaperiodic requests and the bandwidth ratio between any two
tion if processor capacity is available. (This is a desirableaperiodic servers remained constant. The server bandwidth-
feature for the application with which we are working.) One ratio limitation is an artifact of the system requirement that
way to provide a lower bound on processor lag (should oneaperiodic requests share available processor capacity in pro-
be needed), is to map aperiodic requests to sporadic taskpprtion to an associated weight. Removal of this require-
track eligible times, and only release jobs of aperiodic re-ment requires new deadline adjustment equations that are
guests when they are eligible—as was done by Stelicd. beyond the scope of this paper.
in [30]. Instead of associating either a weight or bandwidth frac-

As the following theorem from [12] shows, when the task tion, a specific quantum and period could be associated
set is schedulable, our approach to scheduling aperiodic rewith each request. Thus, the proportional sharing mecha-
quests provides a least upper boundagf, (t) < ¢(1 — f;) nism presented could be applied to a set of Total Bandwidth
on the maximum lag for aperiodic request Servers that dynamically change their size or a set of Con-
stant Bandwidth Servers that dynamically change their pe-

Theorem 5.8. Let the task sef’ = A U R be the set riod or budget—as long as the resulting bandwidth ratio be-

— oo 1 1 o
A = UZoAlt) of aperiodic tasks and the S& =y 00n any two servers remained constant.

{(x&’yl’dl’cla’ A (gr’yn’dd"’c")} of RBEEtglszks.hlf tfgje Even as presented, our approach for scheduling aperi-
task set Is schedulable under preemptive when eaoIédic requests represents a generalization of the CBS first

lines are gssigned using Equati¢tb), the lag of aperiodic proposed in [1]. Each task; represents an instance of a
requests is bounded such that CBS with a server budged, = ¢ and a periodl’; = fl

that serves jobs for that task until the request terminates.
When there exists only one aperiodic request in the system
where f; is the minimum non-zero fraction of the proces- at a time, the execution schedule created by our approach is
sor allocated to aperiodic request (i.€f;, = min{f;(t)|t € identical to one created by a CBS. Similarly, if each request

VE > 0,i€ A(t) : lag(t) < q(1 - fi) (21)

ti, t111). requires at mosi time units, the execution schedule created
’ by our approach is identical to one created by the original

Proof: See[12]. [l TBS presented in [25].
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