
A Composition Algorithm for Very Hard Graph
3-Colorability Instances!

Seiichi Nishihara, Kazunori Mizuno, and Kohsuke Nishihara

Institute of Information Sciences and Electronics, University of Tsukuba
Tsukuba, Ibaraki 305-8573, Japan
nishihara@is.tsukuba.ac.jp

mizuno@algor.is.tsukuba.ac.jp
pml01582@mail1.accsnet.ne.jp

1 Introduction

Graph colorability (COL) is a constraint satisfaction problem, which has been
studied in the context of computational complexity and combinatorial search al-
gorithms. It is also interesting as subjects of heuristics [2]. Many research reports
discuss the complexity of COL [2,3,4,8,9,10]. Examples of possible candidates of
order parameters that explain the mechanism making COLs very hard include
the 3-paths [10], the minimal unsolvable subproblems [8], and the frozen devel-
opments [4]. Instead of generate-and-test approaches, we propose a constructive
approach producing 3-colorablity problems (3COLs) that are exceptionally hard
for usual backtracking algorithms adopting Brélaz heuristics and for Smallk col-
oring program [1]. Instances generated by our procedure (1) are 4-critical, (2)
include no near-4-cliques(n4c’s; 4-cliques with 1 edge removed) as subgraphs,
and (3) have the degree of every node limited to 3 or 4: quasi-regular.

2 Graph 3-Colorability and 4-Critical Graphs

Let G = (V, E) be a graph to be colored, where V and E corresponds to the
set of vertices and edges. Let n =| V | and m =| E |. An edge (i, j) ∞ E has
the constraint that prohibits assigning the same color to vertices, i and j. Phe-
nomena similar to physical phase transitions are generally observed in COLs,
where search cost follows an easy-hard-easy pattern as a function of constraint
density, or κ(= 2m/n). The region where median search cost becomes the most
time-consuming lies very close to the cross-over point, at which half the instances
are solvable and half unsolvable (primary PT). An interesting region also exists
at a slightly lower constraint density than that of primary PT, in which excep-
tionally hard instances (EHIs) [5] tend to occur, although most are solved easily
(secondary PT).
! This research was supported in part by the Ministry of Education, Culture, Sports,

Science and Technology of Japan, Grant-in-Aid for Scientific Research (B)(2), No.
14380134, 2002–2005.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 914–919, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Composition Algorithm for Very Hard Graph 3-Colorability Instances 915

u

x

v

w

Fig. 1. An n4c.

i j
. . . i j

u

v

w
. . .

(a) A 4-critical graph (part). (b) Embedding completed.

Fig. 2. Embedding operator embed K4(i, j).

A hard non 3-colorable graph necessarily contains large 4-critical subgraphs
[4,8], i.e., non 3-colorable but any proper subgraph is 3-colorable. K4, 4-clique, is
the smallest 4-critical graph because removing an arbitrary edge from it makes
a 3-colorable graph, which we call an n4c (Fig. 1) [4]. The n4c contains an
interesting constraint, constraint(x,w), that claims the colors for x and w must
be the same. Let Fig. 2(a) be part of a 4-critical graph, where the degree of vertex
i, deg(i), is 3. Introduce an operation, embed K4(i, j), where an n4c is added
in place of edge (i, j) merging i and x and connecting j and w 1. Starting with
K4 as the initial graph, arbitrarily large 4-critical instances are constructed by
repeating embed K4(i, j) recursively to meet the many known conditions EHIs
may have to satisfy [10,7, 4, 8].

3 Composition Algorithm for EHI without n4c’s
Because embed K4(i, j) always leaves an n4c in the graph, we can find at any
stage of graph construction at least 1 n4c, which is the footprint where the latest
embedding operation was executed. By repeating collapse, i.e., inverse operation
of embed K4(i, j), the given graph straightforwardly is reduced to a single K4
that is unsolvable. To overcome this drawback, we introduce a set of original n4c-
free 4-critical graphs independent of each other in that no graph is a subgraph of
any other. We found 7 such graphs by trial and error (Fig. 3), in which each graph
is termed MUGnt, where MUG stands for “minimal unsolvable graph,” n means
the number of vertices included, and t is used to identify the type if necessary.
Let us naturally extend the embedding operation to embed MUGnt(i, j). These
operations are the same as Hajós’ join construction [6] except that both vertices
to be merged should have the degree of 3.
Proposition 1 When embed MUGnt(i, j) is applied to a 4-critical graph, the
result remains 4-critical.

