| In: Proceedings of the Fourth IEEE International Symposium on High Assurance Systems Engivgasinggton, D.C., November 1999, pp. 141-1|50.

Analyzing the Real-Time Properties of a U.S. Navy Signal Processing System

Steve Goddard Kevin Jeffay
Computer Science & Engineering Department of Computer Science
University of Nebraska—Lincoln University of North Carolina at Chapel Hill
Lincoln, NE 68588-0115 Chapel Hill, NC 27599-3175
goddard@cse.unl.edu jeffay@cs.unc.edu
Abstract graphs which are a standard design aid in the development

of complex digital signal processing systems. Processing

The state of the art in verifying the real-time require- graphs are large grain dataflow graphs in which nodes rep-
ments of applications developed using general processingresent processing functions and graph edges depict the flow
graph models relies on simulation or off-line scheduling. of data from one node to the next. Each data element that is
We extend the state of the art by presenting analytical meth-processed by a node is a sample of the signal — an element
ods that support the analysis of cyclic processing graphs of the discrete sequence of numbers representing the signal.
executed with on-line schedulers. We show that it is possi- General processing graph paradigms, such as PGM, have
ble to compute the latency inherent in a processing graph been used to create a wide variety of applications (e.g, com-
independent of the hardware hosting the application. We mand and control, distributed multimedia, and signal pro-
also show how to compute the real-time execution rate ofcessing applications). While this paper focuses on a spe-
each node in the graph. Using the execution rate of eachcific acoustic signal processing application, the analysis
node and the time it takes per execution on a given pro- presented here is applicable to any application developed
cessor, the resulting CPU utilization can be computed, as using a general processing graph model such as PGM.
shown here for the Directed Low Frequency Analysis and The state of the art in verifying the real-time require-
Recording (DIFAR) acoustic signal processing application ments of applications developed using general processing
from the Airborne Low Frequency Sonar (ALFS) system of graph models relies on one of two techniques. The first
the SH-60B LAMPS MK Il anti-submarine helicopter. simulates graph execution, and hopes that the simulation

encounters the worst case scenario (i.e., that the simulated

graph execution is performed long enough to encounter the
1. Introduction peak processor demand). This technique is generally ap-

plied when dynamic scheduling is used for graph execution.

We present the analysis and verification of the real-time The second technique is applied when static scheduling is
properties of an embedded signal processing application forused to determine the order of node executions. An “off-
an anti-submarine warfare (ASW) system. More specifi- line” algorithm creates a node execution schedule that is
cally, we study the CPU requirements and inherent processrepeated periodically. The length of the schedule (i.e., the
ing latency of the Directed Low Frequency Analysis and period of the schedule) determines the latency and mem-
Recording (DIFAR) acoustic signal processing application ory usage of the application. This technique requires the
from the Airborne Low Frequency Sonar (ALFS) system of generation and on-line storage of a large number of sched-
the SH-60B LAMPS MK IIl anti-submarine helicopter. The ules for the various modes of operation of the ALFS subsys-
ALFS system processes low frequency signals received bytem. Consequently, the ALFS system uses on-line schedul-
sonobuoys in the water. Its primary function is to detect and ing rather than static scheduling. This means, however, that
track submarines and to calculate range and bearing estiit has not been possible to verify the real-time processing
mates to each target [14]. requirements of the ALFS signal processing graphs.

The DIFAR application was developed using the U.S. We extend the state of the art in verifying the real-time
Navy’s Processing Graph Method (PGM) [17], and executesrequirements of applications developed using processing
on the U.S. Navy’s standard signal processing computer,graph models by presenting analytical methods that sup-
the AN/UYS-2A. PGM is one of many application develop- port the analysis of cyclic processing graphs executed with
ment paradigms based on directed graphs cailedessing on-line schedulers, such as the DIFAR graph. In [11],

| In: Proceedings of the Fourth IEEE International Symposium on High Assurance Systems Engivgasinggton, D.C., November 1999, pp. 141-1|50.

we proposed a new synthesis technique for building hardthat dynamic scheduling with execution rates results in less
real-time signal processing systems from general processmemory usage than periodic or static scheduling.

ing graphs, and demonstrated its use with a synthetic aper- Processing graphs are a standard design aid in digital
ture radar (SAR) system, an International Maritime Satellite signal processing. From the digital signal processing lit-
(INMARSAT) mobile satellite receiver application, and an erature, PGM is most similar to Lee and Messerschmitt's
acoustic digital signal processing application. Here we usesynchronous Dataflow (SDF) graphs [16] supported by the
some of those techniques to calculate the CPU utilization ptolemy system [4]. The SDF graphs of Ptolemy utilize a
of the DIFAR graph executing on the AN/UYS-2A and t0 gypset of the features supported by PGM. Any SDF graph
compute the inherent latency in the signal processing graphcan pe represented as a PGM graph where each queue’s
Inherent latency is created by non-unity dataflow attributes threshold is equal to its consume value. In addition to sup-
and graph topology. We show that both the CPU utilization porting a more general dataflow model, our research differs

and the inherent latency of the signal processing graph cartrom [16] in that we support dynamic, real-time, scheduling

ent latency in the signal processing graph is independent of
the scheduling algorithm and even of the number of proces-
sors used to execute the graph.

