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ABSTRACT

The emergence of remote sensing, scientific simulation, tele-
scope scanning, and other survey technologies has dramat-
ically enhanced our capabilities to collect spatio-temporal
data. However, the explosive growth in data makes the man-
agement, analysis, and use of data difficult and expensive.
In decision support applications with spatio-temporal data,
it is important to study the temporal relationships of the
parameters that influence the decision. Because multiple
spatio-temporal data sets contain volumes of data, and of-
ten there is a delay between the occurrence of an event and
its influence on the dependent variables, finding interesting
patterns can be difficult.

A geo-spatial decision support system (GDSS) with data

mining techniques is fundamental for effective decision-making

on complex spatio-temporal issues. This paper presents a
layered architecture for a distributed GDSS that uses tempo-
ral rule discovery to aid the decision-making process. Data
mining algorithms are used to identify temporal relation-
ships between multiple spatio-temporal data sets where time
lags may exist between the related events. These algorithms
allow the user to specify target events, to prune rules that
are not of interest to the current decision-making problem.
A geo-spatial decision support system for drought risk man-
agement is used to demonstrate the effectiveness of building
knowledge discovery into a GDSS.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Management]: Database Applications—
Data mining, Spatial databases and GIS; J.2 [Physical Sci-
ences and Engineering]: Earth and atmospheric sciences
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1. INTRODUCTION

Making decisions that involve complex systems such as
risk management require a cadre of domain experts to ex-
tract meaningful interpretations from large multidisciplinary
databases. The emergence of remote sensing, scientific sim-
ulation, telescope scanning, and other survey technologies
has dramatically enhanced our capabilities to collect spatio-
temporal data. However, the explosive growth in data makes
the management, analysis, and use of data difficult and ex-
pensive.

Data mining techniques provide automatic or semi-automatic

means for data interpretation. Association rules are used
to discover relationships between parameters that influence
decisions. They are easy to understand, and most domain
experts can relate to the rules that are expressed about their
data and use them in their decision making process. The re-
lationships are not always easy to find, and frequently there
is a delay between the occurrence of an event and its in-
fluence on the dependent variables. Additionally, because
multiple spatio-temporal data sets contain volumes of data,
finding the patterns of interest to the problem can be diffi-
cult.

A geo-spatial decision support system (GDSS) is a col-
lection of tools that can be used by analysts to assist the
decision-making process. The tools in a GDSS combine data
into pieces of information that can lead to domain knowl-
edge useable by both experts and non-experts. A GDSS with
data mining techniques is fundamental to solving the data
interpretation problem and for effective decision-making on
complex spatio-temporal issues.

1.1 Related Work

Literature on rule discovery algorithms has become ex-
tensive [5, 9, 14] since their introduction by Agrawal et al.
in [1]. Recently there has been an increased interest to use
temporal data mining techniques to index, cluster, classify
and mine association rules from large databases (3, 8, 14].
Time-series data mining algorithms identify hidden patterns
within the data in time-series analysis. These algorithms are
designed to characterize and predict complex, non-periodic,



irregular, chaotic time-series.

There are many current approaches to temporal, spatial
and spatio-temporal knowledge discovery. Researchers typi-
cally either approach the problem from a temporal approach
first, and then apply spatial analysis, or vice versa. Tan et
al. in [12] explored four categories of spatio-temporal pat-
terns: 1) relationships between events at a given spatial lo-
cation that ignore the temporal aspects of the data, 2) rela-
tionships between events across spatial locations that ignore
the temporal aspects of the data, 3) temporal relationships
among events occurring at the same location, and 4) tempo-
ral relationships among events occurring at different spatial
locations. They transformed the data into market-basket
type transactions, and applied existing algorithms to find
spatio-temporal patterns in earth science data.

1.2 Overview

This paper provides an overview of an integrated, in-
telligent GDSS framework. Data mining algorithms are
built into the GDSS framework to find temporal relation-
ships among events occurring at different spatial locations,
with user-specified targeted events, and with possible time
lags embedded within the relationships. The National Agri-
cultural Decision Support System (NADSS) [4] is used to
demonstrate the effectiveness of building knowledge discov-
ery into a GDSS.

Within the GDSS framework, the data mining approaches
are well suited for sequential problems that have groupings
of events that occur close together, but may occur relatively
infrequently over the entire dataset. They are also well
suited for problems that have periodic occurrences when the
signature of one sequence is present in other sequences, even
when the multiple sequences are not globally correlated or
spatially co-located.

