
Artificial Intelligence 109 (1999) 243–271

Constraint satisfaction
over connected row-convex constraints ✩

Yves Deville ∗, Olivier Barette 1, Pascal Van Hentenryck 2
Université catholique de Louvain, Département d’Ingénierie Informatique, Place Ste Barbe 2,

B-1348 Louvain-la-Neuve, Belgium

Received 28 April 1998; received in revised form 3 February 1999

Abstract

This paper studies constraint satisfaction over connected row-convex (CRC) constraints. It
shows that CRC constraints are closed under composition, intersection, and transposition, the
basic operations of path-consistency algorithms. This establishes that path consistency over CRC
constraints produces a minimal and decomposable network and is thus a polynomial-time decision
procedure for CRC networks. This paper also presents a new path-consistency algorithm for CRC
constraints running in time O(n3d2) and space O(n2d), where n is the number of variables and
d is the size of the largest domain, improving the traditional time and space complexity by
orders of magnitude. The paper also shows how to construct CRC constraints by conjunction and
disjunction of a set of basic CRC constraints, highlighting how CRC constraints generalize monotone
constraints and presenting interesting subclasses of CRC constraints. Experimental results show that
the algorithm behaves well in practice. 1999 Elsevier Science B.V. All rights reserved.

Keywords: Constraint satisfaction; Consistency

1. Introduction

Constraint satisfaction techniques have been found useful in many areas such as
combinatorial optimization, hardware design, robotics, knowledge bases, and temporal
reasoning to name only a few. Some applications require to find one or all solutions, in
which case consistency techniques (e.g., arc and path consistency) are instrumental in

✩ This paper is an extended version of [4].
∗ Corresponding author. Email: yde@info.ucl.ac.be.
1 Email: ob@info.ucl.ac.be.
2 Email: pvh@info.ucl.ac.be.

0004-3702/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00012 -0

244 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

reducing the size of the search space. Other applications require to put the constraints
network in minimal form, e.g., to remove redundant information, in which case consistency
techniques apply as well since they remove values which cannot appear in solutions.
In recent years, increasing attention has been devoted to the study of special classes

of constraints or constraint networks. These studies are motivated both by practical
considerations (e.g., constraint languages are based on a set of primitive constraints) and
by theoretical considerations, since stronger results and more efficient algorithms can
be obtained by exploiting special properties and tractable classes of constraints can be
identified.
The research described in this paper was motivated by the class of row-convex con-

straints identified by van Beek and Dechter [18]. When the constraints of a path-consistent
constraint network are row-convex (or can be made row-convex by permutation of values
in the domain), then the constraint network is minimal and decomposable and a solution
can be found without backtracking in O(n2d) after application of a path-consistency al-
gorithm (which runs in O(n3d3)). Unfortunately, row-convex constraints are not closed
under composition and intersection, the main operations of path-consistency algorithms.
As a consequence, no conclusion can be drawn a priori for a constraint network of row-
convex constraints, since its path-consistent subnetwork may or may not be row-convex.
The first contribution of this paper is the definition of a new class of constraints, called

connected row-convex (CRC) constraints, which is closed under the operations of path-
consistency algorithms. As a consequence, the class of CRC constraints is shown to be
tractable. The paper also shows how to construct CRC constraints by conjunction and
disjunction of a set of basic CRC constraints, highlighting how CRC constraints generalize
monotone constraints [13] and presenting interesting subclasses of CRC constraints.
The second contribution of the paper is a path-consistency algorithm, called PC-CRC,

tailored to CRC constraints and running in O(n3d2) time and in O(n2d) space. PC-CRC
improves traditional algorithms by an order of magnitude and is a decision procedure
for networks of CRC constraints. The algorithm is obtained by instantiating a generic
path-consistency algorithm PC-GEN. Such an approach facilitates the understanding of
the algorithm, provides a framework for the description and comparison of existing path-
consistency algorithms, and can be reused for the development of new (specialized or not)
path-consistency-like algorithms.
The rest of the paper is organized as follows. Section 2 introduces the necessary

background and Section 3 discusses related work. Section 4 describes the class of CRC
constraints and shows that this class is tractable. Section 5 presents the generic algorithm
PC-GEN which is then instantiated to CRC constraints in Section 6. Section 7 provides
analysis and experimental results. Section 8 concludes the paper. Additional detail on some
of the presented results can be found in [2].

2. Preliminaries

Definition 1 (Binary constraint network (Montanari [13])). A (binary) constraint network
N = (Var,D,C) is a set Var of n variables {1, . . . , n} represented by natural numbers,
a finite domain Di of possible values for each variable i (the set D is the union of

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 245

all domains), and a set C of binary constraints between variables. A constraint between
variable i and j , denoted by Cij , is a set of couples (Cij ⊆ Di × Dj) that specifies the
allowed pairs of values for i and j .

The fact that (v,w) ∈ Cij is also denoted by Cij (v,w). Given a constraint network
N = (Var,D,C), d will denote the size of the largest domain, and arc(N) the set
{(i, j) | Cij ∈ C}. We assume the existence of a total ordering over D. It is finally required
that (v,w) ∈ Cij iff (w,v) ∈ Cji . As usual, a constraint Cij will also be seen as a Boolean
matrix with |Di | rows and |Dj | columns. The Boolean value are represented by 0 and 1
for convenience. Rows and columns are ordered according to the underlying order overD.
A 1 (respectively, 0) at position (v,w) in the matrix means (v,w) ∈ Cij (respectively,
(v,w) /∈ Cij). To simplify the presentation, each domain Di is also represented by a
(pseudo-binary) constraint Cii such that Cii(v, v) holds iff v ∈ Di . Domain Di and
constraint Cii can be used in an interchangeable way.
Consistency techniques aim at reducing the size of the problem without altering its set

of solutions. Such techniques are usually called local consistency as they analyze different
parts of the problem and remove elements that cannot belong in a solution of the problem.

Definition 2. ⟨v1, . . . , vn⟩ is a solution of N iff Cij (vi , vj) holds for all (i, j) ∈ arc(N).

Definition 3. Two constraint networks N and N ′ are equivalent iff N and N ′ have the
same solutions.

The following definition describes path consistency of constraint networks [12].

Definition 4. A constraint networkN = (Var,D,C) is path-consistent iff, for every triple
(i, k, j) of variables, we have that for every vi ∈ Di and vj ∈ Dj such that Cij (vi , vj),
there exists vk ∈ Dk such that Cik(vi , vk) and Ckj (vk, vj).

Note that if the definition of path consistency does allow identical nodes (i, k, i), then
path consistency implies arc consistency. The purpose of a path-consistency algorithm is
to compute, given a constraint networkN = (Var,D,C), an equivalent constraint network
N ′ = (Var,D′,C′) which is path-consistent. The resulting constraint network will thus
also be arc-consistent.
We can draw a parallel between path- and arc-consistency algorithms. An arc-

consistency algorithm removes arc-inconsistent values from the domains of variables.
Hence the outputs of an arc-consistency algorithm are domains. Working on domains is
not sufficient for a path-consistency algorithm. Suppose that Di = Dj = {a,b}. It can be
the case that ⟨a,b⟩ is path-inconsistent for some path (i, k, j). Such a path inconsistency
does not mean that a (or b) should be removed fromDi (orDj) but that, in a solution, it is
impossible to have ⟨a,b⟩ as value for the couple of variables i, j . Hence, a path-consistency
algorithm should “remove” path-inconsistent tuples from constraints, and the output should
be constraints. Such algorithms usually handle explicit representation of constraints and
assume a complete constraint network. An incomplete constraint network can be easily

246 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

transformed into a complete one by adding TRUE constraints (constraints allowing any
combination of values) between every pair of variables (i, j) where (i, j) /∈ arc(N).

Definition 5. A constraint network N is minimal iff ∀i, j ∈ arc(N) ∀v,w ∈ D: if
Cij (v,w) then there is a solution of N with values v and w assigned to i and j .

Definition 6. A constraint network N is decomposable iff, ∀vi1 . . . vik satisfying all the
constraints relating nodes i1 . . . ik (1! k < n) and for any new node ik+1, there exists vik+1
such that vi1 . . . vik , vik+1 satisfy all the constraints relating nodes i1 . . . ik, ik+1.

