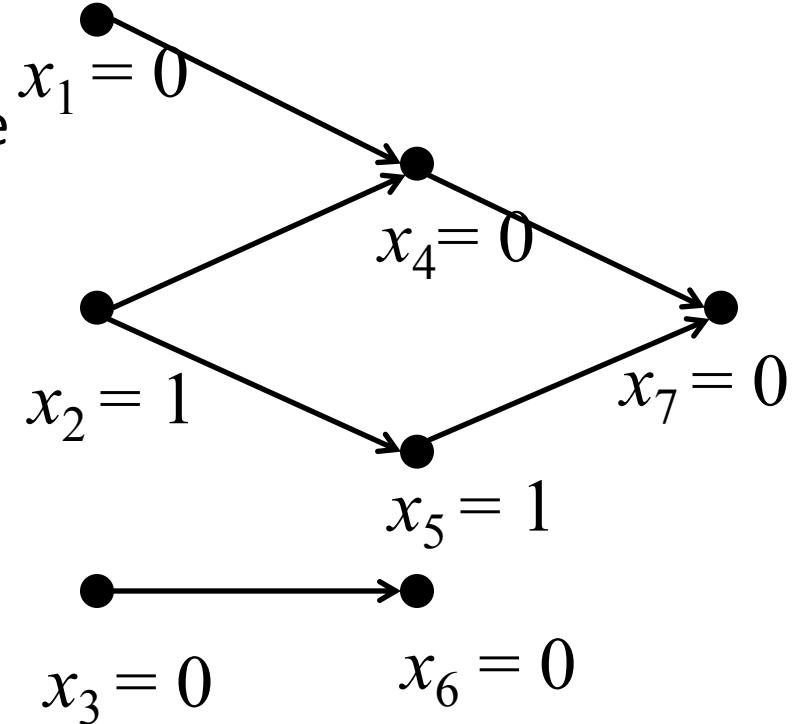


Clause Learning and Intelligent Backtracking in MiniSAT

Daniel Geschwender

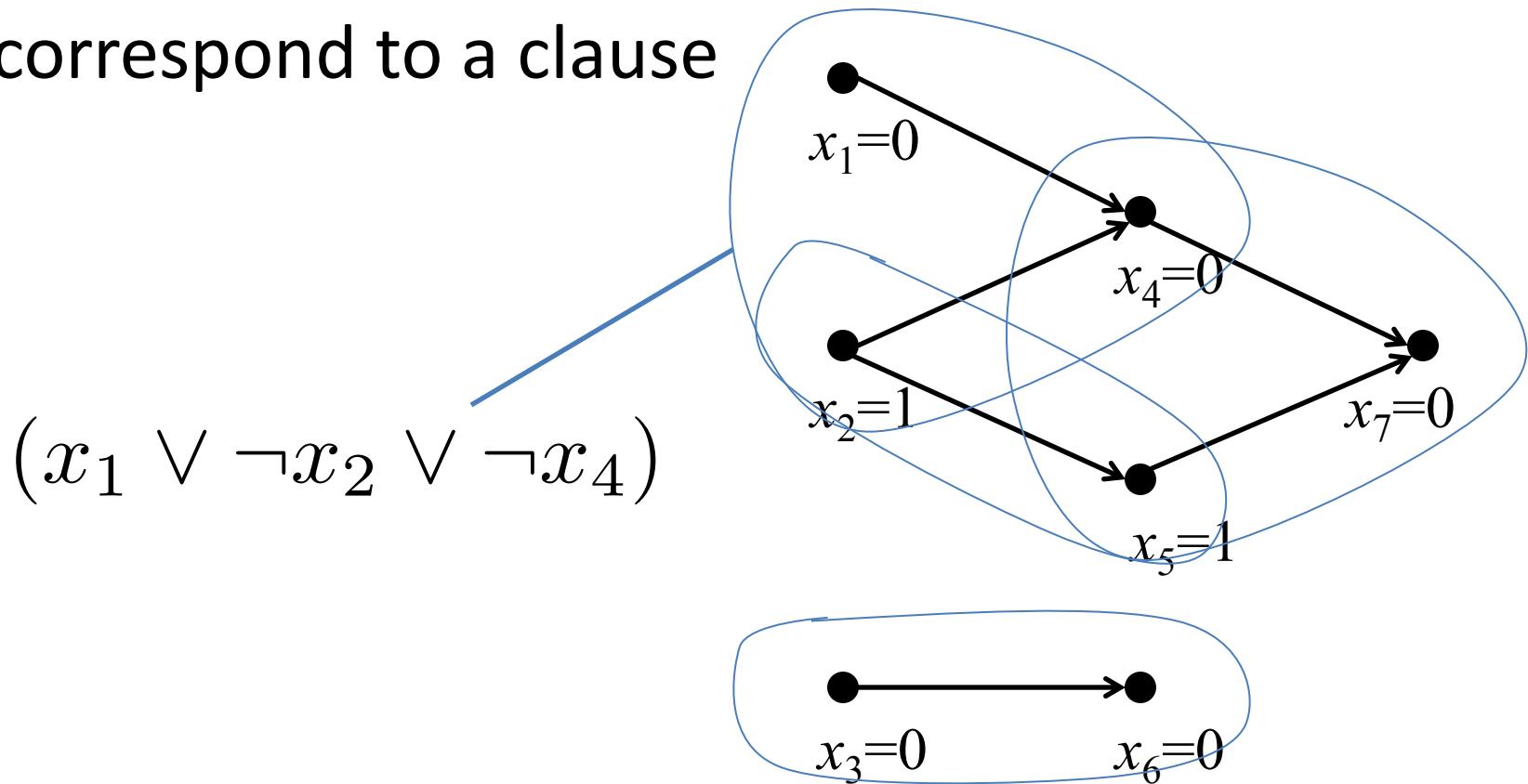
CSCE 235H Introduction to Discrete Structures (Honors)
Spring 2018
URL: cse.unl.edu/~cse235h
All questions: Piazza

Clause Learning



- At every conflict, determine the cause of the conflict
- Create a new clause to prevent the conflict from being reached in the future
- Tools
 - Implication graph to determine cause of conflicts
 - Added clause is a “learnt” no-good

Implication Graph (1)


- Nodes correspond to assignments
- Nodes with no incoming edges are **decision** variables (assignments)
- Nodes with incoming edges were assigned through **propagation**

$$\begin{array}{ll} x_1 \leftarrow 0 & (x_1 \vee \neg x_2 \vee \neg x_4) \wedge \\ x_2 \leftarrow 1 & (x_4 \vee \neg x_5 \vee \neg x_7) \wedge \\ x_3 \leftarrow 0 & (x_3 \vee \neg x_6) \wedge \\ & (\neg x_2 \vee x_5) \end{array}$$

Implication Graph (2)