2. FRAMEWORK

Figure 1 shows a four-tier software architecture for an
open, distributed GDSS [4]. An important aspect of this
GDSS is accessibility of the tools to decision-makers, domain
experts and the public. The decision-making process begins
by combining and organizing data into pieces of informa-
tion. Multiple pieces of information are then examined and
combined to discover or create knowledge, which is the basis
upon which a decision is made. The large vertical interface
arrow at the right of the figure is meant to represent the abil-
ity of high-order layers to make requests to non-adjacent,
low-order layers, via mechanisms such as HTTP, Internet
Inter-ORB (Object Request Broker) Protocol (IIOP), Java
Remote Method Invocation (RMI), or TCP. Each of the
three lower layers (data, information, and knowledge) is
associated with a cache for performance reasons. Strictly
speaking, the cache is not needed. However, building the
cache into the architecture provides performance benefits
that outweigh the complexity it brings [4].

The data layer contains distributed spatial, constraint,
and relational databases. The purpose of this layer is to pro-
vide transparent access to either local or remote data with-
out concern for data formats. This layer provides a mech-
anism to encapsulate existing data inter-operability solu-
tions such as Common Object Request Broker Architecture
(CORBA)-based or Distributed Component Object Model
(DCOM)-based Open GIS Consortium (OGC) objects, or
data access via the Open Geographic Datastore Interface
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110P
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TCP
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Figure 1: The Four-tier Architecture of a Dis-
tributed GDSS.

(OGDI).

The information layer combines data and organizes it into
information. It is organized around a collection of domain-
specific servers that process data into information. Exam-
ples of servers in this layer are data interpolation servers
and map servers, which may be either domain independent
(e.g., spline interpolation) or domain specific (e.g., terrain
regression). Depending on the domain, other servers can be
added to this layer. For example, drought index servers are
used in the NADSS to process current and historical climate
data from weather stations. The resulting index reflects how
dry or wet a site is for a given period of time relative to its
historical record. Thus the drought index is domain specific
information developed from climate data.

The knowledge layer builds on the information layer to cre-
ate or discover knowledge. Servers that provide or discover
domain-specific knowledge are implemented in the knowl-
edge layer. The knowledge layer incorporates several sequen-
tial data mining techniques. Simulation models and other
knowledge analysis algorithms may also be used. The in-
tent is that decision-makers will interact with this layer, via
the User Presentation interface, to build and gather domain-
specific knowledge.

The Presentation layer provides the interface for the decision-

makers to interact with the GDSS. The user interface can
take many forms. The simplest interface is developed us-
ing web pages that interact with the lower layers via CGI
requests.

3. RULE DISCOVERY PROCESS

The temporal knowledge discovery algorithms embedded
within the knowledge layer of the GDSS framework are Rep-
resentative Episodal Association Rules (REAR) [6], and Min-
imal Occurrences With Constraints and Time Lags (MOW-
CATL) [7]. Because rule discovery is an exploratory process,
the framework allows for the iterative and interactive appli-
cation of the data mining algorithms coupled with human
interpretation of the rules. This process is more likely to
lead to the more useful results than fully automating the
approaches [3].

After data is combined and organized into information by
tools in the information layer, it is discretized into mean-
ingful categories for knowledge discovery, using transforma-
tions, normalization and clustering [3]. When multiple se-
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Figure 2: Sample Event Sequences.

quences are used, each data set is normalized and discretized
independently. This step relies on domain-expert involve-
ment for proper discretization. The time granularity is con-
verted to a single (finest) granularity before the discovery
algorithms are applied to the combined sequences as in [2].

The spatio-temporal data is viewed as event sequences.
An event sequence is a collection of time-ordered events that
happen within a finite time period. For example, Figure 2
shows event sequences for the Multivariate El Nifio Southern
Oscillation (ENSO) Index (MEI) from the Pacific Ocean and
the twelve-month Standardized Precipitation Index (SPI)
values for 1999 at Clay Center, Nebraska. SPI values show
rainfall deviation from normal for a given location at a given
time [10]. As shown, MEI and SPI12 share the same trend
of variation during this time period. One goal of the rule
discovery process is to find rules that indicate this kind of
relationship.