Proposition 2 Quasi-regularity is maintained by embed MUGnt operation
where nt is 9, 10, 11a, 11b, or 12c.

Proposition 3 Let the graph to embed contain, m edges and n = n3 + n4 + n5
vertices, where ni is the number of vertices with degree i. The numbers of vertices
1 Note that 4-criticality is maintained because the constraint, constraint(i, w), remains

after embedding while u and v are not adjacent to other vertices.

916 Seiichi Nishihara, Kazunori Mizuno, and Kohsuke Nishihara

(a) MUG9 (n = 9, m = 16) (b) MUG10 (n = 10, m = 18)

(c) MUG11a (n = 11, m = 20) (d) MUG11b (n = 11, m = 19)

(e) MUG12a (n = 12, m = 22) (f) MUG12b (n = 12, m = 22) (g) MUG12c (n = 12, m = 21)

Fig. 3. 4-critical n4c-free graphs.

with degrees 3,4,5 increase by n3 ∗ 2, n4 + 1, n5. The total number of vertices
increases by n ∗ 1, and edges by m ∗ 1.

Starting with a 4-critical graph, we construct arbitrarily large 4-critical
graphs, i.e., including an arbitrary number of vertices, by repeating embedding.
Fig. 4 gives the procedure “graph-generator(k)” which repeats embedding oper-
ations k times randomly. When we start with 1 of 7 graphs (Fig. 3), we produce
graphs contain no n4c’s. Further, if a quasi-regular graph is assigned initially
to Ginit at (1) in Fig. 4, and both MUG12a and MUG12b are excluded from
candidates at (2), then the graph-generator produces quasi-regular graphs.

4 Experiments and Discussion

We test the di!culty of 3COL instances generated by “graph-generator(k)”
where all graphs except for MUG12a and MUG12b are used to generate quasi-
regular graphs. For 8 cases from k = 5 to k = 12, 100 instances are generated
for each case, i.e., a total of 800 generated instances. These instances are applied
to the backtracking algorithm with Brélaz heuristics and the Smallk coloring
program. In the Brélaz algorithm, only 500 instances from k = 5 to k = 9 are
used for testing. These algorithms are implemented in C on a PC with 1 GHz
of Pentium III and 512 Mbytes of RAM. Fig. 5 gives results for search costs

A Composition Algorithm for Very Hard Graph 3-Colorability Instances 917

procedure graph-generator(k)
begin

input an initial graph Ginit; (1)
G := Ginit;
for w := 1 to k do

choose randomly an edge(i, j) ⇔ E(G) where deg(i)≤ 3;
choose randomly MUGnt, (nt =9, 10, 11a, 11b, 12a, 12b, or 12c); (2)
embed MUGnt(i, j);

end for;
end.
procedure embed MUGnt(i, j)
begin

choose randomly an edge (x, y) ⇔ E(MUGnt) where deg(x)≤ 3;
remove edges (i, j) and (x, y);
add an edge (j, y);
merge x with i;

end.

Fig. 4. 3COL instance generator.

and CPU time, where “average line” shows the variation in average search cost
and CPU time for each k as a function of the average number of vertices for
each k. Smallk is more sophisticated than the Brélaz algorithm, but both search
cost and CPU time clearly exhibit exponential growth2. We also conduct exper-
iments on randomly generated instances. For 33 cases from κ = 3.0 to κ = 5.0
at the intervals of 0.2 in n = 100, 200, and 300, 10,000 instances are randomly
generated for each cases, i.e., a total of 3.3 million generated instances, each of
which is solved using Smallk. In the Brélaz algorithm, only 1.1 million instances
with n = 100 are used. It is obvious that the hardness of our instance set cannot
be compared with that of the huge set of random instances (Fig. 6)3.

