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Abstract— Server responsiveness and scalability are more important
than ever in today’s client/server dominated network environments. Re-
cently, researchers have begun to consider cluster-based computers us-
ing commodity hardware as an alternative to expensive specialized hard-
ware for building scalable Web servers. In this paper, we present perfor-
mance results comparing two cluster-based Web servers based on different
server infrastructures: MAC-based dispatching (LSMAC) and IP-based
dispatching (LSNAT). Both cluster-based server systems were implemented
as application-space programs running on commodity hardware. We point
out the advantages and disadvantages of both systems. We also identify
when servers should be clustered and when clustering will not improve per-
formance.

I. INTRODUCTION

More and more companies have turned to the World Wide
Web as an alternative way to provide channels for software dis-
tribution, online customer service, and business transactions.
The function performed by the Web server is critical to a com-
pany’s business. Successful companies will need to handle mil-
lions of “hits” on their server as well as handle millions of dol-
lars in transactions per day. Server overload is frustrating to the
customers, and harmful to the companies.

For many companies, the first choice to improve Web ser-
vice is simply to upgrade the server to a larger, faster machine.
While this strategy relieves short-term pressures, many compa-
nies find that they are repeatedly increasing the size and power
of the server to cope with the demand for their services. What
those companies need for their Web sites is incremental growth
and massive scalability–the flexibility to grow with the demands
of the business without incurring a large expense. One such so-
lution is using a cluster-based server. Clustering low-cost com-
puter systems is a cheap alternative to upgrading a single high-
end Web server with faster hardware.

In the usual case (i.e., a non-clustered server), there is only
one Web server serving the requests addressed to one hostname
or Internet Protocol (IP) address. With a cluster-based server,
several back-end Web servers cooperatively serve the requests
addressed to the hostname or IP address corresponding to the
company’s Web site. All of these servers provide the same con-
tent. The content is either replicated on each machine’s local
disk or shared on a network file system. Each request destined
for that hostname or IP address will be distributed, based on
load-sharing algorithms, to one back-end server within the clus-
ter and served by that server. The distribution is realized by ei-
ther a software module running on a common operating system
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or by a special-purpose hardware device plugged into the net-
work. In either case, we refer to this entity as the ‘dispatcher’.
Busy sites such as Excite, Inc. depend heavily on clustering
technologies to handle a large number of requests [1].

We implemented and compared two different cluster-based
Web servers using two different clustering technologies. The
first is LSMAC , in which the dispatcher forwards packets by
controlling Medium Access Control (MAC) addresses. The sec-
ond is LSNAT , in which the dispatcher distributes packets by
modifying IP addresses. We have implemented, for the first
time, both methods in application space and they achieve com-
parable performance at a fraction of the cost of existing prod-
ucts.

The rest of this paper is organized as follows. We first discuss
related work in Section 2, and then describe our implementa-
tions in Section 3. Section 4 describes how we evaluated our
systems and presents the results. We present our conclusions
and describe future work in Section 5.

II. PREVIOUS WORK

Thanks to the widespread use of the World Wide Web, im-
proving Web performance has been an important issue among
researchers, Web server vendors, Web site administrators, and
Web-related software developers. Web server clustering has
proved to be effective in improving performance. One partic-
ular reason for this is its scalability. The administrators can
easily add or remove servers according to business demands.
Web server clustering technologies, such as Round Robin Do-
main Name Service (RR-DNS) and Single-IP-Image, require no
changes on the client side. We discuss each of these techniques
below.

A. Round Robin DNS

Early implementations of the cluster-based server concept
used the Round Robin Domain Name Service. In RR-DNS,
one of a set of server IP addresses will be returned with each
DNS request. The return record sequence is circular-shifted by
one for each response in a round robin fashion. RR-DNS is the
most commonly used method mainly due to its simplicity and
low cost. No additional software or hardware is needed. How-
ever, there are many drawbacks in using the RR-DNS technique
for clustering servers. If a back-end server is taken off-line and
the DNS record modified to reflect this, clients may still make
requests for the old back-end server’s IP address for several min-
utes because that name to IP mapping is cached by a local DNS
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server or the client itself.

