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Preface

This volume contains the proceedings of the Ninth International Conference on
Principles and Practice of Constraint Programming (CP 2003), held in Kinsale,
Ireland, from September 29 to October 3, 2003. Detailed information about the
CP 2003 conference can be found at the URL http://www.cs.ucc.ie/cp2003/

The CP conferences are held annually and provide an international forum
for the latest results on all aspects of constraint programming. Previous CP
conferences were held in Cassis (France) in 1995, in Cambridge (USA) in 1996,
in Schloss Hagenberg (Austria) in 1997, in Pisa (Italy) in 1998, in Alexandria
(USA) in 1999, in Singapore in 2000, in Paphos (Cyprus) in 2001, and in Ithaca
(USA) in 2002.

Like previous CP conferences, CP 2003 again showed the interdisciplinary
nature of computing with constraints, and also its usefulness in many problem
domains and applications. Constraint programming, with its solvers, languages,
theoretical results, and applications, has become a widely recognized paradigm
to model and solve successfully many real-life problems, and to reason about
problems in many research areas.

This year the research community has shown a very high interest in constraint
programming, submitting to CP 2003 a record number of 181 papers, ranging
over all aspects of constraint programming, from solvers to languages and from
applications to theoretical results. After a reviewing period where each paper
was read by three reviewers, and a two-day meeting in Padova (Italy) on June
3–4, 2003, the Program Committee decided to accept 48 papers as full papers,
which have been allocated 15 pages in the proceedings. Among these, we selected
a best paper: Control Abstraction by Local Search, by Pascal Van Hentenryck
and Laurent Michel. We also decided to accept 34 poster papers, which have
been allocated 5 pages in the proceedings. Poster papers are not to be thought
of as second class papers, but rather as papers describing preliminary work which
are, however, very promising and contain very fine and innovative ideas.

This volume also contains the papers of the four invited speakers, who hon-
ored the conference with their presentations: Henry Kautz, who told us about
recent progress in propositional reasoning and search, Tuomas Sandholm, who
proposed automated mechanism design as a new application area, Mark Wal-
lace, who discussed the never-ending debate about languages versus packages,
and Toby Walsh, who proposed constraint patterns as a useful modeling tool.
Thanks to all of them!

A tradition since CP 2001, CP 2003 included a doctoral program, which
allowed Ph.D. students working on constraint programming to come to the con-
ference, to present their work and discuss it with senior researchers, and to listen
to tutorials on career and doctoral issues. This volume contains one page for each
of the 40 accepted students who don’t have a paper on the same subject in the
main technical program. I am especially grateful to Michela Milano, who did a
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wonderful job both in organizing the doctoral program and in raising enough
sponsor money to support the participation of 44 students.

CP 2003 also included 10 workshops and 4 advanced tutorials. The tutorials
were on preferences (Ronen Brafman and Carmel Domshlak), randomized back-
track search (Carla P. Gomes), dynamic constraint solving (Gérard Verfaillie,
Narendra Jussien), and configuration (Daniel Mailharro, Ulrich Junker). Many
thanks to all the tutorialists, and also to Christian Bessière who organized all this
very smoothly and with a very good resulting workshop and tutorial program.

CP 2003 also included a demo session showing the latest tools in constraint
programming. Many thanks to James Little, who organized it very successfully,
and also to the 8 groups who responded to the call for demos.

This year for the first time CP was co-located with the ECLiPSe sum-
mer school, held on September 28, 2003. This provided an opportunity for CP
2003 attendees to learn about the basics and also the latest tools available in
the ECLiPSe environment from the developers and designers of the language.
Thanks to Mark Wallace who had the idea to co-locate the school with CP 2003.

I would like to thank the whole Program Committee for the time spent
with me over email in the 10 months preceding the conference and the two
days we physically met for the PC meeting. I especially appreciated the friendly
and constructive atmosphere in all the discussions about the submission process
and the constructive attitute of all the members towards the numerous problem
solving tasks. A special thanks goes to two members of the PC, Peter van Beek
and Toby Walsh, who acted as special counselors in difficult situations such as
problematic papers or delicate decisions.

I would also like to thank James Bowen, the conference chair, who dealt with
all the difficult organizational aspects of the conference, and who managed to
convince Science Foundation Ireland to support this conference in a significant
way. Many thanks also to Steven Prestwich, the publicity chair.

The PC meeting could not have been organized without the help of my system
people and of my Ph.D. student, K. B. Venable. Thanks!

Finally, I would like to thank explicitly all the sponsors: CoLogNET, Cork
Constraint Computation Centre, the CP organizing committee, ERCIM, ILOG,
the Intelligent Information System Institute at Cornell University, PARC Tech-
nologies, Science Foundation Ireland, and SICS. They were all very generous this
year, enabling us to support many students and the invited speakers, and also
to subsidize the conference fee and many other expenses.

Last but definitely not least, I want to thank the CP organizing committee,
who asked me to serve as Program Chair of CP 2003 thus giving me the oppor-
tunity to live through a very exciting and learning experience. I hope I met at
least some of their expectations for CP 2003.

July 2003 Francesca Rossi
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Abstract. In 1997 we presented ten challenges for research on satisfia-
bility testing [1]. In this paper we review recent progress towards each of
these challenges, including our own work on the power of clause learning
and randomized restart policies.

1 Introduction
The past few years have seen enormous progress in the performance of Boolean
satisfiability (SAT) solvers. Despite the worst-case exponential run time of all
known algorithms, SAT solvers are now in routine use for applications such as
hardware verification [2] that involve solving hard structured problems with up
to a million variables [3,4]. Each year the International Conference on Theory and
Applications of Satisfiability Testing hosts a SAT competition that highlights a
new group of “world’s fastest” SAT solvers, and presents detailed performance
results on a wide range of solvers [5,6]. In the the 2003 competition, over 30
solvers competed on instances selected from thousands of benchmark problems.

In 1997, we presented ten challenges for research on satisfiability testing [1],
on topics that at the time appeared to be ripe for progress. In this paper we
revisit these challenges, review progess, and offer some suggestions for future
research.

A full review of the literature related to the original challenges, let alone
satisfiability testing as a whole, is beyond the scope of this paper. We do highlight
several of the main recent developments, but the discussion below is biased
towards topics from our own research program in recent years. We welcome
pointers to any key papers we may have missed. We plan to keep this document
up-to-date with regular revisions posted on the SAT Challenge web page [7].

2 Challenging SAT Instances
Empirical evaluation of sat solvers on benchmark problems (such as those from
[8]) has been a effective driving force for progress on both fundamental algo-
rithms and theoretical understanding of the nature of satisfiability. The first two
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challenges were specific open SAT problems, one random and the other highly
structured.

CHALLENGE 1: Prove that a hard 700 variable random 3-SAT formula is
unsatisfiable.

When we formulated in this challenge in 1997, complete SAT procedures
based on DPLL [9] could handle around 300 to 400 variable hard random 3-
SAT problems. Progress in recent years had slowed and it was not clear DPLL
could be much improved upon for random 3-SAT. In particular, the there was
the possibility that the best DPLL methods were obtaining search trees that
were close to minimal in terms of the number of backtrack points [10]. Dubois
and Dequen [11], however, showed that there was still room for improvement.
They introduced a new branching heuristic that exploits so-called “backbone”
variables in a SAT problem. A backbone variable of a formula is a variable that
is assigned the same truth value in all assignments that satisfy the maximum
number of clauses. (For satisfiable formulas, these are simply the satisfying as-
signments of the formula.) The notion of a backbone variable came out of work
on k-SAT using tools from statistical physics, which has provided significant in-
sights into the solution structure of random instances. In particular, it can be
shown that a relatively large set of backbone variables suddenly emerges when
one passes though the phase transition point for k-SAT (k ≥ 3) [12]. Using a
backbone-guided search heuristic, Dubois and Dequen can solve a 700 variable
unsatisfiable, hard random 3-SAT instance in around 25 days of CPU time,
thereby approaching practical feasibility.

In the context of this challenge, it should be noted that significant progress
has been made in the last decade in terms of our general understanding of
the properties of random 3-SAT problems and the associated phase transition
phenomenon. A full review of this area would require a separate paper. (See
e.g. [13,14,15,16,17,18,19,20,21,22].) Many of the developments in the area have
been obtained by using tools from statistical physics. This work has recently
culminated in a new algorithm for solving satisfiable k-SAT instances near the
phase transition point [23]. The method is called survey propagation and in-
volves, in a sense, a sophisticated probabilistic analysis of the problem instance
under consideration. An efficient implementation enables the solution of hard
random 3-SAT phase transition instances of up to a million variables in about 2
hours of CPU time. For comparsion, the previously most effective procedure for
random 3-SAT, WalkSAT [24], can handle instances with around 100,000 vari-
ables within this timeframe. The exact scaling properties of survey propagation
— and WalksSAT for that matter — are still unknown.

In conclusion, even though we have seen many exciting new results in terms
of solving hard random instances, the gap between our ability to handle satis-
fiable and unsatisfiable instances has actually grown. An interesting question is
whether a procedure dramatically different from DPLL can be found for handling
unsatisfiable instances.
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CHALLENGE 2: Develop an algorithm that finds a model for the DIMACS
32-bit parity problem.

The second challenge problem derives from the problem of learning a parity
function from examples. This problem is NP-complete and it is argued in [25]
that any particular instance is likely to be hard to solve (although average-
case NP-completeness has not been formally shown). However, this challenge
was solved in 1998 by preprocessing the formula to detect chains of literals
that are equivalent considering binary clauses alone, and then applying DPLL
after simplification [26]1. Later [27] showed similar performance by performance
equivalency detection at every node in the search tree.

Parity problems are particularly hard for local search methods because such
algorithms tend to become trapped at a near-solution such that a small subset
of clauses is never satisfied simultaneously. Clause re-weighting schemes [28,29]
try to smooth out the search space by giving higher weight to clauses that are
often unsatisfied. A clause weighting scheme based on Langrange multipliers [30]
was able to solve the 16-bit versions of the parity learning problems.

3 Challenges for Systematic Search

At the time of our original challenge paper nearly all the best systematic methods
for propositional reasoning on clausal formulas were based on creating a reso-
lution proof tree2. This includes the depth-first search Davis-Putnam-Loveland-
Logemann procedure (DPLL) [33,34], where the proof tree can be recovered
from the trace of the algorithm’s execution, but is not explicitly represented in
a data structure (the algorithm only maintains a single branch of the proof tree
in memory at any one time). Most work on systematic search concentrates on
heuristics for variable-ordering and value selection, all in order to the reduce size
of the tree.

However, there are known fundamental limitations on the size of the shortest
resolution proofs that can be obtained in this manner, even with ideal branching
strategies. The study of proof complexity [35] compares inference systems in
terms of the sizes of the shortest proofs they sanction. For example, two proof
systems are linearly related if there is a linear function f(n) such that for any
proof of length n in one system there is a proof of length at most f(n) in
the other system. A family of formulas C provides an exponential separation
between systems S1 and S2 if the shortest proofs of formulas in C in system S1
are exponentially smaller than the corresponding shortest proofs in S2.

A basic result in proof complexity is that general resolution is exponentially
stronger than the DPLL procedure [36,37]. This is because the trace of DPLL
running on an unsatisfiable formula can be converted to a tree-like resolution
1 [26] also described a general preprocessor for identifying conjunctions of nested equiv-

alencies subformulas using linear programming.
2 Much work in verification has involved non-clausal representations, in particular

Boolean Decision Diagrams [31,32]; but the large body of work on BDD’s will not
be further discussed here.
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proof of the same size, and tree-like proofs must sometimes be exponentially
larger than the DAG-like proofs generated by general resolution. Furthermore,
it is known that even general resolution requires exponentially long proofs for for
certain “intuitively easy” problems [38,39,40]. The classic example are “pigeon
hole” problems that represent the fact that n pigeons cannot fit in n− 1 holes.
Shorter proofs do exist in more powerful proof systems. Examples of proof sys-
tems more powerful than resolution include extended resolution, which allows
one to introduce new defined variables, and resolution with symmetry-detection,
which uses symmetries to eliminate parts of the tree without search. Assuming
NP �= co −NP , even the most powerful propositional proof systems would re-
quire exponential long proofs worst case — nonetheless, such systems provably
dominate resolution in terms of minimum proof size.

Early attempts to mechanize proof systems more powerful than tree-like res-
olution gave no computational savings, because it is harder to find the small
proof tree in the new system than to simply crank out a large resolution proof.
In essence, the overhead in dealing with the more powerful rules of inference
consumes all the potential savings. Our third challenge was to present a prac-
tical proof system more powerful than resolution. In reviewing progress in this
area we first consider systems more powerful than tree-like (DPLL) resolution,
and next ones more powerful than general resolution.

3.1 Beyond DPLL

CHALLENGE 3A: Demonstrate that a propositional proof system more pow-
erful than tree-like resolution can be made practical for satisfiability testing.

Two new satisfiability testing algorithms were introduced in 1997, the same
year as our challenge paper: rel-sat [41] and SATO [42]. Both were versions of
DPLL augmented with “conflict clause learning”, a technique that grew out of
research in AI on explanation-based approaches to speed-up learning [43,44,45].
The idea in clause learning is that at each backtrack point the system derives
a reason for the inconsistency in the form of a new clause added to the original
formula. Rel-sat and SATO were suprisingly powerful, and even able to solve
open problems in finite mathematics. Clause learning was further developed for
the solvers GRASP [46], Chaff [47,48] and BerkMin [49], and is currently a key
technique in backtracking SAT solvers for applications such as verification.

Marquis-Silva [50] observed that clause learning can be viewed as adding re-
solvents to a tree-like proof, and Zhang [48] showed how different clause learning
schemes could be categorized according to way clauses were derived from cuts in
a data structure called a conflict graph. The conflict graph records the pattern
of unit propagations that have been performed at any point in the execution of
the algorithm. Each node in the graph is a literal that is currently assumed to
be true. The leaves are branch literals and the inner nodes are literals derived
by unit propagation. A conflict literal is one that appears both negatively and
positively in the graph.

Consider the implication graph at a stage where there is a conflict and fix a
conflict graph contained in that implication graph. Pick any cut in the conflict
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FirstNewCut clause
(x1 ∨ x2 ∨ x3)

Decision clause
(p ∨ q ∨ ¬ b)

1UIP clause
t

rel-sat clause
(¬ a ∨ ¬ b)

¬ p

¬ q

b

a

¬ t

¬ x1

¬ x2

¬ x3

y

¬ y

Λ

Fig. 1. A conflict graph depicting various learning schemes.

graph that has all decision variables on one side, called the reason side, and false
as well as at least one conflict literal on the other side, called the conflict side.
All nodes on the reason side that have at least one edge going to the conflict side
form a cause of the conflict. The negations of the corresponding literals forms
the conflict clause associated with this cut: that is, a clause that is implied by
the original formula. Figure 1 illustrates different possible cuts through a conflict
graph, corresponding to different clause learning algorithms.

Although the empirical power of clause learning had been clear for several
years, Beame et al. [51] provided the first proof of an exponential separation be-
tween clause learning and ordinary DPPL. The result was, in fact, even stronger:
they showed that there are formulas with short clause learning proofs that re-
quire exponentially large regular resolution proofs. Regular resolution proofs are
DAGS, as in general resolution, but are restricted so that no variable is resolved
upon more than once in any path from the root to a leaf. It is easy to see that all
tree-like proofs are regular but not vice-versa. They further showed that combin-
ing clause learning with restarts [52,53] (where learned clauses are saved between
restarts) is equivalent to general resolution. However, the questions of whether
clause learning is strictly stronger than regular resolution — that is, whether or
not there are also formulas with short regular proofs but long clause proofs –
and whether clause learning without restarts is equivalent to general resolution
are open.

Making clause learning work well in practice requires efficient strategies for
mananging the large number of learned clauses. The first technique developed for
this management problem was relevance-bounded learning [41,42]. The idea is
to discard a learned clause once it is unlikely to be useful later on in the proof. A
simple but effective strategy is to throw out clauses of length greater than some
fixed k when the search backtracks above the point at which any of the literals in
the clause are assigned a value [41]. A second important management technique,
called “watched literals”, was most fully exploited in Chaff [47]. Watched literals
is actually a generic technique for reducing the time needed to tell which clauses
have been shortened to length one during the DPPL’s unit propagation step.
Two literals are arbitrarily chosen in each clause to be “watched”. When a
literal is set, rather than scanning through all clauses containing the negation of
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the literal, the algorithm only scans clauses contained watched negations of the
literal. It is easy to see that this technique still finds all unit clauses, because such
a clause is guaranteed to be scanned once it becomes a binary clause. Watched
literals allows modern solvers to handle millions of learned clauses with small
time overhead (although space can then become problematic).

Clause learning strategies and variable branching strategies have tradition-
ally been studied separately. However, [54] shows that there is great promise
in developing branching strategies that explicitly take into account the order
in which clauses are learned. They considered a class of formulas known as
pebbling formulas [36,55,56,57], which can be thought of as representing prece-
dence graphs in dependent task systems and scheduling scenarios. Such formu-
las require exponential-sized proofs for tree-like resolution, but have polynomial
clause-learning proofs. However, it remains difficult to find such proofs. [54] pre-
processes the formula to extract a domain-specific branching sequence — that
is, a branching order that can be formally shown to yield small clause learning
proofs for formulas encoding pebbling graphs. While ordinary DPLL (with a
good branching order) scales to problems with about 60 variables on the peb-
bling formulas, and clause learning alone scales to 4,000 variables, clause learning
with the domain specific ordering handles over 2,000,000 variables. To make this
work of practical use we need to develop domain-specific strategies for other
common structures that arise in applications such as verification or planning,
and automated or semi-automated techniques for recognizing the structures.

3.2 Beyond General Resolution

CHALLENGE 3B: Demonstrate that a propositional proof system more pow-
erful than general resolution can be made practical for satisfiability testing.

Currently the most practical extension of general resolution is symmetry de-
tection. The pigeon hole problem is intuitively easy because we immediately see
that different pigeons and holes are indistinguishable, so we do not need to ac-
tually consider all possible matchings — without loss of generality, attempting
to find a particular (say, lexigraphically ordered) matching suffices. [58] showed
how to determine if there existed a renaming (permutation) ψ of the variables
in a formula that resulted in the same set of clauses, which justified a new rule
of inference: from any clause (a∨ b∨ ...), infer (ψ(a)∨ψ(b)∨ ...). [59] introduced
a different way of using symmetries, by strengthening the formula through the
addition of clauses that ruled out all but one of the symmetric cases. The draw-
back of this approach appeared to be the large (quadratic) number of symmetry
breaking clauses needed; but [60] showed that a linear sized set of symmetry-
breaking predicates was logically equivalent, and led to dramatic speedup on
certain structured benchmark problems. Symmetry detection is not, however, a
cure-all; [61] showed that any formula that was exponential for resolution could
be transformed into one that was still exponential for resolution plus symmetry
detection, by adding new literals and clauses that “hid” the symmetry.

As we have noted clause learning alone does not exceed the power of general
resolution. However, if instead of cacheing conflicts, one modifies DPLL so that
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the entire residual formula at each node in the search tree is cached, then the
proof complexity of the resulting system can exceed resolution [62] (if the test
for a cached formula includes subsumption checking). Furthermore, [63] argues
that formula caching is the fastest practical algorithm for counting the number
of solutions of formula.
CHALLENGE 4: Demonstrate that integer programming can be made practical
for satisfiability testing.

Over the years, there has been a significant amount of work on the close
connection between 0/1 integer programming and SAT (e.g., [64,65]). A key
question is whether techniques developed for integer programming can be of use
in SAT solvers. So far, it has been difficult to obtain a concrete computational
advantage of integer programming methods on practical SAT instances. The
recent work by Warners and van Maaren provides two promising examples of
where integer programming and related techniques may have an impact. First,
as discussed above, linear programming can be used in a two-phase algorithm for
the 32-bit parity formulas [26]. Secondly, by using a semi-definite programming
formulation, pigeon hole formulas can be solved efficiently [66]. The challenge
remains to incorporate these approaches in more general, practical SAT solvers.

In recent years, we have also seen an interesting development in the opposite
direction: use SAT techniques in the design of more efficient solvers for 0/1
integer programming problems. More specifically, one considers pseudo-Boolean
encodings, which use Boolean variables and linear inequalities over such variables
with integer coefficients. Most interestingly, some of the best solvers for pseudo-
Boolean problems are extensions of the best SAT solvers [67,68,69].

4 Challenges for Stochastic Search

CHALLENGE 5: Design a practical stochastic local search procedure for prov-
ing unsatisfiability.

Given the success of local search style procedures on satisfiable problem in-
stances, it would be interesting to use a local search strategy for finding “proof
objects”, i.e., objects that demonstrate the unsatisfiability of an instance. This
challenge remains wide open. A key issue is the need to find smaller proof objects.
Work on strong backdoor sets, which are small sets of variables that, together
with a polytime propagation method, can demonstrate unsatisfiability may lead
to some new opportunities in this area [70].
CHALLENGE 6: Improve stochastic local search on structured problems by
efficiently handling variable dependencies.

DPLL procedures handle variable dependency quite effectively through unit
propagation. Local search methods, such as Walksat, handle dependencies
through a random walk process, which may require on the order of N2 flips
to travel a dependency chain of N variables [71]. Given the large number of de-
pendent variables in structured instances, the local search methods therefore are
often less effective than local search style methods. Note that this is not always
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the case. For example, in runs on verification benchmarks, Velev [3] showed how
the performance of DLM [72] and Walksat [24,73] is comparable to many of the
best DPLL style methods. A series of papers, such as [74,75,76,77,78,79] among
others, has also led to a much improved understanding of local search methods
for SAT.

Hirsch [80] introduces a local search procedure, UnitWalk, where variable
dependencies are propagated explicitly as part of the search process. The prop-
agation strategy is closed related to the one studied in [81]. UnitWalk is quite
effective on certain classes of structured problems but there is still room for im-
provement. Comparisons with WalkSat shows that neither strategy dominates.
This led to QingTing [82], which is a local search solver that dynamically switches
between a UnitWalk and a Walksat strategy, depending on the underlying struc-
ture of of the problem.

In a different approach to handling dependencies, in [71], redundant clauses
are added to the SAT problem instances in a preprocessing phase. The redundant
clauses capture long range dependencies between variables. It can be shown, both
theoretically and empirically, that such redundant clauses speed up a local search
style solver.

Although the challenge problem was formulated specifically in the context
of local search methods, techniques for discovering and exploiting various forms
of variable dependencies have also been shown to be effective for DPLL style
procedures. See, for example, [83,84,85].

5 Randomized Systematic Search

CHALLENGE 7: Demonstrate the succesful combination of stochastic search
and systematic search techniques, by the creation of a new algorithm that out-
performs the best previous examples of both approaches.

[86,87] present hybrid approaches, integrating a local search and a DPLL
solver. This work provides a promising step towards hybrid solvers, but it remains
a challenge to have such solvers outperform non-hybrids on a wide range of
benchmark problems.

We implicitly assumed in this challenge, as was common at the time, that
stochastic search refers to some form of local search. Systematic, complete meth-
ods, such as DPLL, were generally deterministic. A major recent change during
the last five years came out of the insight that adding randomization to a com-
plete search method, combined with a restart strategy, can provide a significant
computational advance [52]. (Note that explicit randomization is not required.
For example, clauses learning between restarts of a DPLL solver, such as used in
Chaff, also forces explorations of different parts of the search space on different
restarts.)

Randomization and restarts take advantage of the large variations that have
been observed between different runs of backtrack search procedures on a given
problem instance. In fact, it has been shown that randomized DPLL run time
distributions are often — but not always — “heavy-tailed” [88,89,90,91]. This
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means that one observes a mixtures of run times on dramatically different scales.
By using rapid restarts, one can take advantage of the occasionally short, suc-
cessful run [52]. In a recent paper [70], it was shown that such short runs can be
explained by the existence of a small set of backdoor variables in the problem in-
stance. Once backdoor variables are assigned a value, the polytime propagation
and simplication mechanism of the solver under considaration sets the remaining
variables without further backtracking. (In case of a unsatisfiable instances, the
propagation mechanisms discovers an inconsistancy after propagation.) Practical
problem instances can have surprisingly small sets of backdoor variables. We have
observed structured instances with tens of thousands of variables with backdoor
sets of around a dozen variables. Randomization and restarts, in conjunction
with the variable selection heuristics, help the solver discover the backdoor sets.
Work on backdoor variables and clause learning, as discussed above, is providing
us with a better understanding as to why structured SAT instances with up to a
million variables, from, e.g., verification applications, can be solved with current
state-of-the-art solvers.

An important related issue is how to decide on a good restart policy. Luby
et al. [92] described restart policies for general randomized algorithms for two
scenarios where runtime itself is the only observable: (i) when each run is a
random sample from a known distribution, one can calculate a fixed optimal
cutoff; (ii) when there is no knowledge of the distribution, a universal schedule
mixing short and longer cutoffs comes within a log factor of the minimal run
time.

Horvitz et al. [93] showed that it is possible to do better than Luby’s fixed op-
timal policy by making observations of a variety of features related to the nature
and progress of problem solving during an early portion of the run (referred to as
the observation horizon) and learning, and then using, a Bayesian model to pre-
dict the length of each run. Examples of features of a running SAT solver (satz)
included the minimum, maximum, final, and average values of (1) The number of
backtracks; (2) The number of unit propagations; (3) Domain-specific measures
of the current subproblem (for example, for a coloring problem, the number of
nodes that have been colored), as well as the derivatives of such values. Under
the assumption that each run is an independent random sample of one runtime
distribution (RTD), [94] used observations to discriminate the potentially short
runs from the long ones and then adopted different restart cutoffs for the two
types of runs.

Ruan et al. [95] considered the case where there are k known distributions,
and each run is a sample from one of the distributions—but the solver is not
told which distribution. The paper showed how offline dynamic programming
can be used to generate the optimal restart policy, and how the policy can be
coupled with real-time observations to control restarting. In recent work the
same authors [96] generalize this to the case where the k distributions are not
specified in advance: instead, the solver first infers how a problem ensemble can
be decomposed into a set of sub-ensembles such that each sub-ensemble clusters
instances with similar runtime distributions.



