’ In: Proceedings of the 15th Euromicro Conference on Real-Time Sy$ems, Portugal, July 2003, pp. 131—1%10.

Resource Sharing in an Enhanced Rate-Based Execution Model

Xin Liu Steve Goddard
Department of Computer Science and Engineering
University of Nebraska — Lincoln
Lincoln, NE 68588-0115
{Ixin, goddard @cse.unl.edu

Abstract rates and service qualities accordingly. The traditional ape-
riodic server algorithms are unable to handle adaptive exe-
A theory of resource sharing in a mixed system with hardcutions.
real-time and non-real-time processing requirements is pre- Instead of adding traditional aperiodic servers, an en-
sented. The real-time processing is modeled as rate-basefanced Rate-Based Execution (RBE) model was created in
execution (RBE) tasks whose resource needs are known 10]. The RBE model schedules tasks at the average rate
advance. The non-real-time processing is modeled as apahey are expected to execute. In the enhanced RBE model,
riodic requests and dynamically mapped to weight-basedaperiodic tasks (or request servers) are modeled as weight-
variable rate execution tasks. The resource sharing requirehased variable-rate execution tasks, which execute with a
ments of the aperiodic requests are unknown a priori anddynamic rate depending on the system workload. The rate
only become known when a critical section is reached. Achanges result in adjusting the deadline assignment and the
scheduling algorithm that supports resource sharing with-pending deadlines of aperiodic jobs. As in a multiprogram-
out deadlock in such a mixed system is presented with a sufning system, tasks may require mutually exclusive access
ficient off-line schedulability condition. to a shared resource. In this work, we extend the enhanced
RBE model of [10] to support resource sharing between
real-time (RBE tasks) and non-real-time tasks (aperiodic re-
1 Introduction quests).
Most systems use a lock-based method for accessing
Many systems have both real-time and non-real-time proshared resources. That is, a mutex is usually used to ensure
cessing requirements. When the real-time processing hasutually exclusive access to a shared resource. If a higher
hard deadlines (i.e., deadlines that cannot be missed), nomriority task is blocked by a lower priority task, then a task,
real-time processing is often modelled as aperiodic requeswith priority lower than the blocked task but higher than the
processing within a real-time system. The canonical apresource owner can be executed before the blocked task with
proach to supporting aperiodic requests in a uniprocessanigher priority. This is called priority inversion. The basic
real-time system has been to add a server that processes titkea in preventing priority inversion is to increase the pri-
aperiodic requests [14, 19, 20, 9, 21, 7, 8, 1, 4, 5, 6, 13]ority of the job that locked resources. Most resource shar-
A common feature of these algorithms is that they supporing algorithms are designed for static real-time task sets and
a fixed number of aperiodic servers and a constant bandollow the priority inheritance principle [18, 11, 2]. Recent
width for each server. Although some algorithms, such aswork also supports resource sharing among real-time tasks
GRUB (Greedy Reclamation of Unused Bandwidth) [16], and non-real-time tasks [13, 6, 4]. The conventional algo-
allow bandwidth reclamation, the bandwidth initially allo- rithms, however, require fixed relative deadlines or priorities
cated to each server is fixed. set before runtime. Thus, the dynamic rate and deadline of
Increasingly, mixed computing environments host a dy-aperiodic tasks in the enhanced RBE model lead to the inap-
namic number of adaptive execution applications, typicallypropriateness of conventional resource sharing algorithms.
multimedia applications. These applications negotiate with Our research differs from previous work by relaxing the
the system to decide their execution rates and service qualgonstraint of fixed deadlines. Instead of setting a static pre-
ties. If the system load changes, they adjust their executioemptive level for each task, each resource is associated with
*Supported, in part, by a grant from the National Science Foundation? (dynamic) resource-sharing task set and a dynamic rela-
(CCR-0208619). tive deadline ceiling is defined for that task set. When a job

In: Proceedings of the 15th Euromicro Conference on Real-Time Syd$tems, Portugal, July 2003, pp. 131-1{10.

accesses the resource, it gets its deadline changed based onThe Dynamic Deadline Modification (DDMaglgorithm
the resource deadline ceiling, which is equivalent to inher{11] considers a task as a sequence of resource sharing
iting the highest priority in the resource-sharing task set; itsphases. Each resource is marked with a “shortest period,”
deadline is changed back to its original value when it leavesvhich is equivalent to a relative deadline. When a task is
the critical section of the resource. If the workload changesjnside a critical section, the task’s deadline is dynamically
the resource deadline ceiling may also change. A sufficienmodified to prevent preemption by other tasks that share the
off-line schedulability condition is given in this work to sim- resource.
plify schedulability checking. A necessary condition cannot Resource sharing among aperiodic tasks is a little differ-
be derived with the limited knowledge assumed about aperient. Each server is associated with a bandwidth which might
odic requests. be mapped into a priority in real-time systems. So there is
The rest of this paper is organized as follows. Section 2essentially no priority inversion among aperiodic tasks. In
discusses canonical resource sharing algorithms and relatesingle server models such as TBS [20], there is at most one
work in resource sharing among real-time and non-real-timeaperiodic request executing at any time; Thus, no resource
tasks. Section 3 introduces the processing model assumed is shared among aperiodic tasks in TBS. In multiple server
this work. Section 4 presents the theoretical correctness anahethods like CBS [5], resources can be shared among differ-
a schedulability condition. Section 5 discusses the overhead:nt servers. In this case, bandwidth is considered as the re-

We conclude with a summary in Section 6. placement of priority. Th&andwidth Inheritance Protocol
[13] was aimed at extending PIP to CBS. Instead of inher-
2 Related Work iting priority, BIP lets the resource owner inherit the higher

bandwidth of blocked jobs. By inheriting bandwidth, the re-
lease of a resource is accelerated.