The rest of this paper is organized as follows. Section
2 describes related work. Section 3 presents backgroun
knowledge on PGM and the real-time analysis techniques
that are applied to the DIFAR graph in Section 4. We con-
clude our analysis of the real-time properties of the DIFAR
graph with a summary in Section 5.

In 1996, Bhattacharyya, Murthy, and Lee published a
method for software synthesis from dataflow graphs [2].
Their software synthesis method is based on the static
dscheduling of Lee and Messerschmitt's SDF graphs. The
main goal of Bhattacharyyat al's software synthesis
method and related scheduling research based on SDF
graphs has been to minimize memory usage by creating
off-line scheduling algorithms [16, 18, 20, 19, 2]. Off-line
schedulers create a static node execution schedule that is
executed periodically by the processor. In contrast, the pri-
2. Related Work mary goal of our research has been to manage the latency
and memory usage of processing graphs by executing them

Our previous work on the synthesis of real-time unipro- With an on-line scheduler. Recently we have shown that
cessor systems from PGM was based on acyclic PGMfor a large class of applications, dynamic on-line schedul-
graphs[1, 9, 10]. In this paper, we present the analyses of dng creates less imposed latency than static scheduling. An
cyclic PGM graph. This is the first time general execution €ven more surprising resultis that, in many cases, dynamic
rates and inherent latency have been computed for cyclicon-line scheduling uses less memory for buffering data on
graphs. Since we do not assume the existence of a real-tim@raph edges than static scheduling [10].
scheduler or even knowledge of the type of scheduling per- Our latency analysis is related to the work of Gerber
formed during graph execution, we do not, in this paper, al. in guaranteeing end-to-end latency requirements on a
address latency imposed by the scheduling and execution oingle processor [8]. However, Gerber al. map a task
the graph nodes. A complete discourse on latency in pro-graph to a periodic task model in the synthesis of real-time
cessing graphs is contained in [11]. message-based systems rather than assuming a rate-based

From the real-time literature, PGM graphs are most execution. Our analysis and management of latency differs
closely related to the Logical Application Stream Model from Gerberet al’s in that PGM graphs allow non-unity
(LASM) [5] and the Generalized Task Graph (GTG) model dataflow attributes. Finally, Gerbet al.introduce new (ad-

[6]. PGM, LASM, and GTG were all developed indepen- ditional) tasks to the task set in their synthesis method to
dently and support very similar dataflow properties. PGM synchronize processing paths. Our synthesis method does
was the first of these to be developed. Our work improves not need extra synchronization tasks since our analysis tech-
on the analysis of LASM and GTG graphs by not requir- niques are rate-based rather than periodic.

ing periodic execution of the nodes in the graph. Instead,

we calculate a more general execution rate, which can be

reduced to average execution rates assumed in the LASM3. Background & Analysis Techniques

and GTG models. Our general execution rate specification

provides a more natural representation of node execution

for PGM graphs. Forcing periodic execution of all graph A basic understanding of PGM and the theory of real-
nodes adds latency to the processed signal, but simplifiedime graph execution is necessary before one can under-
the analysis of latency and memory requirements. In [10], stand our analysis of the real-time properties of the DIFAR
we model PGM node execution with the more natural exe- graph. Thus, this section presents a brief overview of PGM
cution rateandimprove memory usage analysis by showing followed by the theory supporting our analysis techniques.

prd(q) =4 thr(q) = queuey. The execution of a node islid if and only if the
cngg) = node executes only when it is eligible for execution, no two
executions of the same node overlap, each input queue has
its data atomically consumed after each output queue has

q output queuegy. Before the node terminates, but after data
- > - is producedcngg) tokens are dequeued from each input

Figure 1. A two node chain. its data atomically produced, and data is produced at most
once on an output queue during each node execution.
3.1. Processing Graph Method A graph execution consists of a (possibly infinite) se-

guence of node executions. A graph executiomald if
. . ._and only if all of the nodes in the execution sequence have
In PGM, a system is expressed as a directed graph in y q