10 Henry Kautz and Bart Selman

The following example from [96] illustrates this approach where instances are
clustered by their median runtime. Suppose that the RTD of each instance is a
scaled Pareto distribution controlled by a parameter b:

P (t) =
{

b/t2 if t ≥ b
0 if t < b

This is a canonical example of a heavy-tailed distribution. Furthermore, suppose
that b is an integer that is uniformly distributed in the range [11, 100] across the
problem distribution. The median run time of any particular instance is 2b, so we
expect that median run times of the sampled instances would fall uniformly in
the range [22, 200]. A binary clustering by the median run times of the samples
should give one cluster where the instance medians are in the range [22, 110]
(equivalently, b ∈ [11, 55]) and another cluster where the instance medians are in
the range [111, 200] (equivalently, b ∈ [56, 100]). Each cluster, or sub-ensemble,
yields an ensemble run time distribution. The ensemble distribution RTD is the
normalized sum of the RTD’s of the instances it contains.
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Fig. 2. The sub-ensemble run-time distributions for the example of a family of scaled
Pareto distributions.

Fig. 2 shows the sub-ensemble RTD’s for this example. The ensemble RTD’s
are not simple scaled Pareto distributions, because there is a non-zero probability
density to the left of the maximum points. One can show (analytically or by
computer simulation) that the optimal cutoffs for the two clusters are at 98 and
244 respectively. The dynamic programming procedure mentioned above can
then be used to calculate a complete policy—in the case of the example where
there are no run-time feature observations, this is a sequence of cutoff values to
try on any given instance until solution is reached. In this example, the series of
changing cutoff values are 201, 222, 234, 239, 242, 244, 244, . . .

On experiments with hard quasigroup completion problems and SAT encod-
ings of planning problems the approach showed a speedup ranging from 57% to
72% over Luby’s universal policy. Interestingly, the policy of using fixed cutoff
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that is optimal under the (false) assumption that all instances in the ensem-
ble are equally difficult fails catastrophically, because some instances are never
solved.

6 Challenges for Problem Encodings

CHALLENGE 8: Characterize the computational properties of different en-
codings of a real-world problem domain, and/or give general principles that hold
over a range of domains.

There has been a good amount of work on comparing different SAT encod-
ings. For example, [97,98] consider different translations of constraint satisfac-
tion problems (CSP) into SAT. A central issue in this work is what kinds of
encodings preserve local CSP consistency checking in the SAT encoding, where
local processing consists mainly of unit-propagation. By exploiting some key
ideas from CSPs, such as m-loosenes [99], one can in fact optimize the SAT
encodings [100]. Examples of other work in the area are on encoding plan-
ning problems [101,102] and quasi-group completion problems (a multi-coloring
task) [103].

This work shows clearly that encodings have a significant impact on the
practical solvability of the underlying problems. Some general lessons have been
obtained, but there is still a need for more unifying, domain-independent prin-
ciples.
CHALLENGE 9: Find encodings of real-world domains which are robust in
the sense that “near models” are actually “near solutions”.

In our work on planning [104], we noticed that assignments that satisfy all
but a few of the clauses encoding our planning problems often represented action
sequences that were very different from valid plans. This means that there can
be a significant practical mismatch between a solver that tries to maximize the
number of satisfied clauses (which is the standard approach is SAT solvers) and
the search for valid plans. In particular, maximizing the number of satisfied
clauses does not lead to nearly valid plans. It would seem that it should be
possible to design better SAT encodings. This challenge remains open. For some
related work, dealing with the robustness of encodings in general, see [105].
CHALLENGE 10: Develop a generator for problem instances that have com-
putational properties that are more similar to real-world instances.

The final challenge is in response to the concern that the random k-SAT for-
mulas that dominated benchmarks in 1997 might begin to drive research in the
wrong direction [106]. [107] introduced a generation model based on the quasi-
group (or Latin square) completion problem (QCP). The task is to determine if a
partially colored square can be completed so that no color is repeated in any row
or any column. QCP is an NP-complete problem, and random instances exhibit
a peak in problem hardness in the area of the phase transition in the percentage
of satisfiable instances generated as the ratio of the number of uncolored cells
to the total number of cells is varied. The structure implicit in a QCP problem
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is similar to that found in real-world domains, such as scheduling, bandwidth
assignment, and experimental design.

In order to measure the performance of incomplete solvers, it is necessary
to have benchmark instances that are known to be satisfiable. This requirement
is problematic in domains where incomplete methods can solve larger instances
than complete methods: it is not possible to use a complete method to filter out
the unsatisfiable instances. [103] described a generation model for quasigroup
completion problems that are always guaranteed to be satisfiable. Another in-
teresting approach for generating satisfiable instances is based on a translation
of problems from cryptography [108].

Structured problem generators have also been created by linking a random
generator for some particular domain to a SAT translator. For example, the
Blackbox planning system [109] can be used to convert STRIPS planning prob-
lems into CNF formulas. The Blackbox distribution included a simple generator
for random logistics planning problems, making it easy to generate random SAT
problems that have the underlying structure of a planning problem.

Many SAT benchmarks today are encodings of bounded-model checking ver-
ification problems [2,110]. While hundreds of specific problems are available, it
would be useful to be able to randomly generate similar problems by the thou-
sands for testing purposes: we hope to encourage the creation of such a tool.

7 Conclusion

The challenges from our original paper provide a useful framework for discussing
some of the exciting progress in satisfiability testing in recent years. We expect
further developments on extensions to DPLL and randomized systematic search
to continue. Much remains to be done, however, towards the challenges on prob-
lem encodings, local search for proofs of unsatisfiability, and hybrid methods.

References

1. Bart Selman, Henry A. Kautz, and David A. McAllester. Ten challenges in propo-
sitional reasoning and search. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI’97), pages 50–54, 1997.

2. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
pages 193–207, Amsterdam, The Netherlands, March 1999.

3. M. N. Velev and R. E. Bryant. Effective use of boolean satisfiability procedures
in the formal verification of superscalar and vliw microprocessors. In Proc. 38th
Design Automation Conference (DAC ’01), pages 226–231, 2001.

4. P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha micropro-
cessor using satisfiability solvers. In Proc. 13th Int. Conf. on Computer Aided
Verification, 2001.

5. L. Simon, D. Le Berre, and E. Hirsch. The sat2002 competition, 2002.
http://www.satlive.org/SATCompetition/onlinereport.pdf.



Ten Challenges Redux 13

6. D. Le Berre and L. Simon. The essentials of the sat’03 competition, 2003. Under
review. Draft available at http://www.lri.fr/ simon/contest03/results/.

7. http://www.cs.washington.edu/homes/kautz/challenge/.
8. David S. Johnson and Michael A. Trick, editors. Cliques, Coloring and Satisfia-

bility: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series
in Disc. Math. and Theor. Computer Science. AMS, 1996.

9. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394–397, 1979.

10. C.M. Li and S. Gerard. On the limit of branching rules for hard random unsat-
isfiable 3-sat. In Proc. ECAI, 2000.

11. O. Dubois and G. Dequen. A backbone-search heuristic for efficient solving of hard
3-sat formulae. In Proc. of the 17th International Joint Conference on Artificial
Intelligence (IJCAI ’01), 2001.

12. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Deter-
mining computational complexity from characteristic phase transitions. Nature,
400(8):133–137, 1999.

13. O. Martin, R. Monasson, and R. Zecchina. Statistical mechanics methods and
phase transitions in optimization problems. Theor. Computer Science, 265, 2001.

14. Phase transitions and algorithmic complexity ipam, July 2002.
www.ipam.ucla.edu/programs/ptac2002/ptac2002-schedule.html.

15. Dimitris Achlioptas, Paul Beame, and Michael Molloy. A sharp threshold in proof
complexity. In Proc., 33st Annual ACM Symp. on Theory of Computing, pages
337–346, Crete, Greece, July 2001.

16. B. Bollobas, C. Borgs, J. T. Chayes, J. Han Kim, and D.B. Wilson. The scaling
window of the 2sat transition. Rand. Struct. Alg., 18:301, 2001.

17. Dimitris Achlioptas, Lefteris, M. Kirousis, Evangelos Kranakis, and Danny
Krizanc. Rigorous results for (2+p)-sat. Theor. Comp. Sci., 265:109–129, 2001.

18. Olivier Dubois, Rimi Monasson, Bart Selman, and Riccardo Zecchina. Phase
transitions in combinatorial problems (special issue). Theor. Computer Science,
265, 2001.

19. E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. Journal
of the American Mathematical Society, 12:1017–1054, 1999.

20. C. Gomes and B. Selman. Satisfied with physics. (perspective article.). Science,
297:784–785, 2002.

21. T. Hogg, B. Huberman, and C. Williams (Eds.). Phase Transitions and Complex-
ity (Special Issue). Artificial Intelligence, 81(1–2), 1996.

22. David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and easy distri-
butions for SAT problems. In Proc. 10th Natl. Conf. on Artificial Intelligence,
pages 459–465, 1992.
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Abstract. Mechanism design is the art of designing the rules of the
game (aka. mechanism) so that a desirable outcome (according to a given
objective) is reached despite the fact that each agent acts in his own self-
interest. Examples include the design of auctions, voting protocols, and
divorce settlement procedures. Mechanisms have traditionally been de-
signed manually for classes of problems. In 2002, Conitzer and Sandholm
introduced the automated mechanism design approach, where the mech-
anism is computationally created for the specific problem instance at
hand. This approach has several advantages: 1) it can yield better mech-
anisms than the ones known to date, 2) it applies beyond the problem
classes studied manually to date, 3) it can circumvent seminal economic
impossibility results, and 4) it shifts the burden of design from man to
machine. In this write-up I overview the approach, focusing on prob-
lem representations, computational complexity, and initial applications.
I also lay out an agenda for future research in this area.

1 Introduction
In multiagent settings, agents generally have conflicting preferences, yet it is cru-
cial to be able to aggregate the preferences, that is, to choose a socially desirable
outcome, for example a president, resource allocation, or task allocation. This
problem prevails among any self-interested agents: humans, companies, etc.—
and software agents representing such parties.

Preference aggregation mechanisms include voting protocols, auctions, di-
vorce settlement procedures, and collaborative rating systems, to name just a
few. Unfortunately, most naive preference aggregation mechanisms suffer from
manipulability. An agent may have an incentive to misreport its preferences in
order to mislead the mechanism into selecting an outcome that is more desir-
able to the agent than the outcome that would be selected if the agent revealed
its preferences truthfully. Manipulation is an undesirable phenomenon because
preference aggregation mechanisms are tailored to aggregate preferences in a
socially desirable way, and if the agents reveal their preferences insincerely, a
� This material is based upon work supported by the National Science Foundation

under CAREER Award IRI-9703122, Grant IIS-9800994, ITR IIS-0081246, and ITR
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socially undesirable outcome may be chosen. Manipulability is a pervasive prob-
lem across preference aggregation mechanisms. A seminal negative result, the
Gibbard-Satterthwaite theorem, shows that under any nondictatorial preference
aggregation scheme, if there are at least 3 possible outcomes, there are pref-
erences under which an agent is better off reporting untruthfully [25,47]. (A
preference aggregation scheme is called dictatorial if one of the agents dictates
the outcome no matter how the others vote.)

Mechanism design is the art of designing the mechanism (i.e., rules of the
game) so that the agents are motivated to report their preferences truthfully and
a desirable (according to a given objective) outcome is chosen. The objective can
be, for example, social welfare (i.e., sum of the agents’ utilities), seller’s revenue,
fairness, or some combination of these.

1.1 Manual Mechanism Design
Mechanism design has traditionally been a manual endeavor. The designer uses
experience and intuition to hypothesize that a certain rule set is desirable in
some ways, and then tries to prove that this is the case. Alternatively, the de-
signer formulates the mechanism design problem mathematically and charac-
terizes desirable mechanisms analytically in that framework. These approaches
have yielded a small number of canonical mechanisms over the last 40 years,
each of which is designed for a class of settings and a specific objective. The
upside of these mechanisms is that they do not rely on (even probabilistic) in-
formation about the agents’ preferences (e.g., the Vickrey-Clarke-Groves (VCG)
mechanism [48,9,27]), or they can be easily applied to any probability distri-
bution over the preferences (e.g., the dAGVA mechanism [24,2], the Myerson
auction [39], and the Maskin-Riley multi-unit auction [38]). However, these gen-
eral mechanisms also have significant downsides:

– The most famous and most broadly applicable general mechanisms, VCG
and dAGVA, only maximize social welfare. If the designer is self-interested,
as is the case in many electronic commerce settings, these mechanisms do
not maximize the designer’s objective.

– The general mechanisms that do focus on a self-interested designer are only
applicable in very restricted settings. For example, Myerson’s expected rev-
enue maximizing auction is for selling a single item, and Maskin and Riley’s
expected revenue maximizing auction is for selling multiple identical units
of an item.

– Even in the restricted settings in which these mechanisms apply, the mech-
anisms only allow for payment maximization. In practice, the designer may
also be interested in the outcome per se. For example, an auctioneer may
care which bidder receives the item.

– It is often assumed that side payments can be used to tailor the agents’ incen-
tives, but this is not always practical. For example, in barter-based electronic
marketplaces—such as Recipco, firstbarter.com, BarterOne, and Intagio—
side payments are not allowed. Furthermore, among software agents, it might
be more desirable to construct mechanisms that do not rely on the ability to
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make payments, because many software agents do not have the infrastructure
to make payments.

– The most common mechanisms (e.g., VCG, dAGVA, Myerson auction, and
the Maskin-Riley auction) assume that the agents have quasilinear prefer-
ences. This means that the utility function of each agent i ∈ {1, . . . , N} can
be written as ui(o, π1, . . . , πN ) = vi(o) − πi, where o is the outcome and πi

is the amount that agent i has to pay. So, very restrictively, it is assumed
that 1) the agent’s valuation, vi, of outcomes is independent of money, 2)
the agent does not care about other agents’ payments, and 3) the agent is
risk neutral.

In addition to mechanisms, mechanism design research has yielded impossi-
bility results that state that no mechanism works across a class of settings (for
varying definitions of “works” and varying classes). For example, the Gibbard-
Satterthwaite theorem, discussed above, states that for the class of general pref-
erences, no mechanism works in the sense that 1) the mechanism’s outcome can
be any one of at least three candidates, 2) the mechanism is nondictatorial, and
3) every agent’s dominant strategy is to reveal his preferences truthfully.

1.2 Automated Mechanism Design

In sharp contrast to manual mechanism design, Conitzer and Sandholm in 2002
introduced a systematic approach—called automated mechanism design—where
the mechanism is automatically created for the setting and objective at
hand [16]1. This has at least four important advantages:

– It can be used in settings beyond the classes of problems that have been
successfully studied in (manual) mechanism design to date.

– It can allow one to circumvent the impossibility results: when the mechanism
is designed for the setting (instance) at hand, it does not matter that it
would not work on preferences beyond those in that setting (e.g., for a class
of settings). Even when the optimal mechanism—created automatically—
does not circumvent the impossibility, it always minimizes the pain entailed
by impossibility.

– It can yield better mechanisms (in terms of better outcomes and/or stronger
nonmanipulability guarantees2) than the canonical mechanisms because the
mechanism capitalizes on the particulars of the setting (the probabilistic
(or other) information that the mechanism designer has about the agents’
preferences).
Given the vast amount of information that parties have about each other
today, it is astonishing that the canonical mechanisms (such as first-price

1 Note that automated mechanism design is completely different from algorithmic
mechanism design [41]. In the latter, the mechanism is designed manually with the
goal that executing the mechanism is computationally tractable. On the other hand,
in automated mechanism design, the mechanism itself is designed automatically.

2 For example, satisfaction of ex post IC and/or IR constraints rather than their ex
interim variants. These are discussed in Section 2.
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reverse auctions), which ignore that information, have prevailed thus far. I
foresee an imminent revolution, where future mechanisms will be created
automatically. For example, imagine a Fortune 1000 company automatically
creating its procurement mechanism based on its statistical knowledge about
its suppliers (and potentially also the public prices of the suppliers’ inputs,
etc.). Initial work like this is already being conducted at CombineNet, Inc.

– It shifts the burden of mechanism design from humans to a machine.

2 The Computational Problem
As a first step toward fulfilling the vision of automated mechanism design, we
modeled mechanism design as a computational optimization problem [16,20].
This section reviews that model.

First, the automated mechanism design setting is defined as follows.

Definition 1. In an automated mechanism design setting, we are given
A finite set of outcomes O;
A finite set of N agents;
For each agent i,

– a finite set of types Θi,
– a probability distribution γi over Θi (in the case of correlated types, there is

a single joint distribution γ over Θ1 × . . .×ΘN ),
– a utility function ui : Θi ×O → R 3;

An objective function whose expectation the designer wishes to maximize.

There are many possible objective functions the designer might have, for
example, social welfare (where the designer seeks to maximize the sum of the
agents’ utilities), or the minimum utility of any agent (where the designer seeks
to maximize the worst utility had by any agent). In both of these cases, the
designer is benevolent, because the designer, in some sense, is pursuing the agents’
collective happiness. On the other hand, a self-interested designer cares only
about the outcome chosen (that is, the designer does not care how the outcome
relates to the agents’ preferences, but rather has a fixed preference over the
outcomes), and about the net payments made by the agents, which flow to
the designer. Specifically, a self-interested designer has an objective function

g(o) +
N∑

i=1
πi, where g : O → R indicates the designer’s own preference over the

3 Though this follows standard game theory notation [37], the fact that the agent
has both a utility function and a type is perhaps confusing. It simply means that
the agent has a utility function from a finite set of utility functions. If agent is
of type 1, then it has the first utility function, an agent of type 2 has the second
utility function, and so on. The agent’s type is not known to the aggregator. The
utility function is common knowledge, but because the agent’s type is a parameter
in the agent’s utility function, the aggregator cannot know what the agent’s utility
is without knowing the agent’s type.
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outcomes, and πi is the payment made by agent i. In the case where g = 0
everywhere, the designer is said to be payment maximizing. In the case where
payments are not possible, g constitutes the objective function by itself.

We now define the kinds of mechanisms under study.

Definition 2. A deterministic mechanism without payments consists of an out-
come selection function o : Θ1 × Θ2 × . . . × ΘN → O. A randomized mecha-
nism without payments consists of a distribution selection function p : Θ1 ×
Θ2 × . . . × ΘN → P(O), where P(O) is the set of probability distributions over
O. A deterministic mechanism with payments consists of an outcome selection
function o : Θ1 × Θ2 × . . . × ΘN → O and for each agent i, a payment se-
lection function πi : Θ1 × Θ2 × . . . × ΘN → R, where πi(θ1, . . . , θN ) gives
the payment made by agent i when the reported types are θ1, . . . , θN . A ran-
domized mechanism with payments consists of a distribution selection function
p : Θ1 × Θ2 × . . . × ΘN → P(O), and for each agent i, a payment selection
function πi : Θ1 ×Θ2 × . . .×ΘN → R 4.

There are two types of constraint on the designer in building the mechanism:
individual rationality constraints and incentive compatibility constraints. The
following subsections will define them, respectively.

2.1 Individual Rationality (IR) Constraints

The first type of constraint is the following. The utility of each agent has to
be at least as great as the agent’s fallback utility, that is, the utility that the
agent would receive if it did not participate in the mechanism. Otherwise that
agent would not participate in the mechanism—and no agent’s participation can
ever hurt the mechanism designer’s objective because at worst, the mechanism
can ignore an agent by pretending the agent is not there. (Furthermore, if no
such constraint applied, the designer could simply make the agents pay an in-
finite amount.) This type of constraint is called an IR (individual rationality)
constraint (aka. participation constraint). There are three different possible IR
constraints: ex ante, ex interim, and ex post, depending on what the agent knows
about its own type and the others’ types when deciding whether to participate
in the mechanism. Ex ante IR means that the agent would participate if it knew
nothing at all (not even its own type). We will not study this concept in this
paper. Ex interim IR means that the agent would always participate if it knew
only its own type, but not those of the others. Ex post IR means that the agent
would always participate even if it knew everybody’s type. We will define the
latter two notions of IR formally. First, we need to formalize the concept of the
fallback outcome. We assume that each agent’s fallback utility is zero for each
one of its types. This is without loss of generality because we can add a con-
stant term to an agent’s utility function (for a given type), without affecting the
decision-making behavior of that expected utility maximizing agent [37].
4 We do not randomize over payments because as long as the agents and the designer

are risk neutral with respect to payments, that is, their utility is linear in payments,
there is no reason to randomize over payments.



24 Tuomas Sandholm

Definition 3. In any automated mechanism design setting with an IR con-
straint, there is a fallback outcome o0 ∈ O where, for any agent i and any type
θi ∈ Θi, we have ui(θi, o0) = 0. (Additionally, in the case of a self-interested
designer, g(o0) = 0.)

We can now to define the notions of individual rationality.

Definition 4. Individual rationality (IR) is defined as follows.

– A deterministic mechanism is ex interim IR if for any agent i, and any type
θi ∈ Θi, we have E(θ1,..,θi−1,θi+1,..,θN )|θi

[ui(θi, o(θ1, .., θN )) − πi(θ1, .., θN )]
≥ 0.
A randomized mechanism is ex interim IR if for any agent i, and any type
θi ∈ Θi, we have E(θ1,..,θi−1,θi+1,..,θN )|θi

Eo|θ1,..,θn
[ui(θi, o)−πi(θ1, .., θN )] ≥ 0.

– A deterministic mechanism is ex post IR if for any agent i, and any type vec-
tor (θ1, . . . , θN ) ∈ Θ1×. . .×ΘN , we have ui(θi, o(θ1, . . . , θN ))−πi(θ1, . . . , θN )
≥ 0.
A randomized mechanism is ex post IR if for any agent i, and any type vector
(θ1, . . . , θN ) ∈ Θ1× . . .×ΘN , we have Eo|θ1,..,θn

[ui(θi, o)−πi(θ1, .., θN )] ≥ 0.

The terms involving payments are left out if payments are not possible.

2.2 Incentive Compatibility (IC) Constraints

The second type of constraint states that the agents should never have an incen-
tive to misreport their type. For this type of constraint, the two most common
variants (or solution concepts) are implementation in dominant strategies, and
implementation in Bayesian Nash equilibrium.

Definition 5. Given an automated mechanism design setting, a mechanism is
said to implement its outcome and payment functions in dominant strategies if
truthtelling is always optimal even when the types reported by the other agents are
already known. Formally, for any agent i, any type vector (θ1, . . . , θi, . . . , θN ) ∈
Θ1 × . . .×Θi × . . .×ΘN , and any alternative type report θ̂i ∈ Θi, in the case of
deterministic mechanisms we have
ui(θi, o(θ1, . . . , θi, . . . , θN ))− πi(θ1, . . . , θi, . . . , θN ) ≥
ui(θi, o(θ1, . . . , θ̂i, . . . , θN ))− πi(θ1, . . . , θ̂i, . . . , θN ).

In the case of randomized mechanisms we have
Eo|θ1,..,θi,..,θn

[ui(θi, o)− πi(θ1, . . . , θi, . . . , θN )] ≥
Eo|θ1,..,θ̂i,..,θn

[ui(θi, o)− πi(θ1, . . . , θ̂i, . . . , θN )].
The terms involving payments are left out if payments are not possible.

Thus, in dominant strategies implementation, truthtelling is optimal regard-
less of what the other agents report. If it is optimal only given that the other
agents are truthful, and given that one does not know the other agents’ types,
we have implementation in Bayesian Nash equilibrium.
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Definition 6. Given an automated mechanism design setting, a mechanism is
said to implement its outcome and payment functions in Bayesian Nash equi-
librium if truthtelling is always optimal to an agent when that agent does not
yet know anything about the other agents’ types, and the other agents are telling
the truth. Formally, for any agent i, any type θi ∈ Θi, and any alternative type
report θ̂i ∈ Θi, in the case of deterministic mechanisms we have
E(θ1,..,θi−1,θi+1,..,θN )|θi

[ui(θi, o(θ1, . . . , θi, . . . , θN ))− πi(θ1, . . . , θi, . . . , θN )] ≥
E(θ1,..,θi−1,θi+1,..,θN )|θi

[ui(θi, o(θ1, . . . , θ̂i, . . . , θN ))− πi(θ1, . . . , θ̂i, . . . , θN )].
In the case of randomized mechanisms we have

E(θ1,..,θi−1,θi+1,..,θN )|θi
Eo|θ1,..,θi,..,θn

[ui(θi, o)− πi(θ1, . . . , θi, . . . , θN )] ≥
E(θ1,..,θi−1,θi+1,..,θN )|θi

Eo|θ1,..,θ̂i,..,θn
[ui(θi, o)− πi(θ1, . . . , θ̂i, . . . , θN )].

The terms involving payments are left out if payments are not possible.

2.3 The Optimization Problem
We can now define the computational problem of automated mechanism design.

Definition 7. (AUTOMATED-MECHANISM-DESIGN (AMD)) We are given
an automated mechanism design setting, an IR notion (ex interim, ex post, or
none), and a solution concept (dominant strategies or Bayesian Nash equilib-
rium). Also, we are told whether payments are possible, and whether randomiza-
tion is possible. Finally, we are given a target value G. We are asked whether
there exists a mechanism of the specified type that satisfies both the IR notion and
the solution concept, and gives an expected value of at least G for the objective5.

3 Complexity Results
This section discusses the complexity of AMD. An interesting special case is the
setting where there is only one agent. In this case, the agent always knows every-
thing there is to know about the other agents’ types—because there are no other
agents. Since ex post and ex interim IR only differ on what an agent is assumed
to know about other agents’ types, the two IR concepts coincide here. Also, be-
cause implementation in dominant strategies and implementation in Bayesian
Nash equilibrium only differ on what an agent is assumed to know about other
agents’ types, the two solution concepts coincide here. This observation is a use-
ful tool in proving hardness results: we proved computational hardness in the
single-agent setting, which immediately implies hardness for both IR concepts,
for both solution concepts, and for any constant number of agents.