. o o X Coccamo and Sha studied resource sharing between real-
raise the priority of the resource owner. The Priority Inheri- time tasks and aperiodic tasks based on the CBS+SRP model

tance Prot_oqol (PIP) [18] lets the resource owner inherit the[6]. The authors developed a theory of dynamic preemp-
highest priority of blocked tasks. Thus, tasks with lower pri- tion levels. Rather than static preemption level for real-time

orities are unable to preempt the resource owner. tasks, each aperiodic task (more precisely, aperiodic server)
. Although P”.D accelerates the release of shared resourcey, assigned a dynamic preemption level inversely propor-
I QOes rpt avoid deadlocks. AIS.O proposed in [18], Ftlhle_ tional to its dynamic relative deadline. Then resource shar-
ority Ceiling protocol(PCP) avoids deadlock by allocating ing in the mixed task set is handled by SRP. To reach an off-

resources in a specified order, which IS the resource C.e'll"lne schedulability condition, the CBS rules are modified to
ing in practice. In PCP, each resource is assigned a prior.

it " l to the hiahest priority of tasks sharing th tg']iveabound on the maximum preemption level.
Ity cetling equa’ to the highest priority o tasks shanng that = ¢, \york presented here extends the DDM/EDF [11] al-
resource. A jobJ is allowed to lock a resourcg only if

) . o , gorithm to the enhanced RBE model [10] by relaxing the
P(J) >.C(S), vyhe_rep(J)_ is the priority of J, ande(S") constraint of fixed deadlines. In the enhanced RBE model,
is the highest priority ceiling among all resources currently

. : each aperiodic requestis modeled as a weight-based variable
locked by jobs other tha. If J cannot lockS, J is blocked
and the job’, which holds the lock ors’, temporarily in- rate task, which has its rate and deadline adjusted dynami

herits the priorityp(J) until ' is unlocked. Each task is cally based on system workload. In this work, each resource

is associated with a dynamic deadline ceiling. When a job

gsygneq a f”?ed priority based on a static priority SChEdu"enters its critical section, its deadline is modified based on
ing algorithm in PCP.

. o - the deadline ceiling. The modified deadline actually pro-
The Dynamic Priority Ceiling Protocol (DPCP) [3] ex- vides a ceiling such that the critical section will not be pre-

tends the PCP protocol to dynamic priority scheduling aI—em ;

) : . 2 pted by other tasks sharing the resource or other tasks
gorithms, typically the EDF algorithm. The DPCP assigns, i relative deadlines longer than the ceiling.
a variable priority to each task; the priority is dynamically

adjusted based on the emergence of the task’s earliest dead-

line. The DPCP protocol updates the priority ceilings of all 3 The Model

the resources, as well as the system priority ceiling. This cre-

ates more overhead than the method presented here though The previous work on resource sharing requires fixed pri-
it could be extended to the task model assumed in this workorities, deadlines or bandwidth. In the enhanced RBE model
The Stack Resource Protocol (SRP) algorithm [2] aims af10], neither the execution rate nor the deadline of an aperi-
stack resource sharing, where tasks share a single stacdic task is fixed. Thus, the previous resource sharing algo-
Each resource also maintains a ceiling in terms of the prerithms will not work in the enhanced RBE model.

emption level. A task is scheduled only if its preemption Our approach is an extension to the DDM/EDF algorithm

level is greater than the ceiling. [11] called Earliest-Deadline-First with Deadline-Ceiling-

The basic strategy dealing with priority inversion is to

Inheritance(EDF-DCI). Instead of maintaining a ceiling for based variable rate execution task because its execution rate
each resource as in PCP [18], each resource is associatelanges when the system workload changes.

with a task set whose members share that resource. Each Usually, a weightv; > 0 is associated with each aperi-
resource-sharing task set has a deadline ceiling which is deadic request;. Let ' denote the fraction of the CPU capac-
fined as the minimum relative deadline of all its memberity allocated to processing aperiodic requests. This fraction
tasks. If a job gains access to a resource, it can take theill be shared by the aperiodic tasks in proportion to their re-
current time plus the deadline ceiling as its new deadlinespective weights. Thus, ifi(t) denotes the set of aperiodic
during the critical section, which is equivalent to inheriting requests at time, the fractionf;(¢) of the CPU each ape-

the highest priority in the resource-sharing task set; And theiodic request4; € .A(t) should receive can be computed
original deadline is restored when the job leaves the criticabs
section. A final property of the EDF-DCI algorithm is that if 0 if A, & A(t)
two jobs have identical deadlines, deadline ties are broken in fi(t) = { '

favor of the job that is currently executing or was previously

executing and was preempted. The execution of an aperiodic task is decomposed into a
We assum®&BE tasks have their resource requests k”OW%equence of time slices, each of sige Thus, an aperiodic