B. Single-IP-Image

In contrast to the multiple IP addresses in RR-DNS, methods
for presenting a single IP image to clients have been sought and
developed over the years. These methods work by publishing
one IP address (cluster address) in DNS for clients to use to
access the cluster. Each request reaching the cluster using the
cluster address is distributed by the dispatcher to one of back-
end servers. The methods differ in the way they forward packets
to a back-end server. Currently there are two major schemes:
layer two dispatching and layer three dispatching.

In the layer two approach, the dispatcher directly controls the
MAC addresses of the frames carrying the request packets and
then forwards the frames over a local area network (LAN). All
servers in the cluster share the cluster address as a secondary
IP address. The TCP/IP stack of the back-end server, which re-
ceives the forwarded packets, will handle the packets just as a
normal network operation since its secondary IP address is the
same as the destination IP address in the packets. No IP ad-
dresses in either inbound or outbound packets are modified, and
the inbound packets and the outbound packets may go by differ-
ent routes. The fact that outbound packets need not pass through
the dispatcher reduces the amount of processing the dispatcher
must do and speeds up the entire operation. This feature is es-
pecially important considering the extreme downstream bias on
the World Wide Web, i.e., requests are small while the server
responses are much larger. The mechanism for controlling the
MAC addresses varies in different implementations [2].

In the layer three approach, each server in the cluster has its
own unique IP address. The dispatcher is assigned the clus-
ter address so that all client requests will first arrive at the dis-
patcher. After receiving a packet, the dispatcher rewrites the IP
header to enable delivery to the selected back-end server, based
on the load-sharing algorithm. This involves changing the desti-
nation IP address and recalculating the header checksums. The
rewritten packet is then sent to the appropriate back-end server.
Packets flowing from a server to a client go through a very sim-
ilar process. All of the back-end server responses flow through
the dispatcher on their way back to the client. The dispatcher
changes the source IP address in the response packet to the
cluster address, recalculates the checksums, and sends it to the
clients. This method is detailed in RFC2391, Load Sharing Us-
ing Network Address Translation (LSNAT) [3]. A commercial
example of the LSNAT approach is Cisco’s Local Director [4].
A slight variation of this approach was proposed for IBM’s TCP
Router [5], in which the selected back-end server puts the clus-
ter address instead of its own address as the source IP address
in the reply packets. Even though the TCP Router mechanism
has the advantage of not requiring the reply packets go through
the TCP Router (dispatcher), the TCP/IP stack of every server
in the cluster has to be modified.

III. IMPLEMENTATION

We are most interested in the Single-IP-Image approach,
which is at the core of most commercial products. We
implemented both layer two and layer three approaches as
application-space programs. We call our implementations LS-
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Fig. 1. LSMAC implementation in a LAN environment.

MAC and LSNAT, respectively. LSMAC dispatches each
incoming packet by directly modifying its MAC addresses
(Fig. 1). LSNAT follows RFC2391 (Fig. 2). Our solutions are
much simpler and more portable than existing products, which
involve modifying the TCP/IP stacks of the dispatcher and/or
server machines.

A. LSMAC

In LSMAC, the back-end servers are aliased to the cluster
address and the dispatcher is assigned a different IP address.
In order to make the dispatcher the only entry point for each
packet addressed to the cluster-based server, we add one route
in the immediate router to route every incoming packet to the
LSMAC dispatcher. The LSMAC dispatcher uses the libp-
cap [6] packet capture library to capture each packet. The dis-
patcher maintains a table containing information about all ex-
isting sessions. Upon receipt of the packet, the dispatcher will
determine whether it belongs to an existing session or is a new
request. The IP addresses and port numbers of the two endpoints
uniquely define every TCP connection (session) on the Internet.
We use these to map incoming packets to corresponding con-
nections already established with the back-end servers. If the
session does not already exist, it is simply a matter of creating a
new entry in our table. TCP flags on the incoming packets are
used to identify the establishment and termination of each con-
nection. The first packet of a TCP session is recognized by the
presence of SYN bit and absence of ACK bit in the TCP flags.
The end of a TCP session is detected when a packet with both
FIN and ACK bits set is received or when a packet with RST
bit set is received. Upon the termination of a TCP session, the
corresponding mapping in the table is removed.