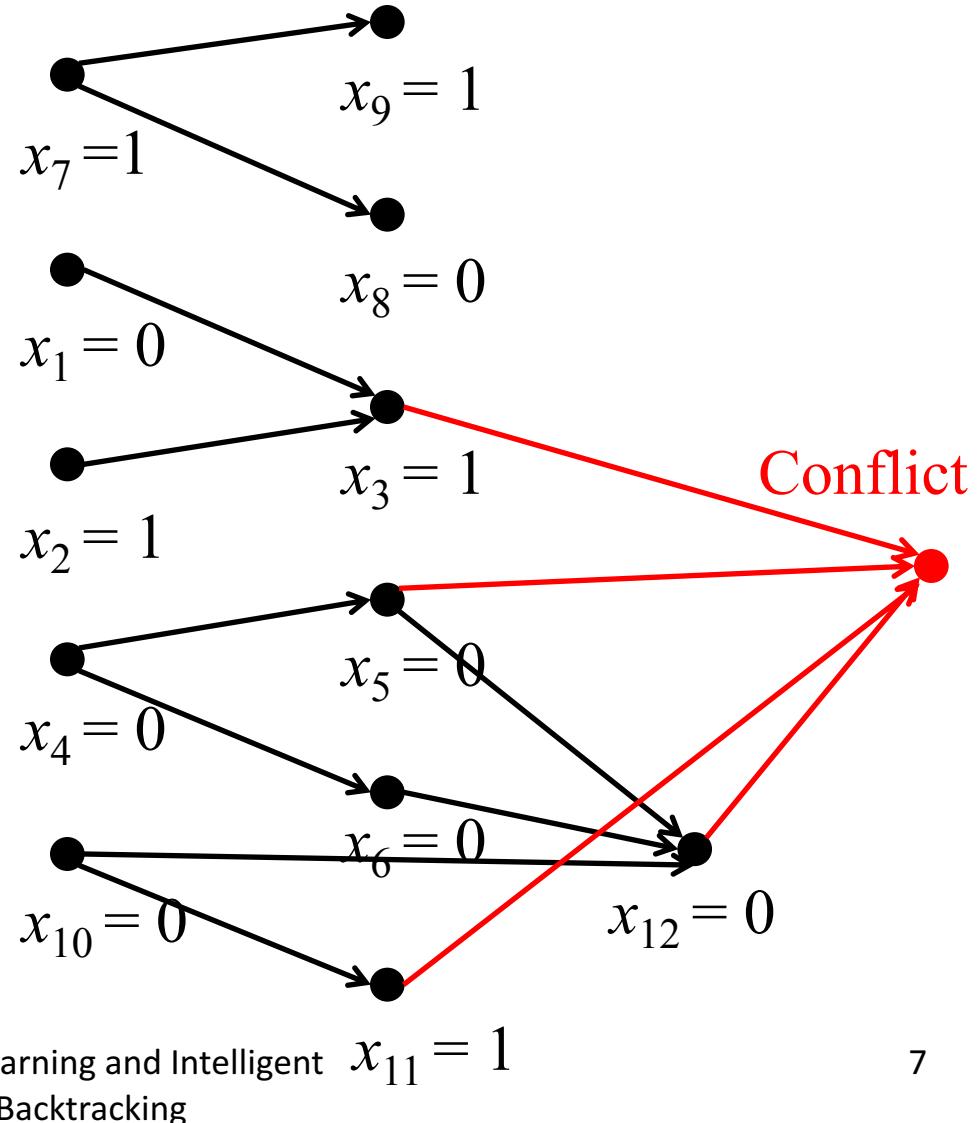
- A node and its immediate predecessors correspond to a clause

Trail

- Series of assignments made up to current point in search
- Broken up by ‘decision levels’
- Each decision level includes propagations

Decision level	Assignment
1	$x_1 = 0$
2	$x_2 = 1$ $x_4 = 0$ $x_5 = 1$ $x_7 = 0$
3	$x_3 = 0$ $x_6 = 0$

Clause Learning Example (1)



DL	Assignment
1	$x_1 = 0$
2	$x_2 = 1$
	$x_3 = 1$
3	$x_4 = 0$
	$x_5 = 0$
	$x_6 = 0$
4	$x_7 = 1$
	$x_8 = 0$
	$x_9 = 1$
5	$x_{10} = 0$
	$x_{11} = 1$
	$x_{12} = 0$

$$(x_5 \vee x_6 \vee x_{10} \vee \neg x_{12}) \wedge$$
$$(\neg x_3 \vee x_5 \vee \neg x_{11} \vee x_{12}) \wedge$$
$$(\neg x_3 \vee x_6 \vee \neg x_{10} \vee \neg x_{11}) \wedge$$
$$(x_1 \vee \neg x_2 \vee x_3) \wedge$$
$$(\neg x_7 \vee x_9) \wedge$$
$$(\neg x_7 \vee \neg x_8) \wedge$$
$$(x_4 \vee \neg x_5) \wedge$$
$$(x_4 \vee \neg x_6) \wedge$$
$$(x_{10} \vee x_{11}) \wedge$$
$$(\neg x_{10} \vee x_{11})$$