in advance; The resource requests of aperiodic tasks argask A, can be mapped to a RBE task by a functiohd,)
unknown a priori, but known when a critical section is s follows:

reached Thus aperiodic tasks are considered to join a

Z“i’F otherwise 2)
JEA(t) Wi

resource-sharing task set only when they reach their criti- (Ai) 2 A = Ti = (24, 5i(1), di(t) ¢)
cal sections. When an aperiodic tdEkreaches its critical = (1, i , i L) 3)
section, its quantum size is adjusted to tightly cover the crit- fi)" fi(t)

ical section and registered with the corresponding resource- Note y;(¢), which determines the rate of aperiodic tasks
sharing task set. Wheh' leaves thei critical section, it is together withg;, is a function of timet that is affected by
unregistered from the resource-sharing task set. the system WorkloadX:jeA(t) w;). Thus, parametey; in

The remainder of this section first introduces the en'Equation (1) is rep'aced by avariabJﬁt)’ which achieves
hanced RBE model. Then we show how the quantum sizghe variable rate.

is adjusted and how the deadline ceiling is constructed. Workload change is caused by the arrival or termination
of aperiodic tasks. The arrival or termination of aperiodic
3.1 Introduction to the Enhanced RBE Model tasks will cause the update gf(¢). In an implementation,

the current deadlines of aperiodic tasks can be maintained
The RBE task model was developed to support the rea)in Vvirtual time; Thus the rate change can be done by simply
time execution of event-driven tasks in which aopri- adjusting the speed of virtual time. For theoretical correct-
ori characterization of thectual arrival rates of events N€sS. the virtual deadlines have to be mapped into real time,
is known; only theexpectedarrival rates of events is which change with the system workload. Moreover, once
known [12]. A RBE task is parameterized by a 4-tuple dispatched, the deadline must be in real-time units to effi-
(x4, s, ci, d;), making progress at the rate of processing ciently implement the protocol. The choice of maintaining
events every; time units, each event takes no longer thanth€ deadlines of pending aperiodic requests in real time or
¢, time units and should be processed withijrtime units. virtual time is dependent on system work load. In this work
Rate is achieved by deadline assignment. Fimejob of a W€ assume the deadlines of pending aperiodic requests are

RBE taskT}, J;;, is assigned a deadline as follows: maintained in real time. Lef; denote the fraction of an ape-
/ riodic taskT; before the workload changes ayiithe frac-

_ ti; +di if1<j<a tion qfter the vyorkload c;hanges, the current deadlingj)
Di(j) = , - is adjusted using Equation (4).
max(tij + d;, Dz(] — xl) + yz) if 1>

(1) Di(j) = te 4+ (Di(5) — tT)% if A, arrives att,,

! Do (1) + (Di(j) — Dz(l));—z; if A, terminates at;

wheret;; is the release time af;;. (4)
In the enhanced RBE model presented in [10], the exe- See [10] for more details on the enhanced RBE model.

cution times of aperiodic tasks are unknown. Thus the exe-
cution has to be decomposed into a sequence of time slice8.2 Quantum Expansion at Critical Section
Each time slice is modeled as a job; The sequence of time
slices can be viewed as a task, which releases its next job As described in Section 3.1, an aperiodic request is mod-
right after the previous job finishes. We called it a weighted-eled as a weight-based variable rate task, which has its time

slices modeled as separate jobs. At the release of each apadeadline (which is assumed to be equal to the respegtive
riodic job, a count-down counter of sizgis set. When the parameter in this work) for resourcg andc;; be the size of
job is executed, its counter decreases. If the counter reachéie critical section, then the quantum size is set using Equa-
0, then the job terminates, a new job is immediately releasedion (5) when an aperiodic tagk reaches its critical section
and the scheduler is invoked. This is similar to the budgetfor resourcer;, wheref; is the fraction ofl; computed by
mechanism in server methods like TBS and CBS. Equation (2).

Since aperiodic tasks are unknown a priori, they may »
reach their critical section at any time. The counter may ;" = max(cij, [Y; - fi]) (6)
expire within a critical section; Thus the critical section may
require more than one time slice to finish, which will delay
the release of the critical section, as shown in Figure 1.

Let the fraction of the CPU allocated to aperiodic request
processing bef” and the weight summation of aperiodic
tasks bel/. Assume an aperiodic task has an original

$ i guantum size of; time units, current deadlin®;(x), and

Al Z = R; time units remaining in its counter. Then it is registered
with the resource-sharing task set using the following RBE

T, — |

description when it reaches the critical section (i.e., when it

attempts to lock the resource):
Ty = P)
rj)

Critcal Secion (L) = L g di(t) = (1)) (6)

S fi)

At the same time, its counter is reset¢d and its current
deadlineD;(z) is updated using Equation (7).

Figure 1. Counter-down timer expires in a crit-
ical section. The count-down counter expires for A,
within a critical section; The remaining execution of the
critical section is delayed to the next time slice. Task ¢’ — R
. . / _ 7 (
T, executes earlier than T3 since the resource release Di(z) = Di(z) + ———
is delayed. The result is a missed deadline by T5.