Once a mapping has been established, the LSMAC dispatcher
rewrites the source and destination MAC addresses of each
frame and sends them to a chosen back-end server. Since the
MAC addresses have significance only in a LAN environment,
LSMAC requires that the dispatcher and back-end servers be
connected in a LAN.

Fig. 1 illustrates the packet flow in a LSMAC cluster.
1. A client sends a packet with a destination IP address A.
2. The immediate router sends the packet to LSMAC on D,

due to the added route: A→D.
3. Based on the load sharing algorithm and the session table,

LSMAC decides that this packet should be handled by the
back-end server B2, and sends it to B2 by changing the
MAC addresses of the packet to B2’s MAC address.

4. The back-end server B2 accepts the packet and replies di-
rectly to the client.

The operation of LSMAC offers two distinct advantages over
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Fig. 2. LSNAT implementation in a LAN environment.

LSNAT, discussed below. As all operations are performed at
OSI layer two, it is unnecessary to modify layer three data. This
allows us to avoid recalculating TCP/IP checksums, an expen-
sive operation. Secondly, LSMAC only processes half of the
TCP stream: the portion flowing from client to server. This
is only a small fraction of the total traffic flowing between the
client and server as most of the data is contained in the server’s
response. This allows LSMAC to scale quite easily as the intro-
duction of additional clients has relatively little impact in terms
of the amount of data processed.

B. LSNAT

In our LSNAT implementation, only the dispatcher is config-
ured to the cluster address. Normal routing rules ensure that it
receives in-bound requests. We then use IP filters to keep the
host operating system from responding to the requests itself, al-
lowing the LSNAT application to process them manually using
the libpcap [6] packet capture library. Conceptually, LSNAT
appears as a single host to clients, but–as we will see–as a gate-
way to the back-end servers.

After receiving a client request, the LSNAT dispatcher sets
up the connection mapping just as the LSMAC dispatcher does.
Once a mapping has been established, it is necessary to rewrite
the packet headers since it is addressed to the cluster address and
not to an individual back-end server. The LSNAT dispatcher
changes the destination IP address of each in-bound packet to
the IP address of a selected server. For each out-bound packet,
the LSNAT dispatcher changes source IP address to the cluster
address, which is expected by the client. LSNAT allows the dis-
patcher and back-end servers to be in different LANs provided
that traffic from the back-end servers to the clients is always
routed through the LSNAT.

Fig. 2 illustrates the packet flow in a LSNAT cluster.
1. A client sends a packet with a destination IP address A.
2. The immediate router sends the packet to LSNAT on A,

since the LSNAT machine is assigned the IP address A.
3. Based on the load sharing algorithm and the session table,

LSNAT decides that this packet should be handled by the
back-end server B2. Then it rewrites the destination IP ad-
dress as B2, recalculates the IP and TCP checksums, and
send the packet to B2.

4. The back-end server B2 accepts the packet and replies to
the client via the LSNAT dispatcher, which the back-end
server sees as a gateway.

5. LSNAT rewrites the source IP address of the replying
packet as A, recalculates the IP and TCP checksums, and
send the packet to the client.