Clause Learning Example (2)

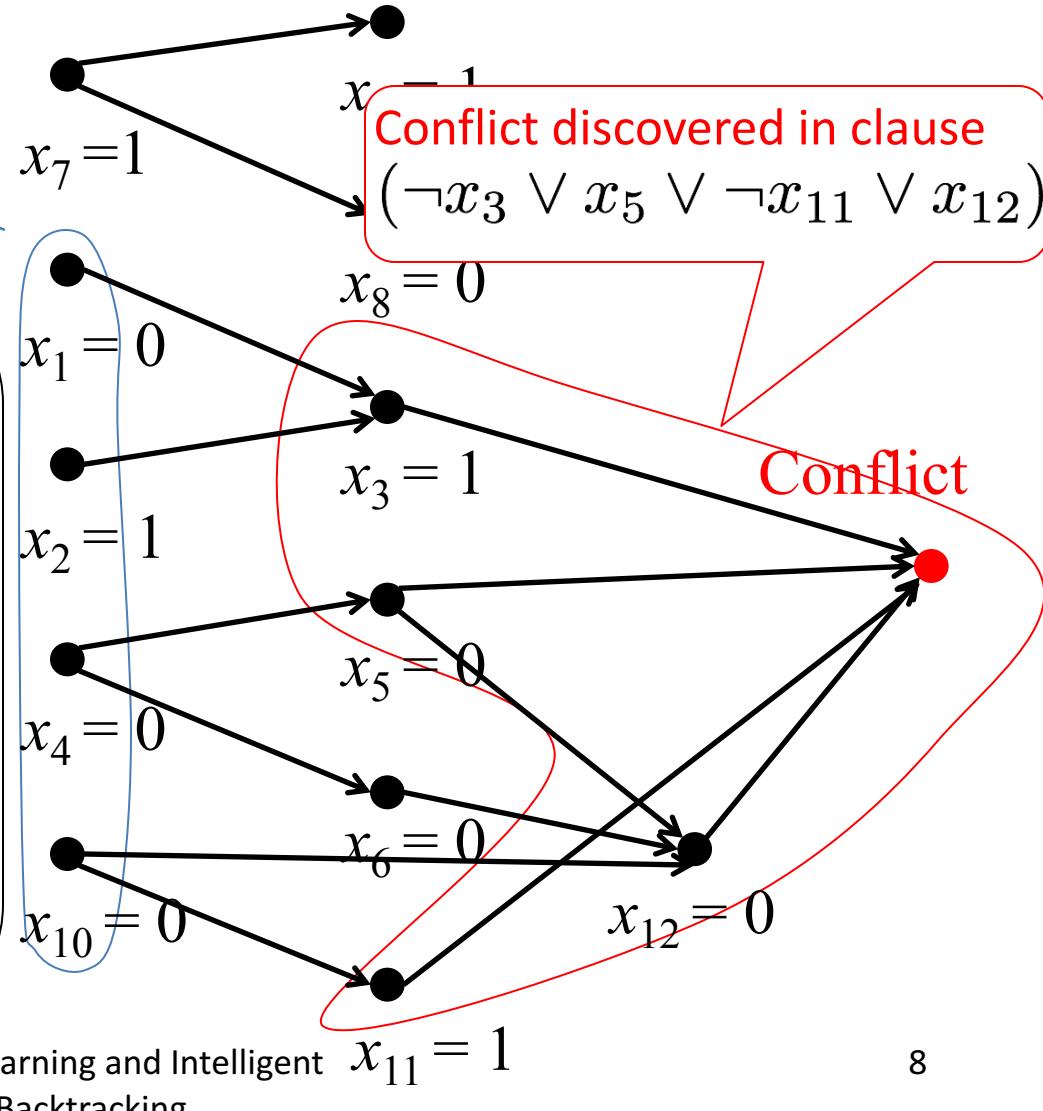
DL	Assignment
1	$x_1 = 0$
2	$x_2 = 1$
	$x_3 = 1$
3	$x_4 = 0$
	$x_5 = 0$
	$x_6 = 0$
4	$x_7 = 1$
	$x_8 = 0$
	$x_9 = 1$
5	$x_{10} = 0$
	$x_{11} = 1$
	$x_{12} = 0$