= 7
o (1)
In Equations (6) and (7), 'tf}“j = R;, then nothing needs to

This problem was addressed in [6] by recharging the budbe done; Ifg;” > R; then the quantum size is expanded to

get with multiple quanta until it is large enough to cover the ¢;” and the deadline is moved to a later timeglf < R;

whole critical section. Rather than recharging the budget bythen the quantum size is shortenedfband the deadline is

guanta, we terminate the job at its current progress and readnoved to an earlier time.

just the quantum size to exactly cover the critical section as When the aperiodic task leaves its critical section, it is un-

shown in Figure 2. registered from the task set and its quantum size is restored
to¢;. The new job is then assigned a deadline using Equation
— T).
PO e N = | o
3.3 Dynamic Deadline Ceiling
T,] |
In deadlock free algorithms such as PCP [18] and SRP
T3 Z= i [2], a priority (preemption level) ceiling is maintained for

each resource. When a job is blocked or gains access to a
resource, the ceiling is increased. A job is scheduled only
if its priority (or preemption level) is greater than the ceil-
ing. Thus, resources are allocated in a specific order, which
prevents deadlock.

In this work, we prevent deadlock in a different way. We

Critical Section

Figure 2. Quantum size recharged before a

critical section. The quantum size of A; was ex-
panded to exactly cover the critical section; The dead-
line of A; is moved to a later time. Thus, T3 executes

. .) , assume

its critical section before A; and all tasks make their

deadlines (as opposed to the example shown in Figure The resource requests of RBE tasks are known in
1). advance; The resource requests of aperiodic tasks

are known only when they reach a critical section.

For simplicity, we set a bound for the minimum value Thus, each resource is associated with a resource-sharing
of relative deadlines. LeY; denote the minimum relative task set whose elements may request the resource. When

a job gains access to a resource, it is assigned the higheatcepted when a task is in a critical section. THus(t) and

priority (earliest deadline) within the resource-sharing taskd..;(t) will not change within any critical section, am; (t)

set. Thus, deadlock is prevented. is only computed when needed. Thatds;(t) is computed
Since the resource requests of aperiodic tasks are urenly when a job gains access to its critical sectionsfpr

known in advance, the resource-sharing task set is not statid;his means thab,,, will not change within any critical sec-

It contains both static members (RBE tasks) and dynamidion since system workload remains constant in that interval.

members (aperiodic tasks). L&t;(¢) denote the resource- To summarize, the dynamic deadline ceiling works as fol-
sharing task set of resoureg at timet¢. ThenT,;(t) = lows:

R,; U A,i(t), whereR,; is the static set of real-time tasks)) _)
that share resouree and A, (t) is the dynamic set of ape- e Each resource; is associated with a resource-sharing
riodic tasks that share resourceat timet. Aperiodic tasks task setl;;, which initially only contains RBE tasks

are dynamically registered with the resource-sharing task set ~ that will use resource;
when they reach their critical sections. The construction of

.) e When an aperiodic tasK, reaches its critical section
T,;(t) is as follows:

for resourcer;, its quantum size and deadline are ad-

e Initially, T,;(t) = R,; justed using Equations (6) and (7). Thdp is regis-
o) N] tered withT,;

e When an aperiodic tasl, reaches its critical section

for resource;, e When a task (either a RBE task or an aperiodic task)
begins to execute its critical section for resourge

at timet, it has its deadlinep,,, changed taD,, =
min(Dy,t + dy;)

— changeA,’s counter tog”* and adjust the quan-
tum size and deadline of,. using Equations (6)
and (7), as discussed in Section 3.2

— register A, to the resource-sharing task set: ® When a task leaves the critical section forit has its

T,i(t) = Tos(t) U {4} deadline changed back 13,
e When an aperiodic task,, leaves its critical section of — Ifthe task is an aperiodic task,, then it is unreg-
resource-;, istered from’.;; A, has its quantum size changed

_) back tog, and releases a new job.
— unregisterA, from the resource-sharing task set

T (t) = Tri(t) — {Az} The EDF-DCI algorithm is an EDF scheduling algorithm
— changeA, back to its original quantum sizg. that supports the dynamic deadline ceiling and breaks dead-
line ties in favor of the job that is currently executing or was
The deadline ceiling for; is defined as the minimum previously executing and was preempted.
relative deadline of tasks ifi.;(t). Thatis,

3.4 An Example

dri(t) = min(d;|T; € Tri(t)) (8)
whered; is a relative deadline of task;, which may either The following example illustrates the usage of the dy-
a RBE task or an aperiodic task. namic deadline ceiling.
When a jobJ, enters a critical section of resourgeat Initially, 7’.;(0) = {T1,T>,T3} has three RBE tasks, as
timet, it has its deadline changed to shown in Table 1. Assume jolj; is released by RBE task
T, attime4 with its original deadlineD; (1) = 4+ 15 = 109.
D,, = min(Dg,t + d,;(t)) (9) As shown in Figure 3, it immediately gains access to re-
) o] sourcer; and its deadline is changed to the deadline ceiling,
whereD, is the original deadline. min(19,4 + 10) = 14, using Equation (9).

