
In: Proceedings of the Fourth IEEE International Symposium on High Assurance Systems Engineering, Washington, D.C., November 1999, pp. 141-150.

Analyzing the Real-Time Properties of a U.S. Navy Signal Processing System

Steve Goddard
Computer Science & Engineering
University of Nebraska—Lincoln

Lincoln, NE 68588-0115
goddard@cse.unl.edu

Kevin Jeffay
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

jeffay@cs.unc.edu

Abstract

The state of the art in verifying the real-time require-
ments of applications developed using general processing
graph models relies on simulation or off-line scheduling.
We extend the state of the art by presenting analytical meth-
ods that support the analysis of cyclic processing graphs
executed with on-line schedulers. We show that it is possi-
ble to compute the latency inherent in a processing graph
independent of the hardware hosting the application. We
also show how to compute the real-time execution rate of
each node in the graph. Using the execution rate of each
node and the time it takes per execution on a given pro-
cessor, the resulting CPU utilization can be computed, as
shown here for the Directed Low Frequency Analysis and
Recording (DIFAR) acoustic signal processing application
from the Airborne Low Frequency Sonar (ALFS) system of
the SH-60B LAMPS MK III anti-submarine helicopter.

1. Introduction

We present the analysis and verification of the real-time
properties of an embedded signal processing application for
an anti-submarine warfare (ASW) system. More specifi-
cally, we study the CPU requirements and inherent process-
ing latency of the Directed Low Frequency Analysis and
Recording (DIFAR) acoustic signal processing application
from the Airborne Low Frequency Sonar (ALFS) system of
the SH-60B LAMPS MK III anti-submarine helicopter. The
ALFS system processes low frequency signals received by
sonobuoys in the water. Its primary function is to detect and
track submarines and to calculate range and bearing esti-
mates to each target [14].

The DIFAR application was developed using the U.S.
Navy’s Processing Graph Method (PGM) [17], and executes
on the U.S. Navy’s standard signal processing computer,
the AN/UYS-2A. PGM is one of many application develop-
ment paradigms based on directed graphs calledprocessing

graphs, which are a standard design aid in the development
of complex digital signal processing systems. Processing
graphs are large grain dataflow graphs in which nodes rep-
resent processing functions and graph edges depict the flow
of data from one node to the next. Each data element that is
processed by a node is a sample of the signal — an element
of the discrete sequence of numbers representing the signal.

General processing graph paradigms, such as PGM, have
been used to create a wide variety of applications (e.g, com-
mand and control, distributed multimedia, and signal pro-
cessing applications). While this paper focuses on a spe-
cific acoustic signal processing application, the analysis
presented here is applicable to any application developed
using a general processing graph model such as PGM.

The state of the art in verifying the real-time require-
ments of applications developed using general processing
graph models relies on one of two techniques. The first
simulates graph execution, and hopes that the simulation
encounters the worst case scenario (i.e., that the simulated
graph execution is performed long enough to encounter the
peak processor demand). This technique is generally ap-
plied when dynamic scheduling is used for graph execution.
The second technique is applied when static scheduling is
used to determine the order of node executions. An “off-
line” algorithm creates a node execution schedule that is
repeated periodically. The length of the schedule (i.e., the
period of the schedule) determines the latency and mem-
ory usage of the application. This technique requires the
generation and on-line storage of a large number of sched-
ules for the various modes of operation of the ALFS subsys-
tem. Consequently, the ALFS system uses on-line schedul-
ing rather than static scheduling. This means, however, that
it has not been possible to verify the real-time processing
requirements of the ALFS signal processing graphs.

We extend the state of the art in verifying the real-time
requirements of applications developed using processing
graph models by presenting analytical methods that sup-
port the analysis of cyclic processing graphs executed with
on-line schedulers, such as the DIFAR graph. In [11],

In: Proceedings of the Fourth IEEE International Symposium on High Assurance Systems Engineering, Washington, D.C., November 1999, pp. 141-150.

we proposed a new synthesis technique for building hard
real-time signal processing systems from general process-
ing graphs, and demonstrated its use with a synthetic aper-
ture radar (SAR) system, an International Maritime Satellite
(INMARSAT) mobile satellite receiver application, and an
acoustic digital signal processing application. Here we use
some of those techniques to calculate the CPU utilization
of the DIFAR graph executing on the AN/UYS-2A and to
compute the inherent latency in the signal processing graph.
Inherent latency is created by non-unity dataflow attributes
and graph topology. We show that both the CPU utilization
and the inherent latency of the signal processing graph can
be analytically derived. Moreover, we show that the inher-
ent latency in the signal processing graph is independent of
the scheduling algorithm and even of the number of proces-
sors used to execute the graph.

The rest of this paper is organized as follows. Section
2 describes related work. Section 3 presents background
knowledge on PGM and the real-time analysis techniques
that are applied to the DIFAR graph in Section 4. We con-
clude our analysis of the real-time properties of the DIFAR
graph with a summary in Section 5.