3.1 Representative Episodal Association Rule
(REAR) Method

The Representative Episodes Association Rules (REAR)
algorithm finds episodes of events that occur together in a
relatively short time interval, called the window width. To
process the data, a sliding window is used, by sequentially
moving the window of width win one step at a time through
the data. An episode in an event sequence is a partial order
defined on a set of events [9]. It is said to occur in a sequence
if events are consistent with the given order, within a given
time bound. An episode is of type parallel if no order is spec-
ified and of type serial if the events of the episode have a
fixed order. An episode may be repeated in several windows
through time. The frequency of an episode is the number of
windows in which the episode occurs. The domain-expert
sets the window width and the minimum frequency value.
These parameters constrain the set of target episodes to the
episodes that occur frequently in time, and allow the user
to control the closeness of the related event occurrences.
REAR allows the user to constrain the search to user speci-
fied target episodes, to find these episodes quickly and with-
out the distraction of the other non-interesting episodes.

The guiding principle of the algorithm lies in the “downward-

closed” property of frequency, which means every subepisode
is at least as frequent as its superepisode [9]. Based on this
idea, candidate episode with k events are generated by join-
ing frequent episodes that have k — 1 events in common.

Episodes that contain any subset that is not frequent are
pruned. This algorithm uses only a subset of the set of
frequent episodes, called frequent closed episodes [6]. A fre-
quent closed episode X is equal to the intersection of all
frequent episodes containing X. For example, the parallel
episode with events abc is a frequent closed episode if no
larger frequent episode contains it (such as abed), and it
meets the minimum frequency threshold. Closed episodes
of size k can be generated in iterations prior to k. Once
found, remaining subepisodes do not need to be generated.
This results in a reduced input size and in a faster genera-
tion of the representative episodal association rules. Closed
episodes are especially useful on datasets where events occur
in clusters, even if the cluster occurs relatively infrequently
over the entire dataset.

With the complete set of frequent closed episodes, as-
sociation rule patterns within the episodes are found. An
episodal association rule r is a rule of the form X = Y,
where X is antecedent episode, Y is the consequent episode,
and X NY = (. Support and confidence are two widely
used metrics in measuring the interestingness of associa-
tion rules. The support of a rule X = Y is denoted by
sup(X = Y). It indicates the percentage of episodes in
the dataset that contain both X and Y. Support is sim-
ply a measure of its statistical significance [6]. The con-
ditional probability that an episode contains Y given that
it contains X is denoted conf(X = Y). It is defined as
conf(X =Y) = sup(X = Y)/sup(X).

The number of potential rules grows quickly with the num-
ber of events in the antecedent [3]. REAR reduces this num-
ber while still maintaining rules of interest to the domain-
expert, by: 1) considering only the association rules that
meet the minimum confidence value, 2) using representative
episodal association rules to find the minimal set of rules
that cover the entire set of frequent closed episodes, and 3)
using the antecedent and consequent constraints to keep track
of the events of interest.

The number of rules generated depends on the minimum
frequency, the window width, and the minimum confidence
values. In selecting these parameters one may have to con-
sider the advantages and disadvantages of the parameters on
the outputs (i.e., rules that are generated). For example, if
a wider window width is selected, more relationships may be
found but the analysis and interpretation of the rules may
be difficult. If a smaller frequency is chosen, there could be
more rules with high confidence but since the episodes are
not frequent, they may be less meaningful.

3.2 Minimal Occurrences With Constraints and
Time Lags (mowcaTr) Method

The Minimal Occurrences With Constraints And Time
Lags (MOWCATL) algorithm is used to find relationships
between sequences in the multiple data sets, where a lag
in time exists between the antecedent and the consequent.
In addition to the traditional frequency and support con-
straints in sequential data mining, MOWCATL uses sep-
arate antecedent and consequent inclusion constraints, and
separate antecedent and consequent maximum window widths,
to specify the antecedent and consequent patterns that are
separated by a time lag. This approach is based on associ-
ation rules combined with frequent episodes, time lags and
event constraints [7].

The MOWCATL approach identifies minimal occurrences



of episodes along with their time intervals. Given an episode
« and an event sequence S, the window w = [ts, te) is a min-
imal occurrence of a in S, if: (1) a occurs in the window w,
and (2) a does not occur in any proper subwindow of w [8].
The maximal width of a minimal occurrence for both the
antecedent and the consequent are fixed (separately) during
the process, and measure the interestingness of the episodes.
Instead of counting the frequency of the episodes, the num-
ber of minimal occurrences is counted as the support of the
episode. Episodes that do not meet the minimal support
threshold are pruned.