A decomposable constraint network is also called strongly n-consistent [6]. Decompos-
able constraint networks have thus the property that any consistent instantiation of some
variables can be extended to a solution, without backtracking. A decomposable constraint
network is of course minimal. In a minimal constraint network, it is not possible to prune
further the constraints without removing solutions.

3. Related work

This research was motivated by van Beek’s result on row-convex constraints. A con-
straint Cij is row-convex if, in each row of its matrix representation, all the ones are con-
secutive. Van Beek and Dechter [18] show that, when the constraints of a path-consistent
constraint network are row-convex (or can be made row-convex by permutation of values
in the domain), then the constraint network is minimal and decomposable. One can thus
compute a solution without backtracking in O(n2d). Solving the CSP can then be done in
O(n3d3), the time complexity of the PC algorithm. Unfortunately, row-convex constraints
are not closed under composition and intersection. As a consequence, no conclusion can be
drawn a priori for a constraint network of row-convex constraints, since its path-consistent
subnetwork may or may not be row-convex.
This paper proposes a subclass which is closed under the main operations of path-

consistency algorithms. Different subclasses are already presented in [18]. It covers
binary relations on domains with two elements (graph 2-coloring), and linear binary
constraints which is a particular cases of CRC constraints. Closed classes are also analysed
and identified in [10,11], where Jeavons and Cooper identify the class of max-closed
constraints that can be solved in polynomial time (O(n4d4) for binary constraints). Our
class of CRC constraints, which can be solved in O(n3d2), intersects with max-closed
constraints, but is not a subset. The authors also presents implicational relations and also
other tractables constraints not based on row convexity. Montanari [13] already shows
that a path-consistent tree or distributive networks are minimal. He also shows that path
consistency of (total) monotone constraints produces a decomposable network. Note that
CRC constraints are not distributive and generalize the monotone functions of Montanari.
The class of CRC constraints is also related to discrete temporal reasoning [17]. Valdés-

Pérez [21] shows that path-consistency algorithms find the minimal network for a subclass
of Allen’s interval algebra [1]. Such a result has also been proposed in the context of point
algebra [15,20].

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 247

The idea of row convexity has also been exploited in the context of continuous
constraints [7,8]. They start from the result that, when constraints are convex and binary,
path consistency is sufficient to ensure decomposability. They show that for continuous
domains, this result can be generalized to ternary and n-ary constraints using some other
notion of consistency ((3,2)-relational consistency).

4. Connected row-convex constraints

This section introduces CRC constraints, a particular case of row-convex constraints.
CRC constraints are preserved by path-consistency algorithms (i.e., the application of a
path-consistency algorithms on a CRC network produces a CRC network), which is not
the case of general row convex constraints. As a consequence, applying path consistency
on CRC constraints produces a minimal and decomposable network. In this section, we use
the matrix representation of constraints. Given the initial domains Di and Dj , a constraint
Cij can be represented by a Boolean matrix. We assume a total ordering of the elements in
the domains. The rows and columns are ordered according to the underlying order of the
domain.

4.1. Row-convex constraints

Van Beek introduced the concept of row-convex constraint [16].

Definition 7. A constraint Cij is row-convex if, in each row of the matrix representation
of Cij , all the ones are consecutive (i.e., no two ones within a single row are separated by
a zero in that same row).

In [16], van Beek showed that if the constraints of a path-consistent constraint network
are row-convex (or can be made row-convex by permutation of values in the domain), then
the constraint network is minimal and decomposable. One can thus compute a solution
without backtracking.
The problem is that the class of row-convex constraints is too large as row convexity can

be lost during the path-consistency algorithm. Van Beek suggested to restrict the class of
row-convex constraints to a class closed under composition, intersection, and transposition,
the basic operations in PC algorithms. Following this suggestion, we present in the next
section such a class of row-convex constraints.

4.2. CRC constraints

Row-convex constraints exhibits two problems during path-consistency algorithms.
First, when a row-convex constraint is composed of disjoint blocks of 1s, its composition
with another row-convex constraint may not be row-convex. Second, even if disjoint blocks
are forbidden, intersection may create empty rows and columns and thus disjoint blocks.
Here is an illustration of these two problems:

248 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

(1 1 1
0 1 1
0 0 1

)
·
(1 1 0
1 0 0
0 0 1

)
=
(1 1 1
1 0 1
0 0 1

)
,

(1 1 1
0 0 1
0 0 1

)
∩
(1 0 0
1 0 0
1 1 1

)
=
(1 0 0
0 0 0
0 0 1

)
.

CRC constraints avoid both problems. Informally, a constraint is CRC if, after removing
the empty rows, it is row-convex and connected (two successive rows either intersect or are
consecutive).

Definition 8. The reduced form of a constraint Cij , denoted by C∗
ij , is obtained by

removing all the empty rows and columns in its matrix representation. The domain of i

through the constraint Cij , denoted by Di(Cij), is the set {v ∈ D | ∃w: ⟨v,w⟩ ∈ Cij }.

Definition 9. LetCij be a row-convex constraint and v ∈ Di(Cij). The image of v in Cij is
the set {w | ⟨v,w⟩ ∈ Cij }. Because of the row convexity of Cij , this set is represented as an
interval [w1,wm] (over the domainDj(Cji)) and we denotew1 andwm bymin(Cij , v) and
max(Cij , v), respectively. We also denote by succ(w,Dj (Cji)) and pred(w,Dj (Cji)) the
successor and the predecessor of w in Dj(Cji). For ease of notation, these two operations
will be denoted succ(w) and pred(w) when there is no ambiguity on the underlying
domain.

Definition 10. A row-convex constraint Cij is connected iff the images [a,b] and [a′, b′]
of two consecutive rows in C∗

ij is such that

b′ " pred(a) ∧ a′ ! succ(b).

Definition 11. A constraint Cij is connected row-convex (CRC) iff
(i) C∗

ij and C∗
ji are row-convex,

(ii) C∗
ij and C∗

ji are connected.

We assume that Cij is always the transposition of Cji . Examples of CRC constraints
are given in Fig. 1 (1 are in black, empty rows/columns are in grey). Notice that CRC
constraints are not necessarily row-convex (because of empty rows) and that row-convex
constraints are not necessarily CRC (not connected rows). The top right constraint in Fig. 1
is an example showing that a CRC constraint cannot always be made CRC by permutations
of rows and columns.
It is interesting to notice that, in the definition of CRC, the second condition can be

simplified, as suggested by the following property.

Theorem 12. Assuming that C∗
ij and C∗

ji are row-convex, C∗
ij is connected iff C∗

ji is
connected.

Proof. Let C∗
ij and C∗

ji be row-convex. SupposeC∗
ij not connected. A simple case analysis

on the cause of the nonconnectivity of C∗
ij leads to the nonconnectivity of C

∗
ji . !

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 249

Fig. 1. Examples CRC constraints.

4.3. Properties of CRC constraints

This section shows that CRC constraints are closed under composition, intersection and
transposition.

Lemma 13. The deletion of rows and columns in a CRC constraint produces a CRC
constraint.

Proof. It is sufficient to prove that the suppression of one (nonempty) row to Cij preserve
the CRC property. Let v the corresponding element, and C′

ij be the resulting matrix. We
observe that C′∗

ij has exactly one row less, and possibly less columns than C∗
ij . It is easy to

see that C′∗
ij and C′∗

ji are row-convex.
Removing a row does not affect the fact that C′∗

ji is connected. The images in Cji

which contained v has now one less element in C′
ji . If the interval becomes empty, the

corresponding row is simply suppressed.
Let [a1, b1], [a2, b2] be the images in C′

ji of the rows preceding and following the
suppressed row. If these interval were not connected (say because b2 < pred(a1)), then
the columns of C∗

ij corresponding to positions succ(b2), . . . ,pred(a1) are empty, except at
row v. Otherwise C∗

ij would not be row-convex. Hence removing row v in Cij induces that
these columns will be suppressed in C′∗

ij . The intervals [a1, b1], [a2, b2] are thus connected
in C′∗

ij . !

250 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

Lemma 14. Let Cij be a CRC constraint. Let v1, v, v2 be inDi(Cij) such that v1 < v < v2
and their respective images are [a1, b1], [a,b] and [a2, b2] in Cij .

b2 < a1 ⇒ [a,b] ∩ [b2, a1] ̸= ∅
a2 > b1 ⇒ [a,b] ∩ [b1, a2] ̸= ∅
b2 " a1 ∧ a2 ! b1 ⇒ [a1, b1] ∩ [a2, b2] ⊆ [a,b].