2. Related Work

Our previous work on the synthesis of real-time unipro-
cessor systems from PGM was based on acyclic PGM
graphs [1, 9, 10]. In this paper, we present the analyses of a
cyclic PGM graph. This is the first time general execution
rates and inherent latency have been computed for cyclic
graphs. Since we do not assume the existence of a real-time
scheduler or even knowledge of the type of scheduling per-
formed during graph execution, we do not, in this paper,
address latency imposed by the scheduling and execution of
the graph nodes. A complete discourse on latency in pro-
cessing graphs is contained in [11].

From the real-time literature, PGM graphs are most
closely related to the Logical Application Stream Model
(LASM) [5] and the Generalized Task Graph (GTG) model
[6]. PGM, LASM, and GTG were all developed indepen-
dently and support very similar dataflow properties. PGM
was the first of these to be developed. Our work improves
on the analysis of LASM and GTG graphs by not requir-
ing periodic execution of the nodes in the graph. Instead,
we calculate a more general execution rate, which can be
reduced to average execution rates assumed in the LASM
and GTG models. Our general execution rate specification
provides a more natural representation of node execution
for PGM graphs. Forcing periodic execution of all graph
nodes adds latency to the processed signal, but simplifies
the analysis of latency and memory requirements. In [10],
we model PGM node execution with the more natural exe-
cution rateandimprove memory usage analysis by showing

that dynamic scheduling with execution rates results in less
memory usage than periodic or static scheduling.

Processing graphs are a standard design aid in digital
signal processing. From the digital signal processing lit-
erature, PGM is most similar to Lee and Messerschmitt’s
Synchronous Dataflow (SDF) graphs [16] supported by the
Ptolemy system [4]. The SDF graphs of Ptolemy utilize a
subset of the features supported by PGM. Any SDF graph
can be represented as a PGM graph where each queue’s
threshold is equal to its consume value. In addition to sup-
porting a more general dataflow model, our research differs
from [16] in that we support dynamic, real-time, scheduling
techniques rather than creating static schedules.

In 1996, Bhattacharyya, Murthy, and Lee published a
method for software synthesis from dataflow graphs [2].
Their software synthesis method is based on the static
scheduling of Lee and Messerschmitt’s SDF graphs. The
main goal of Bhattacharyyaet al.’s software synthesis
method and related scheduling research based on SDF
graphs has been to minimize memory usage by creating
off-line scheduling algorithms [16, 18, 20, 19, 2]. Off-line
schedulers create a static node execution schedule that is
executed periodically by the processor. In contrast, the pri-
mary goal of our research has been to manage the latency
and memory usage of processing graphs by executing them
with an on-line scheduler. Recently we have shown that
for a large class of applications, dynamic on-line schedul-
ing creates less imposed latency than static scheduling. An
even more surprising result is that, in many cases, dynamic
on-line scheduling uses less memory for buffering data on
graph edges than static scheduling [10].

Our latency analysis is related to the work of Gerberet
al. in guaranteeing end-to-end latency requirements on a
single processor [8]. However, Gerberet al. map a task
graph to a periodic task model in the synthesis of real-time
message-based systems rather than assuming a rate-based
execution. Our analysis and management of latency differs
from Gerberet al.’s in that PGM graphs allow non-unity
dataflow attributes. Finally, Gerberet al.introduce new (ad-
ditional) tasks to the task set in their synthesis method to
synchronize processing paths. Our synthesis method does
not need extra synchronization tasks since our analysis tech-
niques are rate-based rather than periodic.

3. Background & Analysis Techniques

A basic understanding of PGM and the theory of real-
time graph execution is necessary before one can under-
stand our analysis of the real-time properties of the DIFAR
graph. Thus, this section presents a brief overview of PGM
followed by the theory supporting our analysis techniques.

2

&%
'$

-w&%
'$

- -u
q

cns(q) = 3
prd(q) = 4 thr(q) = 7,

Figure 1. A two node chain.

3.1. Processing Graph Method

In PGM, a system is expressed as a directed graph in
which the nodes (or vertices) represent processing func-
tions and the edges represent buffered communication chan-
nels called queues. The topology of the graph defines
a software architecture independent of the hardware host-
ing the application. The graph edges are First-In-First-
Out (FIFO) queues. There are four attributes associated
with each queue: a produce amountprd(q), a threshold
amountthr(q), a consume amountcns(q), and an initial-
ization amountinit(q). Let queueq be directed from nodeu
to nodew. The produce amountprd(q) specifies the num-
ber of tokens (data elements) appended to queueq when
producing nodeu completes execution. A token represents
an instance of a data structure, which may contain multiple
data words. There must be at leastthr(q) tokens on queue
q before nodew is eligible for execution. A queue isover
thresholdif the number of enqueued tokens meets or ex-
ceeds the threshold amountthr(q). After nodew executes,
the number of tokens consumed (deleted) from queueq by
nodew is cns(q). The number of initial data tokens on the
queue isinit(q).

Unlike many processing graph paradigms, PGM allows
non-unity produce, threshold, and consume amounts as well
as a consume amount less than the threshold. The only
restrictions on queue attributes is that they must be non-
negative values and the consume amount must be less than
or equal to the threshold. For example consider the portion
of a chain shown in Figure 1. The queue connecting nodes
u andw, labeledq, hasprd(q) = 4, thr(q) = 7, cns(q) = 3,
andinit(q) = 0. (A queue without aninit(q) label contains
no initial data.) Nodeu must execute twice before node
w is first eligible for execution. After nodew executes,
it consumes only 3 of the 8 tokens on its input queue. A
threshold amount that is greater than the consume amount
is often used in signal processing filters. The filter reads
thr(q) tokens from the queue but only consumescns(q) to-
kens, leaving at least(thr(q) � cns(q)) on the queue to be
used in the next calculation.