Now we are ready to review the hardness results. It turns out that in settings
without side payments, such as voting, designing an optimal (e.g., expected so-
cial welfare maximizing) deterministic mechanism is NP -complete. This holds
whether the designer is benevolent [16,14] or self-interested [20]. If side payments
are allowed, designing a deterministic mechanism is easy if the designer’s objec-
tive is social welfare (the VCG mechanism suffices), but NP -complete more
5 For studying computational complexity, we phrase AMD as a decision problem, but

the corresponding optimization problem is clear.
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generally (for example, if the objective is to maximize the expected revenue col-
lected from the bidders [20]—as is the objective in some auctions). All of these
hardness results apply even with a uniform prior over types.

Interestingly, if one allows randomized mechanisms, the mechanism design
problem becomes solvable in polynomial time using linear programming (LP)
(for any constant number of agents) [16,20]6. A decision variable in the LP is the
probability that a given outcome is chosen given that a certain type revelation
vector (each agent reveals a type) occurs. For any constant number of agents,
the number of decision variables is polynomial in the number of types and in
the number of outcomes. Furthermore, the number of constraints (IC and IR) is
polynomial. The LP can then be solved in polynomial time7.

4 A Tiny Example: Divorce Settlement
We built a basic automated mechanism design system to test the approach in
practice. This section illustrates a small example (from [19]). For each setting
below, our system found the optimal mechanism. The system used CPLEX,
a general-purpose optimization package, to solve the underlying mixed inte-
ger/linear program.

Consider a couple getting a divorce. They jointly own a painting and the
arbitrator has to decide what happens to the painting. There are 4 options to
decide between: (1) the husband gets the painting, (2) the wife gets the painting,
(3) the painting remains in joint ownership and is hung in a museum, and (4)
the painting is burned. The husband and wife each have two possible types: one
that implies not caring for the painting too much (low), and one that implies
being strongly attached to the painting (high). (low) is had with probability .8,
(high) with .2, by each party. To maximize social welfare, the arbitrator would
like to give the painting to whoever cares for it more, but even someone who
does not care much for it would prefer having it over not having it, making the
arbitrator’s job in ascertaining the preferences nontrivial. Specifically, the utility
function is (for either party):

u(low,get the painting)=2
u(low,other gets the painting)=0
u(low,joint ownership)=1
u(low,burn the painting)=-10 (both consider burning it bad from an art history perspective)

u(high,get the painting)=100
u(high,other gets the painting)=0
u(high,joint ownership)=50
u(high,burn the painting)=-10

First, let us assume that side payments are not possible, randomization is
not possible, and that implementation in dominant strategies is required. Our
system generated the following optimal mechanism for this setting:
6 This holds for any mechanism design objective that is linear in the outcome proba-

bilities.
7 Randomized automated mechanism design can be solved in polynomial time even if

the types are correlated, that is, the agents’ types are drawn from a joint distribution,
not from separate distributions.
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husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high husband gets painting husband gets painting

So, we cannot do better than always giving the painting to the husband
(or always giving it to the wife). (The solver does not look for the “fairest”
mechanism because fairness is not part of the objective we specified.) Now let
us change the problem slightly, by requiring only implementation in Bayesian
Nash equilibrium. For this instance, our system generated the following optimal
mechanism:

husband_low husband_high
wife_low joint ownership husband gets painting
wife_high wife gets painting painting is burned

Thus, when we relax the incentive compatibility constraint to Bayesian Nash
equilibrium, we can do better by sometimes burning the painting! The burning
of the painting (with which nobody is happy per se) is sufficiently helpful in
tailoring the incentives that it becomes a key part of the mechanism.

It turns out that we can do better by also allowing for randomization in the
mechanism. The optimal randomized mechanism generated by the system is the
following:

husband_low husband_high
wife_low .57: husband, .43: wife 1: husband
wife_high 1: wife .45: burn; .55: husband

The randomization helps because the threat of burning the painting with
some probability when both report high is enough to obtain the incentive effect
that allows us to give the painting to the right party for other type vectors. The
mechanism now chooses to randomize over the party that receives the painting
rather than awarding joint ownership in the setting where both report low.

We also studied this divorce scenario when the benevolent mechanism de-
signer can use side payments, and when the mechanism designer is self-interested
(wants to maximize the amounts paid to him by the divorcees) [19].

5 Initial Applications
The automated mechanism design approach is new, and so far we have only
done preliminary experiments. In addition to solving the small divorce scenarios
discussed above, our system has yielded the following highlights [19]:

– It reinvented the celebrated Myerson auction [39], which maximizes the
seller’s expected revenue in a 1-object auction.

– It created expected revenue maximizing combinatorial auctions. This has
been a long-standing recognized open research problem in (manual) mecha-
nism design [4,49]. The general form for such an auction is still unknown, but
automated mechanism design created prior-specific optimal mechanisms. (In
the manual mechanism design literature, even the problem with only two ob-
jects for sale is open; only a case with very special form of complementarity
and no substitutability has be en solved [1].)
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– It created optimal mechanisms for a public good problem (deciding whether
or not to build a bridge). The VCG mechanism could be used in this set-
ting as long as each agent’s utility function is quasilinear. However, in the
VCG, nonnegative payments are collected from the voters (intuitively, the
payments are collected in order to avoid the free rider problem), and those
payments have to be burned. According to a seminal impossibility result,
this problem plagues any mechanism that applies to general quasilinear util-
ity functions, yields a social welfare maximizing decision, and makes truthful
reporting of utility functions a dominant strategy [26]. The automated mech-
anism design approach allowed us to incorporate money burning as a loss
in the social welfare objective, and maximize that revised objective. We had
automated mechanism design create an optimal mechanism for the bridge
building scenario under each variant of the incentive compatibility (IC) con-
straint discussed above (with the ex post IR constraint). In neither variant
was money ever burned. Under the ex interim IC constraint, the bridge was
always built if and only if that was best for the agents. (Under the ex post IC
constraint this was not always the case.) For the ex interim IC constraint,
the general-purpose dAGVA mechanism could be used to yield the social wel-
fare maximizing choice without burning money [24,2]. However, a seminal
economic impossibility result shows that no mechanism for general quasilin-
ear utility functions yields the social welfare maximizing choice, maintains
budget balance, and satisfies the IR constraint (even the ex interim vari-
ant) [40]. As the experiment above showed, automated mechanism design
can circumvent this impossibility! It constructed a mechanism that satisfies
all these desiderata, and actually the ex post (i.e., stronger) variant of the
IR constraint.

– It created optimal mechanisms for public goods problems with multiple
goods. This is the public goods analog of combinatorial auctions.

6 Structured Preferences

If the agents’ utility functions are additively decomposable into independent
issues, the input to automated mechanism design can be represented (potentially
exponentially) more concisely. (An example of this is a multi-item auction where
for each bidder, the value of the bundle of items that she wins is simply the sum
of the values that she assigns to the individual items in the bundle.)

In that representation it is NP -complete (even under strong restrictions) to
design a mechanism that maximizes one of the following objectives: 1) expected
social welfare when payments are not possible, 2) a general objective function
even when payments are possible, and 3) expected revenue collected from the
agents [21]. However, again, a randomized mechanism can be designed in polyno-
mial time. So, the complexity as a function of the input length is the same in the
concise representation as it is in the flat representation. In other words, due to
its potentially exponentially shorter input length, the structured representation
allows potentially exponentially faster automated mechanism design.
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7 Conclusions and Perspective
Mechanism design is the art of designing the rules of the game (aka. mecha-
nism) so that a desirable outcome (according to a given objective) is reached
despite the fact that each agent acts in his own self-interest. Mechanisms have
traditionally been designed manually for classes of problems. In 2002, Conitzer
and Sandholm introduced the automated mechanism design approach, where the
mechanism is computationally created for the specific problem instance at hand.
As illustrated in this write-up, this approach has several advantages: 1) it can
yield better mechanisms than the ones known to date, 2) it applies beyond the
problem classes studied manually to date, 3) it can circumvent seminal economic
impossibility results, and 4) it shifts the burden of design from man to machine.

In most variants of the problem, designing a deterministic mechanism is
NP -complete (even with just one agent), while a randomized mechanism can
be designed in polynomial time using linear programming (for any constant
number of agents). Put in perspective, the designer faces uncertainty about the
agents’ private information, which leads to the need for mechanism design and
introduces the associated computational complexity. Interestingly, the designer
can remove this complexity by making the agents face additional uncertainty
(randomization in the mechanism). This comes at no loss, and in some cases at
a gain, in the designer’s objective because deterministic mechanisms are a subset
of randomized ones (the outcome probabilities are 0/1 for each type vector).

Applications overviewed included different types of divorce settlement set-
tings, optimal auctions, optimal combinatorial auctions (a recognized open re-
search problem in manual mechanism design), optimal public goods problems,
and optimal combinatorial public goods problems. If the agents’ utility functions
can be additively decomposed into independent issues, the input to the mech-
anism design problem can become exponentially shorter, and it turns out that
this allows for exponentially faster solving of the design problem.

One potential objection to automatically designed mechanisms is that they
can be complex (the mapping from type revelation vectors to outcomes can be
long to list), and unintuitive (because they are designed anew for each setting,
the agents will likely not have had any previous experience with the mechanism).
I would argue that neither of these objections is fundamental: it suffices for each
agent to know his best way of behaving in the mechanism (which, by the IR and
IC constraints, is participating and revealing his type truthfully).

8 Current and Future Research Directions
Automated mechanism design is a brand new area of research, and holds signifi-
cant promise for enormous theoretical and practical impact. In this section I lay
out an agenda for current and future research in this area.

8.1 Real-World Applications
In the short term, the automated mechanism work with greatest practical impact
will undoubtedly be the application of the methodology to real-world problems.
While we introduced automated mechanism design only recently (in 2002), it is
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already being adopted in applications. In addition to our own explorations of
applications [19] reviewed above, our approach and methodology is being used
by others, for example to design auctions [28] and nonmanipulable collaborative
rating systems [30]. Promising application areas for the future include other
auction settings, voting settings, and a variety of mediation settings.

8.2 Partial Priors and Input Representation
One potential criticism is that in automated mechanism design, the prior dis-
tribution of types is used. This runs directly against the Wilson doctrine of
mechanism design that states that the mechanism should be prior-independent
because in many settings the designer does not know the prior. I would argue
that in many settings the designer does know a lot about the prior, and it would
be silly to ignore it. Consider, for example, a Fortune 1000 company procuring
materials from its established supplier base. The company certainly has sig-
nificant statistical information about the suppliers’ capacities and production
costs. Secondly, in many settings, good mechanisms must use the prior. This is
necessary, for example, in revenue-maximizing auctions. Therefore also many of
the manually designed mechanisms (e.g., the dAGVA mechanism, the Myerson
auction, and the Maskin-Riley auction) do use the prior.

A related potential objection arises from the fact that in some settings the
type space can be so large that the input to mechanism design is prohibitive.
For example, in a combinatorial auction, the number of bundles is exponential
in items, and even if every bundle can have a small number of alternative values
(for a given agent), the agent’s type space is doubly exponential in items.

To make automated mechanism design practical in these settings, it would be
desirable to develop ways to use only partial information about the prior (and the
type space), and yet design mechanisms that are provably (or experimentally)
close to optimal. Furthermore, could the mechanism design software selectively
and incrementally elicit partial information about the input on an as-needed
basis from the human designer who uses the software—and yet design a (close
to) optimal mechanism?

Related research questions include the following. How should the type space
be discretized if the actual type space is continuous? Can the discretization be
avoided entirely in some settings? Can the input be represented more effectively
in some settings? (Section 6 showed that if the agents’ utility functions are
additively decomposable, the answer to the last question is affirmative.)

8.3 Special-Purpose Algorithms and Characterization Results
While optimal randomized mechanisms are quick to design automatically, opti-
mal deterministic ones tend to be NP -complete to design. CPLEX tends to be
able to create optimal deterministic mechanisms with tens of types and tens of
outcomes in less than a minute [19]. Future research should improve this scala-
bility through algorithms specially crafted for automated mechanism design.

One interesting approach along that line is to use game-theoretic character-
ization results (that state features that all mechanisms with certain desirable
properties for a class of settings have, e.g., [35,51]) to prune down the search.
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One example along these lines is a general search algorithm for designing deter-
ministic mechanisms for one agent [18]. It tends to outperform CPLEX. Another
example is the recent design of a 1-object optimal auction mechanism when the
objective is a combination of the bidders’ welfare and the seller’s expected util-
ity [36]. The main piece of that work is an analytical characterization, but at the
end, a binary search algorithm is used to set the key parameter—which depends
on the prior and for which an analytical solution does not exist. Yet another
example is a recent paper on automated determination of an optimal sequence
of take-it-or-leave-it-offers (e.g., by a seller to a set of buyers, one buyer at a
time) [46]. It has a simple characterization result that makes modeling of the
optimization problem viable, thus enabling computational solving. The latter
two examples also serve as examples of techniques that are for a special kind of
automated mechanism design setting rather than for the general case.

8.4 Handling Collusion
The mechanism design setting discussed in this write-up so far considers devi-
ations by individual agents. Even if a mechanism is robust against such devia-
tions, a coalition of agents may be better off by reporting their types insincerely.
Several solution concepts have been proposed that require robustness against
coalitional deviations [3,7]. Future research should study automated mechanism
design under those solution concepts as well.

8.5 Inducing General Mechanisms
and Mechanism Design Principles

Another future use of automated mechanism design is to solve for mechanisms
for a variety of settings (real or artificially generated), and to see whether new
canonical mechanisms (that work across a class of settings) and/or mechanism
design principles can be inferred.

8.6 Nonstandard Mechanism Types
Perhaps most fundamentally, automated mechanism design could be used while
at the same time relaxing some of the core assumptions of mechanism design. In
this section I will discuss some important avenues along this line.

Multi-stage Mechanisms. Often in practice only a portion of the type infor-
mation is needed to determine the outcome. What information is needed from an
agent generally depends on what types the other agents have. There has been sig-
nificant recent work on selective incremental preference elicitation from bidders
in combinatorial auctions [10,12,11,29,52,8] 8 and from voters in elections [17]. It
turns out that in some settings, exponentially less information is communicated
in a multi-stage mechanism than in the most communication-efficient single-step
mechanism [22].

So, in practice, multi-stage mechanisms may be desirable in order to reduce
communication, enhance privacy, and to reduce the agents’ effort in settings
8 Ascending (combinatorial) auctions (e.g., [42,50]) are a special cases of the elicitation

model.
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where they need to expend effort to determine their own types (for example, in
many auctions, a bidder does not know the value of the goods before constructing
a plan of what he would do with the goods if he won). Future work includes
automatically designing multi-stage mechanisms.

Mechanisms with Insincere Equilibrium Play. The mechanism design
framework presented in this write-up creates mechanisms in which truthful type
reporting is each agent’s best strategy. This is justified by a central design prin-
ciple in mechanism design, the revelation principle [37]. It states that anything
that can be accomplished with a mechanism where some agents’ best strategies
involve insincere reporting, can be accomplished with a mechanism where each
agent’s best strategy is to reveal his type truthfully9.

However, the revelation principle falls apart in practice when computational
complexity is an issue. A recent paper [22] shows that there are settings where 1)
the optimal truthful mechanism is NP -complete to execute (for the center, e.g.,
auctioneer, who is running the mechanism), 2) by moving to insincere mecha-
nisms, one can shift the burden of having to solve the NP -complete problem
from the center to one of the agents, 3) the insincere mechanism is equally good
as the optimal truthful mechanism in the presence of unlimited computation,
and most interestingly, 4) whereas being unable to carry out the complex com-
putation would have hurt the center in achieving his objective in the truthful
setting, if the agent is unable to carry out the complex computation, the value
of the designer’s objective strictly improves. This shows that there are at least
theoretical settings where it is beneficial to use insincere mechanisms. So, is there
an advantage in practical settings? What would such mechanisms look like? Are
there principles for constructing them? Could they be automatically designed?

Mechanisms that Take into Account the Agents’ Bounded Rationality.
Sometimes economic mechanism design falls short: it can hit one of the impossi-
bility results. One way to try to circumvent impossibility results is to relax the
incentive compatibility constraint (and hopefully the other desirable properties
are obtainable). Then, the agents may have incentive to manipulate. A novel
way around this is to design mechanisms where finding a beneficial insincere
type revelation is provably hard computationally. There has been work char-
acterizing the complexity of manipulating known voting protocols [6,5,15,13],
and recent work on designing small changes to voting protocols so that manip-

9 The proof is remarkably simple: given any mechanism, we can construct a truth-
promoting mechanism whose performance is identical, as follows. We build an inter-
face layer between the agents and the original mechanism. The agents report their
types to the interface layer; subsequently, the interface layer inputs into the original
mechanism the types that the agents would have strategically reported to the origi-
nal mechanism, if their types were as declared to the interface layer. The resulting
outcome is the outcome of the new mechanism. Since the interface layer acts “strate-
gically on each agent’s behalf”, there is never an incentive to report falsely to the
interface layer. The types reported by the interface layer are the strategic types that
would have been reported without the interface layer, so the results are exactly as
they would have been with the original mechanism.
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ulation becomes hard [15,23]. Future research includes automatically designing
mechanisms that are provably hard to manipulate.

Another significant issue is that an agent may not know his preferences up
front, but can refine them by computing or information gathering. For example,
when a trucking company bids for a trucking task, this involves solving (at least)
two NP -complete planning problems: the vehicle routing problem with the new
task and the problem without it [43,44]. The difference in the costs of those
two local plans is the cost of taking on the new task. Should a bidder evaluate
the object he is bidding on if there is a cost to doing so? It turns out that the
celebrated Vickrey auction loses its dominant-strategy property if the bidder has
the option to evaluate the object or not: Whether or not the bidder should pay
the evaluation cost depends on the other bidders’ valuations [45].

The issues run even deeper. If a bidder has the opportunity to approximate
its valuation to different degrees, how much computing time should the bidder
spend on refining its valuation? If there are multiple items for sale, how much
computing time should the bidder allocate on different bundles of items? A bid-
der may even allocate some computing time to evaluate other bidders’ valuations
(e.g., how much it would cost for a competing trucking company to take on a
given set of tasks) so as to be able to bid more strategically; this is called strategic
computing [33,32,31,34].

To answer these questions, we developed a deliberation control method called
a performance profile tree for projecting how an anytime algorithm (a black box
from the perspective of the deliberation controller) will change the valuation if
additional computing is allocated toward refining (or improving) it [33,32,31,34].
Unlike earlier deliberation control methods for anytime algorithms, the perfor-
mance profile tree is a fully normative model of bounded rationality: it takes
into account all the information that an agent can use to make its deliberation
control decisions. (This is necessary in the game-theoretic context; otherwise a
self-interested agent could take into account some information that the model
does not, which could lead to strategic instability and much worse results.)

Using this deliberation control method, the computing actions can be made
part of the (auction) game. At every point, each agent can decide on which bundle
to allocate its next step of computing as a function of the agent’s computing
results so far (and in open-cry auction format also the others’ bids observed so
far). At every point, the agent can also decide to submit bids. One can then solve
this model for the Bayesian Nash equilibrium, where each agent’s (deliberation
and bidding) strategy is a best-response to the others’ strategies. This is called
a deliberation equilibrium. With this model, it has been determined under what
conditions strategic computing does (not) occur [33,32,31,34].

Our performance profile tree based deliberation control method together with
the idea of deliberation equilibrium provide a normative model of bounded ratio-
nality in multiagent systems, which is needed to determine how computationally
constrained self-interested agents would behave in a given mechanism. This al-
lows one to evaluate mechanisms for computationally constrained agents, and
hopefully paves the way to designing such mechanisms (automatically). This
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methodology could also be used to design mechanisms that are computation-
ally hard to manipulate, where hardness is measured not in terms of worst-case
complexity, but informed by game-theoretic deliberation control. This methodol-
ogy could even yield new mechanism design principles. As discussed, the central
design principle in mechanism design, the revelation principle, ceases to mean-
ingfully hold under computational or communication constraints.
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Languages versus Packages
for Constraint Problem Solving
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Abstract. One strand of CP research seeks to design a small set of prim-
itives and operators that can be used to build an appropriate algorithm
for solving any given combinatorial problem. The aim is to “package”
CP, simplifying its use, in contrast to current systems which offer appli-
cation developers a full constraint programming language. In this talk
we examine the risks of this line of research, and argue that our field is
still too immature to be ready for “packaging”.

1 Introduction

1.1 Usability versus Functionality

Learning a constraint programming language is a major obstacle to the takeup of
CP for industrial and other practical applications. Applications developers who
wish to take advantage of the technology seek a variety of detours to avoid this
obstacle. One approach is to use some familiar system or package to generate
constraints which are then passed to CP. Another is to offer CP in a packaged
form, where solving methods are simply given as parameter settings.

On the other hand with the rapidly growing variety of real-world CP ap-
plications, we are becoming increasingly aware of the limitations of current CP
systems for modelling and solving large scale industrial problems. Indeed indus-
trial practitioners of CP find that every time they successfully solve a problem,
the client’s expectations are raised, and a new larger problem is proposed. Often
the new requirement is for a more inclusive application which solves several in-
terconnected problems. These inclusive applications require integrated solutions,
which demand even more functionality of the underlying CP systems. A typical
example is the extension of a planning system to include a simulator to as-
sess plan quality, and ultimately an extension to perform on-the-day operational
control for the delivered application with feedback to the planning module.

The CP community is thus being driven in two directions. Firstly it is driven
by usability requirements, in the direction of simpler programming interfaces,
and a broader community of applications developers [1,2]. Secondly it is driven
by application needs in the direction of enhanced modelling and solving. Appar-
ently these two directions are diametrically opposed. A simpler interface, which
is easier to learn, is only possible if the user has limited control over the underly-
ing functionality. More expressibility and more algorithmic control implies more
complexity at the programmer interface.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 37–52, 2003.
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Weighing up these two alternatives - better usability versus more function-
ality - the case for usability is very seductive, especially in a research climate
where user takeup is a critical measure of research value.

This paper argues the case against concentrating on usability at the current
stage in the development of CP. There are two arguments for continuing to
emphasise functionality at this stage. We first give an argument against focussing
on usability as a separate research topic. We then give an argument for ensuring
that usability tracks functionality.

Firstly, current usability results may not be a stepping stone into
the future. Such results can misguide researchers into standardising on
certain interfaces which may not be able to cope with facilities offered
in future CP systems. Moreover application developers may be misled
by the current interfaces into believing that CP is not suitable for their
problems.

A classic example of this was the view held by many CP practitioners for a while
that mixed integer programming (MIP) was a technology in competition with
CP. This was a consequence of standardisation on FD as the constraint solver
for CP (despite the fact that a linear solver had earlier been the solver built into
the first instance CLP(R) of the CLP Scheme [3]).

Secondly, by marrying usability research to the ongoing research into
CP expressibility and solving power, we produce interfaces to state-of-
the-art CP facilities. One consequence is that the new functionality is
immediately made available to applications developers, and this exploita-
tion gives important feedback as to its relevance or otherwise.

For instance the value of progress in symmetry breaking can be quickly estab-
lished by making it available to applications developers, and not hiding it inside
research prototypes that can only be used by the original researchers.

Another interesting consequence is that the usability research in itself helps
clarify the relationship between separate strands of functionality research, inspir-
ing the researchers to build orthogonal functional components. Using symmetry
breaking again as an example, we learn much more about its relation to other
techniques, such as linear constraint solving, by building it into generic search
routines that also integrate these techniques.

This integration both raises important issues about making the new tech-
niques generic, and it makes the new techniques available to application de-
velopers, integrated with the several forms of constraint handling and search
needed to solve real life applications. This offers quick turnaround in validating
new technology in combination with other innovations.

For these reasons we advocate a research methodology that encourages CP
interfaces to move forward hand-in-hand with the emerging functionality. More-
over we advocate a research methodology where different kinds of functionality
are developed in the context of a single coherent system, behind a single, chang-
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ing but coherent, user interface. This ensures that the relationship between these
different functionality enhancements are understood as early as possible.

1.2 Contents of This Paper

Many of us in the CP community share a vision of the holy grail as a system
that allows the application developer to simply state the problem and leave the
computer to automatically solve it in the most efficient way possible. This paper
argues that it is to early, now, to aim directly for that final vision. Eventually,
yes, but not yet.

The paper does not present any analysis of the expressive power of constraint
programming languages as compared with packages. In addressing the title “Lan-
guages versus Packages for Constraint Problem Solving”, one might argue that a
language with recursion is necessary to specify precisely a constraint solving be-
haviour, and a package whose parameters also had this expressive power should
really be termed a “language”. One could discuss where CP effort should be
invested along the following continuum:

– parameterising
– configuring
– scripting
– programming

We will not enter into any such fine disputation in this paper.
Instead, the remainder of the paper will support the arguments formulated

in this introduction. In the next section we examine the use of Mixed Integer
Programming (MIP) for solving large combinatorial optimisation problems. The
advantages and disadvantages of the MIP approach will be examined and we
will consider its consequences on research in this area. Next we will consider
the possibility - and possible consequences - of developing generic packages for
combinatorial optimisation problems. The following section explores a research
area - search in CP - relating the advances made by the research community
to the consequent requirements on the interfaces and implementation of search
engines. In particular we contrast languages and packages for specifying search
behaviour. The discussions are summarised in the conclusion.

2 Mixed Integer Programming (MIP)
– Choked by Its Own Success?

In this paper, the argument for languages rather than packages will be presented
in the context of a particular area of CP research: CP for combinatorial optimi-
sation. This is, in the shorter term, the most industrially relevant aspect of CP
research and it is therefore currently very important. Moreover this is the area
with which I am most familiar in my own research. I believe the arguments also
hold for other areas of CP research and application, but I only bring examples
from the area of combinatorial optimisation (CO).
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2.1 MIP Packages

MIP is an approach for modelling and solving CO problems, that has been devel-
oped in the Mathematical Programming community over the last half century.
It provides restricted modelling power, with only a few constraints, and offers
specialised solving methods designed for these constraints. We caricature MIP
as a packaged approach. In other words, even though in real life MIP systems
offer facilities to invoke external language procedures, we shall use “MIP” as if it
was just a package. A number of commercial packages are available that support
MIP modelling and solving [4,5,6,7,8,9], and a wide range of benchmark prob-
lems are available that can be run on any MIP package, thus giving an insight
into the performance of its solving methods [10].

