
Introduction to
Computer Systems

CSCE 230J
Computer Organization

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

2

Giving credit where credit is due

�Most of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

�Some examples and slides are based on
lecture notes created by Dr. Shard Seth,
UNL.

� I have modified them and added new
slides.

3

Topics

�Why do we care about this stuff?

�Course theme

�Five great realities of computer
systems

�Computer system overview

4

Why Do We Care…

Rapidly changing field:

� vacuum tube -> transistor -> IC -> VLSI

� doubling every 1.5 years:
memory capacity
processor speed (Due to advances in technology and organization)

Things you’ll be learning:

� how computers work, a basic foundation

� how to analyze their performance (or how not to!)

� issues affecting modern processors (caches, pipelines)

Why learn this stuff?

� you want to call yourself a “ computer scientist”

� you want to build software people use (need performance)

� you need to make a purchasing decision or offer “ expert” advice

5

Course Theme
� Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
� Abstract data types
� Asymptotic analysis

These abstractions have limits
� Especially in the presence of bugs
� Need to understand underlying implementations

Useful outcomes
� Become more effective programmers

� Able to find and eliminate bugs efficiently
� Able to tune program performance

� Prepare for later “ systems” classes in CS & CE
� Compilers, Operating Systems, Networks, Computer

Architecture, Embedded Systems

6

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples
� Is x2 0?

� Float’s: Yes!
� Int’s:

» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??

� Is (x + y) + z = x + (y + z)?
� Unsigned & Signed Int’s: Yes!
� Float’s:

» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

7

Computer Arithmetic

Does not generate random values
� Arithmetic operations have important mathematical

properties

Cannot assume “ usual” properties
� Due to finiteness of representations

� Integer operations satisfy “ ring” properties
� Commutativity, associativity, distributivity

� Floating point operations satisfy “ ordering” properties
� Monotonicity, values of signs

Observation
� Need to understand which abstractions apply in which

contexts

� Important issues for compiler writers and serious application
programmers

8

Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write a program in assembly
� Compilers are much better & more patient than you are

Understanding assembly is key to understanding the
machine-level execution model
� Behavior of programs in presence of bugs

� High-level language model breaks down

� Tuning program performance
� Understanding sources of program inefficiency

� Implementing system software
� Compiler has machine code as target
� Operating systems must manage process state

9

Assembly Code Example

Time Stamp Counter
� Special 64-bit register in Intel-compatible machines

� Incremented every clock cycle

� Read with rdtsc instruction

Application
� Measure time required by procedure

� In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

10

Code to Read Counter
� Write small amount of assembly code using GCC’s asm

facility

� Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

11

Code to Read Counter
/* Record the current value of the cycle counter. */
void start_counter()
{

access_counter(&cyc_hi, &cyc_lo);
}

/* Number of cycles since the last call to start_counter. */
double get_counter()
{

unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

}

12

Measuring Time

Trickier than it Might Look
� Many sources of variation

Example
� Sum integers from 1 to n

n Cycles Cycles/n
100 961 9.61

1,000 8,407 8.41
1,000 8,426 8.43

10,000 82,861 8.29
10,000 82,876 8.29

1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43

1,000,000,000 8,371,2305,591 8.37

13

Great Reality #3

Memory Matters

Memory is not unbounded
� It must be allocated and managed

� Many applications are memory dominated

Memory referencing bugs especially pernicious
� Effects are distant in both time and space

Memory performance is not uniform
� Cache and virtual memory effects can greatly affect program

performance

� Adapting program to characteristics of memory system can
lead to major speed improvements

14

Memory Referencing Bug Example

main ()
{

long int a[2];
double d = 3.14;
a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);
exit(0);

}

Alpha MIPS Linux

-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives
segmentation fault.)

15

Memory Referencing Errors
C and C++ do not provide any memory protection

� Out of bounds array references

� Invalid pointer values

� Abuses of malloc/free

Can lead to nasty bugs
� Whether or not bug has any effect depends on system and

compiler

� Action at a distance
� Corrupted object logically unrelated to one being accessed
� Effect of bug may be first observed long after it is generated

How can I deal with this?
� Program in Java, Lisp, or ML

� Understand what possible interactions may occur

� Use or develop tools to detect referencing errors

16

Memory Performance Example

Implementations of Matrix Multiplication
� Multiple ways to nest loops

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

17

0

20

40

60

80

100

120

140

160

matrix size (n)

ijk

ikj

jik

jki

kij

kji

Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

18

Blocked matmult perf (Alpha 21164)

0

20

40

60

80

100

120

140

160

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

bijk

bikj

ijk

ikj

19

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!
� Easily see 10:1 performance range depending on how code

written

� Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performance
� How programs compiled and executed

� How to measure program performance and identify
bottlenecks

� How to improve performance without destroying code
modularity and generality

20

Great Reality #5

Computers do more than execute programs

They need to get data in and out
� I/O system critical to program reliability and performance

They communicate with each other over networks
� Many system-level issues arise in presence of network

� Concurrent operations by autonomous processes
� Coping with unreliable media
� Cross platform compatibility
� Complex performance issues

21

Course Perspective

Most Systems Courses are Builder-Centric
� Computer Architecture

� Design pipelined processor in Verilog

� Operating Systems
� Implement large portions of operating system

� Compilers
� Write compiler for simple language

� Networking
� Implement and simulate network protocols

22

Course Perspective (Cont.)

Our Course is Programmer-Centric
� Purpose is to show how by knowing more about the

underlying system, one can be more effective as a
programmer

� Enable you to
� Write programs that are more reliable and efficient
� Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers

� Not just a course for dedicated hackers
� We bring out the hidden hacker in everyone

� Cover material in this course that you won’t see elsewhere

23

What is a computer?
Hardware Components and Organization:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

MouseKeyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

24

Memory Hierarchy

Registers

On-chip L1
cache (SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

Remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks
on remote network
servers.

Main memory holds disk
blocks retrieved from local
disks.

Off-chip L2
cache (SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from cache memory.

L2 cache holds cache lines
retrieved from memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

25

Cache Memories

Main
memory
(DRAM)

Memory
bridge

Bus interface
L2 cache
(SRAM)

ALU

Register file

CPU chip

Cache bus System bus Memory bus

L1
cache

(SRAM)

26

OS Abstracts HW

Application programs

Processor Main memory I/O devices

Operating system

Software

Hardware

Processor Main memory I/O devices

Processes

Files

Virtual memory

27

Summary

The Computer system is more than just
hardware!

We have to understand both the hardware and
the system interfaces to properly understand
and use a computer.

The rest of this semester will be spent studying
these concepts in much more detail.

