
In: Proceedings of the 15th Euromicro Conference on Real-Time Systems, Porto, Portugal, July 2003, pp. 131-140.

Resource Sharing in an Enhanced Rate-Based Execution Model∗

Xin Liu Steve Goddard
Department of Computer Science and Engineering

University of Nebraska — Lincoln
Lincoln, NE 68588-0115

{lxin, goddard}@cse.unl.edu

Abstract

A theory of resource sharing in a mixed system with hard
real-time and non-real-time processing requirements is pre-
sented. The real-time processing is modeled as rate-based
execution (RBE) tasks whose resource needs are known in
advance. The non-real-time processing is modeled as ape-
riodic requests and dynamically mapped to weight-based
variable rate execution tasks. The resource sharing require-
ments of the aperiodic requests are unknown a priori and
only become known when a critical section is reached. A
scheduling algorithm that supports resource sharing with-
out deadlock in such a mixed system is presented with a suf-
ficient off-line schedulability condition.

1 Introduction

Many systems have both real-time and non-real-time pro-
cessing requirements. When the real-time processing has
hard deadlines (i.e., deadlines that cannot be missed), non-
real-time processing is often modelled as aperiodic request
processing within a real-time system. The canonical ap-
proach to supporting aperiodic requests in a uniprocessor
real-time system has been to add a server that processes the
aperiodic requests [14, 19, 20, 9, 21, 7, 8, 1, 4, 5, 6, 13].
A common feature of these algorithms is that they support
a fixed number of aperiodic servers and a constant band-
width for each server. Although some algorithms, such as
GRUB (Greedy Reclamation of Unused Bandwidth) [16],
allow bandwidth reclamation, the bandwidth initially allo-
cated to each server is fixed.

Increasingly, mixed computing environments host a dy-
namic number of adaptive execution applications, typically
multimedia applications. These applications negotiate with
the system to decide their execution rates and service quali-
ties. If the system load changes, they adjust their execution
∗Supported, in part, by a grant from the National Science Foundation

(CCR-0208619).

rates and service qualities accordingly. The traditional ape-
riodic server algorithms are unable to handle adaptive exe-
cutions.

Instead of adding traditional aperiodic servers, an en-
hanced Rate-Based Execution (RBE) model was created in
[10]. The RBE model schedules tasks at the average rate
they are expected to execute. In the enhanced RBE model,
aperiodic tasks (or request servers) are modeled as weight-
based variable-rate execution tasks, which execute with a
dynamic rate depending on the system workload. The rate
changes result in adjusting the deadline assignment and the
pending deadlines of aperiodic jobs. As in a multiprogram-
ming system, tasks may require mutually exclusive access
to a shared resource. In this work, we extend the enhanced
RBE model of [10] to support resource sharing between
real-time (RBE tasks) and non-real-time tasks (aperiodic re-
quests).

Most systems use a lock-based method for accessing
shared resources. That is, a mutex is usually used to ensure
mutually exclusive access to a shared resource. If a higher
priority task is blocked by a lower priority task, then a task,
with priority lower than the blocked task but higher than the
resource owner can be executed before the blocked task with
higher priority. This is called priority inversion. The basic
idea in preventing priority inversion is to increase the pri-
ority of the job that locked resources. Most resource shar-
ing algorithms are designed for static real-time task sets and
follow the priority inheritance principle [18, 11, 2]. Recent
work also supports resource sharing among real-time tasks
and non-real-time tasks [13, 6, 4]. The conventional algo-
rithms, however, require fixed relative deadlines or priorities
set before runtime. Thus, the dynamic rate and deadline of
aperiodic tasks in the enhanced RBE model lead to the inap-
propriateness of conventional resource sharing algorithms.

Our research differs from previous work by relaxing the
constraint of fixed deadlines. Instead of setting a static pre-
emptive level for each task, each resource is associated with
a (dynamic) resource-sharing task set and a dynamic rela-
tive deadline ceiling is defined for that task set. When a job

In: Proceedings of the 15th Euromicro Conference on Real-Time Systems, Porto, Portugal, July 2003, pp. 131-140.

accesses the resource, it gets its deadline changed based on
the resource deadline ceiling, which is equivalent to inher-
iting the highest priority in the resource-sharing task set; its
deadline is changed back to its original value when it leaves
the critical section of the resource. If the workload changes,
the resource deadline ceiling may also change. A sufficient
off-line schedulability condition is given in this work to sim-
plify schedulability checking. A necessary condition cannot
be derived with the limited knowledge assumed about aperi-
odic requests.

The rest of this paper is organized as follows. Section 2
discusses canonical resource sharing algorithms and related
work in resource sharing among real-time and non-real-time
tasks. Section 3 introduces the processing model assumed in
this work. Section 4 presents the theoretical correctness and
a schedulability condition. Section 5 discusses the overhead.
We conclude with a summary in Section 6.

2 Related Work

The basic strategy dealing with priority inversion is to
raise the priority of the resource owner. The Priority Inheri-
tance Protocol (PIP) [18] lets the resource owner inherit the
highest priority of blocked tasks. Thus, tasks with lower pri-
orities are unable to preempt the resource owner.