Theorem 15. The intersection of two CRC constraints is a CRC constraint.

Proof. Let Aij and Bij be two CRC constraints. Let Cij = Aij ∩ Bij . If Aij or Bij have
empty rows or columns, we may suppress in Aij and in Bij all rows and columns which
are empty either in Aij or in Bij , and repeat this process until no more rows or columns
can be suppressed. The elements in Cij not in the intersection of the obtained reduced
matrices are obviously null. We may thus assume that Aij and Bij have no empty rows or
columns.
The row convexity of Cij (and Cji) is obvious as each row (and column) is the

intersection of intervals.
Let v1, v2 ∈ Di(Cij) such that v1 and v2 have nonempty rows in Cij , the rows between

v1 and v2 are empty, and row v1 and row v2 are not connected, as illustrated in Fig. 2. Let
the leftmost 1 in row v1 be at position w1, and the rightmost 1 in row v2 be at position w2.
The other possible cases are symmetrical. We show that all the columns between w2 and
w1 are empty. Hence that Cij is CRC.
Assume that such a column is not empty (e.g., Cij (v,w) = 1).
We necessarily have a 1 at positions (v1,w1), (v2,w2) and (v,w) in Aij and in Bij . As

Cij (v1,w) = 0, either Aij or Bij has a 0 at position (v1,w). Without loss of generality, we
suppose that Bij (v1,w) = 0. By row convexity of Bij , all elements below (v1,w) are also
null in Bij . The matrix Bij is then not connected somewhere between row v1 and row v2.
This is impossible as Bij is CRC. !

Theorem 16. The composition of two CRC constraints is a CRC constraint.

Fig. 2. Intersection of two CRC constraints.

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 251

Proof. Let Cij = Cik ·Ckj . Empty rows in Cik and empty columns in Ckj can be removed
as producing empty rows/columns in Cij . An empty column in Cik can be suppressed
together with its corresponding row in Ckj without affecting the result. Similarly for empty
rows in Ckj . Repeating this process leads to two constraints included in C∗

ik and C∗
kj . By

Lemma 13, these two constraints are CRC constraints. We may thus assume that Cik has
no empty rows, and Ckj no empty columns.
Let us first show that Cij = Cik · Ckj is row-convex. Let v1 < v < v2 such that

Cij (v1,w) = 1 and Cij (v2,w) = 1. Let [a1, a′
1], [a,a′] and [a2, a′

2] be the images of v1, v,
and v2 in Cik . Let [b,b′] be the image of w in Cjk . We have

[a1, a′
1] ∩ [b,b′] ̸= ∅

[a2, a′
2] ∩ [b,b′] ̸= ∅.

From the application of Lemma 14 on a simple case analysis on the relative positions of
[a1, a′

1] and [a2, a′
2], we can conclude that [a,a′] ∩ [b,b′] ̸= ∅, hence that Cij (v,w) = 1.

Let us now prove that Cij is CRC. Let v1, v2 ∈ Di such that v1 and v2 have nonempty
rows in Cij , the rows between v1 and v2 are empty, and rows v1 and v2 are not connected,
as illustrated in Fig. 3. Let the leftmost 1 in row v1 be at position w1, and the rightmost 1
in row v2 be at positionw2. The other possible cases are symmetrical. We show that all the
columns between w2 and w1 are empty. Hence that Cij is CRC.
Assume that such a column is not empty (e.g., Cij (v,w) = 1).
From Cij (v1,w1), there exists some u1 such that Cik(v1, u1) = 1, Ckj (u1,w1) = 1. As

⟨v1,w1⟩ is the leftmost 1,Ckj (u1, b) = 0 for b < w1. By the row-convexity of Cij , ⟨v1,w1⟩
is also the lowest 1. Hence Cik(a,u1) = 0 for a > v1.
From Cij (v2,w2), there exists some u2 such that Cik(v2, u2) = 1, Ckj (u2,w2) = 1.

As ⟨v2,w2⟩ is the rightmost 1, Ckj (u2, b) = 0 for b > w2. By the row convexity of Cij ,
⟨v2,w2⟩ is also the highest 1. Hence Cik(a,u2) = 0 for a > v2.
From Cij (v,w), there exists some u3 such that Cik(v,u3) = 1, Ckj (u3,w) = 1. As

⟨v,w⟩ is the downmost 1, Cik(a,u3) = 0 for a > v. Given that Cik is CRC, we must
have u < u1 < u2. By the row convexity of Ckj , Ckj (c,w) = 0 for c " u1. This makes Ckj

not connected somewhere between rows u1 and u2. Impossible as Ckj is CRC.
The proof for the symmetrical cases is similar. !

Fig. 3. Composition of two CRC constraints.

252 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

Theorem 17. The transposition of a CRC constraint is a CRC constraint.

Theorem 18. Let N be composed of CRC constraints. The application of a path-
consistency algorithm to N produces a minimal and decomposable constraint network.

Proof. Straightforward as path consistency can be achieved by only using composition,
intersection and transposition of (the matrix representation of) constraints. !

Theorem 19. The class of CRC constraints is tractable.

4.4. Examples of CRC constraints

It is important to discuss some examples of CRC constraints and to show how they
generalize monotone constraints [13]. Let us assume the existence of a (total) ordering in
each domain Di . For ease of notation, we will use the same ordering symbol ! for all the
domains.

Definition 20. Let ≼ and ≽ be total orderings on Di and Dj , respectively. A (binary)
constraint Cij is (≼,≽)-monotone if
– ∀v, v′ ∈ Di, ∀w ∈ Dj : if Cij (v,w) and v′ ≼ v then Cij (v

′,w)
– ∀v ∈ Di, ∀w,w′ ∈ Dj : if Cij (v,w) and w′ ≽ w then Cij (v,w′).

A constraint is monotone if it is (!,")-monotone. It is possible to generalize the class of
monotone constraints by allowing any combination of the ordering relations. This provides
some insights on why CRC constraints are important and how they generalize monotone
constraints.

Definition 21. A constraints is staircase if it is (α,β)-monotone with α,β ∈ {!,"}.

Examples of staircase constraints are:

ax + by + c ! 0, ax + by + c " 0, axy + b ! 0,
axy + b " 0, af (x) + by + c ! 0, af (x) + by + c " 0,

with a,b, c rationals, f (x) a function such that f ′(x) is either always positive or always
negative on the considered interval. Intersection and/or composition of staircase constraints
are CRC but not necessarily staircase. For instance, assuming a domain D = {1, . . . ,10},
the two constraints

5x − 3y − 4" 0∧ 2x − y − 7! 0
x · y ! 10∧ x + y " 0

are CRC but not staircase. It is also possible to define other (sub)classes of CRC constraints,
such as y " (ax + by + c)2, with b integer, and assuming a domain of positive integers.
These constraints are CRC, but not staircase.
Staircase constraints are an important generalization of monotone constraints and are

tractable.

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 253

Proposition 22. The class of staircase constraints is tractable.

The difference between monotone constraints and CRC constraints appears clearly if a
constructive definition of CRC constraints is given. This definition involves conjunctions
and disjunctions of basicCRC constraints. Intuitively, a basic constraint defines a rectangle
within the domain, or it defines an empty row/column.

Definition 23. A basic CRC constraint between variables i and j is a constraint of one of
the following forms:

(Upper Right) URab
ij (v,w) = v ! a ∧ w " b

(Upper left) ULab
ij (v,w) = v ! a ∧ w ! b

(Lower Right) LRab
ij (v,w) = v " a ∧ w " b

(Lower Left) LLab
ij (v,w) = v " a ∧ w ! b.

A basic domain constraint is a constraint of the form

(Domain) DCa
i (v) = v ̸= a.

Notice that a (!,")-monotone constraint over a domain D can also be expressed as
a disjunction of Upper Right basic constraints. The next definition, and its associated
theorem, thus show clearly the generalization provided by CRC constraints. The definition
provides a constructive definition of CRC constraints.

Definition 24. A CNF-CRC constraint is a constraint of the form:
(∨

ak∈Di
bk∈Dj

URakbk
ij

)
∧
(∨

ak∈Di
bk∈Dj

ULakbk
ij

)
∧
(∨

ak∈Di
bk∈Dj

LRakbk
ij

)
∧
(∨

ak∈Di
bk∈Dj

LLakbk
ij

)

∧
(∨

ak∈Di

DCak
i

)
∧
(∨

bk∈Dj

DCbk
j

)
.