Experiments confirmed that our method stably produces EHIs whose com-
putational cost is of an exponential order of n. Researchers adopting generate-
and-test approaches found that conditions under which EHIs tend to occur are
as follows: (1) Their constraint density is near the secondary PT region [7], (2)
the smallest minimal unsolvable subproblem is very large compared to the in-
stance size [8], and (3) their structure is homogeneous, i.e., quasi-regular [10]. It
seems reasonable that instances produced by our method meet all these condi-
tions. Because our instances contain no n4c’s, most frozen pairs [4] are hidden
from the surface, which makes our instances hard to solve even for sophisticated
algorithms such as Smallk. We still do not know theoretically why our instances
become EHIs. The ultimate question may be whether our instances are inher-
2 As long as we see results of Culberson and Gent in [4], our instances seem to be

much harder than their threshold graphs, although the complexity of their graphs
also exhibit exponential growth.

3 In Smallk, it is only 2.6 sec. and 103 sec. to determine the colorability of each hardest
random instance with 200 and 300 vertices at γ = 4.8, whereas it requires more than
500 sec. on average in solving our instances with even 100 vertices or so in Fig. 5.

918 Seiichi Nishihara, Kazunori Mizuno, and Kohsuke Nishihara

Fig. 5. Experimental results on 3COL instances generated by our procedure.

Fig. 6. Experimental results on randomly generated instances.

ently hard for any search algorithms. Let us move on to an issue probably related
to heuristics. Fig. 3 introduces only 7 n4c-free MUGs independent of each other.
Although we surmise that the number of such graphs is infinite, we still do
not know how to generate them systematically. The method for producing such
graphs may be necessary for hiding the structural weakness of an instance so
that no clever heuristics can find and exploit it.

5 Conclusions

We have proposed a constructive algorithm to generate EHIs of 3COL, which
recursively repeat self-embedding operations of MUGs. The EHIs generated are
4-critical and contain no n4c’s, to hide a structural weakness that heuristics
would be able to exploit. Using Brélaz heuristics and Smallk, we showed that
the complexity of 3COL instances generated by our algorithm is an exponential
order of the number of vertices. We plan to develop a systematic method to
arbitrarily produce many MUGs independent of each other to construct hard
instances, and to clarify whether heuristics exist that cope with these instances.

A Composition Algorithm for Very Hard Graph 3-Colorability Instances 919

References

1. Overview of the Smallk Graph Coloring Program, 2000.
http://www.cs.ualberta.ca/ joe/Coloring/Colorsrc/smallk.html.

2. D. Brélaz. New Methods to Color the Vertices of a Graph. Comm. ACM, 22(4),
1979.

3. P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where Really Hard Problems Are.
In Proc. 12th IJCAI, 1991.

4. J. Culberson and I. Gent. Frozen development in graph coloring. Theor. Computer
Sci., 265, 2001.

5. S. A. Grant and B. M. Smith. Modelling Exceptionally Hard Constraint Satisfac-
tion Problems. In Proc. CP97, 1997.

6. D. Hanson, G. C. Robinson, and B.Toft. Remarks on the Graph Colour Theorem
of Hajós. Congressus Numerantium, 55, 1986.

7. T. Hogg and C. P. Williams. The hardest constraint problems: a double phase
transition. Artif. Inell., 69, 1994.

8. D. L. Mammen and T. Hogg. A New Look at Easy-Hard-Easy Pattern of Combi-
natorial Search Difficulty. Jour. Artif. Intell. Research, 7, 1997.

9. K. Mizuno and S. Nishihara. Toward Ordered Generation of Exceptionally Hard
Instances for Graph 3-Colorability. In Computational Symposium on Graph Col-
oring and its Generalizations(COLOR02), Ithaca, N.Y., Sept., 2002.