Although PIP accelerates the release of shared resources,
it does not avoid deadlocks. Also proposed in [18], thePri-
ority Ceiling protocol(PCP) avoids deadlock by allocating
resources in a specified order, which is the resource ceil-
ing in practice. In PCP, each resource is assigned a prior-
ity ceiling equal to the highest priority of tasks sharing that
resource. A jobJ is allowed to lock a resourceS only if
p(J) > c(S′), wherep(J) is the priority ofJ , andc(S′)
is the highest priority ceiling among all resources currently
locked by jobs other thanJ . If J cannot lockS, J is blocked
and the jobJ ′, which holds the lock onS′, temporarily in-
herits the priorityp(J) until S′ is unlocked. Each task is
assigned a fixed priority based on a static priority schedul-
ing algorithm in PCP.

The Dynamic Priority Ceiling Protocol (DPCP) [3] ex-
tends the PCP protocol to dynamic priority scheduling al-
gorithms, typically the EDF algorithm. The DPCP assigns
a variable priority to each task; the priority is dynamically
adjusted based on the emergence of the task’s earliest dead-
line. The DPCP protocol updates the priority ceilings of all
the resources, as well as the system priority ceiling. This cre-
ates more overhead than the method presented here though
it could be extended to the task model assumed in this work.
The Stack Resource Protocol (SRP) algorithm [2] aims at
stack resource sharing, where tasks share a single stack.
Each resource also maintains a ceiling in terms of the pre-
emption level. A task is scheduled only if its preemption
level is greater than the ceiling.

The Dynamic Deadline Modification (DDM)algorithm
[11] considers a task as a sequence of resource sharing
phases. Each resource is marked with a “shortest period,”
which is equivalent to a relative deadline. When a task is
inside a critical section, the task’s deadline is dynamically
modified to prevent preemption by other tasks that share the
resource.

Resource sharing among aperiodic tasks is a little differ-
ent. Each server is associated with a bandwidth which might
be mapped into a priority in real-time systems. So there is
essentially no priority inversion among aperiodic tasks. In
single server models such as TBS [20], there is at most one
aperiodic request executing at any time; Thus, no resource
is shared among aperiodic tasks in TBS. In multiple server
methods like CBS [5], resources can be shared among differ-
ent servers. In this case, bandwidth is considered as the re-
placement of priority. TheBandwidth Inheritance Protocol
[13] was aimed at extending PIP to CBS. Instead of inher-
iting priority, BIP lets the resource owner inherit the higher
bandwidth of blocked jobs. By inheriting bandwidth, the re-
lease of a resource is accelerated.

Coccamo and Sha studied resource sharing between real-
time tasks and aperiodic tasks based on the CBS+SRP model
[6]. The authors developed a theory of dynamic preemp-
tion levels. Rather than static preemption level for real-time
tasks, each aperiodic task (more precisely, aperiodic server)
is assigned a dynamic preemption level inversely propor-
tional to its dynamic relative deadline. Then resource shar-
ing in the mixed task set is handled by SRP. To reach an off-
line schedulability condition, the CBS rules are modified to
give a bound on the maximum preemption level.

The work presented here extends the DDM/EDF [11] al-
gorithm to the enhanced RBE model [10] by relaxing the
constraint of fixed deadlines. In the enhanced RBE model,
each aperiodic request is modeled as a weight-based variable
rate task, which has its rate and deadline adjusted dynami-
cally based on system workload. In this work, each resource
is associated with a dynamic deadline ceiling. When a job
enters its critical section, its deadline is modified based on
the deadline ceiling. The modified deadline actually pro-
vides a ceiling such that the critical section will not be pre-
empted by other tasks sharing the resource or other tasks
with relative deadlines longer than the ceiling.

3 The Model

The previous work on resource sharing requires fixed pri-
orities, deadlines or bandwidth. In the enhanced RBE model
[10], neither the execution rate nor the deadline of an aperi-
odic task is fixed. Thus, the previous resource sharing algo-
rithms will not work in the enhanced RBE model.

Our approach is an extension to the DDM/EDF algorithm
[11] called Earliest-Deadline-First with Deadline-Ceiling-

Inheritance(EDF-DCI). Instead of maintaining a ceiling for
each resource as in PCP [18], each resource is associated
with a task set whose members share that resource. Each
resource-sharing task set has a deadline ceiling which is de-
fined as the minimum relative deadline of all its member
tasks. If a job gains access to a resource, it can take the
current time plus the deadline ceiling as its new deadline
during the critical section, which is equivalent to inheriting
the highest priority in the resource-sharing task set; And the
original deadline is restored when the job leaves the critical
section. A final property of the EDF-DCI algorithm is that if
two jobs have identical deadlines, deadline ties are broken in
favor of the job that is currently executing or was previously
executing and was preempted.

We assumeRBE tasks have their resource requests known
in advance; The resource requests of aperiodic tasks are
unknown a priori, but known when a critical section is
reached. Thus aperiodic tasks are considered to join a
resource-sharing task set only when they reach their criti-
cal sections. When an aperiodic taskT̂ reaches its critical
section, its quantum size is adjusted to tightly cover the crit-
ical section and registered with the corresponding resource-
sharing task set. When̂T leaves the critical section, it is
unregistered from the resource-sharing task set.

The remainder of this section first introduces the en-
hanced RBE model. Then we show how the quantum size
is adjusted and how the deadline ceiling is constructed.