. . . valid executions and no data loss occurs.
which the nodes (or vertices) represent processing func-
tions and the edges represent buffered communication chan . .
nels called queues. The topology of the graph define:s?"2 Real-Time Graph Execution Theory
a software architecture independent of the hardware host-))))
ing the application. The graph edges are First-In-First- EmbPedded signal processing systems receive a contin-
Out (FIFO) queues. There are four attributes associated!®Us Signal from external sensors. They are required to
with each queue: a produce amoynt(q), a threshold ~ Process the signal in real time and present the signal pro-
amountthr(g), a consume amourngq), and an initial- cessing results to an output device within a specified time
ization amounnit(¢). Let queugy be directed from node interval. Processing the signal in real time requires execut-
to nodew. The produce amountrd(q) specifies the num- ing the PGM graph nodes so that they execute their pro-
ber of tokens (data elements) appended to queudien cessing functions as the signal arrives and without losing
producing node: completes execution. A token represents data. For example, some of the ALFS signal processing
an instance of a data structure, which may contain multiple 9@Phs are used to track submarines by calculating the dis-
data words. There must be at le#tst(q) tokens on queue tance, speed, and direction of a submarine. External sen-
¢ before noda is eligible for execution. A queue isver sors, called sonobuoys, convert the sound wave created by
thresholdif the number of enqueued tokens meets or ex- & Submarine to a digital signal that is input to a PGM graph.
ceeds the threshold amouht(q). After nodew executes, The graph must process the signal and send the results, such
the number of tokens consumed (deleted) from quele as updated distance, speed, and direction, to a display before
nodew is cngg). The number of initial data tokens on the the next portion of the signal is sent by the sonobuoys.
queue isinit(q). In [11], we presented and proved theorems for comput-

Unlike many processing graph paradigms, PGM allows ing the execution rate of any node in a PGM graph using

non-unity produce, threshold, and consume amounts as welf1€ €xecution rate of its producer nodes and the dataflow
as a consume amount less than the threshold. The onhttributes on its input queues. We summarize the necessary

restrictions on queue attributes is that they must be non-results here without proving them. We begin with a brief de-

negative values and the consume amount must be less thaRCfiPtion of the notatiohused in the subsequent theorems.
or equal to the threshold. For example consider the portion A Processing graph is formally described aslieected
of a chain shown in Figure 1. The queue connecting nodesd"@Ph(ordigraph) G = (V, E, ¢). The ordered triple\(, E,

u anduw, labeledy, hasprd(q) = 4, thr(q) = 7, cndq) = 3, 1) consists ofano.ne.mpty finite S¢bf vertlcesaflnlte set
andinit(¢) = 0. (A queue without aiinit(q) label contains E of edgesand an incidence f.uncthnthat associates Wlth
no initial data.) Node: must execute twice before node €ach edge of an ordered pair of (not necessarily distinct)
w is first eligible for execution. After node executes, ~ Vertices ofV. Consider an edgec E and vertices:, v € V

it consumes only 3 of the 8 tokens on its input queue. A Such thati(e) = (u,v). We saye joins u to v, oru andv

threshold amount that is greater than the consume amoun@'€ djacent. The vertexis called the tail or source vertex
is often used in signal processing filters. The filter reads °f ¢ andv is the head or sink vertex of edge The edge:

thr(g) tokens from the queue but only consunces(q) to- is anoutput edgef u and aninput edgeof v. The number
kens, leaving at leasthr(¢) — cngq)) on the queue to be

of input edges to a vertexis theindegreed— (v) of v, and
used in the next calculation. the number of output edges for a verteis theoutdegree
If a node has more then one input queue (input edge),’ (V) of v. A vertexv with 6~ (v) = 0 is aninput node
then the node is eligible for execution whath of its in- 1€ Sel = {v|veVAQ (”J)r = 0} denotes the set of all
put queues are over threshold (i.e., when each input queue "PUt nodes. A vertex with 6™ (v) = 0 is anoutput node

gonta_ins at |ea5thr(‘.l) tokens). After the processing func- 1The notation and terminology of this paper, for the most part, is an
tion finishes executingyrd(q) tokens are appended to each amalgamation of the notation and terminology used in [3] and [2].

ThesetO = {v|v € VA §t(v) = 0} denotes the set of all
output nodes. Fou,v € V, there is gpath betweeru and

v, Written asu~ v, if and only if there exists a sequence of

vertices(wy , wa, - .
w; is adjacent tav; 1 fori = 1,2, ...

.,wg) such thatw; = u, wi = v, and
(k —1). The setZ,

is the subset of input nod&sfrom which there exists a path

fromu € 7 to the node. Likewise, the sef),, is the subset

of output node® from which there exists a path from node

utow € O.
Node execution rates are defined as follows. ekecu-

tion rateis an integer paifz,y). An execution rate spec-

ification for nodev, R, = (z,y), is well-definedif there
exists a time, such that node executes exactly times in
time intervalst, ¢ + y) for all ¢ > t,. To simplify the pre-

Theorem 3.1 can also be applied to cyclic graphs if each
back edgey in every cycle is initialized such that it is al-
ways over threshold. (dack edgds a queuey that joins
nodewv to an ancestorw when the graph is topologically
sorted.) Letg be a back edge witlh(q) = (v,w). Ifit
can be guaranteed that nodevill always finish executing
within d, time units of when it is eligible for execution, we
can guarantee back edgevill always be over threshold if
it is initialized such that

init(q) = [

Sv+dv_§w+yv
Yw

w - Iy - €N q) + thr(q)
(3)

wheres, is the latest possible time nodewill first be eli-

sentation of execution rates and inherent latency, we assumgjiple to executes,, + d, is the latest possible time node
the graph executes on an infinitely fast machine so that nodeyj|| complete its first execution angl, is the earliest pos-
execution takes no time. More precisely, we assume nodesip|e time nodes can begin its first execution [11]. Before
execute in accordance with the strong synchrony hypothe-ye can present equations to compst@nds,,, we need to

sis from the synchronous programming literature [7]. The introduce the concept of latency and how it is computed in
strong synchrony hypothesis states that the system instantlypgm graphs.