Clause Learning Example (3)

Decision variables

Conflict caused by assignment

$$(\neg x_1 \wedge x_2 \wedge \neg x_4 \wedge \neg x_{10})$$


So, we negate it

$$\neg(\neg x_1 \wedge x_2 \wedge \neg x_4 \wedge \neg x_{10})$$

.. and add the clause

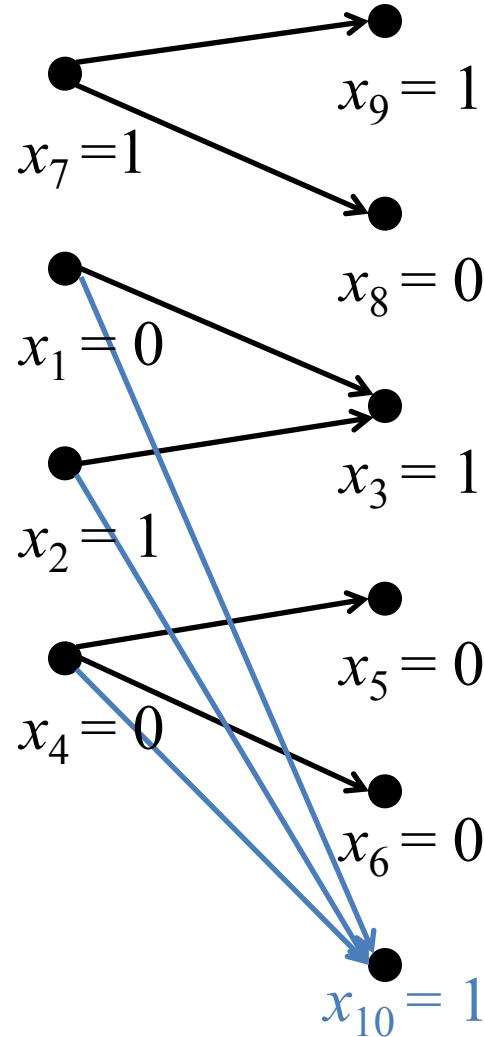
$$(x_1 \vee \neg x_2 \vee x_4 \vee x_{10})$$

to the formula to prevent this conflict in the future

Intelligent Backtracking

- When reaching a conflict, we
 - Consider conflicted clauses
 - Draw the implication graph
 - Identify the decision variables
 - Generate the learnt no-good
 - Add learned clause to the formula
- Undo assignments until the learned clause becomes a unit clause

Intelligent Backtracking Example (1)