3.1 Introduction to the Enhanced RBE Model

The RBE task model was developed to support the real-
time execution of event-driven tasks in which noa pri-
ori characterization of theactual arrival rates of events
is known; only theexpectedarrival rates of events is
known [12]. A RBE task is parameterized by a 4-tuple
(xi, yi, ci, di), making progress at the rate of processingxi

events everyyi time units, each event takes no longer than
ci time units and should be processed withindi time units.
Rate is achieved by deadline assignment. Thejth job of a
RBE taskTi, Jij , is assigned a deadline as follows:

Di(j) =

{
tij + di if 1 ≤ j ≤ xi

max(tij + di, Di(j − xi) + yi) if j > xi

(1)

wheretij is the release time ofJij .
In the enhanced RBE model presented in [10], the exe-

cution times of aperiodic tasks are unknown. Thus the exe-
cution has to be decomposed into a sequence of time slices.
Each time slice is modeled as a job; The sequence of time
slices can be viewed as a task, which releases its next job
right after the previous job finishes. We called it a weighted-

based variable rate execution task because its execution rate
changes when the system workload changes.

Usually, a weightwi > 0 is associated with each aperi-
odic requestAi. Let F̂ denote the fraction of the CPU capac-
ity allocated to processing aperiodic requests. This fraction
will be shared by the aperiodic tasks in proportion to their re-
spective weights. Thus, ifA(t) denotes the set of aperiodic
requests at timet, the fractionfi(t) of the CPU each ape-
riodic requestAi ∈ A(t) should receive can be computed
as

fi(t) =

{
0 if Ai 6∈ A(t)

wiP
j∈A(t) wj

F̂ otherwise.
(2)

The execution of an aperiodic task is decomposed into a
sequence of time slices, each of sizeqi. Thus, an aperiodic
taskAi can be mapped to a RBE task by a functionψ(Ai)
as follows:

ψ(Ai) : Ai → T̂i = (xi, yi(t), di(t), ci)

= (1,
qi

fi(t)
,

qi

fi(t)
, qi)

(3)

Noteyi(t), which determines the rate of aperiodic tasks
together withqi, is a function of timet that is affected by
the system workload (

∑
j∈A(t) wj). Thus, parameteryi in

Equation (1) is replaced by a variableyi(t), which achieves
the variable rate.

Workload change is caused by the arrival or termination
of aperiodic tasks. The arrival or termination of aperiodic
tasks will cause the update ofyi(t). In an implementation,
the current deadlines of aperiodic tasks can be maintained
in virtual time; Thus the rate change can be done by simply
adjusting the speed of virtual time. For theoretical correct-
ness, the virtual deadlines have to be mapped into real time,
which change with the system workload. Moreover, once
dispatched, the deadline must be in real-time units to effi-
ciently implement the protocol. The choice of maintaining
the deadlines of pending aperiodic requests in real time or
virtual time is dependent on system work load. In this work
we assume the deadlines of pending aperiodic requests are
maintained in real time. Letfi denote the fraction of an ape-
riodic taskT̂i before the workload changes andf ′i the frac-
tion after the workload changes, the current deadlineDi(j)
is adjusted using Equation (4).

Di(j) =

{
tx + (Di(j)− tx) fi

f ′i
if Ax arrives attx

Dx(l) + (Di(j)−Dx(l)) fi
f ′i

if Ax terminates attf
x

(4)

See [10] for more details on the enhanced RBE model.

3.2 Quantum Expansion at Critical Section

As described in Section 3.1, an aperiodic request is mod-
eled as a weight-based variable rate task, which has its time

slices modeled as separate jobs. At the release of each ape-
riodic job, a count-down counter of sizeqi is set. When the
job is executed, its counter decreases. If the counter reaches
0, then the job terminates, a new job is immediately released
and the scheduler is invoked. This is similar to the budget
mechanism in server methods like TBS and CBS.

Since aperiodic tasks are unknown a priori, they may
reach their critical section at any time. The counter may
expire within a critical section; Thus the critical section may
require more than one time slice to finish, which will delay
the release of the critical section, as shown in Figure 1.

Critical Section

1
������������ ��������������

��������������

��������������
��������������

������
���
������
���

2

3

T

T

A

Figure 1. Counter-down timer expires in a crit-
ical section. The count-down counter expires for A1

within a critical section; The remaining execution of the
critical section is delayed to the next time slice. Task
T2 executes earlier than T3 since the resource release
is delayed. The result is a missed deadline by T3.

This problem was addressed in [6] by recharging the bud-
get with multiple quanta until it is large enough to cover the
whole critical section. Rather than recharging the budget by
quanta, we terminate the job at its current progress and read-
just the quantum size to exactly cover the critical section as
shown in Figure 2.

Critical Section

A

�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����

���
���
���

���
���
���
���

T 2

T 3

1

Figure 2. Quantum size recharged before a
critical section. The quantum size of A1 was ex-
panded to exactly cover the critical section; The dead-
line of A1 is moved to a later time. Thus, T3 executes
its critical section before A1 and all tasks make their
deadlines (as opposed to the example shown in Figure
1).

For simplicity, we set a bound for the minimum value
of relative deadlines. LetYj denote the minimum relative

deadline (which is assumed to be equal to the respectivey
parameter in this work) for resourcerj andcij be the size of
the critical section, then the quantum size is set using Equa-
tion (5) when an aperiodic task̂Ti reaches its critical section
for resourcerj , wherefi is the fraction ofT̂i computed by
Equation (2).

qrj
i = max(cij , dYj · fie) (5)

Let the fraction of the CPU allocated to aperiodic request
processing beF̂ and the weight summation of aperiodic
tasks beW . Assume an aperiodic task̂Ti has an original
quantum size ofqi time units, current deadlineDi(x), and
Ri time units remaining in its counter. Then it is registered
with the resource-sharing task set using the following RBE
description when it reaches the critical section (i.e., when it
attempts to lock the resource):

(1, y′i(t) =
qrj
i

fi
, qrj

i , d′i(t) = y′i(t)) (6)

At the same time, its counter is reset toqrj
i and its current

deadlineDi(x) is updated using Equation (7).