reacts to external stimuli.
Theorem 3.1. Let G = (V, E,+) be an acyclic PGM di-

graph for which a valid execution is possible using finite

memory and node € V withd~ (w) > 1. The execution
rate of nodew is R,, = (x4, y») Where

— lem cngq)yu = (u.w
Yw = 1 {gcd(prd(q)xu,cns(q)) | ¢(q) - (’)}7
prd(q)x @
Tw = Yuw - (Cniq)y:> , Vg, u: 1/1(Q) = (u7w)'

For example, given nodesandwv in Figure 2 withR,, =
(3,16) andR, = (2,12), the execution rate ab is:

Yo = lem{ enga)yu cngB)yw)
" ged(prd(a)zu, cnda))” ged(prd(B8)z, cng3))
— lem{ 3-16 212 }
ged(4-3,3) ged(3-2,2)

-16 2-12
- 1cm{¥, 22 = tem{16,12) = 48

_ . prd(a) -z, \ . 4-3\
andz,, = yw <7cns(a) : yu> =48 <—3 : 16) =12.
ThusR, = (zw,yw) = (12,48) and, after its first exe-

cution, nodew in Figure 2 will execute 12 times in every

interval of length 48.

The processor utilization created by the execution of
the nodes in a graph can be calculated using Equation (2),

wheree,, is the execution time of node

PR ()

i=1 Yi

A signal processing engineer describes latency as the
time delay between the sampling of a signal and the pre-
sentation of the processed signal to the output device (which
may be a screen, speaker, or another computer). While intu-
itive, this definition is not precise enough for our purposes
since individual input samples cannot be identified in the
prd(q) tokens produced at one time by an external source.
We define a sample to be the set of tokens delivered by a
source node at one time. Under the strong synchrony hy-
pothesis, latency is the delay between when a source node
produces a sampl@id(q) tokens) and when the graph out-
puts the processed signal. The total latency encountered by
a sample is an integral unit of time created by the sum of
the latency inherent in the signal processing graph and the
additional latency imposed by the implementatiorherent
latencyin a graph is created by non-unity dataflow attributes
and the graph topology. Inherent latency exists even if the
graph is executed on an infinitely fast machitreposed la-
tencycomes from the scheduling and execution of nodes in
the graph since we do not have an infinitely fast machine.
Thus latency has two components, and the total latency any
sample encounters can be expressed with the simple equa-
tion

Total Latency= Inherent Latency- Imposed Latency

Let nodeu be a source node in the set of graph source
nodesZ, and let queug be an output queue to source node
u. Inherent latency is the delay between the enqueuing of
prd(q) tokens onto queug by source node and the next
execution of the sink node when the graph is executed on

if >, £22 < 1, the nodes can be scheduled using a sim- an infinitely fast computer, as assumed by the strong syn-
ple on-line scheduler such that the nodes execute at theichrony hypothesis. In simple dataflow models that require
required execution rate and no incoming data is lost [11]. unity dataflow attributes and only allow one source node,

prd(«
thr (o) =7,cnda) =3

prd(8) =

— (O
é@
o 1 SR
TR u e

v | e

| -
rFrrrr—Trrrr—rtTrTrr—1° " T 1T 1T T T"T T"7T"I o

| | | |
T T
0 2 4 6 810 12 1416 18 20 2224 26 28 30 32 34 36 38 40 42 44 46 48

Figure 2. A three-node graph and time-line execution showing the execution of nodes under the
strong synchrony hypothesis. If R, = (3,16) and R, = (2,12) are valid after time 0, then R,, = (12,48).
Each down arrow represents an execution of the node. Multiple executions of a node at the same
instant are represented by a number above the down arrow.

the inherent latency of the graph is 0 under the strong syn- wherep represents a path~»w and F,...,, is defined as
chrony hypothesis. However, non-unity dataflow values (as

supported by PGM) or multiple source nodes can create sig- max (0, [W]) if 3g : 1(q) = (u,w)
nificant latency in processing the signal, even if we have an
infinitely fas.t computer. The_ inherent latency any sample o (0 [(Fww_1)_Cns(q)+w(q)_|engﬂ(q)])
encounters in a cyclic graph is bounded by Theorem 3.2. Fuow = prd(q)
if g : ¥(q) = (v, v) Av#wA Fyuow >0
L0 if3g:v(q) = (u,v) Av# WA Fyuy =0
. 5
Theorem 3.2. LetG = (V, E,) be a cyclic PGM graph ®)
with rate-based source nodes. Let € O, and let the Equation (5) computes the number of times source node
execution rate of source nogee Z,, be R; = (z;,y;). j must execute before enough data is produced to execute

Let lengtl{q) denote the current number of tokens in queue sink nodew. Equation (4) then uses this value to bound
g € E. LetP denote the set of acyclic paths from source the interval of time in which node will next be eligible to
node; to nodew. Let every back edge be initialized such execute, which is the inherent latency a signal encounters in
that it is always over threshold. The inherent latency a sam- pathj~»w.
ple will encounter is bounded such that We now have the necessary theory to show Bgvand
3, are computed such that we can guarantee that a back
edge that joins node to nodew in a cycle is always over
threshold. (Recall that, is the latest possible time node

o1 = - D ; .
ax (0’ { p J -yj> < Sample Latency will first be eligible to execute and, is the earliest possible
peP xj time nodew can begin its first execution.)