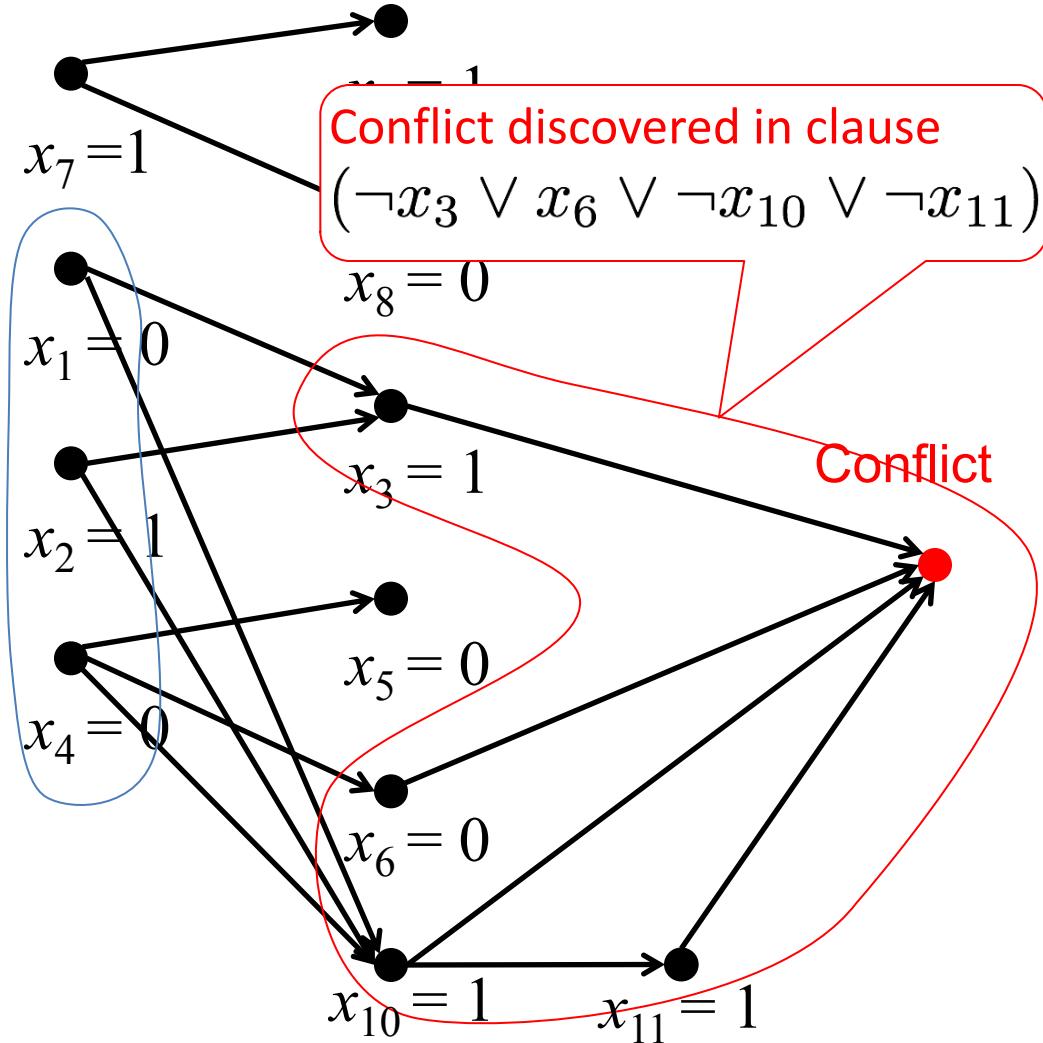

DL	Assignment
1	$x_1 = 0$
2	$x_2 = 1$
	$x_3 = 1$
3	$x_4 = 0$
	$x_5 = 0$
	$x_6 = 0$
4	$x_7 = 1$
	$x_8 = 0$
	$x_9 = 1$
5	$x_{10} = 0$
	$x_{11} = 1$
	$x_{12} = 0$

$$\begin{aligned}
 & (x_5 \vee x_6 \vee x_{10} \vee \neg x_{12}) \wedge \\
 & (\neg x_3 \vee x_5 \vee \neg x_{11} \vee x_{12}) \wedge \\
 & (\neg x_3 \vee x_6 \vee \neg x_{10} \vee \neg x_{11}) \wedge \\
 & (x_1 \vee \neg x_2 \vee x_3) \wedge \\
 & (\neg x_7 \vee x_9) \wedge \\
 & (\neg x_7 \vee \neg x_8) \wedge \\
 & (x_4 \vee \neg x_5) \wedge \\
 & (x_4 \vee \neg x_6) \wedge \\
 & (x_{10} \vee x_{11}) \wedge \\
 & (\neg x_{10} \vee x_{11}) \wedge \\
 & (x_1 \vee \neg x_2 \vee x_4 \vee x_{10})
 \end{aligned}$$

x_{10} deepest
decision variable

Intelligent Backtracking Example (2)