When J, leaves the critical section, it has its deadline
changed back to the original deadline vallg. If J, is an

aperiodic job, ther/, terminates;J/,’s task has its quantum Table 1. T,.;(0). Table 2. T,;(6).
size changed baak, and releases a new job immediately. ’ ‘ X ‘ y ‘ c ‘ d ‘ ’ ‘ X ‘ y ‘ C ‘ d ‘
SinceT,;(t) is dynamic, the deadline ceiling.;(¢) has T, [1115]3] 15 T, | 1]15]3] 15
to be recomputed each time an aperiodic task registers or 7 11110l 1] 10 T, |1]10]|1] 10
unregisters. Even when the membershif¥pf(t) does not T2 1112121 12 T, | 1]12] 2] 12
change, members of,;(¢) will have their relative deadlines 3 7, 116 116

changed if the workload changes. In this work, we assume
critical sections are short and new aperiodic requests are not ’ dri ‘ ‘ 10‘ ‘ ‘ [dwi] [6] | |

N /w Table 3. Schedule.
T, /t/i\\\\j | l ’ time ‘ Job ‘ Larrive ‘ taccept ‘ dri ‘ D ‘ Dm ‘

4 Jii | 4 4 10 | 19| 14
@ 5 Ji
Ja e e 6 Ju |5 6 6 |[12]12
TA\\\\\’\—‘\\¢\\\\\YI\\\\¢ ! J114 4 10 | 19] -
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 8 J42 7 7 10 24 -
(@ deadline move to the ceiling at the begining of critical section 9 J42
(@ deadline move back at the end of critical section
Figure 3. Deadline adjustment at a critical sec-
tion. Job J;; has its deadline changed to 14 at the Property 1 states that the EDF-DCI algorithm provides
beginning of critical section and changed back to 19 mutually exclusive access to resources. Property 2 states that
at the end of critical section; Task 7} arrives at time 5 a job requesting a resource is never blocked from accessing
but not accepted until time 6. Ty has its quantum size the resource. Property 3 combines the first two properties to
changed to 1 at time 6 and changed back to 2 at time show that the EDF-DCI algorithm provides mutually exclu-
7. sive access to resources and prevents deadlocks.

Property 1 The EDF-DCI scheduling algorithm satisfies
Attime 5, an aperiodic task; = (1,12, 2, 12), with frac- the mutual exclusion constraint on access to resources.
tion %, arrives. Since jolyy; is in its critical section} is
not accepted immediately.
At time 6, job J;leaves the critical section and its dead-

Proof: by contradiction.
Assume jobJ; begins to execute its critical section for re-

line is changed back to the original deadline valuelpf ~ SOUrcer. at time ¢ with deadlineD;, but is preempted

Aperiodic taskT} is accepted at timé and releases job DY Some job before it completes its critical section. At
Ju1, which is assigned the deadliier 12 = 18. Since the time it entered the critical section, its deadline was the

job Ju1 has the earliest deadlings), it is the next job to earliest eligible deadline and this deadline was retained or

: . . \ p
execute and immediately reaches its critical section for reMoved earlier using Equation (9) at timg Thus D; =

sourcer;, which has a size of time unit. Thus, aperiodic min(Di, t; + dr (t))- _

task T is registered with task séf,;, as shown in Table Assume jobJ; shares resource,, begins to execute
2. Let6 be the minimum relative deadline in the task setat timet; and enters its critical section for resource at
T,; (i.e., d.:(6) = 6). Then jobJy's quantumgi is set tMe t’. before jobJ; leaves its critical section. Leb; =

to min(1, [$]) = 1. Thus, its rate specification is set to 7"(Dj, £ + dr«(t;)). Then it must be the case that that
(1,6,1,6); its deadline is changed 1@ using Equations (6) D; < D; < Dj; since earliest deadlines are given prior-

and (7); and its execution counter (budget) is reduced fron{®y and ties are broken in favor of jolf; under EDF-DCI
2 time units tol time unit. scheduling. Moreover, since the workload cannot change

When job.J4, finishes at time?, T is unregistered from ONCe a job enters its critical section, it must also be the case

task setT};, T,;(7) = {T1,T»,Ts}; the rate specification thatd; > dm(t;‘), = d/m,(tj) = dy(t;) by the def'”'"f’” of

for Ty is changed back t61, 12,2, 12); and its second job d?‘f- Tht’s’tj < t]} <t 3/'”C3Dj = tj+d; <tjtde(t)) <

is released (at tim@), with the execution counter resetto i < & + dre(t;) < 1; 4 d;. This, however, contradicts
time units and a deadline a2 + 12 = 24. Finally, job.J;; the assu.mptlc_)r_l thatjol?ii had the earliest deadline when.|t

is the next job to begin execution at tirfie entered its critical section. Thus, the EDF-DCI scheduling
algorithm satisfies the mutual exclusion constraint on access

The execution schedule for this example is shown in Ta-
ble 3. to resources. O

i L Property 2 If a job J; requests resoureg,, it will not be
4 Theoretical Validation blocked by another task that shares resougce

This section discusses the theoretical correctness of thBroof: by contradiction.
EDF-DCI algorithm. We first show that the algorithm sat- Assume job/; requests resoureeg, but is blocked by jol/;
isfies the mutual exclusion constraint on access to resourcesf another task that shares resourge That is, assume job
and that it prevents deadlock. Then, an off-line sufficientJ; cannot access the resource, even though it has the earliest
schedulability condition is given. deadline, because jak is in its critical section.

Let time t; be the release time of joll; and D; be its
deadline. Let’, be the time jobJ; enters its critical section,
D; be the original deadline of jolf;, andD’; be the modified
deadline of jobJ; set using Equation (9).

