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1 Introduction

Graph colorability (COL) is a constraint satisfaction problem, which has been
studied in the context of computational complexity and combinatorial search al-
gorithms. It is also interesting as subjects of heuristics [2]. Many research reports
discuss the complexity of COL [2,3,4,8,9,10]. Examples of possible candidates of
order parameters that explain the mechanism making COLs very hard include
the 3-paths [10], the minimal unsolvable subproblems [8], and the frozen devel-
opments [4]. Instead of generate-and-test approaches, we propose a constructive
approach producing 3-colorablity problems (3COLs) that are exceptionally hard
for usual backtracking algorithms adopting Brélaz heuristics and for Smallk col-
oring program [1]. Instances generated by our procedure (1) are 4-critical, (2)
include no near-4-cliques(n4c’s; 4-cliques with 1 edge removed) as subgraphs,
and (3) have the degree of every node limited to 3 or 4: quasi-regular.

2 Graph 3-Colorability and 4-Critical Graphs

Let G = (V, E) be a graph to be colored, where V and E corresponds to the
set of vertices and edges. Let n =| V | and m =| E |. An edge (i, j) ∞ E has
the constraint that prohibits assigning the same color to vertices, i and j. Phe-
nomena similar to physical phase transitions are generally observed in COLs,
where search cost follows an easy-hard-easy pattern as a function of constraint
density, or κ(= 2m/n). The region where median search cost becomes the most
time-consuming lies very close to the cross-over point, at which half the instances
are solvable and half unsolvable (primary PT). An interesting region also exists
at a slightly lower constraint density than that of primary PT, in which excep-
tionally hard instances (EHIs) [5] tend to occur, although most are solved easily
(secondary PT).
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(a) A 4-critical graph (part).              (b) Embedding completed.

Fig. 2. Embedding operator embed K4(i, j).

A hard non 3-colorable graph necessarily contains large 4-critical subgraphs
[4,8], i.e., non 3-colorable but any proper subgraph is 3-colorable. K4, 4-clique, is
the smallest 4-critical graph because removing an arbitrary edge from it makes
a 3-colorable graph, which we call an n4c (Fig. 1) [4]. The n4c contains an
interesting constraint, constraint(x,w), that claims the colors for x and w must
be the same. Let Fig. 2(a) be part of a 4-critical graph, where the degree of vertex
i, deg(i), is 3. Introduce an operation, embed K4(i, j), where an n4c is added
in place of edge (i, j) merging i and x and connecting j and w 1. Starting with
K4 as the initial graph, arbitrarily large 4-critical instances are constructed by
repeating embed K4(i, j) recursively to meet the many known conditions EHIs
may have to satisfy [10,7, 4, 8].

3 Composition Algorithm for EHI without n4c’s
Because embed K4(i, j) always leaves an n4c in the graph, we can find at any
stage of graph construction at least 1 n4c, which is the footprint where the latest
embedding operation was executed. By repeating collapse, i.e., inverse operation
of embed K4(i, j), the given graph straightforwardly is reduced to a single K4
that is unsolvable. To overcome this drawback, we introduce a set of original n4c-
free 4-critical graphs independent of each other in that no graph is a subgraph of
any other. We found 7 such graphs by trial and error (Fig. 3), in which each graph
is termed MUGnt, where MUG stands for “minimal unsolvable graph,” n means
the number of vertices included, and t is used to identify the type if necessary.
Let us naturally extend the embedding operation to embed MUGnt(i, j). These
operations are the same as Hajós’ join construction [6] except that both vertices
to be merged should have the degree of 3.
Proposition 1 When embed MUGnt(i, j) is applied to a 4-critical graph, the
result remains 4-critical.

Proposition 2 Quasi-regularity is maintained by embed MUGnt operation
where nt is 9, 10, 11a, 11b, or 12c.

Proposition 3 Let the graph to embed contain, m edges and n = n3 + n4 + n5
vertices, where ni is the number of vertices with degree i. The numbers of vertices
1 Note that 4-criticality is maintained because the constraint, constraint(i, w), remains

after embedding while u and v are not adjacent to other vertices.
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(a) MUG9 (n = 9, m = 16) (b) MUG10 (n = 10, m = 18)

(c) MUG11a (n = 11, m = 20) (d) MUG11b (n = 11, m = 19)

(e) MUG12a (n = 12, m = 22) (f) MUG12b (n = 12, m = 22) (g) MUG12c (n = 12, m = 21)

Fig. 3. 4-critical n4c-free graphs.

with degrees 3,4,5 increase by n3 ∗ 2, n4 + 1, n5. The total number of vertices
increases by n ∗ 1, and edges by m ∗ 1.