LSNAT suffers owing to its position in the connection be-

tween client and server. Unlike LSMAC, LSNAT changes the
layer three payload so that data destined for the cluster address
appears to, to a back-end server, to be bound for that back-end
server. The reverse operation is applied to packets originating
from the back-end server so that they appear to be from the
cluster address. This requires the recalculation of packet check-
sums. Additionally, we must process both sides of the con-
nection, not just the relatively small amount of data traveling
upstream from the client. These two factors combine to make
LSNAT extremely CPU intensive.

C. Discussion

To ensure that each back-end server contains the same set of
files, some sort of file replication must be done or a common net-
work file system must be used. The back-end servers behave as
if they were communicating directly with the clients and do not
need to know anything about the clustered nature of the system.
This means that no special software needs to be installed on the
back-end servers. Both the LSMAC and LSNAT approaches are
transparent to the clients and servers. We use the round robin al-
gorithm to distribute the load amongst the entire set of back-end
servers for load sharing. This works well since all our servers
are configured in a similar fashion and the requests from clients
are comparable in size and duration. However, because our so-
lution does not restrict the user to a certain server configuration,
load-sharing algorithms based on individual server usage could
yield better results in a heterogeneous environment.

Additionally, while different approaches were taken with re-
gards to delivering data to the dispatcher (special routing rules
in the case of LSMAC versus normal delivery and IP filtering in
the case of LSNAT), neither approach must necessarily use the
delivery mechanism we chose for it. Table 1 provides a compar-
ison of the LSMAC and LSNAT approaches.

IV. EVALUATION

WebStone [7] was used to benchmark the performance of our
cluster-based server systems. WebStone is a configurable load
generator for Web servers, which launches a number of Web
clients to generate GET requests to the server, and measures the
replies from the server.

A. Experimental Design

In our experiments, the dispatcher (LSMAC/LSNAT) and the
back-end servers were executing on 266 MHz Pentium II ma-
chines with 64 MB memory. These machines were connected
in a shared 100 Mbps Ethernet environment. Red Hat Linux 5.2
(kernel 2.2.6) and Apache Web Server 1.3 were installed on ev-
ery machine. WebStone 2.0 was run on two 266 MHz Pentium
II machines with 128 MB memory each on the same network.
For the scalability studies, we ran experiments on four configu-
rations: single server (no cluster and hence no dispatcher), one-
server cluster, two-server cluster, and three-server cluster. We
used the results from the single server and one-server cluster
tests to measure the overhead due to the dispatchers. The server
performance usually depends on the type of files that are being
served. For this reason, we chose four file types in measuring
each configuration: 0 KB files that have no payload but still re-
quire HTTP headers, 2 KB files which are typical of the first
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TABLE I

COMPARISON OF KEY FEATURES OF THE LSMAC AND LSNAT IMPLEMENTATIONS.

Feature LSMAC LSNAT
OSI Layer of operation Layer 2 (Data-link) Layer 3 (Network)
Traffic Flow through dispatcher Unidirectional (Incoming only) Bidirectional
Incoming Packet Modification No Dest. IP address and checksum
Outgoing Packet Modification Not applicable Source IP address and checksum
Routing table change in immediate router Yes No
Servers in different LANs Requires interface on each LAN Allowed
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Fig. 3. LSMAC connection rates with 3 servers.

page of a Web server, a file mix with file sizes and access fre-
quencies derived from a Web server access log (available from
[8]), and fully dynamic files. The dynamic files were generated
by a Common Gateway Interface (CGI) program based on file
sizes and access frequencies derived from the same Web server
access log. The testing with dynamic files is necessary since
more and more dynamic content is appearing on the Web. Dy-
namic content plays an important role in nearly all high-volume
Web sites.

B. Performance Measurement

Server connection rate and throughput are the two most im-
portant performance metrics for Web systems. The server con-
nection rate is an indication of how fast the server can estab-
lish a connection and start communicating with the clients. The
calculation of server throughput is simple: total bytes (body +
header) transferred throughout the test divided by the total test
duration. The server throughput depends on the transferred file
size, server capability, and the network bandwidth.