If a node has more then one input queue (input edge),
then the node is eligible for execution whenall of its in-
put queues are over threshold (i.e., when each input queueq

contains at leastthr(q) tokens). After the processing func-
tion finishes executing,prd(q) tokens are appended to each

output queueq. Before the node terminates, but after data
is produced,cns(q) tokens are dequeued from each input
queueq. The execution of a node isvalid if and only if the
node executes only when it is eligible for execution, no two
executions of the same node overlap, each input queue has
its data atomically consumed after each output queue has
its data atomically produced, and data is produced at most
once on an output queue during each node execution.

A graph execution consists of a (possibly infinite) se-
quence of node executions. A graph execution isvalid if
and only if all of the nodes in the execution sequence have
valid executions and no data loss occurs.

3.2 Real-Time Graph Execution Theory

Embedded signal processing systems receive a contin-
uous signal from external sensors. They are required to
process the signal in real time and present the signal pro-
cessing results to an output device within a specified time
interval. Processing the signal in real time requires execut-
ing the PGM graph nodes so that they execute their pro-
cessing functions as the signal arrives and without losing
data. For example, some of the ALFS signal processing
graphs are used to track submarines by calculating the dis-
tance, speed, and direction of a submarine. External sen-
sors, called sonobuoys, convert the sound wave created by
a submarine to a digital signal that is input to a PGM graph.
The graph must process the signal and send the results, such
as updated distance, speed, and direction, to a display before
the next portion of the signal is sent by the sonobuoys.

In [11], we presented and proved theorems for comput-
ing the execution rate of any node in a PGM graph using
the execution rate of its producer nodes and the dataflow
attributes on its input queues. We summarize the necessary
results here without proving them. We begin with a brief de-
scription of the notation1 used in the subsequent theorems.

A processing graph is formally described as adirected
graph(or digraph)G = (V;E;). The ordered triple (V, E,
) consists of a nonempty finite setV of vertices, a finite set
E of edges, and an incidence function that associates with
each edge ofE an ordered pair of (not necessarily distinct)
vertices ofV. Consider an edgee 2 E and verticesu; v 2 V
such that (e) = (u; v). We saye joinsu to v, or u andv
are adjacent. The vertexu is called the tail or source vertex
of e andv is the head or sink vertex of edgee. The edgee
is anoutput edgeof u and aninput edgeof v. The number
of input edges to a vertexv is theindegree��(v) of v, and
the number of output edges for a vertexv is theoutdegree
�+(v) of v. A vertexv with ��(v) = 0 is an input node.
The setI = fv j v 2 V^ ��(v) = 0g denotes the set of all
input nodes. A vertexv with �+(v) = 0 is anoutput node.

1The notation and terminology of this paper, for the most part, is an
amalgamation of the notation and terminology used in [3] and [2].

3

The setO = fv j v 2 V^ �+(v) = 0g denotes the set of all
output nodes. Foru; v 2 V, there is apathbetweenu and
v, written asu;v, if and only if there exists a sequence of
vertices(w1; w2; : : : ; wk) such thatw1 = u, wk = v, and
wi is adjacent towi+1 for i = 1; 2; : : : (k � 1). The setIv
is the subset of input nodesI from which there exists a path
fromu 2 I to the nodev. Likewise, the setOu is the subset
of output nodesO from which there exists a path from node
u tow 2 O.

Node execution rates are defined as follows. Anexecu-
tion rate is an integer pair(x; y). An execution rate spec-
ification for nodev, Rv = (x; y), is well-definedif there
exists a timetv such that nodev executes exactlyx times in
time intervals[t; t+ y) for all t � tv. To simplify the pre-
sentation of execution rates and inherent latency, we assume
the graph executes on an infinitely fast machine so that node
execution takes no time. More precisely, we assume nodes
execute in accordance with the strong synchrony hypothe-
sis from the synchronous programming literature [7]. The
strong synchrony hypothesis states that the system instantly
reacts to external stimuli.

Theorem 3.1. LetG = (V;E;) be an acyclic PGM di-
graph for which a valid execution is possible using finite
memory and nodew 2 V with ��(w) � 1. The execution
rate of nodew isRw = (xw ; yw) where

yw = lcmf
cns(q)yu

gcd(prd(q)xu; cns(q))
j (q) = (u;w)g;

xw = yw �

�
prd(q)xu
cns(q)yu

�
; 8q; u : (q) = (u;w):

(1)

For example, given nodesu andv in Figure 2 withRu =
(3; 16) andRv = (2; 12), the execution rate ofw is:

yw = lcmf
cns(�)yu

gcd(prd(�)xu; cns(�))
;

cns(�)yv
gcd(prd(�)xv; cns(�))

g

= lcmf
3 � 16

gcd(4 � 3; 3)
;

2 � 12

gcd(3 � 2; 2)
g

= lcmf
3 � 16

3
;
2 � 12

2
g = lcmf16; 12g = 48

andxw = yw �

�
prd(�) � xu
cns(�) � yu

�
= 48 �

�
4 � 3

3 � 16

�
= 12:

ThusRw = (xw; yw) = (12; 48) and, after its first exe-
cution, nodew in Figure 2 will execute 12 times in every
interval of length 48.