The algorithm first stores the occurrences of the single
events in the antecedent and consequent separately. Larger
episodes are built from smaller episodes by joining episodes
with overlapping minimal occurrences, which occur within
the specified window width. This procedure finishes when
there are no more candidates to look through.

After finding the supported episodes for the antecedent
and the consequent independently, they are combined to
form an episode rule. An episodal rule occurrence is recorded
when the antecedent episode occurs within a given maxi-
mum window width win,, the consequent episode occurs
within a given maximum window width win., and the start
of the consequent follows the start of the antecedent within
a given maximum time lag. The confidence of an episode
rule 7 = afwin,] =y Blwin.] in a sequence S with given
windows wing, win, and lag is the conditional probability
that 8 occurs, given that a occurs, under the time con-
straints specified by the rule. The support of the rule is the
number of times the rule holds in the database. This allows
MOWCATL to easily find rules such as “if A and B occur
within 3 months, then within 2 months they will be followed
by C and D occurring together within 4 months.”

For serial episodes, the starting time of the consequent
must be greater than or equal to the ending time of the
antecedent, and must be less than or equal to the starting
time of the antecedent plus the time lag. For a zero time lag,
the REAR algorithm can be used instead of MOWCATL.
Also, the consequent ending time must be greater than the
ending time of the antecedent.

For parallel episodes, the starting time of the consequent
must follow the starting time of the antecedent and can differ
at most by the time lag. The order of the events in the
parallel episodes is not important. Parallel episodes are used
to see if the events in one episode occur “close” to the events
in the other episode.

In the MOWCATL algorithm, the time lag constraint can
be either a fixed time lag constraint or a maximum time
lag constraint. With fixed time lag, the antecedent and the
consequent episodes are separated with fixed time. It may
be used to monitor parameters that occur an exact number
of timestamps prior to the consequent. With the maximal
time lag constraint, the start of the consequent follows the
start of the antecedent after at least one time stamp, and at
most lag time steps. It may be used to monitor parameters
that occur within a range of time prior to the consequent.

Both rule discovery methods use the J-measure [11] as
an objective measure. The formulation of J-measure takes
into consideration both frequencies of left and right sides
of a rule. Therefore, it not only favors rules that occur
more frequently, but also provides a more complex metric
for ranking rules in a manner such that the user can trade-
off rule support and rule confidence.

4. RULEDISCOVERY FORDROUGHT RISK
MANAGEMENT

Managing risk is an important task in many domains,
especially in Drought Risk Management (DRM). Drought
affects virtually all regions of the world and results in sig-
nificant economic, social, and environmental impacts. Even
though droughts occur infrequently and are difficult to de-
tect, they are a normal feature of climate and their occur-
rence is inevitable [13]. Given the complexity of drought,
where the impacts from a drought can accumulate gradu-
ally over time and vary widely across many sectors, a well-
designed decision support system is critical for effective proac-
tive management of drought risk efforts. The Federal Emer-
gency Management Agency estimates the annual losses be-
cause of drought in the United States at $6-8 billion, which
is more than any other natural hazard. Yet, the United
States does not have a comprehensive drought monitoring
system or a national drought policy that emphasizes risk
management by promoting the development of drought plans
at all levels of government. Congress recently enacted the
Agricultural Risk Protection Act of 2000 to encourage the
United Stated Department of Agriculture (USDA) Risk Man-
agement Association (RMA) and farmers to be more proac-
tive in managing drought risks.

The NADSS is being developed to substantially improve
RMA'’s delivery of risk management services in the near-
term and provide a foundation and directions for the fu-
ture [4]. Drought analysts will be able to use the NADSS
system to look for drought episodes and their relationships
to other climatic events. Achieving NADSS’s goal will re-
quire the discovery of patterns in drought indices, climato-
logical data and social characteristics. Unfortunately, tra-
ditional methods of pattern discovery have been slow and
relatively ineffective due to the vast amounts of data in var-
ious databases maintained throughout the world, the spatial
extent of the data, and the extended temporal lag between
related events. Data mining techniques are applied to find
the relationships between parameters that are useful to make
improved analysis of drought based on the patterns derived
from the data. The knowledge discovery objectives for the
NADSS are: 1) find relationships between climatic episodes
and user-specified target drought episodes and 2) find re-
lationships with time delays between climatic episodes and
the target drought episodes.