10. D. R. Vlasie. Systematic Generation of Very Hard Cases for Graph 3-Colorability.
In Proc. 7th IEEE ICTAI, 1995.

	Frontmatter
	Invited Papers
	Ten Challenges {\itshape Redux}: Recent Progress in Propositional Reasoning and Search
	Automated Mechanism Design: A New Application Area for Search Algorithms
	Languages versus Packages for Constraint Problem Solving
	Constraint Patterns

	Best Paper
	Control Abstractions for Local Search

	Full Papers
	Improved Algorithms for Counting Solutions in Constraint Satisfaction Problems
	Boosting Chaff's Performance by Incorporating CSP Heuristics
	Efficient CNF Encoding of Boolean Cardinality Constraints
	A Two-Stage Hybrid Algorithm for Pickup and Delivery Vehicle Routing Problems with Time Windows
	Solving Finite Domain Constraint Hierarchies by Local Consistency and Tree Search
	{\sc hibiscus}: A Constraint Programming Application to Staff Scheduling in Health Care
	Constraint-Based Optimization with the Minimax Decision Criterion
	An Algebraic Approach to Multi-sorted Constraints
	Periodic Constraint Satisfaction Problems: Polynomial-Time Algorithms
	Box Constraint Collections for Adhoc Constraints
	Propagation Redundancy in Redundant Modelling
	Soft Constraints: Complexity and Multimorphisms
	Constraint Satisfaction Differential Problems
	A Wealth of SAT Distributions with Planted Assignments
	Redundant Modeling for the QuasiGroup Completion Problem
	Open Constraint Optimization
	Constraints for Breaking More Row and Column Symmetries
	Generic SBDD Using Computational Group Theory
	Using Stochastic Local Search to Solve Quantified Boolean Formulae
	Solving Max-SAT as Weighted CSP
	Constraint Reasoning over Strings
	Tractability by Approximating Constraint Languages
	A Hybrid Constraint Programming and Semidefinite Programming Approach for the Stable Set Problem
	A Constraint-Aided Conceptual Design Environment for Autodesk Inventor
	Fast Bound Consistency for the Global Cardinality Constraint
	Propagating N-Ary Rigid-Body Constraints
	Solving `Still Life' with Soft Constraints and Bucket Elimination
	Exploiting Multidirectionality in Coarse-Grained Arc Consistency Algorithms
	Local-Search Techniques for Propositional Logic Extended with Cardinality Constraints
	Discrepancy-Based Additive Bounding for the AllDifferent Constraint
	A Synthesis of Constraint Satisfaction and Constraint Solving
	Maintaining Longest Paths Incrementally
	Resolution and Constraint Satisfaction
	Generating High Quality Schedules for a Spacecraft Memory Downlink Problem
	Symmetry Breaking Using Stabilizers
	An Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint
	Solving Existentially Quantified Constraints with One Equality and Arbitrarily Many Inequalities
	Using Constraint Programming to Solve the Maximum Clique Problem
	Greater Efficiency for Conditional Constraint Satisfaction
	Incremental Computation of Resource-Envelopes in Producer-Consumer Models
	Approximated Consistency for Knapsack Constraints
	Cost-Based Filtering for Shorter Path Constraints
	Bounded Backtracking for the Valued Constraint Satisfaction Problems
	Consistency and Propagation with Multiset Constraints: A Formal Viewpoint
	Pruning while Sweeping over Task Intervals
	Improving Backtrack Search for Solving the TCSP
	Certainty Closure