This state of affairs has many benefits. The interface between the user front
end and the underlying solving methods is quite stable and well defined1. MIP
user front ends and modelling languages can be designed and enhanced inde-
pendently of any work on the underlying solvers. Application-specific front-ends
can be developed which are targeted at specific user communities. Solver perfor-
mances can be directly compared, independently of their front ends.

2.2 Limitations of MIP

MIP only recognises two constraints, >= and integer2. It is awkward, but quite
fun, mapping any given problem into a combination of the above constraints.
One can relatively quickly learn the necessary tricks for representing disjunction,
negation and so on. Once one’s got the idea, it is amazing how many CO problems
one can model and solve using a MIP package.

The English language has a reputation for being easy to learn, but hard to
master. MIP is a bit like that. Not only can the MIP model quickly become
very large and complicated even for problems which are simple to state, but
also the performance of the MIP solver can become unacceptably poor. For non-
trivial problems it is extremely hard to design the MIP model which has the
best performance. It is even more difficult to recognise for which problems MIP
is simply not a suitable approach. The result is that a great deal of time is
invested in trying to design efficient MIP models for problems which might or
might not be suitable for this approach.

One example is the coins problem. What is the minimum number of coins
you need in your pocket, in order to be able to buy any item costing up to one
Euro? There are 6 coins below one Euro, value 1,2,5,10,20 and 50 cents, and with
our coins we need to be able to construct every sum between 1 and 100. The
model requires over 600 discrete variables, representing, for each cost between 1
and 100, the number of coins of each denomination used to make up that sum.
1 The interface is only quite stable, in the sense that changes are under way. Research is

shifting the linear/nonlinear frontier to convex/nonconvex. Ultimately the modelling
power and solving methods of future mathematical programming packages, replacing
MIP, will probably be based on this new dichotomy.

2 This is a slight exaggeration, which is intended to simplify rather than mislead.
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This problem takes over 30 minutes to solve using MIP, but it is possible to add
redundant constraints which tighten the formulation and cut the solving time
down to a few seconds [11].

However suppose you now want to design a new set of six coins for the Euro,
so as to optimise the solution to the above coins problem. The currency design
problem is the same as the coins problem, except that now the denominations
of the coins are part of the solution and not part of the input. This is not easy,
and maybe not possible, to solve efficiently with MIP.

The point is not just that MIP can’t be used to solve all CO problems. The
really awkward thing is that for a given problem there’s no way of knowing
whether or not MIP can be made to solve it efficiently.

As an application developer, using a package, one’s thinking is within the
parameters of the package. If the package isn’t solving the problem efficiently,
parameter settings can be altered. A package is a box, and very often it’s thinking
outside the box that is needed for solving the problem!

If one wants to solve the currency design problem, the best advice is prob-
ably not to use MIP. This is not intended to be a criticism of MIP, but just
a recognition that for certain kinds of problem, of which this is an example, it
is best not to be boxed into thinking in terms of MIP. Instead, using domain
constraints, quite a simple program can generate an optimal six coin currency in
a few seconds. The program, coded in ECLiPSe [12], is listed in the appendix.

3 Generic Packages for Combinatorial Problem Solving

3.1 The Aspiration

If the class of problems to be tackled are CO problems, then one might seek to
assemble a set of packages which together encompass problems of this class. Ac-
knowledging that probably P is not equal to NP, and that there will be problems
that cannot be optimally solved in a reasonable amount of time, we can provide
amongst our set of packages, incomplete, anytime, solvers that will return nearly
optimal or nearly feasible solutions within realistic timescales.

In principle, then, a two-stage process can be followed to solve any problem:
first choose the appropriate package and then set the parameters of that package
optimally to solve the problem. A neutral problem modelling interface could be
provided which allowed the application developer to map a problem down to each
of the different available packages by simply setting a parameter to guide the
problem mapping software. Indeed there are already several commercial packages
of this kind (see for example OptQuest [13], and Nimrod [14]).

Thus we could in effect provide the user with a single generic package for
all CO problems. As an aspiration, this is highly motivating. As an immediate
objective, it is distorting and may threaten scientific progress in our community!

3.2 The Reality

One of the standard characters in any area of research is the champion of some
approach, who is blind to any alternative. His near-relative is the salesman who



42 Mark Wallace

will sell the same solution to every customer, confidently asserting that his so-
lution will fully meet the needs of the customer.

Suppose a generic package for combinatorial optimisation had been con-
structed. Suppose, moreover, it proved successful for a relatively wide variety
of applications. The risk, particularly in the area of combinatorial optimisation,
is that like MIP it could become a victim of its own success. Its protagonists
would naturally tend to claim that it met all its objectives.

If the package were a hammer, then all CO problems would be nails. Any
problem not easily or efficiently handled by the package would be classed as
peculiar, or particularly difficult. Herein lies the risk: instead of recognising defi-
ciencies in the package, there would be a tendency to marginalize the significance
of the problem. Since it is of the very nature of CO problems that for any given
approach some problem instances will be recalcitrant, then don’t blame the ap-
proach but blame the problem instead. The danger is that whatever package an
applications developer has become accustomed to, (s)he may come to think of
it as a generic package for CO problems.

We have taken MIP as the example package in the previous section. The
problem we are illustrating here is not a limitation of MIP at all, but a limitation
of the thinking induced by packages. As one example, consider the progressive
party problem [15]. Until Barbara Smith put CP onto the task, the problem
owners could have reconciled themselves to the limitations of the MIP-based
approach, assuming this was the best one could do for this kind of awkward
problem.

We have had similar experiences at IC-Parc and Parc Technologies. For var-
ious network scheduling problems the accepted wisdom was that they were too
hard to solve optimally. Only when the new combination of CP and MIP was
brought to bear, did it become evident that the problems themselves were not
so hard, they were only hard to solve using particular kinds of approach.

Linear programming was, and is, a tremendous advance and, enhanced to
MIP, it has yielded optimal solutions to some very large CO problems. However,
arguably, it has resulted in a certain distortion of the CO research. The effort in-
vested in problems that can be modelled in MIP, such as the TSP [16], has far ex-
ceeded the effort invested in industrial problems with awkward side-constraints.
The MIP model for such industrial problems typically requires unmanageably
large numbers of discrete variables. Consequently real problems are simplified,
by dropping or approximating their side-constraints. In this way the research
effort remains concentrated on a class of problems which is dictated more by the
available technology than by the demands of the real problems themselves.

As a postscript, the arrival of CP on the scene has had quite an impact on
MIP research. In particular more work has been invested in presolving and search
control. Recently MIP has been used to solve the progressive party problem [17],
and the lessons from CP have been used to obtain solutions reasonably fast.

The OR and CP research communities are gaining a better and better under-
standing of the relative advantages of the different technologies, and researchers
are exploring new forms of hybridisation to get the best out of their combination.
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4 Languages Not Packages – The Case of Search

In this section we discuss the issue of search in CP. This is an active area of
research which seems to be highly representative of CP research in general. For
these reasons we shall use it as the example research area in comparing languages
and packages.

4.1 Search Frameworks

Incremental Labelling. One of the first attempts to categorise the different
search algorithms was by Nadel [18]. He named various constraint propagation
algorithms as AC1/5, . . . AC1/2, AC1, . . . AC3. (The range of algorithms con-
tinues to grow, though after AC7 a new nomenclature was introduced). He then
categorised different search algorithms as a combination of tree search (TS) and
propagation (see Nadel’s Categories below).

Table 1. Nadel’s Categories

Backtracking TS + AC1/5
Forward Checking TS + AC1/4
Partial Lookahead TS + AC1/4 + AC1/3
Full Lookahead TS + AC1/4 + AC1/2

Later Haralick and Elliott [19] identified the fail first heuristic and this was
generalised into variable and value choice heuristics. Another orthogonal search
facility identified by [19] was “Remember what you have done to avoid making
the same mistake”. This has been generalised into intelligent backtracking and
nogood learning. Finally, within the framework of tree-search, there are different
ways of exploring the tree - breadth-first, depth first etc.

In short any given algorithm in the class of search algorithms which label a
single variable with a chosen value at each search step, can be specified by four
classes of parameters:

– Lookahead
– Variable/Value choice heuristics
– Looking back
– Tree exploration

For brevity we term this class of search algorithms incremental labelling algo-
rithms.

The encapsulation of incremental labelling in a package, does serve to simplify
and clarify control of search within this framework. Incremental labelling has
provided a basis for several packages for performing search. In introducing the
package AISearch [20] Peter Bouthoorn writes: “the programmer should be able
to concentrate on the representation of the problem at hand and need not bother
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with the implementation of the actual search algorithm”. Parameterisable search
algorithms are also available from Tudor Hulubei [21], where the search is defined
in terms of generic choice operators (called “decomposition” algorithms) and
generic lookahead operators (called “filters”). Generic CSP search algorithms
are also supplied for teaching support purposes [22]. In a wider framework, a
generic package for solving valued CSPs is available from [23], which supports
not only tree search but other search methods.

Drawbacks of Packaging. Each of these packages provides, as a package must,
a fixed list of alternatives for specifying the search behaviour. The real danger
of this approach is not the choice of list, but the thinking that such lists enforce
upon language and applications developers.

For example on the assumption that control over looking ahead and look-
ing back are not enough to focus an incremental labelling search, considerable
investment has been put into the automatic generation of search heuristics for
variable and value choices [24,25,26]. The risk is that this research effort may
have limited practical payoff if only a few large scale industrial problems can be
solved by any incremental labelling algorithm.

The wider scientific community is developing algorithms every day to solve
hard combinatorial problems (see, for example, the Annals of Operations Re-
search, Annals of Mathematics and Artificial Intelligence, Journal of Heuristics,
European Journal of Operations Research) and the vast majority do not fit the
above framework. Just as an MIP package is probably inappropriate for the cur-
rency design problem, so incremental labelling may not be appropriate for large
scale industrial problems.

In each of the next four subsections we will consider a particular search func-
tionality and what special requirements it imposes on the underlying language for
describing search. The practical importance of these four search functionalities
has emerged over recent years. Clearly they only emerged because applications
developers were not trapped into a search framework where these functionalities
were not available. As the journals listed above illustrate, new search function-
alities are appearing continually, so these four are merely a sample.

4.2 Multiple Search Routines

The Issue. For problems whose decision variables are all of the same type, a
single global search routine can offer the necessary functionality. However, even
simple problems can involve different types of decision variable.

The currency design problem above, for example, has one set of decision
variables governing the denominations of the coins, and another set of decision
variables specifying how many coins of each denomination must be “kept in the
(optimal) pocket”. A good search algorithm labels the denominations first, and
then the numbers of coins. The extension from one search routine to two, one
search being done after the other, is quite simple and obvious.

More challenging are applications where labelling the different types of vari-
ables needs to be interleaved. Consider the problem of an ad-hoc sensor network.
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The problem involves a set of sensors and a set of targets. A solution is the as-
signment of a sensor to each target, restricting the number of sensors used, so
as to optimise some objective.

The best search algorithm first selects a sensor to be active and then assigns it
to an appropriate subset of the targets, before repeating on the remaining sensors
and targets. Technically this problem involves two kinds of decision variables:
an on/off variable for each sensor, and, for each target/sensor pair an on/off
assignment variable. The search routine labels a sensor variable to on, and then
labels all the target/sensor variables associated with that sensor.

Let us abstract from the specific problem, calling the variables type1 and
type2. In this case the master search routine is the one that labels type1 variables.
After each choice point in the master search routine, a subsidiary search routine
is invoked to label an associated subset of the type2 variables3.

Language Requirement. Consider a search package designed, however clev-
erly, for a single global search routine with one type of decision variable. Its
adaptation to handle more than one type of decision variable in the currency
design problem is easy: the search package must be invoked twice, once on the
denomination variables and once on the number variables.

However this search package cannot be adapted for the ad-hoc sensor network
problem because that requires a master search routine which invokes another
search routine at every choice point. Instead a language is needed in which it is
possible to specify, for any (master) search routine, what search (sub)routine to
invoke on which variables after each choice point.

4.3 Computing Heuristics during Search

The Issue. Credit search (CS) [12, p.126] assigns a given portion of the remain-
ing search effort to different subtrees of the current node. Limited Discrepancy
Search (LDS) [28] constrains the “distance” between any partial assignment and
a given preferred assignment. Both forms of search rely on a value ordering
heuristic which associates preferred values with each of the unlabelled decision
variables.

Given a fixed value ordering on all the decision variables of a problem, sup-
pose we start at the search leaf node where each variable takes its preferred value.
If we design a local search operator which switches a variable to a less preferred
value, then LDS corresponds to the exploration of increasing neighbourhoods of
the original assignment.

A substantive difference between LDS and local search only emerges when
we admit dynamic value ordering heuristic which changes according to the cur-
rent partial assignment. Typical value ordering heuristics are largely static: the
3 W. Harvey pointed out that a sufficiently sophisticated variable selection procedure,

which exploited the association between type2 and type1 variables could be used
to achieve the same behaviour as our sensor example. However master/subproblem
search routines are a necessary feature of several mathematical programming algo-
rithms like branch and price [27].
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only dynamic aspect is to drop values removed from a variable’s domain by
propagation.

In fact CS and LDS are most useful when problem-specific dynamic value
ordering heuristics are exploited - for example using an optimal solution for a
linear relaxation of the problem. A significant enhancement of this approach for
LDS is to use multiple value ordering heuristics, and only to count a discrepancy
if both heuristics agree on the best value for a certain variable, and this variable
is assigned a different value [29].

Language Requirement. To support the above functionality the system needs
to be able to fire off, at every node in a search tree, one or more problem solvers
that solve some different relaxations, or variants, of the current problem and
utilises the result to construct search heuristics for the next search step.

4.4 Updating Entailed Information at Search Nodes

The Issue. Consider a constraint satisfaction problem, and a current assign-
ment of values to variables. The satisfaction problem can be handled as an
optimisation problem by minimising the amount of “unsatisfaction”. This can
be measured in two ways. Either a penalty can be associated with each violated
constraint [30,31], or a penalty can be associated with each variable occurring
in any violated constraints [32].

For the purposes of this discussion we shall use the first measure, taking
GSAT as an example. GSAT uses local search, in which each move is a change
in the assignment of one variable. GSAT uses “steepest ascent”, at each step
choosing a variable and value combination which minimises the remaining “un-
satisfaction”. Steepest ascent hill climbing is, typically, expensive to implement
because of the necessity to find the best amongst the set of neighbours.

For implementing GSAT efficiently it is necessary to maintain a quantity
of “red-tape” - redundant information about the current assignment that helps
in finding the best neighbour. Accordingly, for each decision variable and for
each constraint, the implementation maintains a record of what would happen
to that constraint if the variable assignment was changed (either the constraint
would become true, or it would stay true, or it would become false). This red-
tape is used to efficiently maintain further red-tape (recording the change in the
number of satisfied constraints if the variable’s assignment were to be changed).
In short the change to the variable assignment is propagated to the red-tape,
and propagation continues along the red-tape (with apologies for the mixed
metaphor).

In the same way the efficient implementation of any local search algorithm
requires red tape. The choice of what red tape to maintain depends on the
problem constraints, the cost function and the parameters governing the local
search routine. For the GSAT example much of the red-tape is needed for the
purposes of achieving steepest ascent. Other local search algorithms, such as
simulated annealing, would require quite different red-tape.



Languages versus Packages for Constraint Problem Solving 47

Language Requirement. What is needed to enable the programmer to have
such control is a language such as Localizer [33] which maintains red tape as
“invariants”.

It is tempting to think that the same red tape could be associated with any
problem, e.g. for each variable, constraint and domain value the effect of changing
that variable to take that value. However conflict minimisation problems may
use a wide variety of cost functions. One could, for example, associate a degree
of violation with each constraint, reflecting how badly it is violated. One could
also make the red-tape update algorithm constraint-specific. Efficiency is crucial
in local search, so this control is absolutely necessary for the algorithm.

4.5 Constraints as Search Node Choices

The Issue. The final issue is the introduction of problem refinement rather than
labelling for making choices during search. A search choice may be to assign a
value to a variable, or it may be simply to impose an additional constraint on
the problem.

One area where constraints are typically used in this way during search is in
scheduling applications. Instead of labelling a task start time, a search step is
often made by imposing an ordering on two tasks (i.e. imposing a constraint that
the end time of one task precedes the start time of the other). A final assignment
of task start times can be completed easily when enough of the tasks have been
ordered. Note that for scheduling problems, the use of an ordering choice rather
than an assignment is common to both tree search algorithms and local search
methods, such as Tabu search.

A general approach employing constraints instead of labels during search
has been called “probing” [34]. The problem constraints are divided into “easy”
constraints and “hard” constraints. For probing the following conditions should
hold:

– a conjunction of easy constraints is also an easy constraint
– it is always possible to express a hard constraint as a disjunction of easy

constraints.

(Assuming the assignment of a value to a variable is an easy constraint, then
any finite constraint can be captured as a disjunction of easy constraints.)

Search is by finding an optimal solution to the current easy constraints,
selecting a violated hard constraint (if there is one) and imposing one of the
easy constraints in its equivalent disjunction. This defines a complete search
tree, whose leaves are easy problems whose optimal solutions also satisfy all the
hard constraints of the original problem.

The Language Requirement. To build a probing algorithm it is necessary
to give, implicitly or explicitly, the disjunction of easy constraints equivalent to
each hard constraint, and specify the solver for the easy constraints. Clearly a
programming language is necessary to build any probing algorithm.
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4.6 Languages and Packages for Search in CP

For some purposes it suffices to define a search procedure with a few global
parameters (in MIP packages, for example , and in the traditional AI world with
global procedures such as A*). However for more complex “hybrid” problems
the need for more specific ad-hoc search control becomes quickly apparent.

The traditional search control inherited from Prolog was, and is, a very strong
influence on search procedures, even for CP systems that are embedded in other
languages. The procedure is expressed in terms of a recursion down the tree from
root to leaf, with node propagation behaviour and search ordering heuristics
expressed as a subprocedure invoked at each recursive call (i.e. node of the tree).

However two concepts have emerged that are hard to shoehorn into the
standard recursive procedure: local search; and the separation of search tree
specification and (incomplete) search tree exploration. New languages such as
Localizer [33] and Salsa [35] have appeared, and new libraries such as ToOLS
[36]. A paradigm for search control is emerging where the behaviour is expressed
as a complex term whose components are subordinate search procedures and
parameters.

The interplay of tree search and local search within a search procedure is
becoming better understood, although the handling of multiple types of deci-
sion variable in a search procedure is not yet taken seriously (ToOLS currently
offers only sequencing and concurrent execution as ways of combining search
procedures).

The current research effort on search control encapsulates the discussion in
this paper. Researchers whose CP world has domain variables, define search con-
trol languages which simply ignore the challenging requirements of mathematical
approaches such as branch and price [27]. Their contribution is important, but
we must not let an elegant search control language, applicable only to a limited
form of constraint handling, hold back the efforts to develop search control for
the full set of CP tools. The new search languages may - perhaps must - be less
elegant than the old but this should not prevent their reaching a wide audience.

5 Conclusion

Packages are easy to use, and can help to establish CP across the world in
academia and industry. Moreover packages can be extended and adapted to take
new concepts and ideas into account. However these extensions are ultimately
incoherent and can stifle progress. For example the CSP framework can be ex-
tended to accommodate optimisation, uncertainty, and dynamic problems, but
for all three extensions together, as encountered in real applications, the frame-
work may be more of a hindrance than a help [37].

The internal combustion engine is, all acknowledge, an old technology which
has limited scope to meet the need for energy conservation, but it is so well
researched that new young technologies cannot at first compete. Thus the very
success of the old technology blights future technology. This is a scenario we
should be determined to avoid in CP.
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The introduction of CP packages, where functionality is made available at the
user interface by parameters, will tend to reduce the flexibility of the interface.
Unlike a package, guided by parameters, a language can be extended much more
easily to accommodate new concepts and facilities. Moreover the research and
development on a single CP language can be shared between many different
researchers working on different kinds of functionality. CP language research,
accordingly, maps onto the research methodology outlined above.

Our research at IC-Parc is built around the ECLiPSe constraint programming
language [12]. The language has provided the flexibility to admit all the features
described in this paper. Our research, and those of others in the community, have
pushed the language in directions we never expected. The language framework,
however, has enabled us to work on modelling features, new solvers, new search
methods and new combinations of all these.

In consequence we would advocate CP research to be carried out, as far
as possible, within the framework of a coherent CP language or a family of
languages.
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An ECLiPSe Program for The Currency Design Problem

:- lib(ic). % For CP solver
:- lib(branch_and_bound). % For CP search

% +N: Number of different coins in the currency
% +Max: Need exact change for anything costing between 1 and Max
% ?Values: Values of the different coins in the currency
% (in increasing order)
% ?Numbers: The number of each type of coin needed (for the above)
% -Total: The total number of coins needed - this must be minimal
design_currency(N,Max,Values,Numbers,Total) :-

init_vars(N,Max,Values,Numbers),
coins_constraints(Max,Values,Numbers,NeedCoinsList),
redundant_constraints(Values,Numbers),
Total #= sum(Numbers),
minimize( search(Values,Numbers,NeedCoinsList), Total ).

init_vars(N,Max,Values,Numbers) :-
length(Values,N), Values #:: 1..Max,
length(Numbers,N), Numbers #:: 1..Max.
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coins_constraints(Max,Values,Numbers,NeedCoinsList) :-
( for(Amount,0,Max),
foreach(NeedCoins,NeedCoinsList),
param(Values,Numbers)

do
gen_constraint(Amount,Values,Numbers,NeedCoins)

).

gen_constraint(Amount,Values,Numbers,NeedCoins) :-
( foreach(Value,Values),
foreach(HaveCoin,Numbers),
foreach(NeedCoin,NeedCoins),
foreach(Product,Products)

do
NeedCoin #>= 0,
NeedCoin #=< HaveCoin,
Product #= Value*NeedCoin

),
Amount #= sum(Products).

redundant_constraints(Values,Numbers) :-
( fromto(Values,[V1|NV],NV,[_]),
fromto(Numbers,[N|NN],NN,[_])

do
NV=[V2|_],
% If N * V1 >= V2, then you can always replace the
% Nth V1 coin with an extra V2 coin
N * V1 #=< V2 - 1

).

search(Values,Numbers,NeedCoinsList) :-
labeling(Values),
labeling(Numbers),
( foreach(NeedCoins,NeedCoinsList) do labeling(NeedCoins) ).

% Euro Coins Problem:
% ?- design_currency(6,100,[1,2,5,10,20,50],Numbers,Total).
% Currency Design Problem
% (allow 6 different coins, and exact change up to 100):
% ?- design_currency(6,100,Values,Numbers,Total).
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Abstract. Constraint models contain a number of common patterns.
For example, many constraint models involve an array of decision vari-
ables with symmetric rows and/or columns. By documenting such con-
straint patterns, we can share modelling expertise. Constraint solvers can
also be extended to exploit such patterns. For example, we can develop
specialized methods like the global lexicographical ordering constraint
for breaking such row and column symmetry.

1 Introduction

Many patterns occur in constraint programs. In this paper, I argue that we need
to identify, formalize and document these patterns in a similar way to the design
patterns identified by the software engineering community. The result will be a
systematic and comprehensive methodology for modelling an informal problem.
Such a methodology will permit us to tackle the modelling “bottleneck” that
hinders the uptake of constraint programming. This is an ambitious project -
modelling is not a task which lends itself to a piecemeal approach as even the
smallest modelling decision can have far reaching consequences. However, we
have made some progress and I describe some of the more interesting constraint
patterns which have already been identified. I also discuss the different ways
that we can exploit such patterns. For example, one way to exploit common
constraint patterns is to extend the constraint language.

2 Design Patterns

Patterns are an approach to design that started in architecture [1], which has
since spread to many other areas including software engineering [2]. A pattern
describes not only the context of a problem and its solution, but also the ratio-
nale behind the solution. Patterns are a valuable mechanism for describing best
practice and good design. Patterns therefore have a useful role to play in software
engineering. Designing software is hard. Designing good software is even harder.
Fortunately, well engineered code exhibits many common patterns that support
extensibility, modularity, and performance. By documenting these patterns, we
can support and encourage good software engineering.

I can illustrate this by means of an analogy. Consider how you could become
an America’s Cup match racing helmsman. First, you learn the sailing rules
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(e.g. a boat on starboard tack has right of way over a boat on port). Then
you learn the basic principles of racing (e.g. when you have the lead, you cover
tack to protect that lead). Finally, you study past match races to learn the
winning patterns of others (e.g. on a downwind leg, an expert helmsan in a
trailing boat often rides an approaching gust, blankets the leading boat’s sail,
and overtakes on the windward side). Becoming an expert software engineer is
little different. First, you learn the rules (e.g. algorithms, and data structures).
Then you learn the basic principles (e.g. data abstraction helps code be modular
and extensible). Finally, you study expert software engineers to learn valuable
patterns (e.g. a good software engineer will often construct iterator methods
so that elements of an aggregate object can be accessed without exposing the
underlying representation).

Patterns are, by their very nature, not formal objects. They are therefore usu-
ally documented in natural language. A pattern descriptions typically includes
the following category headings (as well as others that may be more domain
specific).

Pattern Name: A meaningful name for the pattern.
Context: The circumstances in which the problem the pattern solves occurs.
Problem: The specific problem that is solved.
Forces: The often opposing considerations that must be taken into account

when choosing a solution.
Solution: The proposed solution to the problem.
Example: An example of the problem and its resolution using the proposed

solution.

Fig. 1. The typical categories used in specifying a pattern.