The processor utilization created by the execution of
the nodes in a graph can be calculated using Equation (2),
whereeu is the execution time of nodeu.

nX
i=1

xi � ei
yi

(2)

If
Pn

i=1
xi�ei
yi

� 1, the nodes can be scheduled using a sim-
ple on-line scheduler such that the nodes execute at their
required execution rate and no incoming data is lost [11].

Theorem 3.1 can also be applied to cyclic graphs if each
back edgeq in every cycle is initialized such that it is al-
ways over threshold. (Aback edgeis a queueq that joins
nodev to an ancestorw when the graph is topologically
sorted.) Letq be a back edge with (q) = (v; w). If it
can be guaranteed that nodev will always finish executing
within dv time units of when it is eligible for execution, we
can guarantee back edgeq will always be over threshold if
it is initialized such that

init(q) =

�
sv + dv � �sw + yv

yw

�
� xw � cns(q) + thr(q)

(3)

wheresv is the latest possible time nodev will first be eli-
gible to execute,sv + dv is the latest possible time nodev
will complete its first execution and�sw is the earliest pos-
sible time nodew can begin its first execution [11]. Before
we can present equations to computesv and�sw, we need to
introduce the concept of latency and how it is computed in
PGM graphs.

A signal processing engineer describes latency as the
time delay between the sampling of a signal and the pre-
sentation of the processed signal to the output device (which
may be a screen, speaker, or another computer). While intu-
itive, this definition is not precise enough for our purposes
since individual input samples cannot be identified in the
prd(q) tokens produced at one time by an external source.
We define a sample to be the set of tokens delivered by a
source node at one time. Under the strong synchrony hy-
pothesis, latency is the delay between when a source node
produces a sample (prd(q) tokens) and when the graph out-
puts the processed signal. The total latency encountered by
a sample is an integral unit of time created by the sum of
the latency inherent in the signal processing graph and the
additional latency imposed by the implementation.Inherent
latencyin a graph is created by non-unity dataflow attributes
and the graph topology. Inherent latency exists even if the
graph is executed on an infinitely fast machine.Imposed la-
tencycomes from the scheduling and execution of nodes in
the graph since we do not have an infinitely fast machine.
Thus latency has two components, and the total latency any
sample encounters can be expressed with the simple equa-
tion

Total Latency= Inherent Latency+ Imposed Latency:

Let nodeu be a source node in the set of graph source
nodesI, and let queueq be an output queue to source node
u. Inherent latency is the delay between the enqueuing of
prd(q) tokens onto queueq by source nodeu and the next
execution of the sink node when the graph is executed on
an infinitely fast computer, as assumed by the strong syn-
chrony hypothesis. In simple dataflow models that require
unity dataflow attributes and only allow one source node,

4

&%
'$

&%
'$&%

'$
-

-

-

H
H
H
H
Hj

��
��
��1

u

v

w

�

�

prd(�) = 4

thr(�) = 7; cns(�) = 3

prd(�) = 3

thr(�) = cns(�) = 2

u

v

w

Time

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

2 2 22

Figure 2. A three-node graph and time-line execution showing the execution of nodes under the
strong synchrony hypothesis. If Ru = (3; 16) and Rv = (2; 12) are valid after time 0, then Rw = (12; 48).
Each down arrow represents an execution of the node. Multiple executions of a node at the same
instant are represented by a number above the down arrow.

the inherent latency of the graph is 0 under the strong syn-
chrony hypothesis. However, non-unity dataflow values (as
supported by PGM) or multiple source nodes can create sig-
nificant latency in processing the signal, even if we have an
infinitely fast computer. The inherent latency any sample
encounters in a cyclic graph is bounded by Theorem 3.2.

Theorem 3.2. LetG = (V;E;) be a cyclic PGM graph
with rate-based source nodes. Letw 2 O, and let the
execution rate of source nodej 2 Iw beRj = (xj ; yj).
Let length(q) denote the current number of tokens in queue
q 2 E. Let P̂ denote the set of acyclic paths from source
nodej to nodew. Let every back edge be initialized such
that it is always over threshold. The inherent latency a sam-
ple will encounter is bounded such that

max
p2P̂

�
0;

�
Fp � 1

xj

�
� yj

�
� Sample Latency

< max
p2P̂

�
1;

�
Fp

xj

�
� yj

�
(4)

wherep represents a pathu;w andFu;w is defined as

Fu;w =

8>>>>>>>>><
>>>>>>>>>:

max
�
0;
l

thr(q)�length(q)
prd(q)

m�
if 9q : (q) = (u;w)

max
�
0;
l
(Fv;w�1)�cns(q)+thr(q)�length(q)

prd(q)

m�
if 9q : (q) = (u; v) ^ v 6= w ^ Fv;w > 0

0 if 9q : (q) = (u; v) ^ v 6= w ^ Fv;w = 0

(5)

Equation (5) computes the number of times source node
j must execute before enough data is produced to execute
sink nodew. Equation (4) then uses this value to bound
the interval of time in which nodew will next be eligible to
execute, which is the inherent latency a signal encounters in
pathj;w.