< max (1, [Q-‘ . yj> (4) Theorem 3.3. Let queue; be a back edge in a cycle with
PEP Tj Y(q) = (v,w). LetP,, denote the set of acyclic paths from

source nodg to nodew. LetP, denote the set of acyclic tokens; a threshold of 2048 tokens; and a consume of 1024

paths from source nodgto nodev. If queuey is initialized tokens, these values would be representegpefy) = 1,

with a number of tokens given by Equati@), wheres,, is thr(q) = 2, andcngq) = 1. All back edges, including
self-loop edges, are initialized so that they are over thresh-

(0, {Fp - 1J yJ> (6) old. The number of initial tokens is shown on all queues

= ;Iel%f j that are initialized except self-loop edges. Self-loop edges

. are initialized so that they are always over threshold, but the

ands, is number of initial tokens is not shown to reduce clutter in the
F figure.

S, = max (1, {—ﬂ ~y,~> , (7) The processing specific to the modes CPR, CR, and

PEPy i vernier are located in the upper left portion of the graph

then queug will always be over threshold. in Figure 3. The CPR processing is performed by the node

DDAD (DIFAR direction and detection filter). The CR pro-
The proofs of Theorems 3.1, 3.2, and 3.3 are in [11]. cessing is performed by the nodeBAD, CRfilter (CR fil-
ter), CRspedCR spectral analysis), ar@Rdetec{CR de-
4. DIFAR Application tection filter). The vernier processing is performed by the
nodesDDAD, VernFilter (vernier filter), VernSpedvernier
spectral analysis), andlernDet (vernier detection filter).

actual DIFAR graph. However, the same analysis methods(,arhe nodeBndMrg (band merge) merges data from all of

have been applied to the complete DIEAR araph. as well asthe active bands into one data stream. The DIFAR graph
bp : P grapn, in Figure 3 only shows one processing band for each of the
all of the other graphs in the worst-case concurrency mode

that the ALFS system must support [12]. The actual pro_%hree modes. In the full DIFAR graph, there would be 8 sets

. ; o of CPR, CR, and vernier nodes, each ready to process a sep-
cessing performed by the DIFAR. grgph IS classmgq by the arate band of data partitioned from the input signal by the
U.S. Government, so the following is an unclassified and

abbreviated description of the graph [13]. An understanding nodeBDF (band definition filter). The heaviest processing

of the actual processing is not necessary to compute CPLJoad is created when the graph operates in CR mode. In this
N P 9 . y P mode, no data is sent to thernfilternode. Thus, vernier
utilization or to analyze latency in the graph.

. . rocessing is inactive in the CR mode, and nodasfilter,
The DIFAR graph receives directed low frequency P g

: VernSpecandVernDetdo not execute.
acoustic data from a sonobuoy and analyzes the data for peca

possible targets, such as enemy submarines or surface ships.)

The DIFAR graph has over 80 nodes and 400 queues and*-1- Node Execution Rates

operates in three different modes: constant percent reso-

lution (CPR), constant resolution (CR), and vernier. The Let Rsource= (16, 625m9g be a well-defined rate speci-
ALFS subsystem can execute many different graphs simul-fication for source nod8ourcebeginning at time 0. That s,
taneously on a distributed system of processors. One worsthodeSourcedelivers 16 samples of the signal (tokens) in ev-
case concurrency mode that it supports is the execution ofery interval of625ms Table 1 lists, in topological order, the
16 instances of the DIFAR graph, each processing data fronrate specifications for the other nodes in the graph derived
one sonobuoy. The frequency spectrum of data received byusing Equation (1) of Theorem 3.1. Excluding self-loops,
the DIFAR graph is usually partitioned into bands, and the two back edges are detected with a topological sort of the
graph can be configured to process from one to eight bandsgraph: the queue connecting nddstrMCSto nodeBDF,
Thus, while the full DIFAR graph has over 85 nodes and which is initialized with one token, and the queue connect-
400 queues, there are many duplicate paths in the grapling nodeGramDatato nodeSIvMCS which is initialized
with each path operating on a different portion of the signal. with two tokens. However, before we can be guaranteed that
The graph of Figure 3 is an abstract representation of a onethe rate specifications derived using Equation (1) are well-
band DIFAR graph. It is a cyclic graph with 31 nodes and defined, the number of initial tokens on both back edges
59 queues. All queues have unity produce, consume, andnust be increased so that they are guaranteed to always be
threshold attributes unless otherwise labeled. Non-unityover threshold. In the calculation of the number of tokens
produce values are labeled near the tail of the queue, andvith which back edges must be initialized, assuipe- vy,
non-unity threshold and consume values are labeled near théor each node attached to the tail of a back edge in a cy-
head of the queue. The dataflow attributes used here are natle. LetP,, denote the set of acyclic paths from a node
the actual values from the graph (the actual values are clasSourceto nodew, andP, denote the set of acyclic paths
sified). However, the ratio between the attributes of a queuefrom source nod&ourceo nodev in the DIFAR graph. By

is the same. For example, if quegbad a produce of 1024 Theorem 3.3, back edgge connecting node to nodew,