Theorem 25. The following classes of constraints are tractable and equivalent:
(i) CRC constraints,
(ii) CNF-CRC constraints,
(iii) the closure, by intersection and composition, of staircase constraints and basic

domain constraints.

5. PC-GEN: A generic path-consistency algorithm

In this section we present a new generic path-consistency algorithm PC-GEN that
can be parametrized like the arc-consistency algorithm AC-5 [19]. This approach has
many advantages. The generic algorithm can be instantiated to existing path-consistency
algorithms, providing thus a framework for the description and comparison of existing

Berthe Choueiry

254 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

algorithms. New path-consistency algorithms can also be derived from the generic one.
Only the two procedures PATHCONS and LOCALPATHCONS have to be implemented. The
correctness of the obtained instantiation is then a consequence of the correctness of the
generic algorithm. This approach is used in the next section to design PC-CRC, an efficient
path-consistency algorithm specialized to CRC constraints.

5.1. Basic operations

The specification of the basic operations in PC-GEN are given in Fig. 4. All
specifications assume a constraint network N = (Var,D,C). A parameter p subscripted
with 0 (p0) represents the value of p at call time. As is traditional, PC-GEN uses a
queue Q to drive the algorithm. A tuple ⟨i, k, j, v⟩ in Q implies that it is necessary to
reconsider the constraint Cij with respect to path (i, k, j) knowing that, for some u, ⟨v,u⟩
has been removed from Cik . Procedure ENQUEUE is required to take O(s) time, where s

is the number of new elements to insert in the queue and procedure DEQUEUE must take
constant time. The deletion of tuples is performed by procedure PRUNE, which removes
tuple ⟨v,w⟩ from Cij and ⟨w,v⟩ from Cji . Hence,

⟨v,w⟩ ∈ Cij ⇔ ⟨w,v⟩ ∈ Cji

will be an invariant of the algorithm, assuming it holds initially.

procedure PRUNE(in ∆, i, j)
Pre: i, j ∈ arc(N).
Post: Cij = Cij0 \ {⟨v,w⟩ | ⟨v,w⟩ ∈ ∆},

Cji = Cji0 \ {⟨w,v⟩ | ⟨v,w⟩ ∈ ∆}.

procedure INITQUEUE(outQ)
Post:Q = {}.

function EMPTYQUEUE(inQ): Boolean
Post: EMPTYQUEUE ⇔ (Q = {}).

procedure DEQUEUE(inoutQ, out i, k, j, v)
Post: ⟨i, k, j, v⟩ ∈ Q0 andQ = Q0 \ {⟨i, k, j, v⟩}.

procedure ENQUEUE(i , j , ∆, inout Q)
Pre: ∆ ⊆ Cij .
Post:Q = Q0 ∪ {⟨i, j, k, v⟩ | k ∈ arc(N) and j ̸= k and ⟨v,w⟩ ∈ ∆}

∪ {⟨j, i, k,w⟩ | k ∈ arc(N) and j ̸= i ̸= k and ⟨v,w⟩ ∈ ∆}.

Fig. 4. The basic operations for PC-GEN.

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 255

5.2. Parametric procedures

PC-GEN is parametrized by two procedures (Fig. 5), PATHCONS and LOCALPATH
CONS whose implementations are left open. Procedure PATHCONS computes the set ∆ of
tuples in Cij which are not path-consistent for the path (i, k, j). Because of the relationship
between Cij and Cji , ∆ is also the set of tuples (in reverse order) of Cji that are not path-
consistent for path (j, k, i). This is illustrated in Fig. 6(a).
Procedure LOCALPATHCONS returns in ∆ a set of tuples of Cij that are not path-

consistent for (i, k, j) after tuple ⟨v,u⟩ (for some u) has been removed from the
constraint Cik . The set ∆ is also the set of tuples (in reverse order) of Cji that are not
path-consistent in path (j, k, i) after tuple ⟨u,v⟩ has been removed from Cki .
The size of ∆ computed by LOCALPATHCONS can vary. The set ∆1, illustrated in

Fig. 6(b), contains the tuples in Cij that become path inconsistent for (i, k, j) due to the
removal of tuple ⟨v,u⟩ from Cik . In some cases, it is possible, but not always desirable,

Let PCikj (v,w) = ∃u: ⟨v,u⟩ ∈ Cik and ⟨u,w⟩ ∈ Ckj .
procedure PATHCONS(in i , k, j , out ∆)
Pre: i, k, j ∈ arc(N).
Post: ∆ = ∆2, with

∆2 = {⟨v,w⟩ ∈ Cij | ¬PCikj (v,w)}.

procedure LOCALPATHCONS(in i, k, j, v, out ∆)
Pre: i, k, j ∈ arc(N).
Post: ∆1 ⊆ ∆ ⊆ ∆2, with

∆1 =
{〈

v,w′〉 ∈ Cij | ¬PCikj

(
v,w′)},

∆2 =
{〈

v′,w′〉 ∈ Cij | ¬PCikj

(
v′,w′)}.

Fig. 5. Parametric procedures for PC-GEN.

Fig. 6. Pruning of PATHCONS and LOCALPATHCONS.

256 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

to prune a larger set of tuples. As an extreme case, ∆2 prunes all tuples in Cij which are
path inconsistent with respect to (i, k, j) at call time, regardless of whether they can be
supported by ⟨v,u⟩ (see Fig. 6(c)). The specification of the parametric procedures takes
advantage of this fact and allows for both flexibility and efficiency. Any intermediate ∆
can be computed.
Notice that the definition of PCikj (v,u) (Fig. 5) does not require u ∈ Dk . This comes

from the simple observation that the fixpoint of

Cij := Cij ∩ Cik.Ckk.Ckj

is the same as the fixpoint of

Cij := Cij ∩ Cik.Ckj

computed for all i, j, k ∈ arc(N).
The choice of not considering Ckk will simplify the instantiation of these procedures for

particular classes of constraints, without affecting the correctness of PC-GEN.

5.3. Algorithm PC-GEN

PC-GEN is depicted in Fig. 7 and mimics AC-5. In the loop on lines 2–7,
procedure PATHCONS identifies the path-inconsistent tuples with respect to each path
of length two. The inconsistent tuples are enqueued and processed in the second loop,
on lines 8–14, where procedure LOCALPATHCONS is used to prune tuples of Cij which

Algorithm PC-GEN
Post: N is a path-consistent constraint network equivalent to N0.
begin

1 INITQUEUE(Q);
2 for each i, k, j ∈ arc(N) with i ! j do
3 begin
4 PATHCONS(i , k, j , ∆);
5 ENQUEUE(i , j , ∆,Q);
6 PRUNE(∆, i, j)
7 end;
8 while not EMPTYQUEUE(Q) do
9 begin
10 DEQUEUE(Q, i , k, j , v);
11 LOCALPATHCONS(i , k, j , v, ∆);
12 ENQUEUE(i , j , ∆,Q);
13 PRUNE(∆, i, j)
14 end
end

Fig. 7. The path-consistency algorithm PC-GEN.

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 257

become inconsistent after the removal of a tuple from Cik . The restriction i ! j in the
first loop is justified by the fact that PATHCONS(i, k, j,∆) treats both paths (i, k, j)

and (j, k, i). Note that paths of the form (i, i, i) could be discarded since the resulting
∆ set is empty. The removal of the tuple ⟨v,w⟩ in Cij and ⟨w,v⟩ in Cji requires to
reconsider all length-two paths involving either (i, j) or (j, i) as the first or as the second
arc. It is, however, unnecessary to consider explicitly the second arc (in the ENQUEUE
procedure) since LOCALPATHCONS(i, j, k, v) covers both paths (i, j, k) and (k, j, i) and
LOCALPATHCONS(j, i, k,w) covers paths (j, i, k) and (k, i, j). This is because of the
invariant maintained by procedure PRUNE.

5.4. Correctness

The correctness of PC-GEN is given in Appendix A.1.

Theorem 26. Algorithm PC-GEN terminates and is correct.