We now have the necessary theory to show howsv and
�sw are computed such that we can guarantee that a back
edge that joins nodev to nodew in a cycle is always over
threshold. (Recall thatsv is the latest possible time nodev
will first be eligible to execute and�sw is the earliest possible
time nodew can begin its first execution.)

Theorem 3.3. Let queueq be a back edge in a cycle with
 (q) = (v; w). Let P̂w denote the set of acyclic paths from

5

source nodej to nodew. Let P̂v denote the set of acyclic
paths from source nodej to nodev. If queueq is initialized
with a number of tokens given by Equation(3), where�sw is

�sw = max
p2P̂w

�
0;

�
Fp � 1

xj

�
� yj

�
(6)

andsv is

sv = max
p2P̂v

�
1;

�
Fp

xj

�
� yj

�
; (7)

then queueq will always be over threshold.

The proofs of Theorems 3.1, 3.2, and 3.3 are in [11].

4. DIFAR Application

The analysis presented here is based on a portion of the
actual DIFAR graph. However, the same analysis methods
have been applied to the complete DIFAR graph, as well as
all of the other graphs in the worst-case concurrency modes
that the ALFS system must support [12]. The actual pro-
cessing performed by the DIFAR graph is classified by the
U.S. Government, so the following is an unclassified and
abbreviated description of the graph [13]. An understanding
of the actual processing is not necessary to compute CPU
utilization or to analyze latency in the graph.

The DIFAR graph receives directed low frequency
acoustic data from a sonobuoy and analyzes the data for
possible targets, such as enemy submarines or surface ships.
The DIFAR graph has over 80 nodes and 400 queues and
operates in three different modes: constant percent reso-
lution (CPR), constant resolution (CR), and vernier. The
ALFS subsystem can execute many different graphs simul-
taneously on a distributed system of processors. One worst-
case concurrency mode that it supports is the execution of
16 instances of the DIFAR graph, each processing data from
one sonobuoy. The frequency spectrum of data received by
the DIFAR graph is usually partitioned into bands, and the
graph can be configured to process from one to eight bands.
Thus, while the full DIFAR graph has over 85 nodes and
400 queues, there are many duplicate paths in the graph
with each path operating on a different portion of the signal.
The graph of Figure 3 is an abstract representation of a one-
band DIFAR graph. It is a cyclic graph with 31 nodes and
59 queues. All queues have unity produce, consume, and
threshold attributes unless otherwise labeled. Non-unity
produce values are labeled near the tail of the queue, and
non-unity threshold and consume values are labeled near the
head of the queue. The dataflow attributes used here are not
the actual values from the graph (the actual values are clas-
sified). However, the ratio between the attributes of a queue
is the same. For example, if queueq had a produce of 1024

tokens; a threshold of 2048 tokens; and a consume of 1024
tokens, these values would be represented as:prd(q) = 1,
thr(q) = 2, andcns(q) = 1. All back edges, including
self-loop edges, are initialized so that they are over thresh-
old. The number of initial tokens is shown on all queues
that are initialized except self-loop edges. Self-loop edges
are initialized so that they are always over threshold, but the
number of initial tokens is not shown to reduce clutter in the
figure.

The processing specific to the modes CPR, CR, and
vernier are located in the upper left portion of the graph
in Figure 3. The CPR processing is performed by the node
DDAD (DIFAR direction and detection filter). The CR pro-
cessing is performed by the nodesDDAD, CRfilter(CR fil-
ter), CRspec(CR spectral analysis), andCRdetect(CR de-
tection filter). The vernier processing is performed by the
nodesDDAD, VernFilter (vernier filter),VernSpec(vernier
spectral analysis), andVernDet (vernier detection filter).
The nodeBndMrg (band merge) merges data from all of
the active bands into one data stream. The DIFAR graph
in Figure 3 only shows one processing band for each of the
three modes. In the full DIFAR graph, there would be 8 sets
of CPR, CR, and vernier nodes, each ready to process a sep-
arate band of data partitioned from the input signal by the
nodeBDF (band definition filter). The heaviest processing
load is created when the graph operates in CR mode. In this
mode, no data is sent to theVernfilternode. Thus, vernier
processing is inactive in the CR mode, and nodesVernfilter,
VernSpec, andVernDetdo not execute.