D′
i(x) = Di(x) +

qrj
i −Ri

wiF̂
(7)

In Equations (6) and (7), ifqrj
i = Ri, then nothing needs to

be done; Ifqrj
i > Ri then the quantum size is expanded to

qrj
i and the deadline is moved to a later time; Ifqrj

i < Ri

then the quantum size is shortened toqrj
i and the deadline is

moved to an earlier time.
When the aperiodic task leaves its critical section, it is un-

registered from the task set and its quantum size is restored
to qi. The new job is then assigned a deadline using Equation
(1).

3.3 Dynamic Deadline Ceiling

In deadlock free algorithms such as PCP [18] and SRP
[2], a priority (preemption level) ceiling is maintained for
each resource. When a job is blocked or gains access to a
resource, the ceiling is increased. A job is scheduled only
if its priority (or preemption level) is greater than the ceil-
ing. Thus, resources are allocated in a specific order, which
prevents deadlock.

In this work, we prevent deadlock in a different way. We
assume

The resource requests of RBE tasks are known in
advance; The resource requests of aperiodic tasks
are known only when they reach a critical section.

Thus, each resource is associated with a resource-sharing
task set whose elements may request the resource. When

a job gains access to a resource, it is assigned the highest
priority (earliest deadline) within the resource-sharing task
set. Thus, deadlock is prevented.

Since the resource requests of aperiodic tasks are un-
known in advance, the resource-sharing task set is not static;
It contains both static members (RBE tasks) and dynamic
members (aperiodic tasks). LetTri(t) denote the resource-
sharing task set of resourceri at time t. ThenTri(t) =
Rri ∪ Ari(t), whereRri is the static set of real-time tasks
that share resourceri andAri(t) is the dynamic set of ape-
riodic tasks that share resourceri at timet. Aperiodic tasks
are dynamically registered with the resource-sharing task set
when they reach their critical sections. The construction of
Tri(t) is as follows:

• Initially, Tri(t) = Rri

• When an aperiodic taskAx reaches its critical section
for resourceri,

– changeAx’s counter toqri
x and adjust the quan-

tum size and deadline ofAx using Equations (6)
and (7), as discussed in Section 3.2

– register Ax to the resource-sharing task set:
Tri(t) = Tri(t) ∪ {Ax}

• When an aperiodic taskAx leaves its critical section of
resourceri,

– unregisterAx from the resource-sharing task set
Tri(t) = Tri(t)− {Ax}

– changeAx back to its original quantum sizeqx

The deadline ceiling forri is defined as the minimum
relative deadline of tasks inTri(t). That is,

dri(t) = min(di|Ti ∈ Tri(t)) (8)

wheredi is a relative deadline of taskTi, which may either
a RBE task or an aperiodic task.

When a jobJx enters a critical section of resourceri at
time t, it has its deadline changed to

Dm = min(Dx, t + dri(t)) (9)

whereDx is the original deadline.
When Jx leaves the critical section, it has its deadline

changed back to the original deadline valueDx. If Jx is an
aperiodic job, thenJx terminates;Jx’s task has its quantum
size changed backqx and releases a new job immediately.

SinceTri(t) is dynamic, the deadline ceilingdri(t) has
to be recomputed each time an aperiodic task registers or
unregisters. Even when the membership ofTri(t) does not
change, members ofAri(t) will have their relative deadlines
changed if the workload changes. In this work, we assume
critical sections are short and new aperiodic requests are not

accepted when a task is in a critical section. Thus,Tri(t) and
dri(t) will not change within any critical section, anddri(t)
is only computed when needed. That is,dri(t) is computed
only when a job gains access to its critical section forri.
This means thatDm will not change within any critical sec-
tion since system workload remains constant in that interval.

To summarize, the dynamic deadline ceiling works as fol-
lows:

• Each resourceri is associated with a resource-sharing
task setTri, which initially only contains RBE tasks
that will use resourceri

• When an aperiodic taskAx reaches its critical section
for resourceri, its quantum size and deadline are ad-
justed using Equations (6) and (7). ThenAx is regis-
tered withTri

• When a task (either a RBE task or an aperiodic task)
begins to execute its critical section for resourceri

at time t, it has its deadline,Dx, changed toDm =
min(Dx, t + dri)

• When a task leaves the critical section forri, it has its
deadline changed back toDx

– If the task is an aperiodic taskAx, then it is unreg-
istered fromTri; Ax has its quantum size changed
back toqx and releases a new job.

The EDF-DCI algorithm is an EDF scheduling algorithm
that supports the dynamic deadline ceiling and breaks dead-
line ties in favor of the job that is currently executing or was
previously executing and was preempted.

3.4 An Example

The following example illustrates the usage of the dy-
namic deadline ceiling.

Initially, Tri(0) = {T1, T2, T3} has three RBE tasks, as
shown in Table 1. Assume jobJ11 is released by RBE task
T1 at time4 with its original deadlineD1(1) = 4+15 = 19.
As shown in Figure 3, it immediately gains access to re-
sourceri and its deadline is changed to the deadline ceiling,
min(19, 4 + 10) = 14, using Equation (9).