5.5. Complexity bounds

Although we do not develop here a concrete implementation for the basic operations of
PC-GEN, we may assume the complexity bound of O(1) for DEQUEUE, O(∆) for PRUNE,
and O(s) for ENQUEUE, where s is the number of elements to insert in the queue. As usual
the O notation denotes an upper bound of the worst case complexity.
If the complexity of PATHCONS is O(t), the loop at lines 2–7 takes O(n3) ·O(t) time.

If PATHCONS takes O(∆) time, the loop at lines 2–7 has a complexity of O(q), where q is
the total number of elements that can be enqueued throughout the execution of PC-GEN.
Also, if LOCALPATHCONS takes O(t) time (with O(t) " O(d)), the loop at lines 8–14
takes O(q) ·O(t) time. Finally, if LOCALPATHCONS takes O(∆) time, the loop at lines 8–
14 has a complexity of O(q). These observationswill become helpful when we will analyze
particular instances of PC-GEN.

Theorem 27. Given a time complexity of O(d2) for procedure PATHCONS and a time
complexity of O(d) for procedure LOCALPATHCONS, algorithm PC-GEN is bounded
by O(n3d3).

Theorem 28. Given a time complexity of O(d2) for procedure PATHCONS and a time
complexity of O(∆) for procedure LOCALPATHCONS, algorithm PC-GEN is bounded
by O(n3d2).

5.6. Relaxing the specification of the parametric procedures

The specification of the generic procedures PATHCONS and LOCALPATHCONS can be
further relaxed without affecting the correctness nor the complexity of PC-GEN. Such
a generalisation is important as it formalizes existing path-consistency algorithms such
as PC-4, and also allows an efficient specialisation of PC-GEN for CRC constraints. The
general idea is that, when some ⟨v,w⟩ is not path-consistent with respect to (i, k, j) (i.e.,

258 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

¬PCikj (v,w)), it is not necessary to prune ⟨v,w⟩ immediately if we are ensured that ⟨v,w⟩
will eventually be pruned when some other element in the queue will be processed.

Definition 29. The tuple ⟨v,w⟩ is look-ahead-1 (LH(1)) for path (i, k, j) iff

⟨i, k, j, v⟩ ∈ Q ∨ ⟨j, k, i,w⟩ ∈ Q.

Definition 30. The tuple ⟨v,w⟩ is look-ahead-m (LH(m)) for path (i, k, j) (m > 1) iff

∃u: ⟨v,u⟩ ∈ Cik ∧ ∃k′: ¬PCik′k(v,u) ∧
(
⟨v,u⟩ is LH(m − 1) for ik′k

)

∨ ∃u: ⟨u,w⟩ ∈ Cjk ∧ ∃k′: ¬PCjk′k(u,w) ∧
(
⟨u,w⟩ is LH(m − 1) for jk′k

)
.

The relaxed parametric procedures are specified in Fig. 8. We will denote by PC-GEN∗

the algorithm PC-GEN using the procedures PATHCONS∗ and LOCALPATHCONS∗. The
correctness of PC-GEN∗ is proven in the Appendix A.2.
One may also extend the queue by considering tuples of the form ⟨i, k, j, ⟨v,w⟩⟩. Such

a tuple denotes it is necessary to reconsider constraint Cij with respect to to path (i, k, j)

because ⟨v,w⟩ has been removed from constraint Cik . Such an extension is useful for
instantiating PC-GEN to PC-4.
The specification of procedures DEQUEUE and ENQUEUE can easily be extended.

A tuple ⟨v,w⟩ will now be LH(1) for path (i, k, j) iff

∃u:
〈
i, k, j, ⟨v,u⟩〉 ∈ Q ∨ 〈j, k, i, ⟨w,u⟩〉 ∈ Q.

Let PCikj (v,w) = ∃u: ⟨v,u⟩ ∈ Cik and ⟨u,w⟩ ∈ Ckj .
PC∗

ikj (v,w) = PCikj (v,w) ∨ ∃m: ⟨v,w⟩ is LH(m) for ikj
procedure PATHCONS∗(in i , k, j , out ∆)
Pre: i, k, j ∈ arc(N).
Post: ∆∗

2 ⊆ ∆ ⊆ ∆2, with
∆∗
2 =

{
⟨v,w⟩ ∈ Cij | ¬PC∗

ikj (v,w)
}

∆2 =
{
⟨v,w⟩ ∈ Cij | ¬PCikj (v,w)

}
.

procedure LOCALPATHCONS∗(in i, k, j, v, out ∆)
Pre: i, k, j ∈ arc(N).
Post: ∆∗

1 ⊆ ∆ ⊆ ∆2, with
∆∗
1 = {〈

v,w′〉 ∈ Cij | ¬PC∗
ikj

(
v,w′)}.

∆2 = {〈
v′,w′〉 ∈ Cij | ¬PCikj

(
v′,w′)}.

Fig. 8. Relaxed parametric procedures for PC-GEN.

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 259

With the given specification of LOCALPATHCONS, such an extension of the queue is
useless as only the element v is used in the definition of the resulting ∆ set. 3

5.7. Instantiating PC-GEN to existing PC algorithms

One can show that PC-GEN can be instantiated to yield a PC algorithm with a
time complexity of O(n3d3), and a space complexity of O(n3d2). Such complexities
were obtained in [3,14]. The classical PC-4 has the same time complexity, but a space
complexity of O(n3d3).
PC-GEN can also be instantiated to existing path-consistency algorithms, providing thus

a framework for their comparison. For instance, PC-GEN can be instantiated to PC-2 [12]
and PC-6 [3]. The classical PC-4 [9] is an instance of PC-GEN∗ using the extended queue.
It is here necessary to use PC-GEN∗ instead of PC-GEN, as PC-4 uses a technique covered
by our definition of LH(1).

6. PC-CRC: A path-consistency algorithm for CRC constraints

In this section, we provide PC-CRC, an efficient instance of PC-GEN specialized to CRC
constraints. PC-CRC has a time complexity of O(n3d2) and a space complexity of O(n2d).
We describe the representation of CRC constraints and the instantiation of the generic
procedures. A precise and complete description will be provided. As the application of
PC-CRC produces a minimal and decomposable constraint network, we also provide an
algorithm to find a solution of the constraint network.

6.1. Representation of CRC constraints

CRC constraints can be represented in space O(d) as shown in Fig. 9. It is necessary
to keep a description of Di(Cij), since row-convexity is only enforced on the reduced
form. Fig. 9 also specifies the operations on CRC constraints which are all implemented
in constant time. For instance, EMPTYSUPPORT(v,w, i, k, j) can be implemented by
b′ " a ∧ a′ ! b with a =MIN (v, i, k), b =MAX (v, i, k), a′ =MIN (w, j, k), and b′ =
MAX (w, j, k). As the domains Dk(Cki) and Dk(Ckj) are not necessarily identical, the
EMPTYSUPPORT(v,w, i, k, j) does not compute PCikj (v,w), but PC2ikj (v,w), which is
PC∗

ikj (v,w) with LH(m) restricted to m ! 2.

6.2. Instantiation of the generic procedures

An implementation of Procedures PATHCONS and LOCALPATHCONS is given in
Fig. 10. Note that PATHCONS is expressed in terms of LOCALPATHCONS. In LOCAL
PATHCONS, BOUNDEDMIN computes the interval ∆′ to be removed on the left of the

3 The value u could be used as follows in the specification of LOCALPATHCONS (respectively,
LOCALPATHCONS∗). The set ∆1 (respectively, ∆∗

1) can be further reduced by imposing ⟨u,w′⟩ ∈ Cinit
kj (where

Cinit
kj denotes the original set of constraint tuples between i and j).

260 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

Let D = {b, . . . ,B}.
Let Cij = {⟨v1, v1⟩, . . . , ⟨vm,vm⟩} if i = j

=
{
⟨v1,w1⟩, . . . , ⟨vm,wm⟩

}
if i ̸= j (where vk,wk ∈ D).