4.1. Node Execution Rates

LetRSource= (16; 625ms) be a well-defined rate speci-
fication for source nodeSourcebeginning at time 0. That is,
nodeSourcedelivers 16 samples of the signal (tokens) in ev-
ery interval of625ms. Table 1 lists, in topological order, the
rate specifications for the other nodes in the graph derived
using Equation (1) of Theorem 3.1. Excluding self-loops,
two back edges are detected with a topological sort of the
graph: the queue connecting nodeMstrMCSto nodeBDF,
which is initialized with one token, and the queue connect-
ing nodeGramDatato nodeSlvMCS, which is initialized
with two tokens. However, before we can be guaranteed that
the rate specifications derived using Equation (1) are well-
defined, the number of initial tokens on both back edges
must be increased so that they are guaranteed to always be
over threshold. In the calculation of the number of tokens
with which back edges must be initialized, assumedv = yv
for each nodev attached to the tail of a back edge in a cy-
cle. Let P̂w denote the set of acyclic paths from a node
Sourceto nodew, andP̂v denote the set of acyclic paths
from source nodeSourceto nodev in the DIFAR graph. By
Theorem 3.3, back edgeq, connecting nodev to nodew,

6

VernSpec

BndMrg

GramMrg

GramOut

BrgAngle

AliScale

BrgMrg

BrgOut

BinMrgBinOut

Source

VernDet

CRdetect

init(q) = 1

FlowCntl

DDAD MstrMCS

CRfilter VernFilter SlvMCS MnsMrg

GramData MnsOut

SAD

BBC

AliMrgAliOut

BDF

32

2,1

2,1
init(q)

0

init(q)
32,1

init(q) 0= 1

2

2

8

24
8

8

24

3

24

8

8

init(q)

CRspec

2,1

AutDeMrg

AutoDet

AutDeOut

= 31

= 1

= 2

Figure 3. The PGM DIFAR Graph. All back edges, including self-loop edges, are initialized so that
they are always over threshold.

7

will always be over threshold if it is initialized with at least
�
sv + dv � �sw + yv

yw

�
� xw � cns(q) + thr(q)

tokens where

sv = max
p2P̂v

�
1;

�
Fp

xSource

�
� ySource

�
; and

�sw = max
p2P̂w

�
0;

�
Fp � 1

xSource

�
� ySource

�
:

Using these expressions and the rate specifications listed in
Table 1 to compute the number of initial tokens on the queue
connecting nodev = MstrMCS to nodew = BDF, the
queue must be initialized with at least

�
1250ms+ 1250ms� 625ms+ 1250ms

1250ms

�
� 1 � 1 + 2

= 3 + 2 = 5

tokens since

sMstrMCS= max
p2P̂MstrMCS

�
1;

�
Fp

xSource

�
� ySource

�

=

�
32

16

�
� 625ms= 1250ms; and

sBDF = max
p2P̂BDF

�
0;

�
Fp � 1

xSource

�
� ySource

�

=

�
32� 1

16

�
� 625ms= 625ms:

Similarly, the number of initial tokens on the queue con-
necting nodev = GramDatato nodeu = SlvMCSmust be
at least

�
2500ms+ 2500ms� 625ms+ 2500ms

1250ms

�
� 1 � 1 + 1

= 6 + 1 = 7

tokens since

sGramData= max
p2P̂GramData

�
1;

�
Fp

xSource

�
� ySource

�

=

�
64

16

�
� 625ms= 2500ms; and

sSlvMCS= max
p2P̂SlvMCS

�
0;

�
Fp � 1

xSource

�
� ySource

�

=

�
32� 1

16

�
� 625ms= 625ms:

The original implementation of the DIFAR graph on
the U.S. Navy’s standard signal processing computer, the

AN/UYS-2A (a multi-processor computer), was sched-
uled with a non-preemptive first-come-first-served (FCFS)
scheduler. The application had trouble meeting its latency
requirement when multiple DIFAR graphs were executing
at the same time [12]. It turns out that part of the problem
was the initialization of the two back edges found during the
topological sort of the graph. When the amount of initial-
ized data was increased as described above, the application
was determined by simulation to meet its latency require-
ment with a non-preemptive FCFS scheduler. However, this
is not the same as a guarantee that it will always meet its la-
tency requirement under non-preemptive FCFS scheduling.
In contrast, after successfully completing synthesis method
presented in [11], the DIFAR application can be guaranteed
to always meet is latency requirement.

4.2. CPU Utilization

The last column of Table 1 lists the worst-case execution
time of each node when it is executed on the AN/UYS-2A
[12]. Using the node execution rates, the worst case exe-
cution time for each node, and Equation (2) (on page 4),
the processor utilization for a single instance of the DI-
FAR graph executing on a single arithmetic processor of
the AN/UYS-2A is 4.84%:

nX
i=1

xi � ei
yi

= :0484:

However, this graph only processes one band of one
sonobuoy. If data from all 16 sonobuoys is processed si-
multaneously, then 16 instances of the graph are required,
which results in a cumulative processor utilization of0:77.
(The worst case concurrency requirement for the full 80
node DIFAR graph requires 5 bands to be processed for
each sonobuoy, which results in a cumulative processor uti-
lization of 2:11 [12]. Hence, the AN/UYS-2A used in the
ALFS system has a total of 3 arithmetic processors.) In gen-
eral, the analytical calculation of the CPU utilization is only
as accurate as the execution times used in the computation.
Since we are concerned with guaranteeing latency, we used
worst case node execution times rather than average execu-
tion times.