Table 1. Tri(0).
x y c d

T1 1 15 3 15
T2 1 10 1 10
T3 1 12 2 12

dri 10

Table 2. Tri(6).
x y c d

T1 1 15 3 15
T2 1 10 1 10
T3 1 12 2 12
T̂4 1 6 1 6

dri 6

^

1

1

11J

T 4

1

2

J 41 J 42

�����
�����
�����
�����

���
���
���
���

2

4 5 6 7 8 9 10 11 12 13

deadline move to the ceiling at the begining of critical section

deadline move back at the end of critical section

20 21 22 23 2414 15 16 17 18 19

T

Figure 3. Deadline adjustment at a critical sec-
tion. Job J11 has its deadline changed to 14 at the
beginning of critical section and changed back to 19
at the end of critical section; Task T̂4 arrives at time 5
but not accepted until time 6. T̂4 has its quantum size
changed to 1 at time 6 and changed back to 2 at time
7.

At time5, an aperiodic task̂T4 = (1, 12, 2, 12), with frac-
tion 1

6 , arrives. Since jobJ11 is in its critical section,T̂4 is
not accepted immediately.

At time 6, job J11leaves the critical section and its dead-
line is changed back to the original deadline value of19.
Aperiodic taskT̂4 is accepted at time6 and releases job
J41, which is assigned the deadline6 + 12 = 18. Since
job J41 has the earliest deadline (18), it is the next job to
execute and immediately reaches its critical section for re-
sourceri, which has a size of1 time unit. Thus, aperiodic
task T̂4 is registered with task setTri, as shown in Table
2. Let 6 be the minimum relative deadline in the task set
Tri (i.e., dri(6) = 6). Then jobJ41’s quantumqi

4 is set
to min(1, d 6

6e) = 1. Thus, its rate specification is set to
(1, 6, 1, 6); its deadline is changed to12 using Equations (6)
and (7); and its execution counter (budget) is reduced from
2 time units to1 time unit.

When jobJ41 finishes at time7, T̂4 is unregistered from
task setTri, Tri(7) = {T1, T2, T3}; the rate specification
for T̂4 is changed back to(1, 12, 2, 12); and its second job
is released (at time7), with the execution counter reset to2
time units and a deadline of12 + 12 = 24. Finally, jobJ11

is the next job to begin execution at time7.
The execution schedule for this example is shown in Ta-

ble 3.

4 Theoretical Validation

This section discusses the theoretical correctness of the
EDF-DCI algorithm. We first show that the algorithm sat-
isfies the mutual exclusion constraint on access to resources
and that it prevents deadlock. Then, an off-line sufficient
schedulability condition is given.

Table 3. Schedule.
time Job tarrive taccept dri D Dm

4 J11 4 4 10 19 14
5 J11

6 J41 5 6 6 12 12
7 J11 4 4 10 19 –
8 J42 7 7 10 24 –
9 J42

Property 1 states that the EDF-DCI algorithm provides
mutually exclusive access to resources. Property 2 states that
a job requesting a resource is never blocked from accessing
the resource. Property 3 combines the first two properties to
show that the EDF-DCI algorithm provides mutually exclu-
sive access to resources and prevents deadlocks.

Property 1 The EDF-DCI scheduling algorithm satisfies
the mutual exclusion constraint on access to resources.

Proof: by contradiction.
Assume jobJi begins to execute its critical section for re-
sourcerx at time t′i with deadlineD′

i, but is preempted
by some job before it completes its critical section. At
the time it entered the critical section, its deadline was the
earliest eligible deadline and this deadline was retained or
moved earlier using Equation (9) at timet′i. ThusD′

i =
min(Di, t

′
i + drx(t′i)).

Assume jobJj shares resourcerx, begins to execute
at time tj and enters its critical section for resourcerx at
time t′j before jobJi leaves its critical section. LetD′

j =
min(Dj , t

′
j + drx(t′j)). Then it must be the case that that

D′
j ≤ Dj < D′

i since earliest deadlines are given prior-
ity and ties are broken in favor of jobJi under EDF-DCI
scheduling. Moreover, since the workload cannot change
once a job enters its critical section, it must also be the case
thatdj ≥ drx(t′j) = drx(tj) = drx(t′i) by the definition of
drx. Thus,tj ≤ t′j < t′i sinceDj = tj+dj ≤ tj+drx(t′j) <
D′

i ≤ t′i + drx(t′i) ≤ t′i + dj . This, however, contradicts
the assumption that jobJi had the earliest deadline when it
entered its critical section. Thus, the EDF-DCI scheduling
algorithm satisfies the mutual exclusion constraint on access
to resources.

Property 2 If a job Ji requests resourcerx, it will not be
blocked by another task that shares resourcerx.

Proof: by contradiction.
Assume jobJi requests resourcerx, but is blocked by jobJj

of another task that shares resourcerx. That is, assume job
Ji cannot access the resource, even though it has the earliest
deadline, because jobJj is in its critical section.

Let time ti be the release time of jobJi andDi be its
deadline. Lett′j be the time jobJj enters its critical section,
Dj be the original deadline of jobJj , andD′

j be the modified
deadline of jobJj set using Equation (9).

Then Dj ≥ D′
j > Di based on Equation (9) and the

assumption thatJi is blocked byJj under the EDF-DCI
scheduling algorithm. Thus,t′j < ti; otherwise,Jj will not
be able to enter its critical section at timet′j sinceDi < Dj .
Moreover, since the workload did not change within the crit-
ical section,drx(t′j) = drx(ti) ≤ di. Therefore,

D′
j ≤ t′j + drx(t′j) < ti + drx(t′j) ≤ ti + di = Di

becauseD′
j = min(Dj , t

′
j + drx(t′j)) ≤ t′j + drx(t′j) and

Di = ti + di. This, however, contradicts the fact thatDi is
the earliest deadline.