32,1
init(q) =31

init(g) =2

'

8

8
4’
8
24 3 BrgOut
4> AutoDet \ 24
24
8

(o],

Figure 3. The PGM DIFAR Graph. All back edges, including self-loop edges, are initialized so that

they are always over threshold.

will always be over threshold if it is initialized with at least AN/UYS-2A (a multi-processor computer), was sched-
uled with a non-preemptive first-come-first-served (FCFS)
{sv +dy — 5y + yv-‘ - Ty - CNYq) + thr(q) scheduler. The application had trouble meeting its latency

Yw b requirement when multiple DIFAR graphs were executing

at the same time [12]. It turns out that part of the problem

tokens where was the initialization of the two back edges found during the
b topological sort of the graph. When the amount of initial-
Sv = fé%’f <1’ LSOWCJ : y50urce> , and ized data was increased as described above, the application
o1 was determined by simulation to meet its latency require-
S = max (0, { P J ~y30urce> . ment with a non-preemptive FCFS scheduler. However, this
PEPw T'Source

is not the same as a guarantee that it will always meet its la-

Using these expressions and the rate specifications listed iféncy requirement under non-preempt-we FCFS S9hed“"”9-
Table 1 to compute the number of initial tokens on the queueIrl contrast, after successfully completing synthesis method
connecting node — MstrMCSto nodew — BDF, the presented in [11], the DIFAR application can be guaranteed
gueue must be initialized with at least to always meet s latency requirement.

1250ms+ 1250ms— 625ms+1250ms] 4.2. CPU Utilization
[1250ms w e

—34+2=5 The last column of Table 1 lists the worst-case execution

time of each node when it is executed on the AN/UYS-2A
tokens since [12]. Using the node execution rates, the worst case exe-
cution time for each node, and Equation (2) (on page 4),

SMstMCS= max (1’ [Fp -‘ .ySOume> the processor utilization for a single instance of the DI-
PEPusumcs T Source FAR graph executing on a single arithmetic processor of

32 the AN/JUYS-2A is 4.84%:
= [—| - 625ms= 1250ms and
16 n
;- €;
F,—1 = .0484.
SBDF = max (0: \‘ L J 'y80urce> Z: Yi
PEPeDF ZISource i=1
- {32 - 1J . 625Ms= 625ms However, this graph only processes one band of one
16 sonobuoy. If data from all 16 sonobuoys is processed si-

multaneously, then 16 instances of the graph are required,
which results in a cumulative processor utilizatiorDof7.

(The worst case concurrency requirement for the full 80
node DIFAR graph requires 5 bands to be processed for

Similarly, the number of initial tokens on the queue con-
necting noder = GramDatato nodeu = SIvMCSmust be
at least

2500mMs+ 2500Ms— 625Ms-+- 2500ms gach sonobuoy, which results in a cumulative processor uti-
1141 lization of 2.11 [12]. Hence, the AN/UYS-2A used in the
1250ms - .
ALFS system has a total of 3 arithmetic processors.) In gen-
=6+1=7 eral, the analytical calculation of the CPU utilization is only

as accurate as the execution times used in the computation.

tokens since . .)
Since we are concerned with guaranteeing latency, we used

B 1 F, worst case node execution times rather than average execu-
SGramData = pegﬁﬁma | Tooures " YSource tion times. o
64 We also measured the CPU utilization of one AN/UYS-
= I_GW -625ms= 2500ms and 2A arithmetic processor executing one instance of the one-
band DIFAR graph using real-time data collection features
s _ (0 {Fp — 1J . > of the AN/UYS-2A. The peak processor utilization mea-
SivmMCS= max) YSource .
PEPsimcs TSource sured was 4.7%, as compared to our predicted 4.84%. (The
32 -1 full DIFAR graph that processes 5 bands of sonobuoy data
= I—GJ -625ms= 625ms resulted in a peak processor utilization of 13.09%, as com-

pared to a predicted 13.2% [12].) It should be noted that
The original implementation of the DIFAR graph on the worst case execution times are regularly encountered in
the U.S. Navy’s standard signal processing computer, thethis graph, and that the worst case execution times for the