We also measured the CPU utilization of one AN/UYS-
2A arithmetic processor executing one instance of the one-
band DIFAR graph using real-time data collection features
of the AN/UYS-2A. The peak processor utilization mea-
sured was 4.7%, as compared to our predicted 4.84%. (The
full DIFAR graph that processes 5 bands of sonobuoy data
resulted in a peak processor utilization of 13.09%, as com-
pared to a predicted 13.2% [12].) It should be noted that
the worst case execution times are regularly encountered in
this graph, and that the worst case execution times for the

8

Node tu (xu, yu) eu
Source 0 (16; 625ms) —

FlowCntl 0 (1; 1250ms) 2:02ms
BDF 0 (1; 1250ms) 25:62ms

MstrMCS 0 (1; 1250ms) 0:13ms
MnsMrg 0 (0; 1250ms) 0:23ms
MnsOut 0 (0; 1250ms) —
SlvMCS 0 (1; 1250ms) 0:07ms
DDAD 0 (1; 1250ms) 2:58ms
CRfilter 0 (1; 1250ms) 4:12ms
CRspec 0 (1; 1250ms) 10:28ms

CRdetect 0 (1; 2500ms) 1:37ms
BndMrg 0 (2; 2500ms) 0:01ms

SAD 0 (2; 2500ms) 1:26ms
GramData 0 (2; 2500ms) 7:85ms
GramMrg 0 (2; 2500ms) 0:07ms
GramOut 0 (2; 2500ms) —

Node tu (xu, yu) eu
AliScale 0 (1; 10000ms) 8:68ms
AliMrg 0 (1; 10000ms) 0:18ms
AliOut 0 (1; 10000ms) —
BBC 0 (2; 2500ms) 4:08ms

BrgAngle 0 (1; 10000ms) 16:67ms
BrgMrg 0 (1; 10000ms) 0:18ms
BrgOut 0 (1; 10000ms) —
AutDet 0 (1; 30000ms) 3:22ms

AutDetMrg 0 (1; 30000ms) 0:13ms
AutDetOut 0 (1; 30000ms) —

BinMrg 0 (1; 30000ms) 0:07ms
BinOut 0 (1; 30000ms) —

VernFilter 0 (0; 1250ms) N/A
VernSpec 0 (0; 1250ms) N/A
VernDet 0 (0; 1250ms) N/A

Table 1. DIFAR node execution rates and worst case execution times.

AN/UYS-2A are extremely accurate. Thus, it is not sur-
prising that our predicted processor utilization values were
so close to measured values.

4.3. Computing Inherent Latency

The worst case latency cannot be less than the inherent
latency defined by the graph topology and dataflow param-
eters, no matter what type of hardware is used to host the
application. In the DIFAR graph, the first sample produced
encounters the maximum latency [11]. Thus, to verify a
latency requirement, only the latency for the first sample
needs to be checked. However, there are six graph sink
nodes so the latency of the first sample must be checked
at each graph sink node.

By Theorem 3.2, the latency between the time the first
sample arrives and when sink nodeAliOut can first be eligi-
ble for execution is bounded such that

max

�
0;

�
FSource;AliOut � 1

xSource

�
� ySource

�
� Sample Latency

< max

�
1;

�
FSource;AliOut

xSource

�
� ySource

�

max

�
0;

�
256� 1

16

�
� 625ms

�
� Sample Latency

< max

�
1;

�
256

16

�
� 625ms

�

9:375 seconds� Sample Latency< 10 seconds.

Thus, no matter how fast the processor or how many are
used, the minimum latency a sample encounters from the

source node to nodeAliOut is 9:375 seconds and it may be
almost 10 seconds. If we can guarantee that nodeAliMrg
completes its execution within 10 seconds of when it is first
eligible for execution (i.e., if 10 seconds is the bound on
imposed latency), then we can guarantee that the maximum
latency any sample encounters in the path is less than 20
seconds since total latency is equal to inherent latency plus
imposed latency.

The maximum inherent latency the first sample encoun-
ters in the path from nodeSourceto each of the other output
nodes is computed in the same manner. The upper bound
on inherent latency from nodeSourceto: nodeGramOutis
2:5 seconds, nodeBrgOut is 10 seconds, nodeAutDetOut
is 30 seconds, and nodeBinOut is 30 seconds. Thus, if the
processing simply keeps up with the input data rates, total
latency may be as high as 60 seconds on some paths.

At first it is rather surprising that latency as high as 60
seconds is tolerable in an embedded application. Acous-
tic signal processing applications can tolerate much higher
latency bounds than other real-time applications such as
radar applications. The main reason for this is that sound
waves travel much slower than radar waves, and, thus, it
takes longer to accumulate acoustic samples than radar sam-
ples — at least 30 seconds must elapse before enough data
is available to execute some of the DIFAR signal process-
ing functions. Consequently, the high latency is due to the
time it takes for data to accumulate in a node’s input queues
(where it is buffered) until enough data exists for the node
to execute.

9

5. Summary and Conclusions

We presented the analysis and verification of the real-
time properties of the DIFAR signal processing graph of
the ALFS system using analytical techniques. Prior to this
work, the two most common ways to verify the real-time
requirements of applications developed using general pro-
cessing graph models was to simulate graph execution or to
create a static schedule off-line to determine the period of
the schedule.

While the U.S. Navy has spent millions of dollars devel-
oping applications with PGM, it has never before been able
to analytically verify the real-time requirements of PGM
graphs. Thus, we claim to extend the state of the art in
real-time analysis and verification by showing that it is pos-
sible to analytically compute the inherent latency of cyclic
graphs independent of the hardware hosting the application.
We also showed how to compute the real-time execution
rate of each node in the graph. Using the execution rate of
each node and the time it takes per execution on a given pro-
cessor, the resulting CPU utilization can also be computed,
as shown here. Using a deterministic scheduling algorithm
to bound imposed latency, it is also possible to bound total
latency and memory requirements for any PGM graph [11].