Thus, if a jobJi requests resourcerx, it will not be
blocked by another task that shares resourcerx.

Property 3 The EDF-DCI algorithm provides mutually
exclusive access to resources and prevents deadlocks.

Proof: This is straightforward from Properties 1 and 2.

Jeffay presented an off-line feasible condition in [11],
which is extended to this work. Lemma 4.1 bounds the de-
mand of a RBE task, which was already presented in [12].
We present it here since it is used in the sufficient schedula-
bility condition for the enhanced RBE model considered in
this work.

Lemma 4.1. For a RBE taskTi = (xi, yi, di, ci),

∀t > 0, dbf i(t) =

{
0 if t ∈ [0, di)
b t−di+yi

yi
cxici if t ∈ [di,∞]

(10)

is a least upper bound on the number of units of processor
time required to be available in the interval[0, L] to ensure
that no job ofTi misses a deadline in[0, L].

Proof: See [12].

Theorem 4.2 gives a sufficient schedulability condition
for the RBE task model. The RBE model is a special case of
the enhanced RBE model in which there exists no aperiodic
requests. For space considerations, only a short proof sketch
is presented. The full proof follows the proof of Theorem
4.4.

Theorem 4.2. Let τ be a task system withn RBE tasks,
sorted in non-decreasing order byy parameter, that share
a set of serially reusable resourcesr1, r2, ..., rm. Assume
di = yi for all tasks,τ will be schedulable on a uniproces-
sor under EDF-DCI if:

∀L,L > 0, L ≥
n∑

i=1

bL

yi
cxici (11)

and
∀i, 1 ≤ i ≤ n,∀k, 1 ≤ k ≤ m∧ rik 6= 0,∀L, drk(0) ≤ L ≤
yi

L ≥ cik +
i−1∑

j=1

bL− 1
yi

cxici (12)

where:

• rik 6= 0 if taskTi uses resourcerk,

• cik is the size of the critical section of taskTi for re-
sourcerk,

• drk(0) is defined by Equation(8) in Section 3.3.

Proof sketch: This theorem is a special case of Theo-
rem 4.4 in which there are no aperiodic tasks andF̂ =
0. Under these conditions, Theorem 4.4 reduces to Theo-
rem 4.2 and the proof follows the proof of Theorem 4.4 in
which the third condition holds vacuously.

Because aperiodic tasks are modeled as weight-based
variable rate tasks, an enhanced RBE system can be treated
as a RBE system in any interval where the system workload
does not change. Thus, Theorem 4.2 can also be used to
check the schedulability in such intervals. But the condi-
tions have to be rechecked if the system workload changes,
which can cause great overhead.

Aperiodic tasks are initially considered as critical section
free; They are registered with the resource-sharing task set
only when they reach their critical sections. Thus, RBE tasks
and aperiodic tasks can be viewed as running on two virtual
processors with partial power of the real processor (fraction
F for RBE tasks and fraction̂F for aperiodic tasks). They
interfere only when aperiodic tasks reach their critical sec-
tions.

Lemma 4.3 bounds the demand of an aperiodic task,
which is proved in [10]. Theorem 4.4 gives a sufficient
schedulability condition for the enhanced RBE model under
EDF-DCI scheduling.

Lemma 4.3. Let T̂i = ψ(Ai) represent the aperiodic re-
questAi ∈ A(t). If no job ofT̂i released before timet0 ≥ 0
requires processor time in the interval[t0, l] to meet a dead-
line in the interval[t0, l], then

∀l > t0, d̂bf i([t0, l]) =
∫ l

t0

fi(t)dt (13)

is an upper bound on the processor demand in the interval
[t0, l] created byT̂i whereψ(Ai) is defined by Equation(3)
andfi(t) is defined by Equation(2).

Proof: See [10].

WhenF̂ denotes the fraction allocated to aperiodic tasks,
the demand of all aperiodic tasks is bounded byLF̂ because∑

i∈T̂ fi = F̂ , as discussed in [10].
Although the resource requests of aperiodic tasks are un-

known in advance, the minimum relative deadline is as-
sumed to be bounded byYrk in Equation (5); the maxi-
mum relative deadline is assumed to beY rk; the critical sec-
tions for resourcerk are assumed to be less than a maximum
boundCrk. These are reasonable assumptions for the mixed
systems we work with that are dominated by real-time tasks.

Theorem 4.4. Let τ = R ∪ A that share a set of serially
reusable, single unit resources{r1, ..., rm}, R consists ofn
RBE tasks sorted in non-decreasing order by y parameter
andA is the dynamic aperiodic task set. Assumedi = yi, τ
can be scheduled if the following conditions hold:

1)
∑n

i∈R
xi·ci

yi
+ F̂ ≤ 1

2) ∀i, 1 < i ≤ n,∀k, 1 ≤ k ≤ m∧ rik 6= 0,∀L, drk
(0) <

L < yi:

(1− F̂)L ≥ cik +
i−1∑

j=1

bL− 1
yj

cxj · cj

3) ∀k, 1 ≤ k ≤ m,∀L, Yrk < L < Y rk:

L(1− F̂) ≥ Crk +
∑

i∈R

bL− 1
yi

cxi · ci

where:

• rik 6= 0 if taskTi uses resourcerk,

• Yrk is a lower bound of y parameters of all tasks shar-
ing resourcerk,

• Y rk is a upper bound of y parameters of all tasks shar-
ing resourcerk,

• Crk is an upper bound of the size of critical section for
resourcerk,

• F̂ is the processor fraction allocated to aperiodic re-
quests.