3 Constraint Patterns

Why should we identify and document patterns in constraint programming?
Constraint programming is programming and so many of the usual software en-
gineering issues arise. However, constraint programming is also about modelling.
There are many recurring patterns in good constraint models. These patterns
cannot usually be precisely specified as there are many conflicting interactions
in a complex problem. Patterns therefore seem a good vehicle for explicitly cap-
turing the knowledge of expert modellers.

What benefits do constraint patterns bring? First, they help tackle the mod-
elling “bottleneck”. A library of patterns would be a valuable resource for passing
on modelling expertise to neophyte constraint programmers. Second, constraint
toolkits can be extended to support commonly occurring patterns. As I argue in
Section 4.2, a constraint pattern can motivate the development of a new global
constraint or language feature. Third, a longer term goal would be pattern au-
tomation. For example, in Sections 4.4 and 4.5, I discuss how we are trying to
automate some common constraint patterns.
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What drawbacks do constraint patterns have? First, it is hard work to iden-
tify and document good patterns. It requires the efforts of a whole community,
not just of one individual. Second, patterns do not eliminate all the art of con-
straint modelling. Many problems also contain an unique feature or an unique
combination of features which necessitates a special solution technique that will
not be not of a pattern library. Third, patterns are not executable. However, as
I argued above, we can look to automate aspects of them.

4 Some Examples

To illustrate what a constraint pattern is, and how it can be useful, I will look
at four examples from my own and other people’s research.

4.1 Matrix Models

Before I describe the first pattern, I want to define the context for a number
of common constraint patterns. A matrix model is a constraint program with
one or more matrices of decision variables. For example, a natural model of a
sports scheduling problem has a 2-d matrix of decision variables, each of which
is assigned a value corresponding to the game played in a given week and period
[3]. In this case, the matrix is obvious in the solution to the problem: we need
a table of fixtures. However, as we demonstrate in [4,5], many problems that
are less obviously defined in terms of matrices can be efficiently represented and
effectively solved using a matrix model. Sometimes, the matrix model contains
multiple matrices of variables. Channelling constraints are then used to link the
different matrices together [6,7,8].

As an example, consider the matrix model given in [4] for the steel mill
slab design problem [9]. We have a number of orders, each with a particular
weight and colour, to assign to slabs. Slabs come in a number of different sizes.
We want to assign orders to slabs and sizes to slabs so that the total weight of
orders assigned to a slab does not exceed the slab capacity, and so that each slab
contains at most p colours (usually 2). A 2-d matrix of 0/1 decision variables
represents which orders are assigned to which slabs. A second matrix of 0/1
decision variables is used to post the colour constraints. Channelling constraints
are used to connect this to the order matrix.

In [5], we demonstrated the prevalence of matrix models by surveying the
first 31 models in CSPLib. At least 27 of these had natural matrix models, most
of them already published. Matrix models are a very natural way to represent
relations (e.g. the relation between orders and slabs in the steel mill slab design
problem). Matrix models are also a natural way to represent functions (e.g. the
function mapping exams to times in an exam timetabling problem). Finally,
matrix models are a natural way to represent partitions (e.g. the partitioning
of nodes in a graph colouring problem into different colour classes). Another
indication of the prevalence of matrix models is the common use of 2-dimension
matrices of decision variables in integer linear programming.
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Matrices:
−→ slabs −→

si 4 3 3 3 0 0 0 0 0

−→ orders −→
Oij 0 0 0 0 0 0 1 1 1

↓ 0 0 0 1 1 1 0 0 0
slabs 0 1 0 0 0 0 0 0 0

↓ 1 0 1 0 0 0 0 0 0

−→ colours
Cij 0 0 0 1

↓ 0 0 1 1
slabs 0 1 0 0

↓ 1 1 0 0

Constraints:

(row weighted sum) ∀j
∑

i
Weighti ∗ Oij ≤ sj

(column sum) ∀i
∑

j
Oij = 1

(row sum) ∀j
∑

i
Cij ≤ p

(channelling) ∀ij Oij = 1 → CColourij = 1

Fig. 2. Matrix model for the steel mill slab design problem (taken from [4]).

4.2 Row and Column Symmetry

A common pattern in matrix models is row and column symmetry. For example,
the order matrix in the steel mill problem has partial row symmetry since slabs
of the same size are indistinguishable and partial column symmetry since orders
of the same size and colour are also indistinguishable. We can swap any two slabs
of the same size, and any two orders of the same size and colour and obtain an
essentially equivalent solution. As a second example, consider generating Bal-
anced Incomplete Block Designs or BIBDs (prob028 in CSPLib). A matrix
model for this problem uses a 2-d matrix of 0/1 variables, with constraints on the
sum of each row and each column, and on the scalar product between rows. This
matrix model has complete row and column symmetry since we can permute the
rows and columns freely without affecting any of the constraints.

Symmetry in constraint programs is problematic. It increases the search space
dramatically. Row and column symmetry is especially problematic as it occurs
often and there is a lot of it. For example, an n by m BIBD has n!m! row
and column symmetries. Even if are only interested in finding one solution, we
may explore many failed and symmetrically equivalent branches. When prov-
ing optimality, this can be especially painful. An effective way to break such
symmetry is by posting constraints that lexicographically order the rows and
columns [10]. We call this double lex ordering the matrix. As long as we order
the rows and columns in the same direction, (i.e. the rows and columns must
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both be lexicographically increasing, or must both be lexicographically decreas-
ing), this will leave a solution if one exists. Unfortunately, it does not break all
symmetry. Multiple, symmetric solutions can be left after double lex ordering
the matrix. Indeed, a paper in this volume [11] proposes an additional ordering
constraint, the all perms constraint, which can be effectively posted on the rows
or columns to eliminate some (but still not all) of the remaining symmetry. To
support double lex and all perms ordering constraints, we have developed effi-
cient linear time constraint propagation algorithms [12,11]. This illustrates how
constraint solvers can be extended to support commonly occurring patterns like
a global symmetry-breaking constraint. Techniques to eliminate all symmetries
exist [13,14,15], but they appear to be more expensive than they are worth for
dealing with row and column symmetries. The symmetries eliminated by double
lex ordering and all perms ordering appear to offer a good compromise.

Pattern Name: MatrixSymmetry
Context: A matrix model containing an array of decision variables

with (partial) row and column symmetry.
Problem: Eliminating (much of) that symmetry.
Forces: Eliminating all symmetry can be too expensive.

Eliminating no symmetry can leave too much search.
Solution: Post lex ordering constraints on rows and/or cols.

If supported, post all-perms constraints on rows or cols.
Example: Balanced Incomplete Block Design generation.

Fig. 3. Constraint pattern for MatrixSymmetry.

An alternative to double lex ordering is to post lexicographical ordering con-
straints on the rows, and multiset ordering constraints on the columns (or vice
versa). We have also developed an efficient constraint propagation algorithm for
multiset ordering constraints [16]. This volume also contains a paper showing
how we can effectively post during search just those symmetry breaking con-
straints that are not yet broken by the current assignment [17]. These examples
illustrate how the solution proposed to a constraint pattern may depend on what
is available in our particular solver. Constraint patterns also need to apply to
a range of problems. For example, double lex ordering can be applied even to
problems like the steel mill slab design problem with partial row and column
symmetry. In this case, we just order lexicographically those subsets of rows or
columns which are indistinguishable.

4.3 Dual Models

The next pattern is documented in a number of papers (e.g. [18,7,19]) as well as
ILOG’s Solver 5.3 User’s manual (Volume II). A constraint program defines a
set of decision variables, each with an associated domain of values, and a set of
constraints defining allowed values for subsets of these variables. The efficiency
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of a constraint program depends on a good choice for the decision variables, and
a careful modelling of the constraints on these variables. Unfortunately, there
is often considerable choice even in what to make the variables, and what to
make the values. For example, in an exam timetabling problem, the variables
could be the exams, and the values could be the times. However, we could take
an alternative or dual viewpoint in which the variables are the times, and the
values are the exams.

The choice of variables and values is especially evident in permutation prob-
lems. In a permutation problem, we have as many values as variables, and each
variable takes an unique value. We can therefore easily exchange variables for val-
ues. Indeed, it is often beneficial to have both sets of variables with channelling
constraints between the primal (or original) model and the dual [18,7,19]. Many
assignment, scheduling and routing problems are permutation problems. For ex-
ample, sports tournament scheduling can be modelled as finding a permutation
of the games to fit into the time slots, or a permutation of the time slots to fit
into the games.

Pattern Name: DualModelling
Context: An informal problem specification.
Problem: Choosing between a primal and an alternative dual viewpoint.
Forces: Certain constraints can be easier to post on primal.

Certain constraints can propagate better in primal.
Certain constraints can be easier to post on dual.
Certain constraints can propagate better in dual.

Solution: Consider having a combined model with channelling between
the primal and dual variables.

Example: Balanced Academic Curriculum Problem.

Fig. 4. Constraint pattern for DualModelling.

An alternative or dual viewpoint can be beneficial for a number of reasons.
First, we can get different amounts of propagation in a primal, dual or a com-
bined model [7,19]. Second, certain constraints may be more easily stated (and
propagated) on a dual model. If others are more easily stated (and propagated)
on the primal, we can decide to use a combined model. Third, branching on
the dual variables can be useful. For example, in a permutation problem, dual
variables correspond to primal values. Therefore a variable ordering heuristic
on dual variables is essentially a value ordering heuristic on the primal model.
Variable ordering heuristics like fail first tend to be cheap and effective. On the
other hand, value ordering heuristics tend to be neither. Variable ordering on
the dual therefore can be an effective means to get value ordering on the primal.

As a concrete example, consider the Balanced Academic Curriculum Problem
(prob030 in CSPLib) [20]. The objective is to assign time slots to courses. A
natural matrix model is a 2-d array of 0/1 decision variables indicating if a
course is given in a particular time slot. Most of the constraints are easy to
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post using this array of variables (e.g. the constraint that a limited number of
courses occur in any time slot is simply a row sum constraint). However, one
type of constraint is not easy to post on this array of variables. This is the
course prerequisite constraint: every course must occur after all its prerequisites.
An easy way to post this constraint is to take an alternative dual viewpoint
with a 1-d array of finite-domain variables. Each variable here takes as its value
the time slot for a particular course. A prerequisite constraint is now simply
ordering constraints between the course variable and each of the course variables
associated with its prerequisites. The other constraints are not as easily specified
on this 1-d array. It is therefore beneficial to have both arrays and to channel
between them [20].

4.4 Auxiliary Variables

The next pattern is documented in [21,22]. A common method for improving a
basic constraint model is to introduce auxiliary variables. Such variables permit
propagation to occur between constraints with structure in common. Consider,
for example, the problem of finding optimal Golomb rulers (prob006 in CSPLib).
A Golomb ruler is a set of m integer valued ticks, such that the distance between
any pair of ticks is different from the distance between any other pair. The
objective is to find the optimal or shortest such ruler. Such rulers have practical
applications in radio astronomy.

A natural model for the Golomb ruler problem has a finite-domain variable,
Xi for each tick, and this is assigned the position of the tick on the ruler. To break
symmetry between the ticks, we can post constraints of the form Xi < Xj for
i < j. To ensure that all inter-tick distances are distinct, we can post quaternary
constraints of the form: |Xi −Xj | �= |Xk −Xl|. Each such constraint computes
two inter-tick differences, and each of these differences appears in a quadratic
number of other constraints. A better model introduces auxiliary variables for
these differences, Dij and ternary constraints of the form: Dij = |Xi −Xj |

Introducing auxiliary variables can be advantageous for several reasons. For
example, we can get more propagation through the domains of these auxiliary
variables. As a second example, we may be able to post simpler constraints on
the auxiliary variables. In the case of the Golomb ruler problem, we can replace
the large number of quaternary constraints by a single all-different constraint
on the auxiliary variables. We can then use an efficient algorithm for enforcing
GAC or BC on such a constraint [23,24]. In [22], we show that modelling the
Golomb ruler with such auxiliary variables increases the amount of constraint
propagation and reduces runtimes significantly. More recently, we have developed
methods for automatically introducing such auxiliary variables into a constraint
model [25,26].

4.5 Implied Constraints

The next pattern is also described in a number of papers (e.g. [27,22]), as well as
ILOG’s Solver 5.3 User’s manual (Volume II). A common method for improving a
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Pattern Name: AuxiliaryVars
Context: A basic model in which two or more constraints repeat expressions.
Problem: Insufficient propagation between these constraints.
Forces: Overhead of introducing additional variables.
Solution: Introduce auxiliary variables for the repeated expressions.
Example: Golomb ruler problem.

Fig. 5. Constraint pattern for AuxiliaryVars.

basic constraint model is to introduce implied constraints. These are constraints
which are not logically necessary but which may reduce search. Consider again
the problem of finding optimal Golomb rulers. In the last section, we argued
for the introduction of auxiliary variables for the inter-tick differences, ternary
constraints of the form Dij = |Xi−Xj | and an all-different constraint over Dij .
By transitivity, as Xi < Xj for i < j, we can infer that Dij < Dik for any
j < k. This implied constraint is not logically necessary. We obtain the same set
of solutions with or without it. However, as shown in [22], its inclusion in the
model (along with other implied constraints) reduces search and saves runtime.

Not all implied constraints are useful. Constraint propagation on an implied
constraint that is very immediate may do no more pruning than constraint propa-
gation on a basic model. In addition, even if an implied constraint reduces search,
it adds overhead to the constraint propagation. In [22], we outline two basic cri-
teria for deciding which implied constraints to add. First, implied constraints
either should have specialized, efficient and effective constraint propagation al-
gorithms or should be of small arity. This limits the overheads of adding the
implied constraint and helps ensure it will propagate. Second, circumstances in
which an implied constraint leads to pruning should be obvious and frequent.
The hope is that the implied constraint will reduce search sufficiently to justify
the overhead.

One way to develop useful implied constraints is to study the search process.
Suppose the constraint solver explores an “obviously” futile part of the search
tree. The partial assignments considered by the solver cannot be extended to a
complete solution, but they satisfy the constraints in the model. Our challenge
then is to identify an implied constraint that would have pruned this branch
immediately. We are currently developing methods for inferring useful implied
constraints automatically [25,26]. For example, one of our methods identifies a
clique of not-equals constraints (e.g. the constraints Dij �= Dkl in the Golomb
ruler problem) and replaces them by an all-different constraint. Another method
performs Gaussian-like elimination (e.g. if we introduce an auxiliary variable for
a repeated expression, this method eliminates the repeated expression in favour
of the auxiliary variable).

5 Related Work

Unfortunately, constraint patterns are rarely described in a general way that
permits their immediate use in other applications. One exception is a paper by
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Pattern Name: ImpliedConstraints
Context: A basic constraint model.
Problem: Search going down obviously futile branches.
Forces: Overhead of introducing additional constraints.

Applicability of the new implied constraints.
Solution: Introduce implied constraints that prune such branches.
Example: Golomb ruler problem.

Fig. 6. Constraint pattern for ImpliedConstraints.

Martin Green and David Cohen [28] that identifies a constraint pattern which
is useful for modelling a range of assignment problems. The pattern occurs,
for example, in the problem of assigning radio frequencies to pilots in a model
aircraft tournament. In a straightforward model, in which the pilots are the
variables and the values assigned to these variables are the radio frequencies,
pilots assigned the same frequency are symmetric. We can therefore swap any
two pilots assigned the same frequency and obtain a symmetric solution. To
eliminate such symmetries, Green and Cohen propose an alternative viewpoint
similar to the swapping of values for variables.

Hans Schlenker and Georg Ringwelski use a design pattern in POOC [29],
a platform for object-oriented constraint programming. POOC provides Java
wrappers around commercial and academic constraint solvers. Different con-
straint solvers can thus be easily compared. In addition, Java programmers can
rapidly experiment with constraint solving. The wrappers are designed using the
object factory design pattern. This defines an interface for creating an object,
whilst allowing subclasses to decide which class to instantiate.

6 Conclusions and Future Work

I have argued that we need to identify, formalize and document patterns in
constraint models in a similar way to the patterns identified by the software
engineering community. A library of such patterns will help tackle the mod-
elling “bottleneck” that hinders the uptake of constraint programming. I have
described some of the more interesting constraint patterns which have already
been identified. I also discussed the different ways that we can exploit such pat-
terns. For example, one way to exploit common constraint patterns is to extend
the constraint language.

There are a number of important directions to follow. First, more patterns
need to be collected. As I argued before, this requires the efforts of the whole
community, not just of one individual. Second, the patterns outlined here need
more detail and generality. Third, the patterns need to be organized into a
pattern taxonomy so that they can be accessed easily. See Figure 7 for a possible
start to such a taxonomy. Fourth, we need to collect these patterns into a pattern
library. I believe such a library would be a significant asset to the constraint
programming community. A first attempt at such a library is taking shape at
4c.ucc.ie/patterns/.
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Fig. 7. A sketch of a possible constraint pattern taxonomy.
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Abstract. Comet is an object-oriented language supporting a
constraint-based architecture for local search through declarative and
search components. This paper proposes three novel and lightweight
control abstractions for the search component, significantly enhancing
the compositionality, modularity, and reuse of Comet programs. These
abstractions, which includes events and checkpoints, rely on first-class
closures as the enabling technology. They are especially useful for ex-
pressing, in a modular way, heuristic and meta-heuristics, unions of het-
erogeneous neighborhoods, and sequential composition of neighborhoods.

1 Introduction

Historically, most research on modeling and programming tools for combina-
torial optimization has focused on systematic search, which is at the core of
branch & bound and constraint satisfaction algorithm. It is only recently that
more attention has been devoted to programming tools for local search and its
variations (e.g., [6,26,23,11,14,25]).

Comet [13] is a novel, object-oriented, programming language specifically
designed to simplify the implementation of local search algorithms. Comet sup-
ports a constraint-based architecture for local search organized around two main
components: a declarative component which models the application in terms of
constraints and functions, and a search component which specifies the search
heuristic and meta-heuristic. Constraints, which are a natural vehicle to express
combinatorial optimization problems, are differentiable objects in Comet: They
maintain a number of properties incrementally and they provide algorithms to
evaluate the effect of various operations on these properties. The search compo-
nent then uses these functionalities to guide the local search using multidimen-
sional, possibly randomized, selectors and other high-level control structures.
The architecture enables local search algorithms to be high-level, compositional,
and modular. It is possible to add new constraints and to modify or remove
existing ones, without having to worry about the global effect of these changes.
Comet also separates the modeling and search components, allowing program-
mers to experiment with different search heuristics and meta-heuristics without
affecting the problem modeling. This separation of concerns give Comet some
flavor of aspect-oriented programming [9] and feature engineering [24], since
constraints represent and maintain properties across a wide range of objects.
Comet has been applied to many applications and can be implemented to be
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competitive with tailored algorithms, primarily because of its fast incremental
algorithms [13].

This paper focuses on the search component and aims at fostering the com-
positionality, modularity, and genericity of Comet. It introduces three novel
control abstractions whose main benefit is to separate, in the source code, com-
ponents which are usually presented independently in scientific papers. Indeed,
most local search descriptions cover the neighborhood, the search heuristic, and
the meta-heuristic separately. Yet typical implementations of these algorithms
exhibit complex interleavings of these independent aspects and/or require many
intermediary classes and/or interfaces. The resulting code is opaque, less extensi-
ble, and less reusable. The new control abstractions address these limitations and
reduce the distance between high-level descriptions and their implementations.

The first abstraction, events, enables programmers to isolate the search
heuristic from the meta-heuristic, as well as the algorithm animation from the
modeling and search components. The second abstraction, neighbors, aims at ex-
pressing naturally unions of heterogeneous neighborhoods, which often arise in
complex routing and scheduling applications. It allows programmers to separate
the neighborhood definition from its exploration, while keeping move evaluation
and execution textually close. The third abstraction, checkpoints, simplifies the
sequential composition of neighborhoods, which is often present in large-scale
neighborhood search.

These three control abstractions, not only share the same conceptual moti-
vation, but are also based on a common enabling technology: first-class closures.
Closures make it possible to separate the definition of a dynamic behaviour from
its use, providing a simple and uniform implementation technology for the three
control abstractions. Once closures are available, the control abstractions really
become lightweight extensions, which is part of their appeal.

The rest of this paper is organized as follows. Section 2 briefly reviews the
local search architecture and its implementation in Comet. Section 3 gives a
brief overview of closures. Sections 4, 5, and 6 present the new control abstrac-
tions and sketches their implementation. Section 7 presents some experimental
results showing the viability of the approach. Section 8 concludes the paper.

2 The Constraint-Based Architecture for Local Search

This section is a brief overview of the constraint-based architecture for local
search and its implementation in Comet. See [13] for more detail. The architec-
ture consists of a declarative and a search component organized in three layers.
The kernel of the architecture is the concept of invariants over algebraic and
set expressions [14]. Invariants are expressed in terms of incremental variables
and specify a relation which must be maintained under modifications to its vari-
ables. Once invariants are available, it becomes natural to support the concept of
differentiable objects, a fundamental abstraction for local search programming.
Differentiable objects maintain a number of properties (using invariants) and
can be queried to evaluate the effect of local moves on these properties. They are
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Fig. 1. The Queens Problem in Comet.

fundamental because many local search algorithms evaluate the effect of various
moves before selecting the neighbor to visit. Two important classes of differen-
tiable objects are constraints and functions. A differentiable constraint maintains
properties such as its satisfiability, its violation degree, and how much each of
its underlying variables contribute to the violations. It can be queried to evalu-
ate the effect of local moves (e.g., assignments and swaps) on these properties.
Differentiable objects also capture combinatorial substructures arising in many
applications and are appealing for two main reasons. On the one hand, they are
high-level modeling tools which can be composed naturally to build complex
local search algorithms. As such, they bring into local search some of the nice
properties of modern constraint satisfaction systems. On the other hand, they
are amenable to efficient incremental algorithms that exploit their combinatorial
properties. The use of combinatorial constraints is also advocated in [3,7,17,26].

These first two layers, invariants and differentiable objects, constitute the
declarative component of the architecture. The third layer of the architecture is
the search component which aims at simplifying the implementation of heuris-
tics and meta-heuristics, another critical aspect of local search algorithms. It
does not prescribe any specific heuristic or meta-heuristic. Rather, it features
high-level constructs and abstractions to simplify the neighborhood exploration
and the implementation of meta-heuristics. These includes several multidimen-
sional selectors, abstractions to manipulate solutions, and advanced simulation
techniques.

1. range Size = 1..1024;
2. LocalSolver ls();
3. UniformDistribution distr(Size);
4. inc{int} queen[i in Size](ls,Size) := distr.get();
5. int neg[i in Size] = -i;
6. int pos[i in Size] = i;

7. ConstraintSystem S(ls);
8. S.post(new AllDifferent(queen));
9. S.post(new AllDifferent(queen,neg));
10. S.post(new AllDifferent(queen,pos));
11. inc{set{int}} conflicts(ls) <- argMax(q in Size) S.violations(queen[q]);
12. m.close();

13. Counter it(ls);
14. while (!S.isTrue()) {
15. select(q in conflicts)
16. selectMin(v in Size)(S.getAssignDelta(queen[q],v))
17. queen[q] := v;
18. it++;
19. }
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Figure 1 illustrates the architecture, and its implementation in Comet, on
the queens problem. The Comet algorithm is based on the min-conflict heuristic
[16]. The algorithm starts with an initial random configuration. Then, at each
iteration, it chooses the queen violating the largest number of constraints and
moves it to a position minimizing its violations. This step is iterated until a
solution is found. Since a queen must be placed on every column, the algorithm
uses an array queen of variables and queen[i] denotes the row of the queen
placed on column i. Lines 1-6 declare a range, a local solver, a uniform distri-
bution, an array of incremental variables for representing the row of each queen,
as well as two arrays of constants. The modeling component is given in Lines
7-12. Line 7 declares a constraint system. Lines 8-10 add the three traditional
AllDifferent constraints, showing how Comet supports “global” combinato-
rial constraints for local search. Line 11 expresses an invariant which maintains
the set of queens with the most violations. Operator argMax(v in S) E simply
returns the set of values v in S which maximizes E. The search component is
given in lines 13-19. It iterates lines 15-17 until the constraint system is true,
i.e., no constraint is violated. Line 15 selects a most violated queen, while line
16 selects a new value v for the selected queen. The value is selected to minimize
the number of violations of the selected queen. To implement this min-conflict
heuristic, Comet queries the constraint system, a differential object, to find out
the effect of assigning queen q to each row. Line 17 simply executes the move,
automatically updating all invariants and constraints. The use of the counter it
will become clear later in the paper.

Observe that the search and declarative components are clearly separated in
the program. It is thus easy to modify one of them (e.g., adding a constraint
and/or changing the search heuristic) without affecting the other. Although
the two components are physically separated in the program code, they closely
collaborate during execution. The declarative component is used to guide the
search, while the assignment queen[q] := v starts a propagation phase which
updates all invariants and constraints. This compositionality and clear separa-
tion of concerns are some of the appealing features of the architecture. This is
precisely such properties which this paper tries to foster further. Note also that
the declarative component only specifies the properties of the solutions, as well
as the data structures to maintain. It does not specify how to update them,
which is the role of the incremental algorithms in the Comet runtime system.

3 Closures in Comet

Closures are the common enabling technology behind all three control abstrac-
tions introduced in this paper. A closure is a piece of code together with its en-
vironment. Closures are ubiquitous in functional programming languages, where
they are first-class citizens. They are rarely supported in object-oriented lan-
guages however. To illustrate the use of closures in Comet, consider the follow-
ing class
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1. class DemoClosure {
2. DemoClosure() {}
3. Closure print(int i) {
4. return new closure
5. {cout << i << endl;}
6. }
7. }

8. DemoClosure demo();
9. Closure c1 = demo.print(9);
10. Closure c2 = demo.print(5);
11. call(c2);
12. call(c1);
13. call(c2);

Method print receives an integer i and returns a closure which, when executed,
prints i on the standard output. The following snippet shows how to use closures
in Comet: the snippet displays 5, 9, and 5 on the standard output. Observe that
closures are first-class citizens: They can be stored in data structures, passed as
parameters, and returned as results. The two closures created in the example
above share the same code (i.e., cout << i << endl), but their environments
differ. Both contain only one entry (variable i), but they associate the value 9
(closure c1) and the value 5 (closure c2) to this entry. When a closure is created,
its environment is saved and, when a closure is executed, the environment is
restored before, and popped after, execution of its code. Closures can be rather
complex and have environments containing many parameters and local variables,
as will become clear later on.