DL	Assgn	DL	Assgn
1	$x_1 = 0$	1	$x_1 = 0$
2	$x_2 = 1$	2	$x_2 = 1$
	$x_3 = 1$		$x_3 = 1$
3	$x_4 = 0$	3	$x_4 = 0$
	$x_5 = 0$		$x_5 = 0$
	$x_6 = 0$		$x_6 = 0$
4	$x_7 = 1$	4	$x_7 = 1$
	$x_8 = 0$		$x_8 = 0$
	$x_9 = 1$		$x_9 = 1$
5	$x_{10} = 0$		$x_{10} = 1$
	$x_{11} = 1$		
	$x_{12} = 0$		


Intelligent Backtracking Example (3)

Conflict caused by these decision variables

.. and add the clause

$$(x_1 \vee \neg x_2 \vee x_4)$$

to the formula to prevent this conflict in the future

Intelligent Backtracking Example (4)

DL	Assgn
1	$x_1 = 0$
2	$x_2 = 1$
3	$x_3 = 1$
3	$x_4 = 0$
	$x_5 = 0$
	$x_6 = 0$
4	$x_7 = 1$
	$x_8 = 0$
	$x_9 = 1$
	$x_{10} = 1$

$$\begin{aligned}
 & (x_5 \vee x_6 \vee x_{10} \vee \neg x_{12}) \wedge \\
 & (\neg x_3 \vee x_5 \vee \neg x_{11} \vee x_{12}) \wedge \\
 & (\neg x_3 \vee x_6 \vee \neg x_{10} \vee \neg x_{11}) \wedge \\
 & (x_1 \vee \neg x_2 \vee x_3) \wedge \\
 & (\neg x_7 \vee x_9) \wedge \\
 & (\neg x_7 \vee \neg x_8) \wedge \\
 & (x_4 \vee \neg x_5) \wedge \\
 & (x_4 \vee \neg x_6) \wedge \\
 & (x_{10} \vee x_{11}) \wedge \\
 & (\neg x_{10} \vee x_{11}) \wedge \\
 & (x_1 \vee \neg x_2 \vee x_4 \vee x_{10}) \wedge \\
 & (x_1 \vee \neg x_2 \vee x_4)
 \end{aligned}$$

Intelligent Backtracking Example (5)

DL	Assgn	DL	Assgn	
1	$x_1 = 0$	1	$x_1 = 0$	$(x_5 \vee x_6 \vee x_{10} \vee \neg x_{12}) \wedge$
2	$x_2 = 1$	2	$x_2 = 1$	$(\neg x_3 \vee x_5 \vee \neg x_{11} \vee x_{12}) \wedge$
	$x_3 = 1$		$x_3 = 1$	$(\neg x_3 \vee x_6 \vee \neg x_{10} \vee \neg x_{11}) \wedge$
3	$x_4 = 0$	3	$x_4 = 1$	$(x_1 \vee \neg x_2 \vee x_3) \wedge$
	$x_5 = 0$			$(\neg x_7 \vee x_9) \wedge$
	$x_6 = 0$			$(\neg x_7 \vee \neg x_8) \wedge$
4	$x_7 = 1$			$(x_4 \vee \neg x_5) \wedge$
	$x_8 = 0$			$(x_4 \vee \neg x_6) \wedge$
	$x_9 = 1$			$(x_{10} \vee x_{11}) \wedge$
	$x_{10} = 1$			$(\neg x_{10} \vee x_{11}) \wedge$
				$(x_1 \vee \neg x_2 \vee x_4 \vee x_{10}) \wedge$
				$(x_1 \vee \neg x_2 \vee x_4)$

Summary

- Search
 - Assign variable, Propagate
 - Detect conflict? Intelligent backtracking
- Intelligent backtracking
 - Identify decision variables source of conflict
 - Add no-good clause so conflict cannot arise in the future
 - Backtrack the deepest variables in the learnt clause
 - Flip assignment of deepest variable in learnt clause
 - Proceed
- Do you see any problem in this strategy?