Condition (1) is a utilization test that guarantees the sys-
tem is not overloaded; Condition (2) is a generalized form of
Theorem 4.2 that guarantees the processor is able to handle
resource sharing among RBE tasks when no aperiodic gains
access to any resource; if an aperiodic task gains access to a
resource, then Condition (3) is used to check the correctness.

Proof: by contradiction.
Suppose jobJl is the first job that misses its dead-

line Dl. All released jobs are divided into two subsets:
A = {Jobs with deadline equal or less than Dl}, B =
{Jobs with deadline greater than Dl}.

Chooset0 as the later of the last idle point and the last
scheduling point of any task inB. t0 is set to0 if no such
point exists. Then the problem consists of two cases:

Case 1:t0 is 0 or an idle point
From Lemma 4.1 and Lemma 4.3, we know the processor

demand boundDemand[t0,Dl] is bounded as follows:

(F + F̂)(Dl − t0) ≥ Demand[t0,Dl] > Dl − t0

which contradicts Condition (1),
∑n

i∈R
xi·ci

yi
+ F̂ ≤ 1.

Case 2:t0 is the last scheduling point of a jobJb in B
If t0 is not in Jb’s critical section ort0 is in a critical

section but the modified deadline ofJbis greater thanDl,
then any job inA can preemptJb. The analysis inCase 1
applies in this case.

If t0 is in Jb’s critical section for resourcerk with the
modified deadline less thanDl, then jobJl is unable to pre-
emptJb beforeJb leaves its critical section. There are two
subcases:

Case 2a:Jb is a RBE task
In this case, the demand of RBE tasksDemandR

[t0,Dl]
is

bounded by
∑i=b

i=1bL−1
yi
cxici; the demand of aperiodic tasks

DemandA
[t0,Dl]

is bounded byLF̂ ; andDemand[t0,Dl] ≤
DemandR

[t0,Dl]
+ DemandA

[t0,Dl]
+ cbk, wherecbk is the

size of the critical section. Thus,

i=b∑

i=1

bL− 1
yi

cxici +LF̂ +cbk ≥ Demand[t0,Dl] > (Dl−t0)

which contradicts Condition (2).
Case 2b:Jb is an aperiodic task
Similar to Case 2a, the demand of RBE tasks

DemandR
[t0,Dl]

is bounded by
∑

i∈RbL−1
yi
cxici; the de-

mand of aperiodic tasksDemandA
[t0,Dl]

is bounded byLF̂ ;
the critical section size is bounded byCbk. Thus,

∑

Ti∈R

bL− 1
yi

cxici+LF̂+Cbk ≥ Demand[t0,Dl] > (Dl−t0)

which contradicts Condition (3).

In practice, the system utilizationF + F̂ has to be less
than1. Otherwise, Condition (3) in Theorem 4.4 is unlikely
to be satisfied. More simply, a task set is schedulable if its
utilization is below a threshold as shown in Theorem 4.5.

Theorem 4.5. Let τ = R ∪ A, be a set of rate-based ex-
ecution tasks and aperiodic tasks, that share a set of seri-
ally reusable, single unit resources{R1, ..., Rm}. τ can be
scheduled if its utilization̂F + F ≤ 1− r

y .
where:

• F̂ is the processor fraction allocated to aperiodic re-
quests

• F is the processor fraction allocated to RBE tasks

• r is an upper bound of critical sections

• y is a lower bound of y parameters

Proof: F̂ + F ≤ 1 − r
y implies the three conditions in

Theorem 4.4.

Whenr << y, Theorem 4.5 is more useful than Theorem
4.4 in that it can be easily checked and is not so loose that it
becomes meaningless.

5 Performance Analysis

Before implementing the algorithm, we simulated the op-
erations on resource-sharing sets and measured the intro-
duced overhead. The simulation is made on a 2GHz Pen-
tium 4-M IBM Thinkpad T30. Our measurement employs
the“rdtsc” instruction on the i386 architecture; the“rdtsc”
instruction reads the time stamp counter which records the
processor cycles since power-on. The resource-sharing set
is implemented as a sorted linked list. Totally 100 tasks are
simulated. Each task is randomly assigned a relative dead-
line.

Since our main interest is on supporting mixed task set in
general-purpose operating systems, we did our measurement
on Redhat 8.0. Figure 4 shows the overhead to insert a task
in a resource-sharing set with increasing size.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

pr
oc

es
so

r
cy

cl
es

of tasks

Figure 4. Overhead on Redhat-8.0.

As we can see from Figure 4, with 100 tasks, the number
of processor cycles required to insert a task into the sharing

task set is below 1300, and the average is 591. The overhead
to remove a task from the resource-sharing set is relatively
constant, about 200 cycles, because the task being removed
is always the first task in the resource-sharing list.

On the same hardware, the Redhatmutex operations,
“pthread mutexlock” and “pthread mutexunlock”, con-
sume about 7000 and 3000 processor cycles respectively.
Thus the overhead introduced byEDF-DCI is competitive
with the Redhatmutexoperations. Moreover, theEDF-DCI
prevents priority inversions and deadlock.

6 Summary

The enhanced Rate-Based Execution (RBE) model pre-
sented in [10] was extended to support resource sharing
between real-time and non-real-time applications. As in
[10] the real-time applications were modeled as RBE tasks
and the non-real-time applications were modeled as weight-
based, variable-rate execution tasks.