The analysis presented here is based on a portion of the
actual DIFAR graph. However, the same analysis methods
have been applied to the complete DIFAR graph, as well as
all of the other graphs in the worst-case concurrency modes
that the ALFS system must support [12]. Moreover, our
analysis methods are applicable to any application devel-
oped using a general processing graph model such as PGM.

References

[1] Baruah, S., Goddard, S., Jeffay, K., “Feasibility Concerns in
PGM Graphs with Bounded Buffers,” Proc. of the Third Intl.
Conference on Engineering of Complex Computer Systems,
Sept., 1997, pp 130-139.

[2] Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.,Software Syn-
thesis from Dataflow Graphs, Kluwer Academic Publishers,
1996.

[3] Bondy, J.A., Murty, U.S.R.,Graph Theory with Applica-
tions, North Holland, 1976.

[4] Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G., “Ptolemy:
A Framework For Simulating and Prototyping Heteroge-
neous Systems,”International Journal of computer Simu-
lation, special issue on Simulation Software Development,
Vol. 4, 1994.

[5] Chatterjee, S., Strosnider, J., “Distributed Pipeline Schedul-
ing: A Framework for Distributed, Heterogeneous Real-
Time System Design,”The Computer Journal(British Com-
puter Society), Vol. 38, No. 4, 1995.

[6] Dasdan, A., Ramanathan, D., Gupta, R.K., “A Timing-
Driven Design and Validation Methodology for Embeded
Real-Time Systems,”ACM Trans. Design Automaton of

Electronic Systems(HLDVT’97 Special Issue), 3(4), Oct.
1998.

[7] Berry, G., Cosserat, L., “The ESTEREL Synchronous Pro-
gramming Language and its Mathematical Semantics,” Lec-
ture Notes in Computer Science, Vol. 197 Seminar on Con-
currency, Springer Verlag, Berlin, 1985.

[8] Gerber, R., Seongsoo, H., Saksena, M., “Guaranteeing Real-
Time Requirements with Resource-Based Calibration of Pe-
riodic Processes,”IEEE Transactions on Software Engineer-
ing, 21(7), July 1995.

[9] Goddard, S., Jeffay, K. “Analyzing the Real-Time Properties
of a Dataflow Execution Paradigm using a Synthetic Aper-
ture Radar Application,”Proc. IEEE Real-Time Technology
and Applications Symposium, June 1997, pp. 60-71.

[10] Goddard, S., Jeffay, K. “Managing Memory Requirements
in the Synthesis of Real-Time Systems from Processing
Graphs,”Proc. of IEEE Real-Time Technology and Appli-
cations Symposium, June 1998, pp. 59-70.IEEE Real-Time
Technology and Applications Symposium, 1998

[11] Goddard, S.,On the Management of Latency in the Synthe-
sis of Real-Time Signal Processing Systems from Processing
Graphs,” Ph.D. Dissertation, University of North Carolina
at Chapel Hill, 1998.
http://www.cse.unl.edu/˜ goddard/Papers/Dissertation.ps

[12] Goddard, S., “Graph Performance Analysis Report on the
ALFS Worst-Case Concurrency Modes,” Technical Report
300832-980514-01, S.M. Goddard & Co., Inc., under con-
tract to General Dynamics, May 14 1998.

[13] Airborne Low Frequency Sonar Subsystem System Require-
ments Specifications, prepared by Hughes Aircraft Corpora-
tion, Version 1.0, Apr. 1991.

[14] System/Segment Specificaton for the Airborne Low Fre-
quency Sonar (ALFS) (Dipper & Integrated Sonobuoy), pre-
pared by Hughes Aircraft Corporation, Aeorspace & De-
fense Sector, Document Number SS12070, Revision D,
April 1994.

[15] Karp, R.M., Miller, R.E., “Properties of a model for parallel
computations: Determinacy, termination, queuing,”SIAM J.
Appl. Math, 14(6), 1966, pp 1390-1411.

[16] Lee, E.A., Messerschmitt, D.G., “Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Process-
ing,” IEEE Transactions on Computers, C-36(1), Jan. 1987,
pp. 24-35.

[17] Processing Graph Method Specification, prepared by NRL
for use by the Navy Standard Signal Processing Program
Office (PMS-412), Version 1.0, Dec. 1987.

[18] Ritz, S., Meyer, H., “Exploring the design space of a DSP-
based mobile satellite receiver,”Proc. of ICSPAT 94, Dallas,
TX, Oct. 1994.

[19] Ritz, R., Willems, M., Meyer, H., “Scheduling for Opti-
mum Data Memory Compaction in Block Diagram Oriented
Software Synthesis,”Proc. of ICASSP 95, Detroit, MI, May
1995, pp. 133-143.

[20] Živojnović, V., Ritz, S., Meyer, H., “High Performance DSP
Software Using Data-Flow Graph Transformations,”Proc.
of ASILOMAR 94, Nov. 1994.

10