Node ty (Loy Yu) €u Node ty (Luy» Yu) €u
Source | 0 | (16, 625m9 — AliScale | 0 | (1, 10000mg 8.68ms
FlowCntl | O | (1, 1250mg 2.02ms AliMrg 0| (1, 10000ms 0.18ms
BDF 0| (1, 1250mg 25.62ms AliOut 0| (1, 10000ms —
MstrMCS | 0 | (1, 1250ms 0.13ms BBC 0| (2, 2500mg 4.08ms
MnsMrg | O | (0, 1250mg 0.23ms BrgAngle | O | (1, 10000ms 16.67ms
MnsOut | O | (0, 1250ms — BrgMrg 0| (1, 10000ms 0.18ms
SIVMCS | O (1, 1250mg 0.07ms BrgOut 0| (1, 10000ms —
DDAD 0 (1, 1250mg 2.58ms AutDet 0 (1, 30000ms 3.22ms
CRfiter | O | (1, 1250mg 4.12ms ||| AutDetMrg | O | (1, 30000mg 0.13ms
CRspec | 0 | (1, 1250mg 10.28ms||| AutDetOut| O | (1, 30000ms —
CRdetect| 0 | (1, 2500ms 1.37ms BinMrg 0| (1, 30000ms 0.07ms
BndMrg | O | (2, 2500ms 0.0lms BinOut 0| (1, 30000ms —
SAD 0| (2, 2500mg 1.26ms VernFilter | O | (0, 1250ms N/A
GramData| 0 | (2, 2500mg 7.85ms VernSpec | 0 | (0, 1250ms N/A
GramMrg | 0 | (2, 2500ms 0.07ms VernDet | O | (0, 1250m9 N/A
GramOut| 0 | (2, 2500ms —

Table 1. DIFAR node execution rates and worst case execution times.

AN/UYS-2A are extremely accurate. Thus, it is not sur- source node to nodgliOut is 9.375 seconds and it may be
prising that our predicted processor utilization values were almost 10 seconds. If we can guarantee that rididrg

so close to measured values. completes its execution within 10 seconds of when it is first
eligible for execution (i.e., if 10 seconds is the bound on
4.3. Computing Inherent Latency imposed latency), then we can guarantee that the maximum

latency any sample encounters in the path is less than 20

The worst case latency cannot be less than the inherenseconds since total latency is equal to inherent latency plus
latency defined by the graph topology and dataflow param-imposed latency.
eters, no matter what type of hardware is used to host the
application. In the DIFAR graph, the first sample produced
encounters the maximum latency [11]. Thus, to verify a The maximum inherent latency the first sample encoun-
latency requirement, only the latency for the first sample ters in the path from nodgourceto each of the other output
needs to be checked. However, there are six graph sinknodes is computed in the same manner. The upper bound
nodes so the latency of the first sample must be checkedn inherent latency from nod&ourceto: nodeGramOutis

at each graph sink node. 2.5 seconds, nodBrgOutis 10 seconds, nodéutDetOut

By Theorem 3.2, the latency between the time the first is 30 seconds, and no@nOutis 30 seconds. Thus, if the
sample arrives and when sink nodigOut can first be eligi- processing simply keeps up with the input data rates, total
ble for execution is bounded such that latency may be as high as 60 seconds on some paths.

max (0, {MJ ~y50urce> < Sample Latency

Source
e . At first it is rather surprising that latency as high as 60
Source-»AliOut
< max <1, [P l 'y50urce> seconds is tolerable in an embedded application. Acous-

tic signal processing applications can tolerate much higher

256 — 1 latency bounds than other real-time applications such as
max (0, { 6 J ~625ms> < Sample Latency radar applications. The main reason for this is that sound
056 waves travel much slower than radar waves, and, thus, it

< max (1, {_W) 625ms> takes longer to accumulate acoustic samples than radar sam-

16 ples — at least 30 seconds must elapse before enough data

is available to execute some of the DIFAR signal process-
ing functions. Consequently, the high latency is due to the
Thus, no matter how fast the processor or how many aretime it takes for data to accumulate in a node’s input queues

used, the minimum latency a sample encounters from the(where it is buffered) until enough data exists for the node
to execute.

9.375 seconds < Sample Latency < 10 seconds.

5. Summary and Conclusions Electronic SystemgHLDVT'97 Special Issue), 3(4), Oct.
1998.
Berry, G., Cosserat, L., “The ESTEREL Synchronous Pro-

We presented the analysis and verification of the real- [7] - _) :
gramming Language and its Mathematical Semantics,” Lec-

Elr:geAﬂgg irtzzn?futgﬁ D;E';‘F tiiglntzlcﬁa?cszjnlgri%rrat[())hﬂ?ifs ture Notes in Computer Science, Vol. 197 Seminar on Con-
y 9 y q : currency, Springer Verlag, Berlin, 1985.

work, the two most common ways to verify the real-time [g] Gerber, R., Seongsoo, H., Saksena, M., “Guaranteeing Real-

requirements of applications developed using general pro- Time Requirements with Resource-Based Calibration of Pe-

cessing graph models was to simulate graph executionorto riodic Processes|EEE Transactions on Software Engineer-

create a static schedule off-line to determine the period of ing, 21(7), July 1995.