To support resource sharing in the enhanced RBE
model, a Earliest-Deadline-First with Deadline-Ceiling-
Inheritance(EDF-DCI) algorithm was developed. Instead
of maintaining a ceiling for each resource as in PCP [18]
or DPCP [3], each resource is associated with a dynamic
task set whose members share that resource. Each resource-
sharing task set has a dynamic deadline ceiling which is
defined as the minimum relative deadline of all its current
member tasks. The EDF-DCI algorithm uses the dynamic
deadline ceiling to assign deadlines such that the mutual ex-
clusion constraint on shared resources is maintained while
preventing deadlock.

To verify temporal correctness of a task set scheduled
with the EDF-DCI algorithm, sufficient off-line schedula-
bility conditions were provided.

References

[1] Abeni, L., Buttazzo, G., “Integrating Multimedia App-
plications in Hard Real-Time Systems,”Proc. IEEE
Real-Time Systems Symp., Madrid, Spain, Dec. 1998.

[2] Baker, T.P., “Stack-Based Scheduling of Real-Time
Processes,”The Journal of Real-Time Systems 3(1),pp.
67-100, 1991. IEEE Computer Society Press.

[3] Chen, M, Lin, K, “Dynamic priority ceilings: A con-
currency control protocol for real-time systems”,Jour-
nal of Real-Time Systems,2:325–346, 1990.

[4] Caccamo, M., Lipari, G., Buttazzo, G., “Sharing
Resource among Periodic and Aperiodic Tasks with
Dynamic Deadlines,”Proc. IEEE Real-Time Systems
Symp., Phoenix, AZ, Dec. 1999.

[5] Caccamo, M., Buttazzo, G., Sha, L., “Capacity Sharing
for Overrun Control,”Proc. IEEE Real-Time Systems
Symp., Orlando, FL, Dec. 2000.

[6] Caccamo, M., Sha, L., “Aperiodic Servers with Re-
source Constraints,”Proc. IEEE Real-Time Systems
Symp., London, England, Dec. 2001.

[7] Deng, Z., Liu, J.W.S., Sun, J., “A Scheme For Schedul-
ing Hard Real-Time Applications in Open System En-
vironment,” In Proceedings of the Ninth Euromicro
Workshop on Real-Time System, Toledo, Spain, June
1997, pp. 191-199.

[8] Deng, Z., Liu, J.W.S., “Scheduling Real-Time Appli-
cations in an Open Environment,”Real-Time Systems
Journal, vol. 16, no. 2/3, pp.155-186, May 1999.

[9] Ghazalie, T. M., Baker, T. P., Aperiodic Servers in
Deadline Scheduling Environment,Real-Time Systems
Journal, vol. 9, no. 1, pp. 31-68, 1995.

[10] Goddard, S., Liu, X., “Scheduling Aperiodic Requests
under Rate-Based Execution model”Proceesings of
IEEE Real-Time System Symposium,December 2002,
pp. 15-25.

[11] Jeffay, K., “Scheduling Sporadic Tasks with Shared
Resources in Hard Real-Time Systems,”Proceesings
of IEEE Real-Time System Symposium,pp. 89-99, De-
cember 1992.

[12] Jeffay, K., Goddard, S., “A Theory of Rate-Based Exe-
cution,” Proceedings of the 20th IEEE Real-Time Sys-
tems Symposium, Phoenix, Arizona, December 1999,
pp. 304-314.

[13] Lamastra, G., Lipari, G., Abeni, L., “A Bandwidth In-
heritance Algorithm for Real-Time Task Synchroniza-
tion in Open Systems,”Proc. IEEE Real-Time Systems
Symp., London, England, Dec. 2001.

[14] Lehoczky, J.P., Sha, L., and Strosnider, J.K., “En-
hanced Aperiodic Responsiveness in Hard Real-Time
Environments,”Proceedings of IEEE Real-Time Sys-
tems Symposium, pp. 261-270, Dec. 1987.

[15] Lipari, G., Buttazzo, G., “Schedulability Analysis of
Periodic and Aperiodic Tasks with Resource Con-
strains”, Journal of Systems Architecture,Vol. 46,
No.4, pp. 327-338, January 2000.

[16] Lipari, G., Baruah, S., “Greedy reclamation of unused
bandwidth in constant-bandwidth servers”,Proceed-
ings of the EuroMicro Conferences on Real-Time Sys-
tems,pp. 193-200, Stockholm, Sweden. June 2000.

[17] Liu, C., Layland, J., “Scheduling Algorithms for mul-
tiprogramming in a Hard-Real-Time Environment,”
Journal of the ACM, Vol 30., Jan. 1973, pp. 46-61.

[18] Sha, L., Rajkumar, R., Lehoczky,J.P., “Priority Inheri-
tance Protocols: An Approach to Real-Time Synchro-
nization,” IEEE Transactions on Computers,Septem-
ber 1990.

[19] Sprunt, B., Sha, L., Lehoczky, J.P., “Aperiodic Task
Scheduling for Hard Real-time Systems,”Real-Time
Systems Journal, vol 1, no. 1, pp. 27-60, 1989.

[20] Spuri, M., Buttazzo, G., “Efficient Aperiodic Service
Under the Earliest Deadline Scheduling,”Proc. of the
IEEE Symposium on Real-Time Systems, December
1994.

[21] Spuri, M., Buttazzo, G., Sensini, F., “Robust Aperiodic
Scheduling Under Dynamic Priority Systems,”Proc. of
the IEEE Symposium on Real-Time Systems, December
1995.

