CSCEA476/876 Spring 2006
Homework 5

Assigned on: Monday, March 3, 2008.
Due: Monday, March 24, 2008.

Programming assignment should be submitted with handin.

1. Data structures in Common Lisp (Total 50 points)

2. Implementing Search in Common Lisp (Total 45 points)

3. Documentation and organization of code. (Total 5 points)
In particular, you must specify your sources and acknowledge any help you may have
received.

Do not hesitate to seek help during recitation and office hours.

1 Data structures in Common Lisp (Total 50 points)

Using defstruct (see LWH, Chapter 13), create data structures in Common Lisp to represent
the map of Romania. Include the information about the distances between two cities linked
by a road as well as the distance from any given city to Bucharest as indicated in Figure 1.

Arad 366 M ehadia 241

Bucharest 0 Neamt 234

Craiova 160 Oradea 380

Dobreta 242 Pitesti 100

Eforie 161 Rimnicu Vilcea 193

O Hirsva  Fagaras 176 Sibiu 253

Giurgiu 77 Timisoara 329

Hirsova 151 Ur ziceni 80

lasi 226 Vadui 199

[ Giurgiu Eforie LUng 244 Zerind 374

Figure 1: Map of Romania with road distances in kilometers and straight-line distances to
Bucharest.

Indications (follow illustration in Figure 2):
e Create a data structure for a city using defstruct.

e Include an attribute name to store the name of the city.
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Figure 2: Data structures.

e Include an attribute neighbors to store the neighboring cities.
e Include an attribute h that provides the value of the straight-line distance to Bucharest.

e (Create a global variable that stores all the cities. Use defvar to declare the global
variables. Implement it this in two different ways: a list *all-cities-1list* and a
hash-table *all-cities-htable* . Use the name of a city as key and the structure
as value. For sake of clarity, you are not asked to implement a hash-table (which you
probably did in CSCE310) but to use a hash-table in Lisp.

o After creating structures for all the cities, loop through them again in order to include,
in the relevant attribute of a city, a reference its neighboring cities. Store these neigh-
bors as an association list of the structure of a neighbor and the distance between the
two (see LWH, page 31).

1.1 Tasks

1. (10 points) Design, implement and test your map.

2. (5 points) Write a function all-cities-from-list that takes a global variable,
xall-cities-list*, and returns a list of all names of cities on the map.

!Check documentation on hash-tables in
http://wuw.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html and
http://www.lisp.org/HyperSpec/Body/fun make-hash-table.html.



3. (5 points) Write a and all-cities-from-htable that takes a global variable,
xall-cities-htablex and returns a list of all the structures of cities on the map.

4. (5 point) Write two functions get-city-from-list and get-city-from-htable that
take the name of a city as input and return the corresponding structure (by accessing
a global variable, ¥all-cities-list* and *all-cities-htablex, respectively).

5. (5 points) Write two functions neighbors-using-1list and neighbors-using-htable
that take the mame of a city as input and return the list of structures of its di-
rect neighbors. neighbors-using-list and neighbors-using-htable should use
get-city-from-list and get-city-from-htable, respectively.

6. (10 points) Using *all-cities-htable*, write a function neighbors-within-d that
takes the name of a city my-city and a number distance, then returns, for all direct
neighbors within distance from my-city (<), an association list of the structures of
the neighbors of my-city and their distance to my-city.

7. (10 points) Using *all-cities-htable*, write a function neighbors-p that takes the
name of two cities city-1 and city-2, and returns the distance between them if they
are directly connected or nil if they are not.

Note that the global variables should always be passed as arguments to these functions
(becoz it is cleaner).

2 Implementing Search in Common Lisp (Total 45 points)

You are asked to implement as a TREE-SEARCH the search strategies below. Do not imple-
ment a GRAPH-SEARCH, it will not be accepted.

e Any uninformed search strategy of your choice, 15 points
e A Greedy search strategy, and 15 points
e An A* search strategy. 15 points

for the ‘Romanian Holiday’ problem. Needless to say, you should first get Section 1 to work.
Write Search that take as input the name of any city on the map, the name of a search
strategy, and returns:

1. The path to Bucharest,
2. The number of nodes generated/visited by the search process,

3. The cost of the path found (even when the function g(n) is not used to choose the
node to expand),

4. The running time spent by Lisp on the search. You may use the function get-internal-run-time
before and after running the search and print the difference or use the function time
and report the value of cpu time (non-gc) as printed on the *standard-output™® (i.e.,
the emacs buffer).



Hints:

e You may want to use the Lisp function values and multiple-value-bind.

e You may choose to write one search function and give it the strategy as an argument.

2.1 Results to report

In addition to your code, report the results of your two functions applied to each city in
Romania as indicated in the following table:

Uninformed search of your choice

City name | #£nodes visited | Path to Bucharest | Total cost of path | CPU time
Arad
Bucharest
Vaslui
Zerind
Greedy Search
City name | #nodes visited | Path to Bucharest | Total cost of path | CPU time
Arad
Bucharest
Vaslui
Zerind
A* Search
City name | #nodes visited | Path to Bucharest | Total cost of path | CPU time

Arad
Bucharest

Vaslui
Zerind

2.2 Some indications

Follow the requirements below:

1. Modify the data structure of a city that you implemented in Section 1 to add one more
field visited, initialized to Nil. Use this attribute for loop control during search:
when a city is visited, set this field to T.




. Create a new data structure (e.g., defstruct) to represent a node in the search tree.
The structure should have attributes that point to the structures of its parent (when
applicable), its children (list), the city it represents. Other attributes may be necessary,
such as path value at the node.

. Implement a function expand-node that takes a node in the search tree and generates
its children, which should correspond to cities not yet visited. It needs to generate one
node data-structure per child.

. Implement a function evaluate-node that takes a node and a search strategy and
returns the value of the node (e.g., g(n), h(n) or f(n)).

. Implement a function that takes a fringe (i.e., a list of nodes to be expanded) and
returns the node to expand. As a refinement, you can provide the name of the search
strategy as an optional second argument (check :key in the list of arguments of a
function).

. If you separate the implementation search strategy from the evaluation functions clev-
erly enough, you may be able to use the same search function for all search strategies
you implement.

. Implement the search strategies iteratively, not recursively.

. Declare a global variable *nnv* for storing the number of nodes visited. The search
function should set up its value and the function expand-node should increment this
value at every expansion (technically, every instantiation of a search-node structure).

. Load the information about the cities from the file cities.in which is on the course
website.



