CSCEA476/876 Spring 2008

Homework 3: Programming Assignment
Using Emacs and Common Lisp

Assigned on: Wednesday February 6, 2008.

Due: Friday February 15, 2008.

Contents

1 Find (6 points) 3
2 List iteration (Total 8 points, 2 points each) 4
3 Exify (8 points) 4
4 Count occurrences (5 points) 4
5 Dot Product (5 points) 4
6 X-product (15 points) 5
7 Bonus: Cartesian Product (15 points) 5
8 Data Structures in LISP (5 Points) 5
9 Objects & Methods in LISP (30 points + 6 Bonus) 5
10 Improving the code for the Farmer’s Dilemma (18 points) 7

The goal of this programming assignment is to familiarize you with Common Lisp by
demonstrating a few simple programs and asking you to write a few more. For each of the
problems, create a separate lisp file. Name them probleml.lisp, problem2.lisp, and so
on. Store all of your work on a given problem in the same file. When required to define
several functions in a given problem, put them all in the same file.

Getting started

You have already seen most of the content of this “getting started” section during the
recitations. We just want to insist and make sure that you have gone through the steps
below.

Emacs is more than a simple (and powerful) editor: it provides you with a terrific envi-
ronment for running a Common Lisp interpreter. Emacs may seem a little confusing at the
beginning, but your efforts will quickly pay off.

1. Carefully follow the instructions provided during recitation for setting up your envi-
ronment, then conscientiously go through the Emacs tutorial:
http://csce.unl.edu/~choueiry /emacs-tutorial.txt

2. Check out the key-stroke accelerators provided in
http://cse.unl.edu/~choueiry/emacs-1lisp.html

Open an Emacs buffer, create a file my-test.lisp, write a Lisp function, and test it.
In particular, load a file (C-x C-f), check how TAB and the Space bar achieve comple-
tion of commands and file names, interrupt a command (C-g), delete a line in a buffer
(C-k), move forward and backward in the buffer (C-f, C-b, M-f, M-b, etc.), save the
modifications in the buffer to the file (C-x C-f), check the message in the mini buffer),
kill an open buffer (C-x k)

3. Start a Lisp interpreter in Emacs by typing M-x fi:common-lisp (check out comple-
tion with the space bar by typing M-x fi:com<space-bar>). Answer yes by typing
<return> to all questions asked in the mini-buffer (until you learn to do otherwise).
Now you should have a prompt sign of the Lisp interpreter. This is a loop that reads
whatever you type in and evaluates it as a Lisp expression as soon as you hit the carriage
return. Practice your knowledge of Emacs and interactions with the Lisp interpretor
by executing all the instructions in Chapter 2, 3, and 4 of LWH. In particular,

e Test the functions car, cdr, cadr, cdar, first, length which operate on a list.

e Test cons, append and 1list and note the differences between them with respect
to their input and output.

e Test push, pop, pushnew, delete and remove and note whether or not they are
destructive.

e Test unary predicates atom, 1listp, consp, null, evenp, oddp, etc. on atoms,
numbers, lists, NIL and T as input.

e Test the binary predicate =. The test eq, eql and equal. For instance, define:
(setf 1s1 ’(a b c)) and (setf 1s2 ’(b c)). Now, Test:
(eq (cdr 1s1) 1s2) and (equal (cdr 1s1) 1s2). What do you conclude?

e Read about and test the constructs if, when, cond, do, do*, dolist, dotimes,
mapcar, find, reduce (my absolute favorite), some, every,

e Read about and test the functions on sets (as lists): intersection, union,
set-difference, member, subseteq, adjoin.

e mapcar is a very useful function that will make the dot-product, x-product, and
Cartesian Product very simple to do. mapcar is used in the form (literally taken
from Guy Steele’s Common Lisp pagel71):

mapcar function list &rest more-lists

mapcar operates on successive elements of the lists. First the function is applied to
the car of each list, then to the cadr of each list, and so on. The value returned by
mapcar is a list of the results of the successive calls to the function. For example:

(mapcar #’abs (3 -4 2 -5 -6)) = (34 2 5 6)
(mapcar #°+ (1 2 3) (1 23)) = (1 49)

4. Save some of the functions you have written in the file my-test.lisp. Exit Lisp by typ-
ing :exit in the Lisp interpreter and start Lisp again typing M-x fi:com<space-bar>.
You can load the functions you have written in my-test.lisp in the Lisp environment
by typing in your lisp buffer:

(load "<path>/my-test.lisp")
Emacs provides also some quick commands: :1d ~/<path>/my-test.lisp. To have
a list of all the abbreviated commands provided by emacs, type in your Lisp buffer
help. Note that all abbreviated commands start with :.