Data Structure
Syntax

Cij .supmin: array [b ..B] of element ∈ D

Cij .supmax: array [b ..B] of element ∈ D

Cij .first: element ∈ D
Cij .succ: array [b ..B] of element ∈ D

Cij .pred: array [b ..B] of element ∈ D.
Semantics

Cij .supmin[v] =min(Cij , v)

Cij .supmax[v] =max(Cij , v)
Cij .first=min{v ∈ Di(Cij)}
Cij .succ[v] = succ(v) in Di(Cij)

Cij .pred[v] = pred(v) in Di(Cij).
Invariant

Cij = CT
ji

Cij .supmin[v] ∈ Dj (Cji)

Cij .supmax[v] ∈ Dj(Cji).
Interface

Let PC2ikj (v,w) = PCikj (v,w) ∨ ∃m ! 2: ⟨v,w⟩ is LH(m) for ikj
function EMPTYSUPPORT(in v,w, i, k, j): Boolean
Post: EMPTYSUPPORT(v,w, i, k, j) = ¬PC2ikj (v,w)

function FIRST(in i, j): Integer
Post: FIRST(i, j) =min{v ∈ Di(Cij)}
functionMIN(in v, i, j): Integer
Post: MIN(v, i, j) =min(Cij , v)

functionMAX(in v, i, j): Integer
Post: MAX(v, i, j) =max(Cij , v)

function SUCC(in v, i, j): Integer
Post: SUCC(v, i, j) = succ(v) in Di(Cij)

function PRED(in v, i, j): Integer
Post: PRED(v, i, j) = pred(v) in Di(Cij)

Fig. 9. The CRC CONSTRAINT module.

interval in row v while BOUNDEDMAX computes the interval ∆′′ to be removed on the
right of the interval in row v. Although this pruning is sufficient, it may destroy the CRC
property. We know that removing all the inconsistent tuples yields a CRC constraint. To

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 261

procedure PATHCONS(in i, k, j , out ∆)
begin

1 ∆ := ∅;
2 for each v ∈ Di(Cij) do
3 begin
4 LOCALPATHCONS(i , k, j , v, ∆v);
5 ∆ := ∆ ∪ ∆v ;
6 end
end

procedure LOCALPATHCONS(in i , k, j , v, out ∆)
begin

1 BOUNDEDMIN(i , k, j , ⟨v, MAX(v, i, j) ⟩, ∆′, wmin);
2 if wmin =MAX(v, i, j) then ∆ := ∆′

3 else
4 begin
5 BOUNDEDMAX(i , k, j , ⟨v, MIN(v, i, j) ⟩, ∆′′, wmax);
6 PROPAGATE(i , j , k, ⟨v,wmin⟩, BOUNDEDMIN, PRED, ∆1);
7 PROPAGATE(i , j , k, ⟨v,wmin⟩, BOUNDEDMIN, SUCC, ∆2);
8 PROPAGATE(i , j , k, ⟨v,wmax⟩, BOUNDEDMAX, PRED, ∆3);
9 PROPAGATE(i , j , k, ⟨v,wmax⟩, BOUNDEDMAX, SUCC, ∆4);
10 ∆ := ∆′ ∪ ∆′′ ∪ ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4;
11 end
end

Fig. 10. PATHCONS and LOCALPATHCONS for CRC constraints.

preserve the property, we thus perform additional pruning on the rows above or below v.
This is the role of the PROPAGATE instructions. The specifications and implementations of
the subproblems procedures are given Appendix A.3. The intuition behind LOCALPATH
CONS is captured in Fig. 11. Because Cij := Cij ∩Cik .Ckj produces a CRC constraint, the
implementation is guaranteed to keep Cij connected row-convex. Note that PROPAGATE
works from v to the exterior, while BOUNDEDMIN and BOUNDEDMAX work from the
exterior to the interior.
The implementation of LOCALPATHCONS could be optimized in several ways. For

instance, in Fig. 11, there is an element above v, left to Wmin, which is supported. As the
resulting constraint is known to be CRC, every element below v, left toWmin, can directly
be be suppressed.

6.3. Correctness

The LOCALPATHCONS procedure for CRC constraints is an instance of the LOCAL
PATHCONS∗ procedure specified in Fig. 8, where LH(m) has been restricted to the case

262 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

Fig. 11. Illustrating LOCALPATHCONS for CRC constraints: Two possible cases.

procedure PRUNE(in ∆, i, j)
Pre: i, j ∈ arc(N),

Cij is a CRC constraint,
Cij \ ∆ is a CRC constraint.

Post: Cij = Cij0 \ {⟨v,w⟩ | ⟨v,w⟩ ∈ ∆},
Cji = Cji0 \ {⟨w,v⟩ | ⟨v,w⟩ ∈ ∆}.

Fig. 12. Pruning for PC-CRC.

m ! 2. Lines 1 and 5 compute the set ∆∗
1 which is sufficient for correctness. In order to

keep the CRC property, the sets ∆1,∆2,∆3 and ∆4 are then computed in lines 6–10. We
have ∆i ⊆ ∆∗

2. Since ∆∗
2 ⊆ ∆2, we have ∆i ⊆ ∆2.

The correctness of PATHCONS is a direct consequence of the correctness of LOCAL
PATHCONS.

6.4. Complexity

PRUNE can be performed in O(∆) assuming the elements of ∆ are ordered to
preserve the CRC property, as specified in Fig. 12. The ordering can be performed
during the construction of ∆ during LOCALPATHCONS without incurring any cost.
An implementation of ∆ as a doubly-linked list is sufficient for this purpose given
the way ∆ is constructed as mentioned in the previous section. The complexity of
Procedures PROPAGATE, BOUNDEDMIN and BOUNDEDMAX is obviously O(∆). Hence
LOCALPATHCONS is O(∆). By Theorem 28, the time complexity of PC-GEN is O(n3d2).
The space complexity per constraint is O(d) and O(nd) for all the constraints. The space
complexity of the queue is bounded by O(n2d) because elements in the queue can be

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 263

procedure INSTANTIATE(inN , out ⟨x1, . . . , xn⟩)
Pre: N has only CRC constraints, and is path-consistent,

Di ̸= ∅ (1! i ! n)

Post: ⟨x1, . . . , xn⟩ is a solution ofN .
begin

1 for i := 1 to n do
2 begin
3 L := FIRST(i , i);
4 for j := 1 to i − 1 do L := max(L, MIN(xj , j , i)) ;
5 xi := L
6 end
end

Fig. 13. INSTANTIATE for CRC constraints.

grouped as tuples of the form ⟨i, j,E,v⟩, where the set E is initially arc(N) \ {j}. The set
E can be shared by all elements of the queue except the first one.

Theorem 31. For CRC constraints, PC-GEN has a time complexity of O(n3d2) and a
space complexity of O(n2d).

The above theorem is valid for incomplete constraint networks of CRC constraints as
well, since the completion of the constraint network introduces TRUE constraints which
are CRC.

6.5. Finding a solution

A path-consistent constraint network with CRC constraints is decomposable due to
Helly’s theorem (e.g., [8]). The proof in [18] is constructive and the author proposes a
O(n2d) algorithm to find a solution. We propose in Fig. 13 an INSTANTIATE procedure
with a time complexity of O(n2) for CRC constraints. It is based on van Beek’s algorithm,
but takes advantage of the data structure.
The total complexity to detect inconsistency or to find a solution of a constraint

network composed with CRC constraints is thus O(n3d2), the time complexity of the path-
consistency algorithm.

Theorem 32. The class of CRC constraints is tractable in O(n3d2).

7. Analysis and experimental results

This section analysis the class of CRC networks. It also studies how PC-CRC performs
in practice (does it perform better than the theoretical complexity? How large are the

264 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

Fig. 14. Pruning of PC-CRC.

constant factors?). Extensive experimentations have been performed. Data sets have been
randomly generated for the following combinations of the parameters:
– n (number of node): from 10 to 80;
– d (size of the domain): from 10 to 45;
– density: from 10 to 80%.

Density is here defined as the probability that C(v,w) holds for v,w ∈ D (i.e., the number
of ones in the matrices compared to the size of the matrices). Only complete constraint
networks were considered and more than 2,000 executions of PC-CRC have been recorded
and analyzed using statistical methods. All the experiments have been performed on a SUN
Ultra 1 workstation running Solaris.

7.1. Satisfiable versus nonsatisfiable constraint networks

We first analyse CRC constraint networks from the satisfiability point of view. As PC-
CRC produces a minimal and decomposable constraint network, if the algorithm terminates
without detecting an inconsistency, then the constraint network is known to be satisfiable.
Fig. 14 depicts the pruning for n = 30, d = 45, and densities from 10 to 80. The dark
bars measure the density of the constraints after application of PC-CRC (density-out). The
grey bars indicate the pruning factor ((density-in− density-out)/density-in). Nonsatisfiable
networks thus have a pruning factor of 100%. For all the different values of density-in, the
statistical error of the resulting density-out is less that 2.4 (i.e., the 95% confidence interval
is included in density-out± 2.4).
From these experiments, one can observe that when density-in is less than 45, the

constraint network is always nonsatisfiable. When density-in is greater than 55, the
constraint network is always satisfiable. Between 45 and 55, the percentage of satisfiable
constraint networks is around 53%. The global shape of the results also holds for other
combinations of n and d , except for the position of the frontier between the nonsatisfiable
and satisfiable problems. In our data sets, the frontier always lies between 40 and 60.