ThenD; > D; > D, based on Equation (9) and the

assumption that; is blocked byJ; under the EDF-DCI
scheduling algorithm. Thug; < t;; otherwise,J; will not
be able to enter its critical section at tirtfesinceD; < D;.

Moreover, since the workload did not change within the crit-

ical sectiondm(t;) = d,.(t;) < d;. Therefore,
Di < th 4 dpy (t)) < ti + dpa(t}) < ti 4 di = D;

becauseD’; = min(D;,t; + d,.(t;)) <t} + dp.(t;) and
D, = t; + d;. This, however, contradicts the fact that is
the earliest deadline.

Thus, if a job J; requests resource,, it will not be
blocked by another task that shares resougce O

Property 3 The EDF-DCI algorithm provides mutually
exclusive access to resources and prevents deadlocks.

Proof: This is straightforward from Properties 1 and 2]

and

Vi, 1 <i<nVk,1<EkE<mAry#0,VL d(0)<L<

Yi

i—1
L—-1
L >ci +ZL " lzic

12)

Jj=1

where:

e ;. # 0if taskT; uses resourcey,

e ¢;; IS the size of the critical section of tagk for re-
sourcery,

e d,1(0) is defined by Equatio(8) in Section 3.3.

Proof sketch: This theorem is a special case of Theo-
rem 4.4 in which there are no aperiodic tasks dnd=

0. Under these conditions, Theorem 4.4 reduces to Theo-
rem 4.2 and the proof follows the proof of Theorem 4.4 in
which the third condition holds vacuously. O

Because aperiodic tasks are modeled as weight-based

Jeffay presented an off-line feasible condition in [11], variable rate tasks, an enhanced RBE system can be treated

which is extended to this work. Lemma 4.1 bounds the de-2S @ RBE system in any interval where the system workload
mand of a RBE task, which was already presented in [12]d0€S not change. Thus, Theorem 4.2 can also be used to
We present it here since it is used in the sufficient schedula¢heck the schedulability in such intervals. But the condi-
bility condition for the enhanced RBE model considered intions have to be rechecked if the system workload changes,
this work. which can cause great overhead.

Aperiodic tasks are initially considered as critical section
Lemma 4.1. For a RBE taskl; = (s, i, di, ¢;), free; They are registered with the resource-sharing task set
only when they reach their critical sections. Thus, RBE tasks
and aperiodic tasks can be viewed as running on two virtual
processors with partial power of the real processor (fraction
.) F for RBE tasks and fractiot for aperiodic tasks). They
is & least upper bound on the number of units of processofxterfere only when aperiodic tasks reach their critical sec-
time required to be available in the intervl, L] to ensure 0o
that no job of7; misses a deadline ify, L]. Lemma 4.3 bounds the demand of an aperiodic task,
Proof: See [12]. 0 which is proved in [10]. Theorem 4.4 gives a sufficient

schedulability condition for the enhanced RBE model under
Theorem 4.2 gives a sufficient schedulability condition EDF-DCI scheduling.

for the RBE task model. The RBE model is a special case of .

the enhanced RBE model in which there exists no aperiodid:emma 4.3. Let 7; = 1 (A;) represent the aperiodic re-
requests. For space considerations, only a short proof sketdiuest4; € A(t). If no job ofT; released before timg, > 0
is presented. The full proof follows the proof of Theorem requires processor time in the intervia, /| to meet a dead-
4.4. line in the intervaltg,], then

vt >0, dbf,(t) = {Ltd;wa if t € [d;,] (10

ZiCq

Theorem 4.2. Let 7 be a task system with RBE tasks,
sorted in non-decreasing order hyparameter, that share
a set of serially reusable resources, rs, ..., r,,. Assume
d; = y; for all tasks, will be schedulable on a uniproces- s an upper bound on the processor demand in the interval
sor under EDF-DCI if: [to, 1] created byl; wheret(A;) is defined by Equatio(8)

n and f;(t) is defined by Equatio(®).

Z_*Jl‘ici (11)
= Yi Proof: See [10]. O

l
W>mjﬂﬂmm=/ﬁmﬁ (13)

VL,L>0,L >

When " denotes the fraction allocated to aperiodic tasks,Proof: by contradiction.
the demand of all aperiodic tasks is boundedl#y because Suppose jobJ; is the first job that misses its dead-
Zief fi = F, as discussed in [10]. line D;. All released jobs are divided into two subsets:
Although the resource requests of aperiodic tasks are unA = {Jobs with deadline equal or less than D;}, B =
known in advance, the minimum relative deadline is as-{Jobs with deadline greater than D;}.
sumed to be bounded by, in Equation (5); the maxi- Chooset as the later of the last idle point and the last
mum relative deadline is assumed to}o&'; the critical sec- scheduling point of any task iB. ¢, is set to0 if no such
tions for resource,, are assumed to be less than a maximumpoint exists. Then the problem consists of two cases:
boundC:.,.. These are reasonable assumptions for the mixed Case 1:t, is 0 or an idle point
systems we work with that are dominated by real-time tasks. From Lemma 4.1 and Lemma 4.3, we know the processor

. demand boundemandy, p,) is bounded as follows:
Theorem 4.4. Lett = R U A that share a set of serially o

reusable, single unit resourcds, ..., 7, }, R consists oh
RBE tasks sorted in non-decreasing order by y parameter
and A is the dynamic aperiodic task set. Assuipe- y;, 7
can be scheduled if the following conditions hold:

(F + F)(Dl — to) > Demand[tle] > D; —to

which contradicts Condition (L}, “:% + F' < 1.