5. The stepper of ACL works best on compiled code, and when you stick to the fol-
lowing scenario. First, compile your file and load the compiled filed. Then, type
in the *common-lisp* buffer in Emacs: :step ’<name of the function to step
through>. Then type the function call: (<name of the function to step through>
<argl> <arg2> etc.). To stop the stepper, just type: :step.

6. Use the time and space profiler of Composer to improve your code. Use the Lisp
function time to evaluate the cost of your code (time and space). You may want to
make sure to do the right DECLARATIONS for optimizing your code for speed (check
a Lisp manual), etc.

7. Exit Lisp with :ex and quit emacs C-x C-c.

Now, it is time to jump into the fire! Do not hesitate to ask the TA and RAs for help.

1 Find (6 points)

Common Lisp has a built-in function called find, which is called with the syntax

(find element list)
and will return nil if the element is not found in the list. If, on the other hand, the
element is found in the list, the function will simply return that element. For example,
(find ’b ’(a b ¢ d)) will return B. Observe that (find ’b ’(a b c a b c)) also re-
turns B. Modify the my-member- functions that you wrote for the above problem to duplicate
the built-in find function. This is a very simple task.

1. Create a function (my-find-cond element list) that uses recursion.

2. Create a function (my-find-do element list) that uses iteration.

2 List iteration (Total 8 points, 2 points each)

The goal of this exercise is to make you use various constructs of Common Lisp to iterate
over the elements of list. You are asked to write a function double-xx that takes as input
a list of numbers such as ’(3 22 5.2 34) and returns a list of “doubled-up” numbers
’(6 44 10.4 68).

1. Write double-mapcar using mapcar.
2. Write double-dolist using dolist.
3. Write double-do using do.

4. Write double-recursive using cond and recursive calls.

3 Exify (8 points)

Write a recursive function exify that takes a list as input and returns a list in which all
non-nil elements are replaced by the atom X.

Test it first on: (exify ’(1 hello 3 foo 0 nil bar)).

It should return: (X X X X X NIL X).

Then test it on: (exify ’(1 (hello (3 nil (foo)) 0 (nil)) (((bar))))).

It should return: (X (X (X NIL (X)) X (NIL)) (((X)))).

4 Count occurrences (5 points)

Write a recursive function count-anywhere that takes an atom and an arbitrary nested list
as input and counts the number of times the atom occurs anywhere within the list. Example
(count-anywhere ’a ’(a (b (a) (c a)) a)) returns 4.

5 Dot Product (5 points)

Write a function that computes the dot product of two sequences of numbers represented
as lists. Assume that the two lists given as input have the same length. The dot product
is computed by multiplying the corresponding elements and then adding up the resulting
product. Example:
(dot-product ’(10 20) ’(3 4))) = 110
(dot-product (1 2 4 5) ’(3 4 3 4)) = 43

4

6 X-product (15 points)

Write a function that takes a function name and two lists and returns the x-product defined
by applying the function on the elements of the lists at the same position. Example:
(x-product #’+ ’(1 2 3) ’(10 20 30)) returns (11 12 13 21 22 23 31 32 33) and
(x-product #’1list (1 2 3) ’(a b c))

returns ((1 A) (2 A) (3 A) (1 B) (2B) (3B) (1¢C) (2¢C) (3¢0C))

Note: The terminology used above (i.e., dot, x-, Cartesian product) is not a strict one.