4 Events for Modularity, Compositionality, and Reuse

One of the fundamental benefits of Comet is its ability to separate problem
modeling from search. This separation of concerns is made possible by incremen-
tal variables, invariants, and differential objects. However, practical applications
typically involve other components which would also benefit from such modu-
larity. One such component is algorithm animation, which is valuable early in
the development process to visualize the local search behavior. Another compo-
nent is the meta-heuristic which is often orthogonal and independent from the
search heuristic. This section introduces the concept of publish/subscribe events
in Comet, which make this separation of concerns possible. Informally speaking,
classes can publish events, which can be subscribed by event-handlers elsewhere
in the code. Methods in the classes can then notify these events, which triggers
the event-handler behaviour. We first focus on how to use events for animation
and meta-heuristic. We then show how to publish and notify events.

Events for Animation. Consider a graphical animation for the n-queens prob-
lem and assume the existence of an Animation class handling the graphics and
providing a method updatePosition(int q,int p) to display the queen on
column q on row r. Such an animation is obtained by inserting the snippet
forall(q in Size)

whenever queen[q]@changes(int or,int nr)
animation.updateQueen(q,nr);

just before the search component (between lines 12 and 13). The core of the
snippet is an event-handler that specifies that, whenever the value of queen[q]
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changes from or to nr, the code animation.updateQueen(q,nr) must be exe-
cuted. This event-handler is installed for all queens.

There are a few important points to highlight here. First, the animation
code is completely separated from both the modeling and the search compo-
nents. The glue between the components is the event changes on incremental
variables which is notified whenever a variable is assigned a new value. The snip-
pet achieves the same effect as calling animation.updateQueen(q,nr) after the
assignment of queens, while clearly separating the two aspects and avoiding to
clutter the heuristic with animation code. This makes the code more readable and
easier to modify and extend. Second, observe that the event-handler behaviour
animation.updateQueen(q,nr) is a closure which depends on the value of q in
the environment and is created when the event is subscribed to. Closures make
the animation code more natural, avoid the definition of intermediary classes,
and feature a textual proximity between the event-handler condition (e.g., the
queen is assigned a new value) and its behavior (e.g., update the display of the
queen). In traditional object-oriented languages, event conditions and behaviors
are separated, which complicates reading and requires new class definitions to
store the information necessary to execute the behavior. Finally, observe that
events are statically and strongly typed: they enable information to be trans-
mitted from the notifier (e.g., the incremental variable) to the event-handler in
a safe fashion with no downcasting.

Events are also compositional. Consider, for instance, adding the functional-
ity of coloring the queens differently according to their number of violations. It
is sufficient to add the instructions

inc{int} violation[q in Size](m) <- S.violations(queen[q]);
forall(q in Size)

whenever violation[q]@changes(int ov,int nv)
animation.updateColor(q,nv);

This snippet declares an array of incremental variables maintaining the number
of violations of each queen, and updates the color of a queen each time its
number of violations is updated. Note that the number of violations of a queen
may change even when the queen is not moved. Hence, it is not possible to insert
the behaviour elsewhere in the program, while remaining incremental, i.e., only
considering the queens whose number of violations was modified. This example
shows the strengths of events in Comet: they enable elegant animation codes,
which would require complex control flows, the creation of intermediary classes,
and/or less incrementality in other languages.

Events for Meta-heuristics. Events are also beneficial to separate the search
heuristic and the meta-heuristic (e.g., tabu-search). They make it possible to
divide the statement into modeling, search, and meta-heuristic components. For
illustration purposes, consider upgrading the queen algorithm with a tabu-search
strategy, which would make a queen tabu for a number of iterations, each time
a queen is moved. The tabu-list management can be almost entirely separated
from the search heuristic. For instance, the snippet
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1. set{int} tabu();
2. forall(q in Size)
3. whenever queen[q]@changes(int o,int n) {
4. tabu.insert(q);
5. when it@reaches[it+tLen]()
6. tabu.remove(q);
7. }
shows a simple management of the tabu list, which we now explain in detail.
The code declares a set tabu to store the tabu queens and features two nested
event-handlers. The outermost event-handler is notified each time a queen is
moved. It inserts the queen in the tabu set and install the second event-handler
(lines 5-6) whose goal is to remove q from the tabu set after tLen iterations,
where tLen is the length of the tabu list. This second handler is interesting in
several ways. First, it features a key-event, i.e., an event which is parametrized
by a specific key which is in between brackets in the code. Here the key is an
iteration number and the handler will be notified when the counter it will reach
or exceed the value it+tLen, i.e., the value of the counter when the handler is
installed (subscription time) plus the length of the tabu-list. Second, the handler
uses the when construct, which means that it will be notified only once.

Once this code is in place, the only modification in the search heuristic con-
sists in selecting the queen with the largest number of violations among the
non-tabu queens (instead of among all queens). As a consequence, the “glue”
between the components (i.e., the counter and the tabu-set) is minimal and
the proper behavior is achieved without interleaving the heuristic and the meta
heuristic in the source code. Note that, in complex applications, this glue can be
anticipated in the first place by assuming that moves are always selected from a
restricted set specified by the modeling and/or meta-heuristic components.

Event Specification and Notification. The examples above focused on the event-
handler (the subscription part) and showed how the when and whenever are used
to register a behaviour. Since they only used primitive objects, no explicit spec-
ification and notification of events (the publish part) was necessary. Of course,
Comet makes it possible to define new events. Each class may publish some
events or key-events by declaring them. Its methods are then responsible to no-
tify these events appropriately. To illustrate event specification and notification,
consider a possible implementation of the class Counter in Comet:
class Counter {
inc{int} cnt;
Event changes(int ov,int nv);
KeyEvent reaches();
Counter();
int ++();

}

Counter::Counter(){ cnt=new inc{int}(0);}
int Counter::++() {
int old = cnt++;
notify changes(old, cnt);
notify reaches[ cnt]();
return cnt;

}
The class declares an incremental variable cnt, an event changes with two
parameters, a key-event reaches with no parameter, the constructor and the
operator. The implementation of the operation (on the right part of the snippet)
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notifies the changes events, passing the old and new values of the incremental
variable. It also notifies all the key-events reaches, whose keys are smaller or
equal to the value of cnt. These notifications triggers all the event-handlers
associated with these events, i.e., it executes the closures which were regis-
tered at subscription time by the when and whenever instructions. In aspect-
oriented terms, the notify instructions are joint-points and when and whenever
statements are dynamic aspects, i.e., aspects associated with instances, not with
classes as is typical in aspect-oriented languages.

Implementation of Events. Conceptually, the implementation of events is close
to the observer design pattern. An event is compiled into virtual machine
instructions which explicitly use closures as shown below:

when x@changes(int o,int n)
cout << n << endl; =⇒

aload x
newClosure "cout << n << endl;"
subscribeEvent changes,<o,n>

The virtual machine is a JVM-like stack machine and x and the closure are
retrieved from the stack in subscribeEvent. At the instance level, each event
corresponds to a data structure which collects all the subscribers. Upon notifica-
tion, the appropriate subscribers are executed, i.e., their parameters are properly
initialized and their closures are executed.

5 Union of Heterogeneous Neighborhoods

Many complex applications in areas such as scheduling and routing use com-
plex neighborhoods consisting of several heterogeneous moves. For instance, the
elegant tabu-search of Dell’Amico and Trubian [5] consists of the union of the
subneighborhoods, each of which consisting of several types of moves. Similarly,
many advanced vehicle routing algorithms [10,4,2] use a variety of moves (e.g.,
swapping visit orders and relocating customers on other routes), each of which
may involve a different number of customers and trucks.

The difficulty in expressing these algorithms come from the temporal dis-
connection between the move selection and execution. In general, a tabu-search
or a greedy local search algorithm first scans the neighborhood to determine
the best move, before executing the selected move. However, in these complex
applications, the exploration cannot be expressed using a (multidimensional)
selector, since the moves are heterogeneous and obtained by iterating over dif-
ferent sets. As a consequence, an implementation would typically create classes
to store the information necessary to characterize the different types of moves.
Each of these classes would inherit from a common abstract class (or would im-
plement the same interface). During the scanning phase, the algorithm creates
instances of these classes to represent selected moves and stores them in a selec-
tor whenever appropriate. During the execution phase, the algorithm extracts
the selected move and applies its execute operation. The drawbacks of this ap-
proach are twofold. On the one hand, it requires the definition of a several classes
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to represent the moves. On the other hand, it fragments the code, separating
the evaluation of a move from its execution in the program source. As a result,
the program is less readable and more verbose.

The neighbor Construct. Comet supports a neighbor construct, which relies
heavily on closures and eliminates these drawbacks. It makes it possible to specify
the move evaluation and execution in one place and avoids unnecessary class
definitions. More important, it significantly enhances compositionality and reuse,
since the various subneighborhoods do not have to agree on a common interface.
They key idea is to view a neighbor as a pair 〈δ : int,move : Closure〉 and to
have neighbor constructs of the form
neighbor(δ,N) M

where M is a move, δ is its evaluation, and N is a neighbor selector, i.e., a container
object to store one or several moves and their evaluations. Comet supports a
variety of such selectors and users can define their own, since they all have
to implement a common interface. For instance, a typical neighbor selector for
tabu-search maintains the best move and its evaluation. The execution of the
neighbor instruction queries selector N to find out whether it accepts a move of
quality δ, in which case the closure of M is submitted to N.

Jobshop Scheduling. We now illustrate how the neighbor construct significantly
simplifies the implementation of the tabu-search algorithm of Dell’Amico and
Trubian (DT) for jobshop scheduling. We first review the basic ideas behind the
DT algorithm and then sketch how the neighborhood exploration is expressed in
Comet. Algorithm DT uses neighborhood NC = RNA ∪ NB , where RNA is a
neighborhood swapping vertices on a critical path (critical vertices) and NB is a
neighborhood where a critical vertex is moved toward the beginning or the end of
its critical block. More precisely, RNA considers sequences of the form 〈p, v, s〉,
where v is a critical vertex and p, v, s represent successive tasks on the same
machine, and explores all permutations of these three vertices. Neighborhood
NB considers a maximal sequence 〈v1, . . . , vi, . . . , vn〉 of critical vertices on the
same machine. For each such subsequence and each vertex vi, it explores the
schedule obtained by placing vi at the beginning or at the end of the block, i.e.,

〈vi, v1, . . . , vi−1, vi+1, . . . , vn〉 ∨ 〈v1, . . . , vi−1, vi+1, . . . , vn, vi〉

Since these schedules are not necessarily feasible, NB actually considers the left-
most and rightmost feasible positions for vi (instead of the first and last position).
NB is connected which is an important theoretical property of neighborhoods.

We now show excerpts of the neighborhood implementation in Comet. The
top-level methods are as follows:
void executeMove() {
MinNeighborSelector N();
exploreN(N);
if (N.hasMove())call(N.getMove());

}

void exploreN(NeighborSelector N)
{

exploreRNA(N);
exploreNB(N);

}
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1. void exploreNB(NeighborSelector N) {
2. forall(v in jobshop.getCriticalVertices()) {
3. int lm = jobshop.leftMostFeasible(v);
4. if (lm > 0) {
5. int delta = jobshop.moveBackwardDelta(v,lm);
6. if (acceptNBLeft(delta,v))
7. neighbor(delta,N) jobshop.moveBackward(v,lm);
8. }
9. int rm = jobshop.rightMostFeasible(v);
10. if (rm > 0) {
11. int delta = jobshop.moveForwardDelta(v,rm);
12. if (acceptNBRight(delta,v))
13. neighbor(delta,N) jobshop.moveForward(v,rm);
14. }
15. }
16.}

Fig. 2. Exploration of Neighborhood NB in Comet.

Method executeMove creates a selector, explores the neighborhood, and exe-
cutes the best move (if any). Method exploreN explores the neighborhood and
illustrates the compositionality of the approach: It is easy to add new neigh-
borhoods without modifying existing code, since the subneighborhoods do not
have to agree on a common interface or abstract class. The implementation of
exploreRNA and exploreNB is of course where the neighbor construct is used.
Figure 2 gives the implementation of exploreNB: method exploreRNA is simi-
lar in spirit, but somewhat more complex, since it involves 5 different moves,
as well as additional conditions to ensure feasibility. Method exploreNB uses
the instance variable jobshop, which is a differentiable object representing the
disjunctive graph, a fundamental concept in jobshop scheduling [20]. This dif-
ferential object maintains the release and tail dates of all vertices, as well as the
critical paths, under various operations on the disjunctive graph. The exploreNB
method iterates over all critical vertices. For each of them it finds the leftmost
feasible insertion point in its critical block (line 3). If such a feasible insertion
point exists, it evaluates the move (line 5) and then tests if the move is accept-
able (line 6). In the DT algorithm, this involves testing the tabu status, a cycling
condition, and the aspiration criterion. If the move is acceptable, the neighbor
instruction is executed. The move itself consists of moving vertex v by lm po-
sitions backwards. Note that, although the move is specified in the neighbor
instruction, it is not executed. Only the best move is executed and this takes
place in method executeMove once the entire neighborhood has been explored.
The remaining of method exploreNB handles the symmetric forward move.

The neighborhood exploration is particularly elegant (in our opinion). Al-
though a move evaluation and its execution take place at different execution
times, the neighbor construct makes it possible to specify them together, sig-
nificantly enhancing clarity and programming ease. The move evaluation and ex-
ecution are textually adjacent and the logic underlying the neighborhood is not
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made obscure by introducing intermediary classes and methods. Composition-
ality is another fundamental advantage of the code organization. As mentioned
earlier, new moves can be added easily, without affecting existing code. Equally
or more important perhaps, the approach separates the neighborhood definition
(method exploreN) from its use (method executeMove in the DT algorithm).
This makes it possible to use the neighborhood exploration in many different
ways without any modification to its code. For instance, a semi-greedy strategy,
which selects one of the k-best moves, only requires to use a semi-greedy selector.
Similarly, method exploreN can be used to collect all neighbors which is useful
in intensification strategies based on elite solutions [18].

Implementation of Neighbor. The neighbor construct is only syntactic sugar
once closures are available. Indeed, the syntactic form is rewritten as shown
below:
forall(v in Size)

neighbor(Δ(v),N)
M(v);

=⇒
forall(v in Size)

δ ← Δ(v)
if (N.accept(δ))

N.insert(δ,new closure {M(v); });

The rewriting uses method accept on the selector to determine whether to
accept a move. It also ensures that closures are constructed lazily.

6 Sequential Composition of Neighborhoods

This section discusses the use of checkpoint to express the sequential composition
concisely. Sequential composition is often fundamental in very large neighbor-
hood search, which explores sequences or trees of (possibly heterogeneous) moves
and selects the best encountered neighbor (e.g., [8,1]). This section illustrates
these concepts using variable-depth neighborhood search (VDNS) [8], which was
shown very effective on graph-partitioning and traveling salesman problems.

Fig. 3. A Sequence of Moves.

Variable-Depth Neighborhood Search. VDNS
consists of exploring a sequence of moves and
moving to the state with best evaluation in
the sequence. By exploring sequences which
include degrading moves, VDNS may avoid
being trapped in poor local optima.

Consider Figure 3 which plots the qual-
ity of a sequence of moves. Each node in
the graph corresponds to a computation state
and two successive nodes are neighbors in the
transition graph of the local search. VDNS explores the whole sequence and then
returns to the best computation state, i.e., the before-last node.

Checkpoints. Checkpoints are a simple conceptual abstraction to express VDNS
algorithms. A checkpoint is simply a data structure that implicitly represents the
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Fig. 4. The implementation of VDNS in Comet.

computation state of a local solver, i.e., the state of all incremental variables and
data structures of the solver. Whenever a local solver is in checkpointing mode,
checkpoints can be saved and, later, restored in order to reset all incremental
variables, constraints, and data structures to their earlier states. Checkpoints
are first-class citizens in Comet. They also encapsulate incremental algorithms
to avoid saving entire computation states.

Variable-Depth Neighborhood Search in Comet. We now illustrate how to ex-
press VDNS in Comet for graph partitioning [8], where moves consists of swap-
ping two vertices, one from each set in the partition. The snippet
selectBest(ls,nb/2,cost)

select(s in BestSwaps) {
x[s.o] :=: x[s.d]; mark[s.o] := true; mark[s.d] := true;

}
shows the core of the search procedure in Comet. In the snippet, ls is the local
solver, nb is the number of vertices, cost is the cost of the partition, bestSwaps
is an incremental set of tuples which maintains the best swaps, x is an array
of incremental variables specifying which set of the partition a vertex belongs
to, and mark is an array of incremental Boolean variables, indicating whether
a vertex have been selected in the VDNS sequence already. Note also that a
:=: b swaps the values of a and b. The selectBest function is the cornerstone
of the VDNS implementation. It receives four arguments: the local solver, the
length of the sequence, the function to minimize (an incremental variable), and
a closure representing the move. Here the move consists of selecting a tuple s in
BestSwaps and to swap the vertices s.o and s.d. Both vertices are then marked
in order to avoid selecting them again in the sequence.

Figure 4 depicts the implementation of function selectBest. It uses the
with checkpoint(ls) statement to indicate the use of checkpointing inside
the enclosed block. It saves the current state in variable chp using instruc-
tion Checkpoint chp(ls). The forall loop explores a sequence of l moves,

function boolean selectBest(LocalSolver ls,int l,inc{int} f,Closure Move) {
boolean found = false;
with checkpoint(ls) {

Checkpoint chp(ls); int best = f;
forall(i in 1..l) {

call(Move);
if (f < best) {

found = true; best = f; chp = new Checkpoint(ls);
}

}
chp.restore();

}
return found;

}
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storing the best computation state in variable chp. After this exploration, in-
struction chp.restore() restores the best computation state encountered (pos-
sibly the initial state). Note that Comet supports the syntactic rewriting from
f(a1,...,an) S to f(a1,...,an,new closure { S }) when the last argument
of function f is a closure. The VDNS implementation has a number of interest-
ing features. First, it is entirely generic and reusable: It can be applied to an
arbitrary move and separates search heuristic and the meta-heuristic. Second,
checkpoints specify what to maintain, i.e., the “best” computation states, but
not how to save or restore it. The implementation uses incremental algorithms
to do so, but this is abstracted from programmers. Finally, observe the role of
closures for the genericity of the VDNS implementation.

Implementation of Checkpoints. We now discuss the checkpoint implementation.
The key to an incremental implementation lies in a representation of computa-
tion states as sequences of primitive moves from an initial state (i.e., the state
when the checkpoint statement is executed). In other words, a state s is a se-
quence 〈m0, . . . ,mk〉 where mi is a primitive move. A primitive move in Comet
is a function f : State → State from computation states to computation states
which is invertible, i.e., there exists a function f−1 such that f(f−1(s)) = s.
For instance, a move x[i]:=j corresponds to a function f(s) = s{x[i]/j} where
s{y/v} represents the state s where y is assigned the value v. The inverse move
is of course f−1(s) = s{x[i]/lookup(s0, x[i])} where s0 is the computation state
before executing the move, and lookup reads the value of a variable in a compu-
tation state. Consider now how to restore a state sr from a state sc where

sc = 〈m0, . . . ,mn,m′
n+1, . . . ,m

′
k〉

sr = 〈m0, . . . ,mn,m′′
n+1, . . . ,m

′′
l 〉.

The Comet implementation exploits the common prefix of the two states. It
undoes the suffix 〈m′

n+1, . . . ,m
′
k〉 by using the inverse moves, and then executes

the moves 〈m′′
n+1, . . . ,m

′′
l 〉. This implementation has several properties. First, its

memory requirements are independent of the size of the computation states. Only
moves are memorized and the size of a checkpoint c only depends on the length
of the sequence from the initial state to c. Second, the runtime requirements are
also minimal, since they either reexecute a subsequence executed before or they
execute the inverse of such a subsequence. For VDNS, for instance, restoring
the best state does not change the asymptotic complexity: in the worst case,
restoring the checkpoint involves as much work as exploring the sequence.

The checkpoint implementation is related to techniques underlying generic
search strategies (e.g., [19,15,22]). However, it does not use backtracking and/or
trailing. Rather, it makes heavy use of inverse moves, which is efficient because
the invariant propagation algorithm never updates the same incremental vari-
able twice [14] (which is not the case in constraint satisfaction algorithms in
general). Our implementation thus combines low memory requirements with in-
crementality, which is critical for many local search applications.
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7 Experimental Results

This section describes some preliminary experimental results to demonstrate
the practical viability of the abstractions and of closures. It compares various
implementations of the tabu-search algorithm DT (the goal, of course, is not to
compare various scheduling algorithms). In particular, it compares the original
results [5], a C++ implementation [21], and the Comet implementation. Table
1 presents the results corresponding to Table 3 in [5]. Since DT is actually faster
on the LA benchmarks (Table 4 in [5]), these results are representative. In the
table, DT is the original implementation on a 33mhz PC, DT* is the scaled
times on a 745mhz PC, KS is the C++ implementation on a 440 MHz Sun
Ultra, KS* are the scaled times on a 745mhz PC, and CO are the Comet times
on a 745mhz PC. Scaling was based on the clock frequency, which is favorable to
slower machines (especially for the Sun). The times corresponds to the average
over multiple runs (5 for DT, 20 for KS, and 50 for CO). Results for Comet are
for the JIT compiler but include garbage collection. The results clearly indicate
that Comet can be implemented to be competitive with specialized programs.
Note also that the C++ implementation is more than 4,000 lines long, while the
Comet program has about 400 lines.

Table 1. Computational Results on the Tabu-Search Algorithm (DT).

ABZ5 ABZ6 ABZ7 ABZ8 ABZ9 MT10 MT20 ORB1 ORB2 ORB3 ORB4 ORB5
DT 139.5 86.8 320.1 336.1 320.8 155.8 160.1 157.6 136.4 157.3 156.8 140.1
DT* 6.2 3.8 14.2 15.1 14.2 6.9 7.1 7.0 6.0 7.0 6.9 6.2
KS 7.8 8.2 20.7 23.1 20.3 8.7 16.4 9.2 7.8 9.3 8.5 8.1
KS* 4.6 4.8 12.2 13.6 11.9 5.1 9.6 5.4 4.6 5.5 5.0 4.8
CO 5.9 5.7 11.7 9.9 9.0 6.7 9.8 5.6 4.8 5.6 6.3 6.5

8 Conclusion

This paper presented three novel control abstractions for Comet, which signif-
icantly enhance the compositionality, modularity, and reuse of Comet. These
abstractions may significantly improve conciseness, extensibility, and clarity of
the local search implementations. They all rely on first-class closures as the
enabling technology and can be implemented efficiently.

One of the most appealing features of Comet is its small number of funda-
mental concepts, as well as their generality. First-class closures simplify many
applications beyond local search (e.g., [12]) and are ubiquitous in functional
programming. Events are related to many constructs in the logic and functional
communities (e.g., delay mechanisms and reactive functional programming). In-
variants (one-way constraints) and constraints are widely recognized as natural
vehicles for many applications. These concepts provide significant support for
local search, and may significantly reduce the distance between high-level de-
scriptions of the algorithms and their actual implementations. Yet they are non-
intrusive and impose minimal “constraints” on programmers, who keeps control
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of their algorithms and their code organization. An interesting topic for future
research is to study how to unify the Comet architecture with the tree-search
models proposed in [23,11], since both approaches have orthogonal strengths.
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Abstract. Counting the number of solutions to CSP instances has vast
applications in several areas ranging from statistical physics to artificial
intelligence. We provide a new algorithm for counting the number of
solutions to binary Csp s which has a time complexity ranging from
O (

(d/4 · α4)n
)

to O (
(α + α5 + �d/4 − 1	 · α4)n

)
(where α ≈ 1.2561)

depending on the domain size d ≥ 3. This is substantially faster than
previous algorithms, especially for small d. We also provide an algorithm
for counting k-colourings in graphs and its running time ranges from
O (�log2 k	n) to O (�log2 k + 1	n) depending on k ≥ 4. Previously, only
an O (1.8171n) time algorithm for counting 3-colourings were known, and
we improve this upper bound to O (1.7879n).

1 Introduction

Constraint satisfaction problems (Csps), first described by Montanari [16], allows
for natural descriptions of problems in a wide array of fields, cf. Kumar [14]. The
most thoroughly studied problem for Csps is that of decidability, i.e., ‘does a
given problem have a solution?’ but there are a number of alternative questions
one can ask, including ‘Does variable x have the same value in every solution?’
(the frozen variable problem) and ‘How many solutions are there?’ (the counting
problem.) In this paper we will focus on the latter, usually denoted #Csp.

The #Csp problem has many important applications. A broad range of clas-
sical combinatorial problems such as Graph Reliability [20] and Perma-
nent [19] can be viewed as instances of the #Csp problem. This also holds for
many AI problems such as approximate reasoning [17], diagnosis [18] and belief
revision [8]. Solving a Csp instance is equivalent to finding a homomorphism be-
tween graphs [11], for instance, finding a k-colouring of a graph G is equivalent
to finding a homomorphism from G to a complete graph with k vertices. De-
termining the number of graph homomorphisms from one graph to another has
important applications in statistical physics [10] – e.g. computations in the Potts
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model and the problem of counting q-particle Widom-Rowlinson configurations
in graphs.

Until quite recently, not much attention has been given to the computa-
tional complexity of #Csp. The counting problem belongs to a class known as
#P (introduced by Valiant [19,20]) defined as the class of counting problems
computable in nondeterministic polynomial time. Computing the number of so-
lutions to a constraint satisfaction problem is, even if we restrict ourselves to
binary Csps, complete for this class of problems [17]. Lately, however, a num-
ber of papers have addressed complexity issues in greater detail [5,6,15], and
a number of exact algorithms have been developed [1,3,7,9]. Bulatov and Dal-
mau [5] have formulated a plausible conjecture concerning the complexity of the
counting problem: the problem can be solved in polynomial time if and only
if the relations under consideration are closed under a Mal’tsev operation (and
the problem is #P-complete otherwise). Since the set of relations closed under
Mal’tsev operations is fairly limited1, the truth of this conjecture would imply
that we are forced to use exponential-time algorithms for solving most naturally
arising counting problems.