Starting with a 4-critical graph, we construct arbitrarily large 4-critical
graphs, i.e., including an arbitrary number of vertices, by repeating embedding.
Fig. 4 gives the procedure “graph-generator(k)” which repeats embedding oper-
ations k times randomly. When we start with 1 of 7 graphs (Fig. 3), we produce
graphs contain no n4c’s. Further, if a quasi-regular graph is assigned initially
to Ginit at (1) in Fig. 4, and both MUG12a and MUG12b are excluded from
candidates at (2), then the graph-generator produces quasi-regular graphs.

4 Experiments and Discussion

We test the di!culty of 3COL instances generated by “graph-generator(k)”
where all graphs except for MUG12a and MUG12b are used to generate quasi-
regular graphs. For 8 cases from k = 5 to k = 12, 100 instances are generated
for each case, i.e., a total of 800 generated instances. These instances are applied
to the backtracking algorithm with Brélaz heuristics and the Smallk coloring
program. In the Brélaz algorithm, only 500 instances from k = 5 to k = 9 are
used for testing. These algorithms are implemented in C on a PC with 1 GHz
of Pentium III and 512 Mbytes of RAM. Fig. 5 gives results for search costs
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procedure graph-generator(k)
begin

input an initial graph Ginit; (1)
G := Ginit;
for w := 1 to k do

choose randomly an edge(i, j) ⇔ E(G) where deg(i)≤ 3;
choose randomly MUGnt, (nt =9, 10, 11a, 11b, 12a, 12b, or 12c); (2)
embed MUGnt(i, j);

end for;
end.
procedure embed MUGnt(i, j)
begin

choose randomly an edge (x, y) ⇔ E(MUGnt) where deg(x)≤ 3;
remove edges (i, j) and (x, y);
add an edge (j, y);
merge x with i;

end.

Fig. 4. 3COL instance generator.

and CPU time, where “average line” shows the variation in average search cost
and CPU time for each k as a function of the average number of vertices for
each k. Smallk is more sophisticated than the Brélaz algorithm, but both search
cost and CPU time clearly exhibit exponential growth2. We also conduct exper-
iments on randomly generated instances. For 33 cases from κ = 3.0 to κ = 5.0
at the intervals of 0.2 in n = 100, 200, and 300, 10,000 instances are randomly
generated for each cases, i.e., a total of 3.3 million generated instances, each of
which is solved using Smallk. In the Brélaz algorithm, only 1.1 million instances
with n = 100 are used. It is obvious that the hardness of our instance set cannot
be compared with that of the huge set of random instances ( Fig. 6)3.

Experiments confirmed that our method stably produces EHIs whose com-
putational cost is of an exponential order of n. Researchers adopting generate-
and-test approaches found that conditions under which EHIs tend to occur are
as follows: (1) Their constraint density is near the secondary PT region [7], (2)
the smallest minimal unsolvable subproblem is very large compared to the in-
stance size [8], and (3) their structure is homogeneous, i.e., quasi-regular [10]. It
seems reasonable that instances produced by our method meet all these condi-
tions. Because our instances contain no n4c’s, most frozen pairs [4] are hidden
from the surface, which makes our instances hard to solve even for sophisticated
algorithms such as Smallk. We still do not know theoretically why our instances
become EHIs. The ultimate question may be whether our instances are inher-
2 As long as we see results of Culberson and Gent in [4], our instances seem to be

much harder than their threshold graphs, although the complexity of their graphs
also exhibit exponential growth.

3 In Smallk, it is only 2.6 sec. and 103 sec. to determine the colorability of each hardest
random instance with 200 and 300 vertices at γ = 4.8, whereas it requires more than
500 sec. on average in solving our instances with even 100 vertices or so in Fig. 5.
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Fig. 5. Experimental results on 3COL instances generated by our procedure.

Fig. 6. Experimental results on randomly generated instances.

ently hard for any search algorithms. Let us move on to an issue probably related
to heuristics. Fig. 3 introduces only 7 n4c-free MUGs independent of each other.
Although we surmise that the number of such graphs is infinite, we still do
not know how to generate them systematically. The method for producing such
graphs may be necessary for hiding the structural weakness of an instance so
that no clever heuristics can find and exploit it.

5 Conclusions

We have proposed a constructive algorithm to generate EHIs of 3COL, which
recursively repeat self-embedding operations of MUGs. The EHIs generated are
4-critical and contain no n4c’s, to hide a structural weakness that heuristics
would be able to exploit. Using Brélaz heuristics and Smallk, we showed that
the complexity of 3COL instances generated by our algorithm is an exponential
order of the number of vertices. We plan to develop a systematic method to
arbitrarily produce many MUGs independent of each other to construct hard
instances, and to clarify whether heuristics exist that cope with these instances.
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