7

Bonus: Cartesian Product (15 points)

Write a function that takes a list of any number of lists and return the Cartesian product:
(k-product ’((a b c) (1 2 3)))

returns: ((A 1) (A 2) (A 3) (B1) (B2) (B3) (C1) (C2) (C3))and
(k-product ’((a b) (1 2 3) (x y)))

returns: ((A 1 X) (A1Y) (A2X) (A2Y) (A3X) (A3Y)

8

9

B1X) B1Y) B2X) (B2Y) (B3X) (B3Y))

Data Structures in LISP (5 Points)

Using defstruct create the data type person, with fields for a person’s name, age,
and list of pointers the structures of the siblings of the person.

Create structures for Bob age 21, Susan age 18, and Frank age 16, who are all siblings.
Use the print function to display the information about the people. What happens?

The problem, if you notice it, is the print function of the data structure. Each symbol
in lisp has a print function, which displays some information when the symbol is
evaluated. We will be discussing the solution to this problem in recitation, however,
you may want to start investigating how to modify the print function of defstruct,
which can be easily done.

Objects & Methods in LISP (30 points 4+ 6 Bonus)

This section of the homework deals with time intervals, which are the building blocks for
temporal reasoning. For more background on the subject, goto pages 338 and 339 of AIMA.
Figure 1 introduces 6 qualitative relationships that may exist between two intervals (there
are 13 of them, called the Allen relations for qualitative temporal reasoning).

You are asked to implement CLOS (Common Lisp Object System) objects to represent
the intervals and methods to determine whether or not the predicates hold.

X before y
| y after x

| X : . xmeetsy
| "y met-by x

| X | x overlaps y
| 5 | .y overlapped-by x

X | X | . xstartsy
| | Y started—by x

y | X | . Xduringy
: | | © ycontains x

x equals y | X | xfinishesy
: I |y finished-by x

Figure 1: Predicates on time intervals

. Implement, using defclass, a data type time-point that has one slot, which is an
integer (representing seconds).

. Implement, using defclass, two data types begint and endt, as subclasses of time-point.

. Implement, using defclass, a data type interval that has the following slots: task-name,
begint, and endt, where begint and endt are of the type time-points.

. Write the methods that implement the predicates listed below and illustrated in Fig-
ure 1, which take as input two objects of type interval and return whether or not each
of the following predicates holds.

Meet(i,j) < Time(End(i)) = Time(Start(j))

Before(i,j) < Time(End(i)) < Time(Start(j))

After(i,j) < Before(j,1)

During(i, j) < Time(Start(j)) < Time(Start(i)) N Time(End(i)) < Time(End(j))
Overlap(i,j) < 3 k During(k,i) \ During(k, j)

Bonus: The following predicates count for bonus points (2 points each).
o Fquals(i,j) < Time(Begin(i)) = Time(Begin(j)) \ Time(End(i)) = Time(End(j))
o [inishes(i,j) < Time(End(i)) = Time(End(j))
e Contains(i,j) < Time(Begin(i)) < Time(Begin(j)) N Time(End(i)) > Time(End(j))

The last two exercises in this homework are meant to introduce you to structures and
classes. Generally speaking, structures are much lighter data objects than classes are. This
is because classes require the definition of a many initialization methods (as described in the
beautiful book The Art of the Metaobject Protocol of Kiczales). Classes are powerful, but
heavy, so do use them only when you really need them.

10 Improving the code for the Farmer’s Dilemma (18
points)

This section is mandatory for graduate students, bonus for undergraduate students.

The Lisp code for the farmer’s dilemman is made available on the web site of the course
under the section ‘Recitation.” As discussed in class, this code avoids visiting nodes that
already are in the current path. The code does not check for states that were visited during
search but figuring outside the current path. In class, we discussed that one could modify
the code to avoid visiting such states, for example, by storing all visited states in a data
structure, like a hash table. The task is to modify the current code to add this improvement.

e Modify the code to introduce a counter that is incremented every time a new state
is visited using the function incf. Run the current code and provide the number of
states visited.

e Define a global data structure (e.g., using defvar) to store the states ever visited.
Modify the code to avoid visiting states already visited.

e Run the current code and provide the number of states visited.
e Draw your conclusions.

You need to provide each version of the modified code in a separate file. Provide also a
README file with explanations of your files.