In this paper we will focus on exact, deterministic algorithms for the follow-
ing two problems: the counting problem for binary CSPs, denoted #(d, 2)-Csp2,
and the counting problem for k-colourability of graphs, denoted #kCOL. Al-
gorithms for #(d, 2)-Csp and #3COL have been presented elsewhere [1]. The
previously presented algorithm for #3COL runs in O (1.8171n) time and the
running time for the #(d, 2)-Csp algorithm is (we omit polynomial factors here
and throughout the paper):

– O (αn · (d/2)n), if d is even, and
– O

(
αn · �(d2 + d)/4�n/2

)
, if d is odd

where O (αn) is the time complexity for solving #(2, 2)-Csp. Running times for
a selection of domain sizes can be found in Table 1. Since the running time of
this algorithm depends on the running time for solving the #(2, 2)-Csp problem,
we provide the times both for the O (1.3247n) #(2, 2)-Csp algorithm originally
used [7] and for the improved O (1.2561n) algorithm [21].

The old #(d, 2)-Csp algorithm has the following general outline:

1. Create #(d, 2)-Csp instances ‘corresponding’ to the original Csp instance.
2. Count the number of solutions to each of these instances.
3. Return the total number of solutions found.

The new algorithm is different in several respects. It creates weighted #(d, 2)-
Csp instances instead of ordinary #(d, 2)-Csp instances – this enables us to use
a microstructure-like [12] construction that reduces the number of instances we
need to consider. When applied to odd domains, the old algorithm considers pairs
1 For instance, if we only consider domains of size 2, there is a single polynomial class

known as the affine subclass.
2 The necessary definitions for the Csp notions used in this paper are found in Sec-

tion 2.
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Table 1. Time complexities for solving #(d, 2)-Csp and #dCOL.

d #(d, 2)-Csp #dCOL
Original Original New

algorithm algorithm algorithm
w/improvements

3 2.2944n 2.1757n 1.9819n 1.7879n

4 2.6494n 2.5122n 2.4895n 2n

5 3.7468n 3.5528n 3.1270n 2.7879n

6 3.9741n 3.7683n 3.7456n 2.7879n

7 4.9566n 4.6999n 4.3831n 3n

8 5.2988n 5.0244n 4.9789n 3n

10 6.6235n 6.2805n 6.2350n 3.7879n

15 10.2611n 9.7298n 9.3619n 4n

20 13.2470n 12.5610n 12.4471n 4.7879n

25 16.9126n 16.0369n 15.5740n 5n

of variables when constructing the #(d, 2)-Csp instances; the technique for doing
so is straightforward in principle but inelegant in practice. The new algorithm
‘partitions’ the domains of the variables into subdomains of sizes between 2 and
5 elements. This leads to a faster and more elegant algorithm but its analysis
becomes a bit more complicated. The running time of the algorithm is:

– O
(
(d/4 · α4)n

)
⊆ O ((0.6224d)n) if d ≡ 0 (mod 4)

– O
(
(α5 + �d/4− 1� · α4)n

)
⊆ O ((0.6254d)n) if d ≡ 1 (mod 4)

– O
(
(α + �d/4� · α4)n

)
⊆ O ((0.6243d)n) if d ≡ 2 (mod 4)

– O
(
(α + α5 + �d/4− 1� · α4)n

)
⊆ O ((0.6262d)n) if d ≡ 3 (mod 4)

For large domains, the term d/4 · α4 dominates the time complexity, since the
number of 4-partitions increase with d. Consequently, the bounds in the list will
all approach O

(
(d/4 · α4)n

)
≈ O ((0.6224d)n) as d grows. The old algorithm

approaches O ((0.6280d)n) running time and this difference may appear neglig-
ble. However, the difference is significant for many domain sizes; for instance, if
d = 5, the old algorithm runs in O (3.5528n) = O ((0.7106d)n) time while the
new algorithm runs in O (3.1271n) = O ((0.6255d)n) time. Given the modularity
of the algorithm, if a faster method for solving the weighted #(2, 2)-Csp prob-
lem is found, it is easy to ‘plug it into’ our algorithm, thus improving the time
complexity with no extra work.

The second part of this paper contains an algorithm for #kCOL, which runs
in O ((ck)n) time where

ck =

⎧⎨⎩
�log2 k� if k = 2i

�log2 k�+ (β − 1) if 2i < k ≤ 2i + 2i−1

�log2 k�+ 1 if 2i + 2i−1 < k < 2i+1

and β ≈ 1.7879. Previously, only an O (1.8171n) time for #3COL was known.
The algorithm is once again based on a partitioning technique together with



84 Ola Angelsmark and Peter Jonsson

methods for efficiently combining #kCOL algorithms and an O (1.7879n) time
algorithm for #3COL.

The paper has the following organisation: Section 2 contains the basic defini-
tions needed. Section 3 contains the algorithm for counting solutions to binary
Csps, while Section 4 contains the algorithm for the #kCOL problem. The new
algorithm for #3COL is presented in Section 5.

2 Preliminaries

A (d, l)-constraint satisfaction problem ((d,l)-Csp) is a triple (V,D,C) with V a
finite set of variables, D a finite domain of values, with |D| = d, and C a set of
constraints {c1, c2, . . . , cq}. Each constraint ci ∈ C is a structure R(xi1 , . . . , xij

)
where j ≤ l, xi1 , . . . , xij

∈ V and R ⊆ Dj . A solution to a Csp instance
is a function f : V → D, such that for each constraint R(xi1 , . . . , xij

) ∈ C,
(f(xi1), . . . , f(xij )) ∈ R. Given a variable v and a set X ⊆ D, we let (v;X)
denote the unary constraint v ∈ X. Given a (d, l)-Csp instance, the basic com-
putational problem is to decide whether an instance has a solution or not. The
corresponding counting problem #(d, l)-Csp is to determine how many solutions
the instance has.

We will view (2, 2)-Csp instances as instances of 2-sat for increased read-
ability. A 2-sat formula is a sentence consisting of the conjunction of a number
of clauses, where each clause is of one of the forms (p∨q), (¬p∨q), (¬p∨¬q), (p),
(¬p). The 2-sat problem is to decide whether a given 2-sat formula is satisfiable
or not, and this can be done in linear time [2], whereas the #P-complete #2-sat
problem is to decide how many solutions a given formula has. We will use an
extended version of the #2-sat problem.

Definition 1. (#2-sat with weights)
A instance is given as a 2-sat formula F over propositions X = {x1, x2, . . . , xn},
and a function f : X → N assigning to each proposition an integer weight. Let
M be the set of models of F and define Π : M → N as Π(m) =

∑
{f(x) | x true

in m}. Let K = maxm∈M Π(m). A solution to the instance is the number of
models that have the total weight K.

The currently best known algorithm for solving this problem runs in O (αn)
time [21] where α ≈ 1.2561.

A partitioning P = {P1, . . . , Pk} of a domain D is a division of D into disjoint
subsets s.t.

⋃
P = D, and a k-partition is an element of P with k elements. Given

a partitioning P , let σ(P, i) denote the number of i-partitions in P .
The multinomial coefficient(

n
n1 · · ·nk

)
=

n!
n1! · . . . · nk!

denotes the number of ways of partitioning a set of size n into k sets, each of
size ni (with n =

∑k
i=1 ni). We will frequently use the multinomial theorem: for

x1, . . . , xk ∈ R,
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∑
n1+...+nk=n

(
n

n1 · · ·nk

) k∏
i=1

xnk
i =

(
k∑

i=1

xi

)n

3 Algorithm for #(d, 2)-Csp

The algorithm for #(d, 2)-Csp will be presented in three steps: (1) Theorem 1
demonstrates how partitions can be used for solving #(d, 2)-Csp; (2) we show
how an algorithm for weighted #2-sat can be used by Theorem 1; and (3) we
show how to choose partitionings optimally in Theorem 2.

Before we prove Theorem 1, we need a straightforward lemma:

Lemma 1. Assume there exists an O (cn) time algorithm for #(k, l)-Csp. Let
Ik denote the set of #(d, l)-Csp instances satisfying the following restriction:
for every (V,D,C) ∈ Ik and every v ∈ V , there exists a constraint (v;S) in C
such that |S| ≤ k. Then, the #Csp problem restricted to instances in Ik can be
solved in O (cn) time.

Proof. For each variable in (V,D,C), we know that there are at most k out of
d values that it can be assigned. Thus, we can modify the constraints so that
every variable picks its values from the set {1, . . . , k}. This transformation can
obviously be carried out in polynomial time and the resulting instance is an
instance of #(k, l)-Csp which can be solved in O (cn) time.

Theorem 1. Let A be an algorithm for #(d, 2)-Csp running in O
(∏d

i=1 αni
i

)
time (αi ≥ 1) when applied to an instance containing ni i-valued variables for
1 ≤ i ≤ d. Choose p and a partitioning P = {P1, . . . , Pk} of {1, . . . , p} such that
|Pi| ≤ d for every i. Then, there exists an algorithm for #(p, 2)-Csp running in

O
((∑d

i=1 σ(P, i)αi

)n)
time.

Proof. We claim that the algorithm presented in Figure 1 correctly solves the
#(p, 2)-Csp problem. Let I = (V,D,C) be an arbitrary instance of #(p, 2)-Csp
and let M be an arbitrary model of I. The members of P are pairwise disjoint
so there exists exactly one function from V to P such that M(v) ∈ f(v) for all
v ∈ V . Now, Lemma 1 implies that this model will cause an increase of variable
c by one. Consequently, the algorithm will return the total number of models
which proves its correctness.

The running time T of the algorithm is bounded by

O

⎛⎝∑
f∈F

∏
v∈V

α|f(v)|

⎞⎠
where F is the set of total functions from V to P , i.e. the algorithm considers
all possible combinations of elements of P and members of V . The performance
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1 c := 0
2 for every total function f : V → P do
3 I := (V, D, C ∪ {(vi; f(vi)) | 1 ≤ i ≤ |V |})
4 compute the number of solutions to I using Lemma 1 and add to c
5 end for
6 return c

Fig. 1. Algorithm for #(p, 2)-Csp.

of algorithm A depends only on the domain sizes associated with the variables
and this gives us

T ∈ O

⎛⎝ ∑
k1+...+k|P |=n

(
n

k1 · · · k|P |

) |P |∏
i=1

αki

|Pi|

⎞⎠
where ki denotes the number of variables whose domain is Pi. By applying the
multinomial theorem and using the fact that there are σ(P, i) sets of size i in P ,
we arrive at

T ∈ O

⎛⎝⎛⎝ |P |∑
i=1

α|Pi|

⎞⎠n⎞⎠ = O
((

d∑
i=1

σ(P, i)αi

)n)
.

��
We will now use Theorem 1 and the algorithm for weighted #2-sat in order to
construct an algorithm for #(d, 2)-Csp.

Given a #(d, 2)-Csp instance Θ = (V,D,C) containing k1 1-valued, k2 2-
valued, k3 3-valued, etc., variables, we can transform it into a weighted #2-sat
instance as follows:

– If x ∈ V takes its value from a singelton set {1}, we can remove x in poly-
nomial time by assigning 1 to x and propagate the variable.

– If a variable x ∈ V takes its value from a two-valued set {1, 2}, we introduce
a proposition x1 with the interpretation that x = 1 if x1 is true, and x = 2
otherwise.

– For a k-valued variable x, we create k propositional variables x1, . . . , xk, with
the interpretations that x = i if xi is true, and x �= i if xi is false. To ensure
that at most one of these can be true in a satisfying assignment, we add
clauses ∧

i≤j, i,j∈{1,2,...,k}
(¬xi ∨ ¬xj).

– Constraints involving only variables with more than 2 possible values can be
transformed in a straightforward manner; Given a constraint xRy ∈ C, with
x having domain Dx and y having domain Dy, we add the clauses∧

a∈Dx,b∈Dy,(a,b) �∈R

(¬xa ∨ ¬yb).
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However, if one of the variables is 2-valued, we need to take into account that
its negation also corresponds to an assignment, hence, if xRy ∈ C, x ∈ {1, 2}
and y ∈ Dy, we add the clauses∧

b∈Dy,(0,b) �∈R

(¬x0 ∨ ¬yb) ∧
∧

b∈Dy,(1,b) �∈R

(x0 ∨ ¬yb).

The case when two variables are 2-valued can be transformed analogously.

Now, we note that there is a slight difference between the two kinds of proposi-
tions: A proposition stemming from a 2-valued variable will, regardless of truth-
value, give an assignment to the original variable, but this does not hold for
the k-valued variables with k > 2. To remedy this, we exploit the possibility to
give weights to the propositions: we give the weight 0 to each proposition cor-
responding to a 2-valued variable, and the remaining propositions are assigned
the weight 1. A model of the instance will then have the value

∑
i≥3 ki, i.e., the

number of k-valued variables, k > 2.
After this transformation, we get a 2-sat formula F with k2 + 3k3 + . . .

variables, and applying the algorithm for weighted #2-sat from [21] will give
a running time of O

(
1k1 · αk2+3k3+...

)
= O

(
1k1 · αk2 · α3k3 · . . .

)
, since each 2-

valued variable introduces one propositional variable, and each k-valued variable,
k ≥ 3, introduces k propositional variables.

Given a partitioning P of a domain D containing d elements, it follows (by
combining the algorithm above and Theorem 1) that we can solve #(d, 2)-Csp
in O (T (P )n) time where

T (P ) = σ(P, 1) + σ(P, 2)α +
d∑

i=3

σ(P, i)αi.

For instance, we can solve #(d, 2)-Csp in O
(
αd·n) time by using the trivial par-

titioning P = {{1, . . . , d}} but this can be improved by using other partition-
ings. For example, assume d = 6. Using the previous argument, this would give a
time complexity of O

(
α6n
)
≈ O (3.9278n), but if we instead use the partitioning

{{1, 2}, {3, 4, 5, 6}}, we arrive at a running time of O
(
(α + α4)n

)
≈ O (3.7455n),

which is quite an improvement. The obvious question is how to partition the do-
main to get the optimal running time.

Let P = {P1, . . . , Pk} be an arbitrary partitioning of a domain D. Since the
actual names of the elements in a partition is not important (by Lemma 1), we
let the multi-set [|P1|, . . . , |Pk|] represent the partitioning P . We will use the
following fact repeatedly in the proof: if T ([a1, . . . , ak]) < T ([b1, . . . , bm]), then

T ([a1, . . . , ak, c1, . . . , cp]) < T ([b1, . . . , bm, c1, . . . , cp])

for all choices of c1, . . . , cp.

Theorem 2. Let D be a domain of size d ≥ 2. If d < 6, then the partitioning
P = [d] is optimal. Otherwise, the following partitionings are optimal:
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– if d = 4k, P = [4, 4, 4, . . . , 4] (k partitions of size 4)
– if d = 4k + 1, P = [5, 4, 4, . . . , 4] (k − 1 of size 4)
– if d = 4k + 2, P = [2, 4, 4, . . . , 4] (k of size 4)
– if d = 4k + 3, P = [2, 5, 4, 4, . . . , 4] (k − 1 of size 4)

Proof. Let P be a partition from the list and assume it is suboptimal, i.e., there
is a strictly better partition P ∗ which is optimal. We show that such a P ∗ does
not exist and, consequently, that P is optimal.

Step 1: P ∗ contains no 1-partitions.
If d = 2, then it is obvious that P ∗ = [2] and P ∗ contains no 1-partition.
We can consequently suppose that d > 2. Assume first that P ∗ = [1, . . . , 1]
(d 1-partitions) and let P ′ = [2, 1, . . . , 1] (d − 1 1-partitions). It is easy to see
that T (P ′) < T (P ∗) so P ∗ contains at least one a-partition such that a > 1.
If a=2, i.e. P ∗ = [1, 2, p1, . . . , pk], we let P ′ = [3, p1, . . . , pk] and note that
2.2561 ≈ T ([1, 2]) > T ([3]) ≈ 1.9819 and P ∗ is not optimal.

Finally, we assume that P ∗ = [1, a, p1, . . . , pk] for some a > 2. We define
P ′ = [2, a − 1, p1, . . . , pk] and show that T (P ′) < T (P ∗) by induction over a.
This contradicts the optimality of P ∗ and proves that P ∗ does not contain any
1-partitions.

Basis: If a = 3, then 2.9819 ≈ T ([1, 3]) > T ([2, 2]) ≈ 2.5122.
Induction: Assume the claim holds for a = p. We show that it also holds for

a = p + 1 by proving that T ([1, p + 1]) > T ([2, p]), i.e. 1 + αp+1 > α + αp.
First observe that 1.3217 ≈ α2 − α + 1 > α ≈ 1.2561. Now, 1 + αp+1 =
(1+αp) ·α− (α− 1) > /ind. hyp./ > (α+αp−1) ·α−α+1 = α2 +αp−α+1 >
/observation/ > αp + α.

Step 2: P is optimal when 1 < d ≤ 5.
We note that domains of sizes 2 and 3 should not be partitioned since this im-
plies the introduction of a 1-partition. Furthermore, domains of sizes 4 and 5
should not be partitioned either since T ([4]) < T ([2, 2]) and T ([5]) < T ([3, 2]).

Step 3: P ∗ contains only a-partitions, a ∈ {2, 4, 5}, when d > 5.
Assume P ∗ contains an a-partition and a > 5. We begin by inductively proving
that T ([a, p1, . . . , pk]) > T ([a− 2, 2, p1, . . . , pk]), i.e. αan > (αa−2 + α2)n. Obvi-
ously, this holds when a = 6. Assume the assertion holds for every a < p. Now,
αp = α · αp−1 > /ind. hyp./ > α · (αp−3 + α2) = αp−2 + α3 > αp−2 + α2. Thus
we will always benefit from partitioning a domain if d > 5 which implies that
the optimal partition P ∗ will only consist of partitions of sizes 2, 3, 4 and 5.

Assume P ∗ = [3, ...] and note that since d > 5, P ∗ = [3, a, ...] where
a ∈ {2, 3, 4, 5}. It is easy to check that T ([3, 2]) > T ([5]), T ([3, 3]) > T ([4, 2]),
T ([3, 4]) > T ([5, 2]) and T ([3, 5]) > T ([4, 4]) so P ∗ contains no 3-partition.

Step 4: P is optimal when d > 5.
We note that P ∗ cannot contain more than one 2-partition since T ([4]) <
T ([2, 2]) and it cannot contain more than one 5-partition since T ([2, 4, 4]) <
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T ([5, 5]). Finally, P ∗ cannot contain fewer 2 and 5 partitions than P , since oth-
erwise, it would not be a partition of an arbitrary domain. The only alternative
is that P ∗ has the same number of 2- and 5-partitions as P , so P = P ∗ and P
is optimal. ��

Consequently, the resulting algorithm has the following time complexity:

– O
(
(d/4 · α4)n

)
⊆ O ((0.6224d)n) if d ≡ 0 (mod 4)

– O
(
(α5 + �d/4− 1� · α4)n

)
⊆ O ((0.6254d)n) if d ≡ 1 (mod 4)

– O
(
(α + �d/4� · α4)n

)
⊆ O ((0.6243d)n) if d ≡ 2 (mod 4)

– O
(
(α + α5 + �d/4− 1� · α4)n

)
⊆ O ((0.6262d)n) if d ≡ 3 (mod 4)

For large domains, the term d/4 · α4 dominates the time complexity, since the
number of 4-partitions increase with d. Consequently, the bounds in the list will
all approach O

(
(d/4 · α4)n

)
≈ O ((0.6222d)n) as d grows.

4 Algorithm for #kCOL

We will now present an algorithm for the #kCOL problem. We prefer to present
this algorithm using graph-theoretic notation instead of Csp notation since this
enables us to use familiar concepts such as induced subgraphs and independent
sets. We start with the necessary graph-theoretic preliminaries.

A graph G consists of a set V (G) of vertices, and a set E(G) of edges, where
each element of E is an unordered pair of vertices. The size of a graph G, denoted
|G|, is the number of vertices. A k-colouring of G is a function f : V (G) →
{1, . . . , k} such that for all v, w ∈ V (G), if C(v) = C(w) then (v, w) /∈ E(G);
that is, no adjacent vertices have the same colour. If G is a graph and S ⊆ V (G),
the graph G|S has vertex set S and E(G|S) = {(u, v) ∈ E(G) | u, v ∈ S}, is
called the subgraph of G induced by S. We write G − S to denote the graph
G|(V (G)− S).

Theorem 3. Let A1, . . . , Am be algorithms for #k1COL, . . . ,#kmCOL, respec-
tively, such that algorithm Ai runs in O (αn

i ) time. Choose p and a partitioning
P = {P1, . . . , Pk} of {1, . . . , p} such that |Pi| ∈ {k1, . . . , km} for all i. Then,
there exists an algorithm for #pCOL with a time complexity of O

(
((|P | − 1)

+ maxPi∈P α|Pi|)
n
)
.

Proof. We claim that the algorithm presented in Figure 2 correctly solves the
#pCOL problem. To prove this, arbitrarily choose an instance G of #pCOL,
let F be the set of all total functions V (G) → P and choose one f ∈ F . We
begin by proving that lines 4–8 correctly computes the number of p-colourings
satisfying the following condition: variable v can only be coloured by the colours
in f(v).

Assume without loss of generality that P1 = {1, . . . , k} for some k > 0. Let
G1 = G|{v ∈ V (G) | f(v) = P1} and G≥2 = G|{v ∈ V (G) | f(v) �= P1}. We
show that #pCOL(G) = #|P1|COL(G1) ·#(p − |P1|)COL(G2). By using this
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fact inductively, it follows that c′ contains the number of solutions relative to f
after completion of lines 4-8. To prove this, arbitrarily choose one |P1|-colouring
M1 of G1 and one p− |P1|-colouring M2 of G2. Now, consider the function

M(v) =
{

M1(v) if v ∈ G1
M2(v) + k otherwise

We prove that M is a p-colouring of G. Arbitrarily choose an edge (x, y) ∈
E(G). If x ∈ G1 and y �∈ G1, then M(x) �= M(y) due to the construction of M .
Otherwise, x and y are both in G1 or G≥2 and the choice of M1,M2 guarantees
that M(x) �= M(y). This leads to the following conclusion: any |P1|-colouring
of G1 can be combined with any p − |P1|-colouring of G2 and #pCOL(G) =
#|P1|COL(G1) ·#(p− |P1|)COL(G2).

Finally, it is easy to see that it is correct to add the numbers together as is
done in line 9: Let M be an arbitrary p-colouring of G. The fact that P is a
partitioning guarantees that there exists exactly one function f ∈ F such that
M(v) ∈ f(v) for all v ∈ V (G). Consequently, each model will be counted exactly
once (due to the correctness of algorithms A1, . . . , Am) and the algorithm is
correct.

The running time of the algorithm is bounded by

O

⎛⎝∑
f∈F

∑
Pi∈P

α
|{v∈V (G);f(v)=Pi}|
|Pi|

⎞⎠ = /reformulation/

O

⎛⎝ ∑
n1+...+n|P |=n

(
n

n1 · · ·n|P |

)
·
(∑

Pi∈P

αni

|Pi|

)⎞⎠ = /alg. manipulation/

O

⎛⎝ ∑
n1+...+n|P |=n

∑
Pi∈P

(
n

n1 · · ·n|P |

)
· αni

|Pi|

⎞⎠ = /alg. manipulation/

O

⎛⎝∑
Pi∈P

∑
n1+...+n|P |=n

(
n

n1 · · ·n|P |

)
· αni

|Pi|

⎞⎠ = /multiplication by 1/

O

⎛⎜⎜⎜⎜⎜⎝
∑

Pi∈P

∑
n1+...+n|P |=n

(
n

n1 · · ·n|P |

)
· αni

|Pi| ·
|P |∏

j = 1
j �= i

1nj

⎞⎟⎟⎟⎟⎟⎠ = /multinomial th./

O
(∑

Pi∈P

((|P | − 1) + α|Pi|)
n

)
= O

(
(|P | − 1 + max

Pi∈P
α|Pi|)

n

)
��
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1 input: undirected graph G
2 c := 0
3 for every total function f : V (G) → P do
4 c′ := 1
5 for Pi ∈ P do
6 G′ := G|{v ∈ V (G) | f(v) = Pi}
7 c′ := c′ · #|Pi|COL(G′)
8 end for
9 c := c + c′

10 end for
11 return c

Fig. 2. Algorithm for #pCOL.

We note that #2COL can be solved in polynomial time since the number
of 2-colourings of a 2-colourable graph G equals 2c where c is the number of
connected components in G. In the next section, we show that #3COL can be
solved in O (βn) time where β ≈ 1.7879.

Now, from Theorem 3 it follows that as k grows, the number of partitions
dominate the time complexity of the algorithm. For example, for k = 7, we
could use the partition [3, 2, 2] which gives a running time of O (3.7879n). If
we instead use the partitioning [3, 4] where the #4COL problem is solved using
the partition [2, 2], we would get an O (((2− 1) + (2− 1 + 1))n) = O (3n) time
algorithm which is significantly faster. Combining the idea of minimising the
number of partitions with Theorem 3 and the algorithms for #kCOL, 2 ≤ k ≤ 3,
yields the following result.

Theorem 4. There is an algorithm for solving the #kCOL problem in O((ck)n)
time, where, for some i ∈ N,

ck =

⎧⎨⎩
�log2 k� if k = 2i

�log2 k�+ (β − 1) if 2i < k ≤ 2i + 2i−1

�log2 k�+ 1 if 2i + 2i−1 < k < 2i+1

Proof. We recursively use the partitioning [�k
2 �, �

k
2 �] with the algorithms for

#2COL and #3COL as base cases. By Theorem 3, the resulting algorithm runs in
O (cn

k ) time where ck is defined by the recursion c2 = 1, c3 = β and ck = 1+c	k/2

Using β ≈ 1.7879 from Section 5 and solving this gives the result. It remains to
show that this recurrence has the solution stated in the theorem:

First, let k = 2i. By iterating the recursion, we get ck = 1+ck/2 = 2+ck/4 =
. . . = (i− 1) + ck/2i−1 = (i− 1) + c2 = i = log2 k.