the schedule. [9] Goddard, S., Jeffay, K. “Analyzing the Real-Time Properties
While the U.S. Navy has spent millions of dollars devel- of a Dataflow Execution Paradigm using a Synthetic Aper-

oping applications with PGM, it has never before been able ture Radar Application,Proc. IEEE Real-Time Technology

and Applications Symposiydune 1997, pp. 60-71.

graphs. Thus, we claim to extend the state of the art in [10] Goadard, S., Jeffay, K. "Managing Memory Requirements
' ! in the Synthesis of Real-Time Systems from Processing

real-time analysis and verification by showing that it is pos- Graphs,”Proc. of IEEE Real-Time Technology and Appli-
sible to analytically compute the inherent latency of cyclic cations Symposiupdune 1998, pp. 59-70EEE Real-Time
graphs independent of the hardware hosting the application. Technology and Applications Sympos;jur98

We also showed how to compute the real-time execution [11] Goddard, S.On the Management of Latency in the Synthe-
rate of each node in the graph. Using the execution rate of sis of Real-Time Signal Processing Systems from Processing

to analytically verify the real-time requirements of PGM

each node and the time it takes per execution on a given pro- ~ Graphs” Ph.D. Dissertation, University of North Carolina
cessor, the resulting CPU utilization can also be computed, at Chapel Hill, 1998. . .
as shown here. Using a deterministic scheduling algorithm http://www.cse.unl.ediigoddard/Papers/Dissertation.ps

2] Goddard, S., “Graph Performance Analysis Report on the

. o . 1
ndim latency, it is al ibl n I .
to bound imposed latency, itis also possible to bound tota ALFS Worst-Case Concurrency Modes,” Technical Report

latency and memory requirements for any PGM graph [11]. 550545 56051401, 5.M. Goddard & Co., Inc., under con-
The analysis presented here is based on a portion of the tract to General Dynamics, May 14 1998.

actual DIFAR graph. However, the same analysis methods[13] Airborne Low Frequency Sonar Subsystem System Require-

have been applied to the complete DIFAR graph, as well as ments Specificationprepared by Hughes Aircraft Corpora-

all of the other graphs in the worst-case concurrency modes tion, Version 1.0, Apr. 1991.

that the ALFS system must support [12]. Moreover, our [14] System/Segment Specificaton for the Airborne Low Fre-

analysis methods are applicable to any application devel- quency Sonar (ALFS) (Dipper & Integrated Sonobupyg-

oped using a general processing graph model such as PGM. ~ pared by Hughes Aircraft Corporation, Aeorspace & De-
fense Sector, Document Number SS12070, Revision D,

April 1994.
References [15] Karp, R.M., Miller, R.E., “Properties of a model for parallel
computations: Determinacy, termination, queuirg§jAM J.
[1] Baruah, S., Goddard, S., Jeffay, K., “Feasibility Concerns in Appl. Math 14(6), 1966, pp 1390-1411.
PGM Graphs with Bounded Buffers,” Proc. of the Third Intl. [16] Lee, E.A., Messerschmitt, D.G., “Static Scheduling of Syn-
Conference on Engineering of Complex Computer Systems, chronous Data Flow Programs for Digital Signal Process-
Sept., 1997, pp 130-139. ing,” IEEE Transactions on ComputerG-36(1), Jan. 1987,
[2] Bhattacharyya, S.S., Murthy, P.K., Lee, E.&gftware Syn- pp. 24-35.
thesis from Dataflow Graph#luwer Academic Publishers, [17] Processing Graph Method Specificatigmepared by NRL
1996. for use by the Navy Standard Signal Processing Program
[3] Bondy, J.A., Murty, U.S.R.Graph Theory with Applica- Office (PMS-412), Version 1.0, Dec. 1987.
tions, North Holland, 1976. [18] Ritz, S., Meyer, H., “Exploring the design space of a DSP-
[4] Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G., “Ptolemy: based mobile satellite receivePtoc. of ICSPAT 94Dallas,
A Framework For Simulating and Prototyping Heteroge- TX, Oct. 1994.
neous Systems,International Journal of computer Simu- [19] Ritz, R., Willems, M., Meyer, H., “Scheduling for Opti-
lation, special issue on Simulation Software Development mum Data Memory Compaction in Block Diagram Oriented
\ol. 4, 1994, Software SynthesisProc. of ICASSP 9®etroit, MI, May
[5] Chatterjee, S., Strosnider, J., “Distributed Pipeline Schedul- 1995, pp. 133-143.
ing: A Framework for Distributed, Heterogeneous Real- [20] Zivojnovit, V., Ritz, S., Meyer, H., “High Performance DSP
Time System Design;The Computer JourngBritish Com- Software Using Data-Flow Graph TransformationBrbc.
puter Society), Vol. 38, No. 4, 1995. of ASILOMAR 94Nov. 1994.

[6] Dasdan, A., Ramanathan, D., Gupta, R.K., “A Timing-
Driven Design and Validation Methodology for Embeded
Real-Time Systems,/ACM Trans. Design Automaton of

10