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 265

Fig. 15. Execution time for different densities.

7.2. Influence of density on complexity

The theoretical time complexity of PC-CRC is O(n3d2). This complexity could be
refined to take into account the density of the constraint network. We then have a time
complexity of O(n3(density× d)2).
It is interesting to compare this new theoretical complexity with experimental results.

Fig. 15 displays the execution time of PC-CRC for n = 30, d = 45 and various densities.
The top of the dark bar denotes the lower bound of the 95% confidence interval and the
top of the grey bar the upper bound. This shows a significative difference of execution time
between nonsatisfiable (density 10–45) and satisfiable (density 55–80) constraint networks.
Interestingly, the execution time for satisfiable constraint networks is almost independent
from the density.

7.3. Theoretical complexity versus experimental complexity

The theoretical time complexity of O(n3d2) only provides an upper bound of the worst-
case complexity. By experimental complexity, we mean to model the real execution time
of a set of test problems by a polynomial of the form:

∑
aij n

idj (with i, j " 0, and i + j ! 5).
The degree 5 is inferred by the theoretical complexity.
Such an experiment has been performed for a density of 70, since it is representative

of the difficult cases. We used a statistical software package called ECHIP. This software
proposed an experimental plan (number of constraint networks to generate, values of n
and d to consider). For the measured execution times, the software proposed the following
complexity:

2.23× 10−5n′3d ′ + 0.00333n′2d ′ + 0.0772n′2

+ 0.154n′d ′ + 3.82n′ + 2.79d ′ + 59.29.
Only the statically significative coefficients aij are considered, n′ = n − 35 and d ′ =
d − 17.5. The ECHIP software were also able to assess both the validity and the predictive
ability of the model.

266 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

Fig. 16. Execution time for different densities.

These experiments show that the time complexity of PC-CRC is n3d , and that the actual
coefficient of the polynomial are very small for the higher degree terms (the first term is
dominant only for n > 185). The CPU time of the experiments is shown in Fig. 16. As can
be observed, the CPU time is linear with respect to d for a given n.

7.4. PC-CRC versus classical PC algorithms

For solving CRC constraint networks, one may use the specialized PC-CRC algorithm
or any other PC algorithm. Although we know the theoretical complexity of PC-CRC is
better than the theoretical complexity of classical PC algorithms, and that the experimental
complexity of PC-CRC is very good, it is interesting to analyse the experimental
complexity of general PC algorithms on CRC constraint networks. To perform this
experimentation, we used an instance of PC-GEN close to PC-4, but with a better space
complexity. We compare this algorithm and PC-CRC for d = 10, a density of 70, and
n = 10,20,30 (see Fig. 17). The confidence intervals of the execution times for both
algorithms are very small (always less than 5% of the measured execution time). The
results clearly indicates that, in this case, the experimental complexity of the general
algorithm is worse than PC-CRC. Similar differences appear for other values of the
parameters.

8. Conclusion

This paper introduces the class of CRC constraints and showed that it is closed under
composition, intersection, and transposition, the basic operations of path-consistency
algorithms. As a consequence, path consistency over CRC constraints produces a minimal
and decomposable network and is thus a polynomial-time decision procedure for CRC
networks. This paper then presented a new path-consistency algorithm for CRC constraints
running in time O(n3d2) and space O(n2d), where n is the number of variables and d is the
size of the largest domain, improving the traditional time and space complexity by orders

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 267

Fig. 17. PC-CRC versus PC-GEN.

of magnitude. Experimental results show that the algorithm behaves well in practice. The
paper also showed how to construct CRC constraints by conjunction and disjunction of
a set of basic CRC constraints, highlighting how CRC constraints generalize monotone
constraints, presenting interesting subclasses of CRC constraints, and highlighting how
to construct CRC constraints. The automatic recognition of CRC constraint constraint
networks, i.e.,

“given a constraint network, does there exist an ordering on the domains that makes
the constraint network CRC?”

remains an interesting open issue. To be useful, an algorithm answering this question
should run in time $(n3d2) since otherwise it is preferable to apply a general path-
consistency algorithm (running in time O(n3d3)) and to apply an algorithm recognizing
row-convex constraint constraint networks (which runs in time O(n3d2) [18]). Finally,
current work is devoted to studying how to use similar ideas for other classes of discrete
and continuous constraints and for other consistency notions (e.g., [5]).

Acknowledgements

We thank anonymous IJCAI and AIJ reviewers for helpful comments. Special thanks
to Christine Jacqumot for her help in the development and analysis of the experimental
plans. This research is partially supported by the Actions de recherche concertées
(ARC/95/00-187) of the Direction générale de la Recherche Scientifique—Communauté
Française de Belgique and by an NSF National Young Investigator Award with matching
funds.

268 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

Appendix A

A.1. Correctness of PC-GEN

The correctness of PC-GEN is proved using a similar argument than in [19]. Given two
constraint networksN = (Var,D,C) andN ′ = (Var,D′,C′), we defineN ′ ⊑N if ∀i, j ∈
arc(N)Di ⊆ D′

i ∧ Cij ⊆ C′
ij . We also define N ′′ = N ′ 6 N , with N ′′ = (Var,D′′,C′′),

D′′
i = Di ∪ D′

i and C′′
ij = Cij ∪ C′

ij .
We prove that the output of PC-GEN is the largest path-consistent constraint network

forN . One can easily show that such a largest constraint network always exists, is unique,
and is equivalent to N . We first show that the invariantN ∗ ⊑N is preserved in PC-GEN,
whereN ∗ is the largest path-consistent constraint network forN . Partial correctness (i.e.,
if the program terminates, it produces a correct result) can then be proved by showing
that, when PC-GEN terminates, the constraint network is path-consistent. We finally prove
termination, hence the (total) correctness of the algorithm.

Lemma A.1. Let N ∗ be the largest path-consistent constraint network for N0. After the
execution of PC-GEN, we haveN ∗ ⊑N .

Proof. We prove a stronger result: The invariantN ∗ ⊑N is preserved in PC-GEN at lines
2 and 8. The invariant holds for the first execution of line 2, as N = N0 and N ∗ ⊑ N0.
Execution of lines 4–6 preserves the invariant because ∆ contains path-inconsistent tuples
that cannot belong to the path-consistent N ∗. The proof for the invariant in line 8 is
similar. !

Theorem A.2 (Partial correctness). Algorithm PC-GEN is partially correct.

Proof. By Lemma A.1, it is sufficient to show that, when PC-GEN terminates, N is path-
consistent. Assume that PC-GEN terminates with ⟨v,w⟩ ∈ Cij such that ¬PCikj (v,w).
Let u1, . . . , um be all the elements supporting ⟨v,w⟩ in the initial constraint network N0
(i.e., Cik(v,ul) ∧ Ckj (ul,w)). At the end of PC-GEN, these supports have been deleted.
We have m > 0, since otherwise ⟨v,w⟩ would have been removed from Cij by line 2. Let
u be the last support of ⟨v,w⟩ during the computation. Since we have ¬PCikj (v,w) at the
end of the execution, either ⟨v,u⟩ has been removed from Cik or ⟨u,w⟩ has been removed
from Ckj . Such a removal implied the insertion of ⟨i, k, j, v⟩ or ⟨j, k, i, u⟩ in the queue.
As the algorithm is assumed to terminate, when this element will be dequeue and treated
by LOCALPATHCONS, ⟨v,w⟩ will be removed from Cij (since ¬PCikj (v,w)) and thus
⟨v,w⟩ belongs to ∆1. Contradiction. !

Lemma A.3 (Termination). In algorithm PC-GEN, if s1, . . . , sp are the numbers of new
elements in Q after successive iterations of lines 5 or 12, then s1 + · · · + sp !O(n3d2).