As an experiment, relationships are found between drought
episodes at several automated weather stations in Nebraska,
and other climatic episodes, from 1950-1999. There is a net-
work of agricultural research stations in Nebraska with auto-
mated weather stations that can serve as long-term reference
sites to search for key patterns and link to climatic events.
Data from a variety of sources is used, including: 1) Stan-
dardized Precipitation Index (SPI) data from the National
Drought Mitigation Center (NDMC); 2) Precipitation, tem-
perature and soil moisture data from the High Plain Re-
gional Climate Center (HPRCC); 3) Palmer Drought Sever-
ity Index (PDSI), calculated using station data from the
HPRCC; 4) The North Atlantic Oscillation Index (NAO)
from the Climatic Research Unit at the University of East
Anglia, UK; 5) The Pacific Decadal Oscillation (PDQO) Index
and Pacific/North American (PNA) Index from the Joint In-
stitute for the Study of the Atmosphere and Ocean (JISAO),
NOAA and the University of Washington; and 6) The Pacific



Ocean Southern Oscillation Index (SOI) and the Multivari-
ate ENSO Index (MEI) from the Climate Prediction Center,
NOAA.

The oceanic and climatic data were converted into discrete
representations and classified into seven categories. These
seven categories are extremely dry, severely dry, moderately
dry, normal, moderately wet, severely wet, and extremely
wet. The thresholds for each classification were based on
expert knowledge. The drought episodes (extremely dry,
severely dry, and moderately dry) were identified as con-
straints based on the climatic drought indices i.e., SPI and
PDSI values. The oceanic parameters were used as the rule
antecedents and the droughts episodes were used as the rule
consequents. To record the frequent episodes and generate
rules, a variety of window widths, minimum frequency val-
ues, and minimum confidence values were selected for anal-
ysis.

Both the REAR and MOWCATL methods were used to
find the relationships between the oceanic indices and the
drought episodes. To demonstrate the use of these algo-
rithms, five weather stations in Nebraska were selected. These
stations were Ainsworth in Brown county, Alliance in Box
Butte county, Clay Center in Clay county, Hayes Center in
Hayes county, and West Point in Cuming county. The sta-
tions were selected randomly but show different geographi-
cal locations in Nebraska. In addition to these stations, the
state wide average data for Nebraska was used to get the
general overview of the state in comparison to the stations.
Oceanic indices that are based on sea surface temperatures
and atmospheric pressure are used since they change rela-
tively slower that surface climatic parameters such as pre-
cipitation and temperature.

4.1 Discoveringassociation rulesusing the REAR

method

Rules generated using the REAR algorithm demonstrate
the importance and potential use of the data-mining algo-
rithms in monitoring drought using the oceanic and atmo-
spheric indices. Using the REAR algorithm with parallel
episodes, sample rules generated within a one-month time
window are shown in Table 1, and within a two-month win-
dow are shown in Table 2. Table 3 shows sample rules gener-
ated within a three-month window for serial episodes, when
using the REAR algorithm for these weather stations.

For example in Table 1 Rule 1 at Clay Center, Nebraska,
if the SOI value was between 1 and 1.5, the MEI value was
less than -1.5, and the PDO value was less than -2, then
the PDSI value was extremely dry (less than -4) with 83%
minimum confidence. The PDSI value was in an extremely
dry condition when both the MEI value was less than -1.5
and the PDO value was less than -2 with 86% minimum
confidence as shown in Rule 2. Rule 3 shows that if the
NAO value was between -3 and -2, and the PDO value was
less than -2, then the PDSI value was extremely dry and
the twelve-month SPI value was severely dry with 100%
confidence. Even though the confidence is 100%, the J-
measure value was smaller (0.02) than the other rules de-
scribed above.

A few of the association rules discovered for serial episodes
(which consider the time-order of the parameters as a neces-
sary condition), with a window size of 3 months, are shown
in Table 2. Sample interesting rules that were generated for
Clay Center include: Rule 1. If the MEI value was less than

-1.5 followed by PDO values less than -2, then the PDSI
value was extremely dry with more than 64% confidence
and with a J-measure of 0.08; and Rule 2. If the NAO value
was between -3 and -2, followed by the PDO value less than
-2, then the PDSI value was extremely dry and the twelve-
month SPI was severely dry with more than 60% confidence
and with a J-measure of 0.04.