Case 2:tq is the last scheduling point of a jok, in B

1) Z?GR Iyic +EF<1 If to is not in Jy's critical section ort, is in a critical
section but the modified deadline dfis greater thanD,,
then any job inA can preempt/,. The analysis irCase 1
2) Vi, 1 <i<n,Vk,1<k<mAry #0,VL,d,. (0) < applies in this case.

L <y;: If tg is in Jy's critical section for resource, with the
modified deadline less thah;, then job.J; is unable to pre-
empt.J, beforeJ, leaves its critical section. There are two

lzj - ¢ subcases:
Case 2a.J, is a RBE task
In this case, the demand of RBE tadRsmandffo,Dl] is

3) Vk,1<k<mVL Yy <L<Y'™ bounded byy~;=; | 21 | z;c;; the demand of aperiodic tasks
{ b, is bounded byL.F’; and Demandyy, p,) <
(> Crk + Z

las ¢ Demand[D] + Demand py) T Coks wherecy,;. is the
i€R size of the critical section. hus

i—1
. I —
(1=F)L>ck+> |
j=1

Demand?4

1,

where: = R
ZL — |xici + LF +cpe > Demandyy, p,) > (D1 —to)
e ;. # 0if taskT; uses resourcey, - Vi

e Y,, is a lower bound of y parameters of all tasks shar- Which contradicts Condition (2).
ing resourcery,, Case 2b:J, is an aperiodic task

Similar to Case 2a, the demand of RBE tasks
e Y% is a upper bound of y parameters of all tasks shar- Demand[t D] is bounded byZZGRLL‘ljx ¢;; the de-

ing resourcer, mand of aperlod|c taskBemand} 1, is bounded by F’;
the critical section size is boun ed 1. Thus,

E
e [is the processor fraction allocated to aperiodic re- T:€R
quests.

e () is an upper bound of the size of critical section for
resourcery,

Jxlcl—l—LF—i—Cbk > Demandy, p, > (Di—to)

’L

which contradicts Condition (3).

Condition (1) is a utilization test that guarantees the sys- O
tem is not overloaded; Condition (2) is a generalized form of
Theorem 4.2 that guarantees the processor is able to handle In practice, the system utilizatiofl + £ has to be less
resource sharing among RBE tasks when no aperiodic gainthan1. Otherwise, Condition (3) in Theorem 4.4 is unlikely
access to any resource; if an aperiodic task gains access td@ be satisfied. More simply, a task set is schedulable if its
resource, then Condition (3) is used to check the correctnessitilization is below a threshold as shown in Theorem 4.5.

Theorem 4.5. Lett = R U A, be a set of rate-based ex- task setis below 1300, and the average is 591. The overhead
ecution tasks and aperiodic tasks, that share a set of serito remove a task from the resource-sharing set is relatively
ally reusable, single unit resourcds?y, ..., R,,}. 7 can be constant, about 200 cycles, because the task being removed
scheduled if its utilizatiod” + F <1 — . is always the first task in the resource-sharing list.

Yy
where: On the same hardware, the Redmmatitex operations,
“pthread_mutexlock” and “pthread_mutexunlock”, con-
sume about 7000 and 3000 processor cycles respectively.
Thus the overhead introduced BBDF-DCI is competitive
with the Redhamutexoperations. Moreover, thieDF-DCI
prevents priority inversions and deadlock.

e [is the processor fraction allocated to aperiodic re-
quests

e [is the processor fraction allocated to RBE tasks
e 1 is an upper bound of critical sections

e yis alower bound of y parameters 6 Summary

Proof: F+F < 1— 5 implies the three conditions in
Theorem 4.4, O The enhanced Rate-Based Execution (RBE) model pre-
sented in [10] was extended to support resource sharing
etween real-time and non-real-time applications. As in

?10] the real-time applications were modeled as RBE tasks
and the non-real-time applications were modeled as weight-
based, variable-rate execution tasks.

To support resource sharing in the enhanced RBE
model, a Earliest-Deadline-First with Deadline-Ceiling-

Before implementing the algorithm, we simulated the op- |nheritance(EDF-DCI) algorithm was developed. Instead
erations on resource-sharing sets and measured the intr@f maintaining a Cei|ing for each resource as in PCP [18]
duced overhead. The simulation is made on a 2GHz Penor DPCP [3], each resource is associated with a dynamic
tium 4-M IBM Thinkpad T30. Our measurement employs task set whose members share that resource. Each resource-
the“rdtsc” instruction on the i386 architecture; ttretsc” sharing task set has a dynamic deadline ceiling which is
instruction reads the time stamp counter which records thejefined as the minimum relative deadline of all its current
processor cycles since power-on. The resource-sharing seiember tasks. The EDF-DCI algorithm uses the dynamic
is implemented as a sorted linked list. Totally 100 tasks arejeadline ceiling to assign deadlines such that the mutual ex-
simulated. Each task is randomly assigned a relative deactjusion constraint on shared resources is maintained while
line. preventing deadlock.