Proof. Given that a tuple ⟨v,w⟩ can only be pruned at most once per constraint Cij

(specification of the subproblems), and given the specification of ENQUEUE, it follows

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 269

that, for all i, j, k ∈ arc(N), for all v ∈ D, the element ⟨i, k, j, v⟩ can be enqueued at most
O(d) times in the queueQ during the execution of PC-GEN. !

Theorem A.4. Algorithm PC-GEN terminates and is totally correct.

A.2. Correctness of PC-GEN∗

The correctness of PC-GEN∗ is proved in three steps. We first show that in PC-
GEN, if a tuple has the LH(m) property, then it is eventually removed. We then prove
that, in an execution of PC-GEN, we may substitute executions of PATHCONS (or
LOCALPATHCONS) by executions of PATHCONS∗ (or LOCALPATHCONS∗). Hence the
correctness of PC-GEN∗. Let us first observe that the relaxed specifications does not
influence Lemmas A.1 and A.3.

Lemma A.5. If, during the execution of PC-GEN, we have ¬PCikj (v,w) and ⟨v,w⟩
LH(m) with respect to ikj , for some v,w, i, k, j,m, then the tuple ⟨v,w⟩ will eventually
be pruned from Cij .

Proof. The proof is by induction onm. For m = 1, we have ⟨i, k, j, v⟩ ∈ Q (the other case
is similar). Termination ensures the existence of a call to LOCALPATHCONS(i, k, j, v). By
hypothesis, we have ¬PCikj (v,w). The tuple ⟨v,w⟩ will thus be in the resulting∆ set and
pruned from Cij . For m > 1, we have ¬PCikj (v,w) and

∃u: ⟨v,u⟩ ∈ Cik ∧ ∃k′: ¬PCik′k(v,u) ∧ (⟨v,u⟩ is LH(m − 1) for ik′k)

(the other case is similar). By induction hypothesis, the tuple ⟨v,u⟩ will eventually be
pruned from Cik , inducing the insertion of ⟨i, k, j, v⟩ in the queue. We are now in a similar
case than for m = 1. !

Theorem A.6 (Correctness of PC-GEN∗). Algorithm PC-GEN∗ is totally correct.

Proof. Given that PC-GEN∗ always terminates and that the parametric procedures may
now compute smaller ∆ sets, it is sufficient to prove that all the postponed tuples will
eventually be pruned. Let us consider an execution of PC-GEN∗. Let p be the number of
sets ∆ computed by PATHCONS∗ and LOCALPATHCONS∗ which do not respect the initial
specification of the parametric procedures. The proof is by induction on p. For p = 0,
PC-GEN∗ is PC-GEN. For p " 1, consider the pth call of these calls to PATHCONS∗ and
LOCALPATHCONS∗. Except for this call, the remaining part of the execution of PC-GEN∗

is now identical to an execution of PC-GEN. By Lemma A.5, all the postponed tuples will
eventually be pruned. The induction hypothesis can now by applied to the other p−1 calls;
the remaining postponed tuples will thus eventually be pruned. !

A.3. Subproblems for PC-CRC

procedure PROPAGATE(in i , k, j , ⟨v,w⟩, BOUNDED, NEXT,
out ∆)

270 Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271

Let vk = NEXTk(v),
wk and ∆k such that BOUNDED(i, k, j, ⟨vk,w⟩,∆k,wk),
m =max{k | ∆k ̸= ∅ ∧ wk = w}.

Post: ∆ =⋃
1!k!m+1∆k

begin
1 ∆ := ∅;
2 vcalc := v;
3 repeat
4 vcalc :=NEXT(vcalc);
5 BOUNDED(i , k, j , ⟨vcalc,w⟩, ∆calc, wcalc);
6 ∆ := ∆ ∪ ∆calc;
7 until (wcalc ̸= w);
end

procedure BOUNDEDMIN(in i , k, j , ⟨v,w⟩, out ∆, wmin)
Post: wmin =max{w ∈ Dj(Cji) | ∀w′ ∈ [MIN(v, i, j),w]:

EMPTYSUPPORT(v,w′, i, k, j)}
∆ = { ⟨v,w′⟩ | w′ ∈ [MIN(v, i, j),wmin]}

begin
1 ∆ := ∅;
2 w2 :=MIN(v, i, j);
3 while (w2 ! w) ∧ ¬EMPTYSUPPORT(v, w2, i, k, j) do
4 begin
5 ∆ := ∆ ∪ {⟨v,w2⟩};
6 w2 := SUCC(w2);
7 end;
8 wmin := PRED(w2);
end

procedure BOUNDEDMAX(in i , k, j , ⟨v,w⟩, out ∆, wmax)
Post: wmax =min{w ∈ Dj (Cji) | ∀w′ ∈ [w, MAX(v, i, j)]:

EMPTYSUPPORT(v,w′, i, k, j)}
∆ = {⟨v,w′⟩ | w′ ∈ [wmax, MAX(v, i, j)]}

begin
1 ∆ := ∅;
2 w2 :=MAX(v, i, j);
3 while (w2 " w) ∧ ¬EMPTYSUPPORT(v, w2, i, k, j) do
4 begin
5 ∆ := ∆ ∪ {⟨v,w2⟩};
6 w2 := PRED(w2);
7 end;
8 wmax := SUCC(w2);
end

Y. Deville et al. / Artificial Intelligence 109 (1999) 243–271 271

References

[1] J.F. Allen, Maintaining knowledge about temporal reasoning, J. ACM 26 (1983) 832–843.
[2] O. Barette, Un algorithme de chemin-consistence et son instanciation à une classe de réseaux décomposable,

Mémoire de fin d’études, Département d’Ingénierie Informatique, Université Catholique de Louvain,
Louvaine-la-Neuve, Belgium, June 1997.

[3] A. Chmeiss, Sur la consistance de chemin et ses formes partielles, in: Actes du Congrès AFCET-RFIA-96,
Rennes, 1996.

[4] Y. Deville, O. Barette, P. Van Hentenryck, Constraint satisfaction over connected row convex constraints, in:
Proc. IJCAI-97, Nagoya, Japan, 1997, pp. 405–410.

[5] E. Freuder, C.D. Elfe, Neighborood inverse consistency preprocessing, in: Proc. AAAI-96, Portland, OR,
1996.

[6] E.C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1982) 24–32.
[7] D. Haroud, B. Faltings, Global consistency for continuous constraints, in: Principles and Practice of

Constraint Programming, Lecture Notes in Computer Science, Vol. 874, Springer, Berlin, 1994, pp. 40–50.
[8] D. Haroud, B. Faltings, Consistency techniques for continuous constraints, Constraints Internat. J. 1 (1996)

85–118.
[9] C.C. Han, C.H. Lee, Comments on Mohr and Henderson’s path consistency algorithm, Artificial Intelligence

36 (1988) 125–130.
[10] P.G. Jeavons, M.C. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79 (1995) 327–

339.
[11] P. Jeavons, D. Cohen, M. Cooper, Constraints, consistency and closure, Artificial Intelligence 101 (1998)

251–265.
[12] A. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1) (1977) 99–118.
[13] U. Montanari, Networks of constraints: Fundamental properties and applications to picture processing,

Inform. Sci. 7 (2) (1974) 95–132.
[14] M. Singh, Path consistency revisited, in: Proc. IEEE-ICTAI-95, Washington, DC, 1995.
[15] P. van Beek, Approximation algorithms for temporal reasoning, in: Proc. IJCAI-89, Detroit, MI, 1989,

pp. 745–750.
[16] P. van Beek, On the minimality and decomposability of constraint network, in: Proc. AAAI-92, San Jose,

CA, 1992, pp. 447–452.
[17] P. van Beek, Reasoning about qualitative temporal reasoning, Artificial Intelligence 58 (1992) 297–326.
[18] P. van Beek, R. Dechter, On the minimality and global consistency of row convex networks, J. ACM 42 (3)

(1995) 543–561.
[19] P. Van Hentenryck, Y. Deville, C.-M. Teng, A generic arc-consistency algorithm and its specializations,

Artificial Intelligence 57 (2–3) (1992) 291–321.
[20] M. Vilain, H. Kautz, Constraint propagation algorithms for temporal reasoning, in: Proc. AAAI-86,

Philadelphia, PA, 1986, pp. 132–144.
[21] R.E. Valdés-Pérez, The satisfiability of temporal constraint network, in: Proc. AAAI-87, Seattle, WA, 1987,

pp. 745–750.