4.2 Discoveringassociation rules using the MOW-

CATL method

Table 3 shows sample rules generated with the MOW-
CATL algorithm with parallel episodes for the five selected
stations in Nebraska and the statewide average for Nebraska.
As shown, the antecedent and consequent window sizes are
1 month, and a maximum of three-month time lag between
the start of the antecedent oceanic parameters and the start
of the consequent drought episodes is used. It can be ob-
served from the generated rules (Rules 1-6) that if a MEI
value less than -1.5, a PDO value less than -2, and a SOI
value greater than 1 occurred close together, then there was
high likelihood of an upcoming drought in all selected sta-
tions as well as for state of Nebraska.

Sample rules generated using the MOWCATL algorithm
with a fixed time lag are shown in Table 4 for serial episodes.
Because a fixed time lag is used, fewer rules are generated
than when a maximal lag is used. The advantage of using
a fixed time lag with the MOWCATL algorithm is that it
provides the rules where the consequent occurs exactly after
the specified lag, whereas the maximal lag provides the rules
where the consequent occurs within the specified time lag.
Thus, the rules that are generated using a fixed time lag are
a subset of the rules generated using a maximal time lag.

5. ANALYSIS OF THE EXPERIMENTS

The study showed that most occurrences of drought based
on the SPI and PDSI categories for each of the selected
stations as well as for the Nebraska state wide average data
in Nebraska, had strong associations with dry SOI, MEI, and
PDO Pacific Ocean conditions, and with dry NAO Atlantic
Ocean conditions. The combinations of negative MEI values
(La Nifia), positive values of SOI (La Nifia), and negative
PDO values implied occurrences of droughts in most cases
for all selected stations as well as for state average data
of Nebraska with different combinations of the indices and
confidence values. These rules show that throughout the
past 50 years, there has been a strong relationship between
dry oceanic conditions in the Pacific and Atlantic Ocean and
drought in Nebraska.

These rules are influenced by the type of episodes (parallel
or serial), the window width, the algorithm choice (REAR
or MOWCATL), the frequency or support threshold, the
confidence threshold, and the time lag in the case of the
MOWCATL algorithm. In general, even though fewer serial
rules are generated for a given minimum confidence level,
the J-measure for serial rules is generally higher (.04 — .09)
than for parallel rules (.02 — .06). This indicates that even
though the ordered episodes do not occur as frequently as
the unordered episodes, they are more likely to be interesting
when they do occur.

The window width also influences the rules discovered.
For example, Rule 3 in Table 1, has a 1-month window,
100% confidence and a J-measure of 0.2, whereas the same
rule with a 2-month window has 86% confidence and a J-



Table 1: Sample parallel REAR rules with a 1 month window.

Number Location Rule Confidence | J-Measure
1 Clay Center SOIsd, MEled, PDOed=- PDSIed 0.83 0.0355
2 Clay Center MEIed, PDOed= PDSIed 0.86 0.0414
3 Clay Center NAOmd, PDOed=- SPI12sd, PDSIed 1.00 0.0265
4 Ainsworth SOIsd, MEIed, PDOed= PDSIed 0.83 0.0355
5 Ainsworth SOled, MEIed, PDOmd=> SPI9md, PDSIed 0.75 0.0228
6 Ainsworth MEIed, PDOed= PDSIed 0.86 0.0414
7 Alliance SOIed, MEImd, PDOmd= SPI12md 0.75 0.0228
8 Hayes Center SOIsd, MEIed, PDOed=-PDSIed 0.83 0.0355
9 Hayes Center MEIed, PDOed=PDSIed 0.86 0.0414
10 Hayes Center NAOmd, PDOmd=-SPI12md, PDSIed 1.00 0.0265
11 West Point NAOmd, PDOed=-PDSIed 1.00 0.0265
12 State Average SOIsd, MEIed, PDOed=-SPI19sd, PDSIed 0.67 0.0271
13 State Average MEled, PDOed=PDSIed 0.71 0.0330
14 State Average NAOmd, PDOed=-SPI12sd 1.00 0.0265

Table 2: Sample serial REAR rules generated with a 3 month window.