	Poster Papers
	clp(pdf(y)): Constraints for Probabilistic Reasoning in Logic Programming
	To Be or Not to Be ... a Global Constraint
	Constraint Programming for Modelling and Solving Modal Satisfiability
	Distributed Forward Checking
	A New Class of Binary CSPs for which Arc-Consistency Is a Decision Procedure
	Semi-automatic Modeling by Constraint Acquisition
	Structured vs. Unstructured Large Neighborhood Search: A Case Study on Job-Shop Scheduling Problems with Earliness and Tardiness Costs
	Using the Breakout Algorithm to Identify Hard and Unsolvable Subproblems
	Toy(FD): Sketch of Operational Semantics
	Scheduling in the Face of Uncertain Resource Consumption and Utility
	Supertree Construction with Constraint Programming
	(In)Effectiveness of Look-Ahead Techniques in a Modern SAT Solver
	Reduce and Assign: A Constraint Logic Programming and Local Search Integration Framework to Solve Combinatorial Search Problems
	A Canonicity Test for Configuration
	Improved Algorithms for Max-restricted Path Consistency
	CP-IP Techniques for the Bid Evaluation in Combinatorial Auctions
	A Two-Level Search Strategy for Packing Unequal Circles into a Circle Container
	Unrestricted Nogood Recording in CSP Search
	Constraints over Ontologies
	Using Constraints for Exploring Catalogs
	Intermediate (Learned) Consistencies
	Semi-independent Partitioning: A Method for Bounding the Solution to COP's
	Boosting as a Metaphor for Algorithm Design
	An Efficient Filtering Algorithm for Disjunction of Constraints
	INCOP: An Open Library for INcomplete Combinatorial OPtimization
	A Composition Algorithm for Very Hard Graph 3-Colorability Instances
	Efficient Representation of Discrete Sets for Constraint Programming
	Applying Interchangeability Techniques to the Distributed Breakout Algorithm
	Symmetry Breaking in Graceful Graphs
	Tree Local Search
	A SAT-Based Approach to Multiple Sequence Alignment
	Maintaining Dominance Consistency
	Terminating Decision Algorithms Optimally
	Scene Reconstruction Based on Constraints: Details on the Equation System Decomposition

	Doctoral Abstracts
	A New Approach to Solving SAT-Encoded Binary CSPs
	FeReRA: A Multi-agent Approach to Constraint Satisfaction
	Semantic Decomposition for Solving Distance Constraints
	Using Constraint Programming and Simulation for Execution Monitoring and On-Line Rescheduling with Uncertainty
	On the Enhancement of the Informed Backtracking Algorithm
	Extending CLP with Metaheuristics
	Self Configuring Constraint Programming Systems
	Interactive Tradeoff Generation
	Introducing {\sc esra}, a Relational Language for Modelling Combinatorial Problems (Abstract)
	Abstracting Constraints Using Constraints
	Sensitivity Analysis in CSPs
	Solution Stability in Constraint Satisfaction Problems
	{\itshape distn}: An Euclidean Distance Global Constraint
	Algorithmic Mechanism Design and Constraints
	Preference Constraints: New Global Soft Constraints Dedicated to Preference Binary Relations
	Optimising the Representation and Evaluation of Semiring Combination Constraints
	Symmetry Breaking Ordering Constraints
	Observation of Constraint Programs
	Search Programming
	Exploiting Microstructure in CSPs
	Using Case-Based Reasoning to Write Constraint Programs
	Reformulation Techniques for a Class of Permutation Problems
	NuSBDS: An Easy to Use Symmetry Breaking System
	Interactivity in Constraint Programming
	Identifying Inconsistent CSPs by Relaxation
	Useful Explanations
	Teacher and Learner Profiles for Constraint Acquisition
	Comparison of Symmetry Breaking Methods
	Improved Branch and Bound Algorithms for Max-2-SAT and Weighted Max-2-SAT
	Search for Mathematical Objects
	Explanations for Global Constraints
	Watching Clauses in Quantified Boolean Formulae
	Distributed Constraint-Based Railway Simulation
	Dynamic Step Size Adjustment in Iterative Deepening Search
	Learning Good Variable Orderings
	An Adaptive Controller for Real-Time Resolution of the Vehicle Routing Problem
	α-Dynamic Controllability of Simple Temporal Problems with Preferences and Uncertainty
	Computing Explanations for Global Scheduling Constraints
	Restart Strategies: Analysis and Simulation
	OpenSolver: A Coordination-Enabled Abstract Branch-and-Prune Tree Search Engine

	Backmatter