Since our main interest is on supporting mixed task setin - To verify temporal correctness of a task set scheduled

general-purpose operating systems, we did our measuremegjth the EDF-DCI algorithm, sufficient off-line schedula-
on Redhat 8.0. Figure 4 shows the overhead to insert a taskijlity conditions were provided.

in a resource-sharing set with increasing size.

Whenr << y, Theorem 4.5 is more useful than Theorem
4.4 in that it can be easily checked and is not so loose that i
becomes meaningless.

5 Performance Analysis

References

1200 + 4

N [1] Abeni, L., Buttazzo, G., “Integrating Multimedia App-
plications in Hard Real-Time Systems?roc. IEEE

1000 +

800 * +

6001 * P - " +

processor cycles

400 F+ H oA LT+, + o+ N +

200

. .
40 80
of tasks

L
0 20 100

Figure 4. Overhead on Redhat-8.0.

As we can see from Figure 4, with 100 tasks, the number

of processor cycles required to insert a task into the sharing

[2]

[3]

[4]

. i Real-Time Systems Symidadrid, Spain, Dec. 1998.

Baker, T.P., “Stack-Based Scheduling of Real-Time
Processes;The Journal of Real-Time Systems 3(ih),
67-100, 1991. IEEE Computer Society Press.

Chen, M, Lin, K, “Dynamic priority ceilings: A con-
currency control protocol for real-time system3dur-
nal of Real-Time Systent325-346, 1990.

Caccamo, M., Lipari, G., Buttazzo, G., “Sharing

Resource among Periodic and Aperiodic Tasks with
Dynamic Deadlines,Proc. IEEE Real-Time Systems

Symp, Phoenix, AZ, Dec. 1999.

[5] Caccamo, M., Buttazzo, G., Sha, L., “Capacity Sharing[18] Sha, L., Rajkumar, R., Lehoczky,J.P., “Priority Inheri-

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

for Overrun Control,"Proc. IEEE Real-Time Systems
Symp, Orlando, FL, Dec. 2000.

Caccamo, M., Sha, L., “Aperiodic Servers with Re-

source Constraints,Proc. IEEE Real-Time Systems [19]

Symp, London, England, Dec. 2001.
Deng, Z., Liu, JW.S., Sun, J., “A Scheme For Schedul-

ing Hard Real-Time Applications in Open System En- [20]

vironment,” In Proceedings of the Ninth Euromicro
Workshop on Real-Time Systefoledo, Spain, June
1997, pp. 191-199.

Deng, Z., Liu, J.W.S., “Scheduling Real-Time Appli- [21]

cations in an Open EnvironmenReal-Time Systems
Journal vol. 16, no. 2/3, pp.155-186, May 1999.

Ghazalie, T. M., Baker, T. P., Aperiodic Servers in
Deadline Scheduling Environmeieal-Time Systems
Journal vol. 9, no. 1, pp. 31-68, 1995.

Goddard, S., Liu, X., “Scheduling Aperiodic Requests
under Rate-Based Execution modéttoceesings of
IEEE Real-Time System Symposiidecember 2002,
pp. 15-25.

Jeffay, K., “Scheduling Sporadic Tasks with Shared
Resources in Hard Real-Time SystemBrbceesings
of IEEE Real-Time System Symposipm,89-99, De-
cember 1992.

Jeffay, K., Goddard, S., “A Theory of Rate-Based Exe-
cution,” Proceedings of the 20th IEEE Real-Time Sys-
tems SymposiunPhoenix, Arizona, December 1999,
pp. 304-314.

Lamastra, G., Lipari, G., Abeni, L., “A Bandwidth In-
heritance Algorithm for Real-Time Task Synchroniza-
tion in Open SystemsProc. IEEE Real-Time Systems
Symp, London, England, Dec. 2001.

Lehoczky, J.P., Sha, L., and Strosnider, J.K., “En-
hanced Aperiodic Responsiveness in Hard Real-Time
Environments,”Proceedings of IEEE Real-Time Sys-

tems Symposiump. 261-270, Dec. 1987.

Lipari, G., Buttazzo, G., “Schedulability Analysis of
Periodic and Aperiodic Tasks with Resource Con-
strains”, Journal of Systems Architecturd/ol. 46,
No.4, pp. 327-338, January 2000.

Lipari, G., Baruah, S., “Greedy reclamation of unused
bandwidth in constant-bandwidth server$toceed-
ings of the EuroMicro Conferences on Real-Time Sys-
tems,pp. 193-200, Stockholm, Sweden. June 2000.

Liu, C., Layland, J., “Scheduling Algorithms for mul-
tiprogramming in a Hard-Real-Time Environment,”
Journal of the ACMVol 30., Jan. 1973, pp. 46-61.

tance Protocols: An Approach to Real-Time Synchro-
nization,” IEEE Transactions on ComputerSegptem-
ber 1990.

Sprunt, B., Sha, L., Lehoczky, J.P., “Aperiodic Task
Scheduling for Hard Real-time System®keal-Time
Systems JournaVol 1, no. 1, pp. 27-60, 1989.

Spuri, M., Buttazzo, G., “Efficient Aperiodic Service
Under the Earliest Deadline Schedulingfoc. of the
IEEE Symposium on Real-Time Systemscember
1994.

Spuri, M., Buttazzo, G., Sensini, F., “Robust Aperiodic
Scheduling Under Dynamic Priority SystemBybc. of
the IEEE Symposium on Real-Time Systéhesember
1995.