Number Location Rule Confidence | J-Measure
1 Clay Center MEIed, PDOed= PDSIed 0.64 0.0802
2 Clay Center | NAOmd, PDOed=> (SPI12sd, PDSIed) 0.60 0.0419
3 Ainsworth MEled, PDOed= SPI9md 0.64 0.0802
4 Ainsworth NAOmd, PDOed= SPI9sd 0.60 0.0419
5 Hayes Center MEIed, PDOed=-PDSIed 0.64 0.0802
6 West Point NAOmd, PDOed=-PDSIed 0.60 0.0419
7 State Average NAOmd, PDOed=-PDSIed 0.60 0.0419

Table 3: Sample parallel MOWCATL rules with 1 month windows and a maximum lag of 3 months.

Number Location Rule Confidence | J-Measure
1 Clay Center SOIsd, MEled, PDOed=> SPI9sd, SPI12sd, PDSIed 0.83 0.03552
2 Ainsworth SOIsd, MEled, PDOed=> SPI9md, SPI12md 0.83 0.03552
3 Alliance SOled, MEIed, PDOmd=> SPI6md, SPI12md 0.75 0.02282
4 Hayes Center SOIsd, MEIed, PDOed= SPI12md, PDSIed 0.83 0.03552
5 West Point SOIsd, MEIed, PDOed=>SP16md, SPI9sd, PDSIed 0.86 0.03552
6 State Average | SOIsd, MEIed, PDOed =SPI9md, SPI12sd, PDSIed 0.83 0.03552

Table 4: Sample serial MOWCATL rules with 2 month windows and a fixed lag of 3 months.

Number Location Rule Confidence | J-Measure
1 Clay Center MEled, PDOed=- PDSIed, SPI12sd 0.88 0.07772
2 Alliance PDOed, PDOmd=-SPI3md 0.71 0.06589
3 Hayes Center MEIed, PDOed= PDSIed 0.88 0.09385
4 Hayes Center | MEled, PDOed=> PDSIed, SPI12md 0.75 0.06338
5 West Point MEled, PDOed=- SPI12sd 0.75 0.07717
6 State Average MEled, PDOed =SPI12sd 0.75 0.07717




measure of .4. In this case, the wider window has more
occurrences of the antecedent and consequent individually.
As the J-measure indicates, when the antecedent and conse-
quent do occur together, even though the confidence is not as
high, the rule is still of interest. In general, the J-measure
values were higher for rules with wider windows, because
there are more occurrences of the combinations that exist in
the datasets. However, if too wide of a window is selected,
more relationships may be found but the analysis and inter-
pretation of the rules may be difficult.

The MOWCATL algorithm, with its time lag between the
rule antecedent and rule consequent, provides valuable infor-
mation regarding what oceanic conditions precede drought
conditions in Nebraska. As shown in the experiments (Ta-
bles 3-4), if the MEI was less than -1.5, and followed by the
PDO value between 1 and 1.5, then within three months,
the weather stations would record drought conditions. Ad-
ditionally, the occurrences of a MEI value less than -0.5 fol-
lowed by a PNA value less than -1 implied drought con-
ditions within three months in all selected stations as well
as the state of Nebraska, using 2 month windows. It can
be concluded that these oceanic conditions have preceded
long-term drought conditions in Nebraska over the past 50
years.

As shown in the experiments, using both the REAR and
the MOWCATL data mining algorithms, more rules were
generated between the 9-month and 12-month SPI drought
values with dry conditions and the SOI, MEI, and PDO
oceanic indices than between the 1-month, 3-month and
6-month SPI drought values with dry conditions and the
oceanic indices. These results show that the oceanic param-
eters are more predictive for long-term droughts than short-
term droughts. These associations of long-term drought
with oceanic parameters may be justified by the fact that the
oceanic parameters are relatively stable and change slowly,
resulting in gradual changes in atmospheric circulation and
its impacts on precipitation. The results of the data mining
experiments show that it may be possible to identify drought
episodes using oceanic parameters for a given month with
a certain value of confidence. In general, most rules indi-
cate the oceanic and atmospheric parameters could serve as
a precursor to long-term drought defined by the PDSI and
SPI drought indices.