B.1 Server Connection Rate

In general, a cluster-based server should have a higher con-
nection rate than a single server, unless the network band-
width or the clustering agent (dispatcher) becomes a bottle-
neck. Our tests with small files (0-2 KB) show that LSMAC
with three servers can handle over 1600 connections per second
(Fig. 3), and LSNAT can handle about 800 connections per sec-
ond (Fig. 4). The connection rate in a single server configuration
with the same file size is around 550 connections per second.

However, with the access log file mix, whose average file size
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Fig. 4. LSNAT connection rates with 3 servers.

is 108.5 KB, cluster-based servers do not improve the connec-
tion rate due to network congestion (Fig. 5). LSMAC with three
servers maintains about 400 connections per second, which is
very close to the connection rate of a single server (Fig. 5).
LSNAT supports only 150 connections per second (Fig. 5). In
LSNAT, the processing capacity of the dispatcher becomes the
bottleneck before the network bandwidth. In practice, no actual
connection would result in a zero-byte transaction. Neverthe-
less, the number of connections per second with a small file size
is an important indicator of the dispatcher’s capability. With a
2-byte page size, IBM Network Dispatcher can handle 850 con-
nections per second when it runs in a Token Ring network [9].

It is interesting to note that LSMAC consistently shows more
than twice the connection rate of LSNAT for all cases but the
CGI case. This is because LSNAT spends more time in process-
ing each packet than LSMAC–including the server to client flow
which LSMAC does not process at all. We will discuss the CGI
case in the next section.

B.2 Static vs. Dynamic Content

Fig. 5-8 show the relative performance of the LSMAC cluster
and LSNAT cluster with respect to static and dynamic content.
WebStone was used to generate requests for 42 Web clients.
For easy comparison, the performance measurements of a sin-
gle server (without a dispatcher) are also plotted in the fig-
ures. In the access log case, LSMAC significantly outperforms
LSNAT. Both connection rate and server throughput of LSMAC
are nearly triple those of LSNAT (Fig. 5 and 7). The LSNAT
dispatcher is the obvious bottleneck in this case. However, in
the CGI case they achieve similar connection rate and server
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Fig. 5. Comparison of connection rates for access log file mix.

Fig. 6. Comparison of connection rates for CGI content.

throughput (Fig. 6 and 8). This is because in the CGI case the
back-end servers are the bottlenecks. A CGI program runs as a
separate process in the server machine every time a CGI docu-
ment is requested and therefore is very costly. The connection
rate is expected to increase if we add more back-end servers to
the cluster in the CGI case (Fig. 6).

In summary, any one of the dispatcher, the back-end servers,
or the network can “bottleneck” the operation of a cluster-based
Web server system. Our tests show that LSMAC and LSNAT
perform similarly with fully dynamic content, which is com-
putationally intensive at the back-end servers. LSMAC outper-
forms LSNAT with a static access log mix, though it does not
show any performance improvement over the single server due
to our limited network bandwidth. Hence, for cluster planning,
one needs to take into account the amount and types of informa-
tion maintained on the Web site.

V. CONCLUSIONS

We implemented two cluster-based Web server systems in a
simple and portable way: LSMAC and LSNAT. They represent
the first application-space implementations of the two cluster-
ing technologies, and achieve performance comparable to ex-
isting non-application space products. Tests show that LSMAC
significantly outperforms LSNAT for static files. But the two
systems achieve similar performance for fully dynamic content.
The choice of the LSMAC or LSNAT approach depends on the

Fig. 7. Comparison of server throughput for access log file mix.

Fig. 8. Comparison of server throughput for CGI content.

network environment, Web content, and service requirements.
If the servers are connected in a LAN and there are a large num-
ber of requests, the LSMAC approach is ideal. If the servers are
at different sites and there is a significant amount of dynamic
content, you may want to choose the LSNAT approach. Our fu-
ture work will focus on fault tolerance and developing adaptive
optimized load-sharing algorithms.
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