CSCE476/876

Spring 2008

Homework 8

Assigned on: Monday, April 7, 2008.

Due: Friday, Apr 18, 2008.

Contents

Truth Tables 8 points 1 AIMA, Exercise 7.2, page 236. 16 points 1 3 AIMA, Exercise 7.8, page 237. 16 points 1 Logical Equivilences 8 points $\mathbf{2}$ **Proofs** 29 points 2 5 AIMA, Exercise 7.11, page 238. 18 points + 20 bonus3 This is a pen-and-paper homework, to be returned in class The whole homework is worth 95 points

1 Truth Tables

8 points

Use truth tables to show that each of the following is a tautology.

- 1. $(p \land q) \rightarrow \neg(\neg p \lor \neg q)$
- $2. \ [Mary \wedge (Mary \rightarrow Susy)] \rightarrow Susy$
- 3. $\alpha \to [\beta \to (\alpha \land \beta)]$
- 4. $(a \rightarrow b) \rightarrow [(b \rightarrow c) \rightarrow (a \rightarrow c)]$
- 2 AIMA, Exercise 7.2, page 236.

16 points

3 AIMA, Exercise 7.8, page 237.

16 points

only c, d, e, f, g and h.

4 Logical Equivilences

8 points

Using a method of your choice, verify:

- 1. $(\alpha \to \beta) \equiv (\neg \beta \to \neg \alpha)$ contraposition
- 2. $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan
- 3. $(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \gamma) \vee (\alpha \wedge \beta))$ distributivity of \wedge over \vee

5 Proofs

29 points

Give the explanation of each step if the steps are given, and give both the explanation and step if they are not.

• If $q \wedge (r \wedge p), t \rightarrow v, v \rightarrow \neg p$, then $\neg t \wedge r$.

Proof

Explanations

1. $q \wedge (r \wedge p)$

Given

 $2. t \rightarrow v$

Given

3. $v \rightarrow \neg p$

Given

- 4. $t \rightarrow \neg p$
- 5. $(r \wedge p)$
- 6. r
- 7. p
- 8. $\neg \neg p$
- 9. $\neg t$
- 10. $\neg t \wedge r$

• If $p \to (q \land r), q \to s$, and $r \to t$, then $p \to (s \land t)$.

Proof

Explanations

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

• Prove by contradiction.

If $\neg(\neg p \land q), p \rightarrow (\neg t \lor r), q$, and t, then r.

Proof Explanations

- 1. $\neg(\neg p \land q)$
- 2. $p \to (\neg t \lor r)$ Given
- 3. q
- 4. t
- 5. $\neg r$ Negation of Conclusion
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.

6 AIMA, Exercise 7.11, page 238. 18 points + 20 bonus

Parts a, b, and c are required. Parts d, e, and f are bonus.