6. COMPARISON OF DATA MINING TO
CORRELATION

The traditional statistical correlation method was used
to determine the correlation between the oceanic and cli-
matic parameters. These correlations were compared and
contrasted with the rules that were generated by the time
series data mining algorithms. Given a pair of oceanic and
climatic parameter values (i.e., X and Y respectively), the
correlation coefficient (px,v) provides an index of the degree
to which the paired measures co-vary in a linear fashion.
Based on this traditional statistical technique, the values of
the correlation coefficient were calculated between the cli-
matic and oceanic parameters.

One interesting pattern that can be confirmed with both
data mining and traditional methods is the association of
the climatic drought indices (both SPI and PDSI values)
with the oceanic indices (SOI, MEI and PDO) for weather
stations in Nebraska. The correlation of the SPI and PDSI

drought indices with the MEI oceanic index was relatively
higher than with the other oceanic parameters. For exam-
ple, for Clay Center, NE, the correlations of SPI indices
with the SOI index range between -0.15 and -0.20, while the
correlations of the SPI indices with the MEI index range be-
tween 0.21 and 0.25, and the correlations of the SPI indices
with the PDO index range between 0.08 and 0.15. More-
over, there was greater correlation between the PDSI index
and the oceanic indices than between the SPI indices and
the oceanic indices. The correlations of the PDSI index at
Clay Center, NE with the oceanic indices were: -0.27 with
the SOI index, 0.31 with the PDO, and 0.37 with the MEL
The Nebraska state-wide data had similar correlation values
between the local drought indices and the oceanic indices,
with the largest correlation again between the PDSI index
and the oceanic indices. For the Nebraska state-wide data,
the correlations of the PDSI index with the oceanic indices
were: -0.28 with the SOI index, 0.30 with the PDO, and 0.40
with the MEL Little correlation (less than .04) was found be-
tween any of the local drought indices and the NAO index
for the selected weather stations and the Nebraska state-
wide average. Also, correlation coefficients do not indicate
what values of the oceanic indices are associated with spe-
cific values of the local drought indices.

Although the correlation coefficients are useful to drought
risk management, clearly the spatio-temporal data mining
algorithms provide a much more detailed analysis of the
problem. There are three main advantages of the spatio-
temporal data mining algorithms as compared to popula-
tion correlation: (1) instead of global correlation of the data,
they specify focused temporal relationships between targeted
episodes at specific spatial locations, (2) they allow for the
discover of time lagged relationships between the parame-
ters, and (3) they handle large volumes of data and com-
plicated computations within a reasonable amount of time.
This shows that the data mining algorithms can identify the
target episodes and generate rules that are robust tools in
monitoring drought. However, the data mining tools are in-
tended to complement, rather that replace, existing drought
monitoring methods.

7. CONCLUSION

This paper presented a layered architecture for a distributed
GDSS that uses spatio-temporal rule discovery to aid the
decision-making process. It demonstrated the application
of this approach using the NADSS for drought risk man-
agement. The REAR and MOWCATL spatio-temporal rule
discovery methods, described in [6, 7], were used to analyze
the spatio-temporal data.

The REAR approach with parallel episodes is used to find
rules for events that occur close together in time. When
used with serial episodes, the REAR approach finds rules
for time-ordered events. The MOWCATL approach with a
maximal time lag and parallel episodes, finds rules where
the antecedent events occur close together in time, the con-
sequent events occur close together in time, and the conse-
quent follows shortly after the antecedent. Similarly, using
MOWCATL with a maximal time lag and serial episodes
finds rules where the antecedent events are time-ordered,
the consequent events are time-ordered, and the consequent
follows shortly after the antecedent. When using the MOW-
CATL approach with a fixed time lag, the consequent follows
the antecedent at exactly the number of time steps specified



by the lag.

In the experiments, sample rules were shown for the rela-
tionships between oceanic climatic conditions and weather
stations in Nebraska. These results were compared with
population correlation. These rules demonstrated that these
weather stations are each affected by the oceanic parame-
ters, but in different ways. Armed with this knowledge,
drought-risk management decision makers will be able to
proactively prepare for drought at these locations.

This work is being expanded to interpolate the rule dis-
covery between weather stations, and to effectively visualize
the rules discovered. Rule discovery for seasonal influences
of the climatic parameters on crop yields is also being ex-
plored. These enhancements will make the spatio-temporal
data mining more interesting and meaningful to the overall
GDSS.
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