Now let 2i < k ≤ 2i + 2i−1. For i = 2, this amounts to 4 < k ≤ 6, and
�k/2� = 3, and, since c3 = β by definition, ck = β + 1 = �log2 k� + β − 1. For
i > 2, c	k/2
 = �log2 k/2� + β − 1 = �log2 k� + β − 2 so ck = 1 + c	k/2
 =
1 + �log2 k�+ β − 2 = �log2 k�+ β − 1.

Finally, we have 2i + 2i−1 < k < 2i+1. For i = 2, k = 7, and �7/2� = 4,
which gives c7 = c4 + 1 = 2 + 1 = �log2 7� + 1. If 2i + 2i−1 < k < 2i+1,
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2i−1 + 2i−2 < k/2 ≤ 2i, and c	k/2
 = �log2 k/2� + 1 = �log2 k� if �k/2� < 2i.
If �k/2� = 2i, then, as was shown earlier, c	k/2
 = �log2 k�. Consequently, ck =
1 + c	k/2
 = 1 + �log2 k�. ��

5 Algorithm for #3COL

We now present an O (1.7879n) time algorithm for counting the number of 3-
colourings of a graph. We denote the three possible colours R, G and B. An
independent set S of G is a subset of V (G), such that for every pair v, w ∈ S →
(v, w) /∈ E(G). The neighbourhood of a vertex v is the set of all adjacent vertices,
{w | (v, w) ∈ E(G)}, denoted Nbd(v).

Given a graph G, we associate a variable with each vertex for keeping its
colour and we let G[x := X] denote the graph G with the colour of vertex x
changed to X.

We define an R{G/B} assignment of the graph G as a total function f :
V (G) → {R,GB}. We say that an R{G/B} assignment f is refineable to a 3-
colouring of G iff for each of the vertices v having colour GB, we can assign
v := G or v := B in such a manner that we obtain a 3-colouring of G. We note
that having an R{G/B} assignment for G which is refineable to a 3-colouring of
G, is equivalent to the assignment having the following properties:

P1. the vertices with colour R form an independent set;

P2. the induced subgraph of vertices with colour GB is 2-colourable.

Obviously, these conditions can be checked in polynomial time. We can also
count the number of possible refinements of an R{G/B} assignment: consider
the graph G′ = G|{v ∈ V (G) | f(v) = GB} and note that the number of
refinements equals 2c where c is the number of connected components in G′.
Given an R{G/B} assignment f , let Count2(G, f) denote this number (which
is easily computable in polynomial time).

We are now ready to present the algorithm. Let φ = (1 +
√

5)/2 and let
C ≈ 0.4711 be the unique real positive root of the equation φ1−C · 2C = 31−C .
Begin by identifying an independent set I in G of maximum size using, for
instance, Beigel’s algorithm [4]. If |I| ≤ C · |G|, then apply the algorithm in
Figure 3. Otherwise, apply the algorithm in Figure 4.

To see that algorithm #3C-1 is correct, we note that the algorithm consid-
ers all R{G/B}-assignments that can be refined to a 3-colouring. In line 3, an
uncoloured vertex x with an uncoloured neighbour y is chosen. In the first re-
cursive branch, x is assigned the colour R which implies that y must be coloured
GB. In the other branch, x is coloured GB and this choice does not restrict
the possible colourings of y. In line 4, the algorithm exhaustively considers all
R{G/B}-assignments of the uncoloured vertices.

The correctness of #3C-2 can proved as follows: For each 3-colouring f of
G− I, we claim that
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1 algorithm #3C-1(G)
2 if all v ∈ V (G) are R{G/B}-coloured then
3 return Count2(G)
4 elsif there exists an uncoloured vertex x with an uncoloured neighbour y then
5 return #3C-1(G[x := R, y := GB])+#3C-1(G[x := GB])
6 else cycle through all R/GB assignments of the uncoloured vertices, apply

Count2 on each graph and return the total number of 3-colourings.
7 end if

Fig. 3. Algorithm #3C-1.

1 algorithm #3C-2(G)
2 c := 0
3 for every 3-colouring f of G − I do
4 c := c +

∏
v∈I(3 − |{f(w) | w ∈ Nbd(v)}|)

5 end for
6 return c

Fig. 4. Algorithm #3C-2.

∏
v∈I

(3− |{f(w) | w ∈ Nbd(v)}|)

is the number of ways f can be extended to a 3-colouring of G. Assume for
instance that v ∈ I has three neighbours x, y, z that are coloured with R, G
and B, respectively. Then, 3− |{f(w) | w ∈ Nbd(v)}|) equals 0 which is correct
since f cannot be extended in this case. It is easy to realise that the expression
gives the right number of possible colours in all other cases, too. Since I is an
independent set, we can simply multiply the numbers of allowed colours in order
to count the number of possible extensions of f .

Finally, we consider the time complexity of our algorithm for #3COL. As-
sume n is the number of vertices in the input graph G. Beigel’s [4] algorithm for
finding independent sets of maximum size runs in O (1.2226n) time. We show
below that the worst-case running times of algorithms #3C-1 and #3C-2 are in
O (1.7879n) which clearly dominates Beigel’s algorithm.

Algorithm #3C-1: In the analysis of this algorithm we will encounter recur-
rences of the form T (n) ≤

∑k
i=1 T (n − ri) + poly(n). They satisfy T (n) ∈

O (τ(r1, . . . , rk)n) where τ(r1, . . . , rk) is the largest, real-valued root of the equa-
tion 1 −

∑k
i=1 x−ri = 0, see Kullman [13]. This bound does not depend on the

polynomial factor poly(n) or the boundary conditions T (1) = b1, . . . , T (k) = bk.
If line 4 of the algorithm is not reached, it is straightforward to calculate its

running time: lines 2 and 3 satisfy the recursive equation T (n) ≤ T (n − 1) +
T (n − 2) + poly(n) and T (n) ∈ O (φn) where φ = (

√
5 + 1)/2 is the largest,

real-valued root of the equation 1− x− x2 = 0.
We continue by studying line 4 in the algorithm. If this case is reached,

the uncoloured vertices form an independent set I ′ in G. Consequently, T (n) ∈
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O
(
(2p · φ(1−p))n

)
where p = |I ′|/n. Since I is a maximum independent set in G,

it follows that |I ′| ≤ |I| ≤ C · n. Consequently, the worst case of the algorithm
appears when g(p) = 2p · φ(1−p) is maximised under the constraint p ≤ C. Since
g(p) is strictly increasing on [0, C], g(p) is maximised when p = C. In this case,
the algorithm runs in O

(
(2C · φ(1−C))n

)
≈ O (1.7879n) time.

Algorithm #3C-2: We know that |I| ≥ C ·n. Let p satisfy |I| = p ·n. The number
of assignments considered is 3n−|I| = (31−p)n. Since the function g(p) = 3(1−p)

is strictly decreasing when p > C, the largest number of assignments we need
to consider appears when p is close to C. In this case, the algorithm runs in
O
(
(31−C)n

)
≈ O (1.7879n) time.
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Abstract. Identifying CSP variables in SAT encodings of combinatorial
problems allows one to incorporate CSP-like variable selection heuristics
into SAT solvers. We show that such heuristics turn out to be more pow-
erful than the best performing state-of-the-art variable selection heuris-
tics for SAT. In particular, we define five novel CSP-like variable selec-
tion heuristics for Chaff —one of the most modern, powerful and robust
SAT solvers— and provide experimental evidence that Chaff augmented
with those heuristics outperforms the original Chaff solver one order of
magnitude on difficult SAT-encoded problems like random binary CSPs,
pigeon hole, and graph coloring.

1 Introduction

The Artificial Intelligence community has widely investigated the use of Boolean
CNF formulas as a constraint programming language to solve NP-complete
problems. The approach consists of translating a given problem into Boolean
satisfiability (SAT), solving it with a fast SAT solver and mapping the solu-
tion back into the original problem. Examples of domains where propositional
encodings have been shown effective include hardware verification [24,25,32],
quasigroup completion [19], planning [20] and scheduling [10]. This led in
turn to develop highly optimized complete satisfiability solvers (based on the
Davis-Logemann-Loveland algorithm [13,14]) that incorporate efficient branch-
ing heuristics (e.g. Satz [21,22]), and no-good recording and non-chronological
backtracking (e.g. GRASP [30], Relsat [4] and Chaff [25]), as well as incomplete
local search solvers like GSAT and WalkSAT [27,28,29].

A decisive factor that gives rise to large performance improvements in CSP
solvers like FC [17] and MAC [11,26] is that they incorporate powerful variable
selection heuristics that take advantage of the domain size of the CSP variables
in a given state of the search process. To our best knowledge, and despite its
relevance in CSP solver, there is no SAT solver with variable selection heuris-
tics that consider the domain size of CSP variables when solving SAT-encoded
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problems that have a more natural representation as CSPs. In that case, CSP
variables are hidden in SAT encodings: a CSP variable Xi with a domain of
size m is usually represented by m Boolean variables plus a set of clauses that
ensures that Xi takes exactly one value of its domain. In this paper, we show
that we can identify, with a low overhead, sets of Boolean variables that model
the same CSP variable, and then design and implement extremely efficient se-
lection variable heuristics for SAT solvers that take into account the domain size
of CSP variables. In particular, we define five novel CSP-like variable selection
heuristics for Chaff [25] —one of the most modern, powerful and robust SAT
solvers— and provide experimental evidence that Chaff augmented with those
heuristics outperforms the original Chaff solver one order of magnitude on dif-
ficult SAT-encoded problems like random binary CSPs, pigeon hole, and graph
coloring.

The paper is structured as follows. In Section 2 we describe how to identify
CSP variables in SAT encodings. In Section 3 we introduce Chaff and define five
novel variable selection heuristics for Chaff. In Section 4 we describe in detail
the experimental investigation we conducted to evaluate the performance of our
heuristics on a wide range of SAT-encoded combinatorial problems. Finally, we
give some concluding remarks.

2 Detecting CSPs Variables in SAT Encodings

In a SAT encoding, a CSP variable Xi with a domain Di = {1, 2, . . . ,m} is
usually represented by m Boolean variables (xi1, . . . , xim) plus a set of clauses
that ensures that Xi takes exactly one value of Di. The intended meaning of xij

is that Xi takes the value j, and the clauses we add are:

– At-least-one: xi1∨· · ·∨xim; there is one of such clauses for each CSP variable.
Such clauses ensure that each CSP variable takes at least one value from its
domain.

– At-most-one: ¬xij ∨ ¬xik; there is one of such binary clause for each pair
j, k such that 1 ≤ j < k ≤ m. Such clauses ensure that each CSP variable
Xi takes no more than one value from its domain.

That pattern is the most commonly found for representing CSP variables
in SAT repositories like the SATLIB [18]. Actually, we have found it in all the
SAT-encoded instances of combinatorial problems from the SATLIB that have
CSP variables with domain size greater than two1.

We have modified Chaff 2 in such a way that it identifies, during the prepro-
cessing phase, sets of Boolean variables that model the same CSP variable3. For
1 Notice that CSP variables with domain size two can be modelled by a Boolean

variable.
2 The version of Chaff used in this paper is zChaff, which is publicly available at

http://www.ee.princeton.edu/˜ chaff/zchaff.php
3 We have also implemented an option that allows one to enter explicitly to Chaff sets

of Boolean variables that model the same CSP variable. Such information is added
at the end of the SAT encoding following a particular format.
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each CSP variable Xi with a domain size m greater than two, Chaff maintains a
data structure that stores the set of Boolean variables {xi1, . . . , xim} that model
Xi. In a given state of the search, the current domain size of Xi is the num-
ber of free variables in {xi1, . . . , xim}. Fortunately, identifying CSP variables in
SAT encodings and determining its domain size as the search proceeds can be
performed with a very low overhead.

3 Chaff and Our Chaff’s Variants

Chaff [25] is one of the most modern, efficient and robust SAT solvers,
which won the SAT Competition last year. Chaff implements the well-known
Davis-Logemann-Loveland algorithm [13,14] augmented with restarts, non-
chronological backtracking and conflict-driven learning.

The variable selection heuristic of Chaff is called Variable State Independent
Decaying Sum (vsids), and is described as follows [25]:

1. Each variable in each polarity has a counter, initialized to 0.
2. When a clause is added to the database, the counter associated with each

literal in the clause is incremented. Notice that clauses are not only added
at the beginning; conflict clauses are learned and added during the search
process.

3. The (unassigned) variable and polarity with the highest counter is chosen at
each decision.

4. Ties are broken randomly by default, although this is configurable.
5. Periodically, all the counters are divided by a constant. By default such a

constant is 2.

As pointed out in [25], this strategy can be viewed as attempting to satisfy
the conflict clauses but particularly attempting to satisfy recent conflict clauses.
Since difficult problems generate many conflicts (and therefore many conflict
clauses), the conflict clauses dominate the problems in terms of literal count,
so this approach distinguishes itself primarily in how the low pass filtering of
the statistics (indicated by step 5 of vsids) favors the information generated by
recent conflict clauses.

We have designed and implemented five novel selection variable heuristics for
Chaff that take into account the domain size of CSP variables:

– min-vsids: it applies the original Chaff heuristic (vsids) only to the Boolean
variables that model CSP variables with minimum domain; i.e., it chooses
the Boolean variable and polarity with the highest counter among those that
model CSP variables with minimum domain. Ties are broken randomly.

– max-vsids: is like min-vsids but considering variables with maximum do-
main.

– min/vsids: for each Boolean variable p and polarity, it calculates the ratio
of the current domain size of the CSP variable to which p is related to the
counter that vsids associates with p. It selects the Boolean variable and
polarity with minimum ratio. Ties are broken randomly.
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– vsids-min: is like vsids, but ties are broken selecting a variable with mini-
mum domain.

– vsids-max: is like vsids, but ties are broken selecting a variable with maxi-
mum domain.

4 Experimental Investigation

We next report the experimental investigation we conducted to evaluate the per-
formance of our heuristics on a wide range of SAT-encoded combinatorial prob-
lems. All the experiments were performed with PC’s Pentium III with 550 Mhz
under Linux.

We considered randomly generated problems as well as problems with struc-
ture. As randomly generated problems, we considered SAT-encoded random bi-
nary CSPs. We selected them because they include CSP variables (with domain
size greater than two) but also because SAT encodings of binary CSPs are an
active research area [16,33]. As problems with structure, we considered a number
of combinatorial problems currently available in the SATLIB [18]: Latin squares,
all interval series, planning, hanoi, graph coloring, and pigeon hole. We selected
such problems because both we identified CSP variables with domain size greater
than two in their SAT encodings and because they were not too easy for Chaff.

In all the experiments reported in this section, we compare the original Chaff
solver with the best performing heuristics we found for each problem among the
novel heuristics we incorporated into Chaff.

4.1 Random Binary CSPs

A constraint satisfaction problem (CSP) consists of a set of variables, each with
a domain of values, and a set of constraints. Each constraint is defined over some
subset of the original set of variables, and limits the combination of values that
the variables in this subset can take. The goal is to find an assignment to the
variables such that the assignment satisfies all the constraints. A binary CSP
has only binary constraints.

Mappings of binary CSPs into SAT have been investigated by Génisson and
Jégou [15], Walsh [33] and Gent [16]. They have proposed three different encod-
ings: direct, support and log . We do not consider the log encoding here because
it is much worse than the other two on complete solvers.

In the direct encoding, we associate a Boolean variable xij with each value j
that can be assigned to the CSP variable Xi. Assuming that Xi has a domain
of size m, the direct encoding contains clauses that ensure each CSP variable
Xi is given a value: for each i, xi1 ∨ · · · ∨ xim (called at-least-one clauses), and
contains clauses that rule out any binary nogoods. For example, if X1 = 2 and
X3 = 1 is not allowed, then the clause ¬x12 ∨ ¬x31 (called conflict clause) is
added. We have also considered the version of the direct encoding that adds
clauses that ensure that each CSP variable Xi takes no more than one value: for
each i, j, k with j �= k, ¬xij ∨ ¬xik (called at-most-one clauses). We refer to the
direct encoding that incorporates such optional clauses as redundant encoding.
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The experimental results provide evidence that, at least for our benchmark set,
the redundant encoding is more efficient than the direct encoding.

In the support encoding, analyzed by Gent in [16], the idea is to encode into
clauses the support for a value instead of encoding conflicts. The support for a
value j of a CSP variable Xi across a constraint is the set of values of the other
variable in the constraint which allow Xi = j. If v1, v2, . . . , vk are the supporting
values of variable Xl for Xi = j, we add the clause ¬xij ∨ xlv1 ∨ xlv2 ∨ · · · ∨ xlvk

(called support clause). There is one support clause for each pair of variables
Xi, Xl involved in a constraint, and for each value in the domain of Xi. Unlike
conflict clauses, we need a similar clause in each direction, one for the pair Xi, Xl

and one for Xl, Xi. The support clauses on their own do not provide a correct
encoding of CSPs into SAT. To complete an encoding using support clauses we
need to add the at-least-one and at-most-one clauses for each CSP variable to
ensure that each CSP variable takes exactly one value of its domain.

Our first experiment consists of evaluating our heuristics on SAT-encoded
random binary CSPs. We used a publicly available generator of uniform ran-
dom binary CSPs4 —designed and implemented by Frost, Bessière, Dechter and
Regin— that implements the so-called model B: in the class 〈n, d, p1, p2〉 with n
variables of domain size d, we choose a random subset of exactly p1n(n − 1)/2
constraints (rounded to the nearest integer), each with exactly p2d

2 conflicts
(rounded to the nearest integer); p1 may be thought of as the density of the
problem and p2 as the tightness of constraints.

We incorporated into the generator the automatic generation of all the classes
of SAT encodings, and created a representative sample of instances of the hard
region of the phase transition described in [31] that could be solved within a
reasonable time. The sample is formed by 12 sets of 100 instances; the number
of variables ranges from 12 to 100, the domain size was selected in such a way
that the instances could be solved within a reasonable time, the density was
set at values greater than 0.3 in order to avoid sparse constraint problems, and
the tightness was derived from the remaining parameters using the equation
p2 = 1− d

−2
p1(n−1) in order to generate instances of the hard region of the phase

transition [31].
The experimental results obtained for all the sets of instances are shown in

Table 1. The first column contains the parameters given to the generator of
random binary CSPs, the second column is the class of SAT encoding used, the
third column is the mean time needed by the original Chaff 5 to solve a set of
100 instances, the fourth column is like the third but with the median time, the
fifth column is the ratio of the mean time needed by the original Chaff to solve a
set of 100 instances to the time needed by the version of Chaff that incorporates
the min-vsids heuristic (i.e., since all the ratios obtained are greater than one,
a ratio of r means that the min-vsids heuristic outperforms Chaff by a factor
of r), the sixth column is like the fifth but with median times, and the seventh
and eighth columns are like the fifth and sixth but for the min/vsids heuristic.

4 http://www.lirmm.fr/˜bessiere/generator.html
5 In our experimental investigation we used the default parameters of Chaff.
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Table 1. Experimental results for Random Binary CSPs

Chaff ratio of vsids to ratio of vsids to
parameters (vsids) min-vsids min/vsids
〈n, d, p1, p2〉 SAT mean median mean median mean median

encoding (seconds) (seconds)
direct 4030 4304 27.50 30.23 15.50 18.86

〈12, 70, 50/66, 3132/4900〉 redundant 1395 1379 13.85 12.68 6.23 6.97
support 207 192 5.08 4.52 2.75 2.67
direct 95 116 13.30 13.76 6.68 8.07

〈15, 25, 80/105, 283/625〉 redundant 53 65 12.32 12.47 7.58 8.42
support 20 23 7.37 6.77 5.48 5.41
direct 488 598 18.53 21.00 7.49 10.36

〈15, 30, 80/105, 424/900〉 redundant 233 261 15.58 15.67 8.97 10.42
support 73 72 9.51 8.41 7.14 6.09
direct 1118 1102 11.32 11.94 5.26 6.15

〈25, 15, 198/300, 65/225〉 redundant 698 620 19.42 18.59 7.57 8.12
support 508 422 21.46 17.78 9.36 9.74
direct 16588 12963 9.13 7.92 4.97 6.52

〈25, 20, 198/300, 126/400〉 redundant 8813 6526 17.78 13.85 8.02 8.07
support 8820 5836 34.73 23.16 16.93 14.15
direct 411 346 7.41 7.24 3.88 3.41

〈35, 10, 305/595, 23/100〉 redundant 243 201 12.45 11.17 4.72 3.97
support 246 217 15.80 14.99 6.12 6.47
direct 67826 40610 4.08 3.35 3.53 3.12

〈35, 15, 305/595, 60/225〉 redundant 49243 28338 13.98 9.09 6.68 5.33
support 60271 42036 26.23 23.41 12.68 11.84
direct 125 109 8.67 7.69 2.83 3.00

〈40, 8, 400/780, 12/64〉 redundant 92 78 18.57 16.08 3.74 3.64
support 94 82 27.87 17.89 6.89 5.73
direct 6217 4492 4.60 4.31 3.39 3.16

〈45, 10, 415/990, 22/100〉 redundant 4253 3206 11.99 11.19 5.35 5.07
support 5577 4122 20.04 17.06 6.84 6.55
direct 23 19 6.16 6.30 1.77 1.67

〈70, 5, 880/2415, 3/25〉 redundant 21 17 13.92 13.41 2.13 2.03
support 45 32 26.69 21.67 3.52 2.83
direct 10231 8183 4.55 4.33 2.34 2.20

〈70, 6, 1050/2415, 4/36〉 redundant 7039 5524 22.45 23.78 3.45 3.23
support 17341 13983 57.10 58.76 4.47 4.77
direct 1774 1862 8.81 10.76 1.98 2.10

〈100, 4, 2000/4950, 1/16〉 redundant 1371 1374 48.18 53.21 2.59 2.89
support 2492 2375 67.53 72.64 2.57 2.83

Table 1 provides experimental evidence that using heuristics based on select-
ing a variable with minimum domain outperforms Chaff’s original heuristic up
to a factor of 70. Even though min/vsids outperforms Chaff in all the instances,
min-vsids is superior. Actually, min-vsids is one order of magnitude better than
Chaff in most cases. It is also worth to note that, independently of the class of
SAT encoding selected, our approach outperforms Chaff.

In his empirical investigation, Gent [16] observed that the support encoding
solved with Chaff was superior to the direct encoding in the hard region of the
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phase transition. We considered a wider sample of instances — which in turn are
harder than those considered in [16]— and observed that when the number of
nogoods is relatively small the direct encoding outperforms the support encoding,
as well as that the redundant encoding is a robust SAT encoding in the hard
region of the phase transition.

Figure 1 shows the behaviour of the direct, redundant and support encodings
in both the hard and easy regions of the phase transition for different param-
eter settings; we move from one region to the other by varying the tightness
parameter (p2). For the class 〈25, 15, 198/300, p2〉, we compare the time needed
by Chaff with the time needed by the direct, redundant and support encoding
as p2 increases. For the classes 〈12, 70, 50/66, p2〉 and 〈100, 4, 2000/4950, p2〉, we
compare Chaff with the best performing encoding in the hard region (cf. Ta-
ble 1). The bottom right plot shows the behavior of the class 〈25, d, 198/300, p2〉
on the support encoding as the domain size d is increased. We see clearly that
min-vsids scales better than Chaff as the domain size increases. While min-vsids
is 11 times faster than Chaff for d = 10, min-vsids is 34 times faster than Chaff
for d = 20. In all the plots, each data point corresponds to the mean time needed
to solve 100 instances6. Notice that we use a log scale to represent computational
cost.

Interestingly, Gent showed in [16] that, with equivalent branching heuristics,
the Davis-Putnam algorithm applied to the support encoding explores the same
size search tree as the MAC [11,26] algorithm applied to the original binary
CSP encoding. He also found that Chaff outperforms Satz [22] and GRASP [30]
on SAT-encoded random binary CSPs. Previously, Walsh [33] showed that the
Davis-Putnam algorithm applied to the direct encoding explores the same num-
ber of branches as FC [17] applied to the original binary CSP problem, given
equivalent branching heuristics. Such results provide a possible explanation to
the experiments reported in this section, in the sense that the good performance
we obtained could be partly due to the fact that we incorporate into Chaff vari-
able selection heuristics which are similar to those that work well on FC and
MAC for random binary CSPs.

4.2 CSP Problems with Structure

We considered a number of combinatorial problems from the SATLIB [18] that
are often used in experimental evaluations of SAT solvers: Latin squares, all
interval series, planning, hanoi, graph coloring, and pigeon hole. We selected
such problems because both we identified CSP variables with domain size greater
than two in their SAT encodings and because they were not too easy for Chaff.

Table 2 shows the experimental results obtained for Latin squares, all interval
series, planning, and hanoi. For all these problems, the best results were obtained
with heuristics that rely on selecting Boolean variables that model CSP variables
with minimum domain. There are 22 instances of Latin squares in the SATLIB,
but in the table we only give results for the 6 more difficult instances; most of
6 Similar plots are obtained if median time is used.
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Fig. 1. Experimental results for Random Binary CSPs

the remaining instances were solved in less than one second. A similar situation
occurs for planning instances; we only give results for bw large.c/d. The more
difficult instance we found was hanoi5, where vsids-min outperforms Chaff by a
factor of 30.

A popular benchmark problem is graph coloring, but the instances available
in the SATLIB (morphed and flat graph coloring instances) are solved very
quickly by Chaff. We therefore decided to generate hardest flat graph coloring
instances using the generator of Culberson [12]. The parameters of the generator
are: number of vertices (n), number of colors (k), and edge density (p). We
created a sample formed by 6 sets of 100 instances; the number of variables (n)
ranges from 50 to 450, the number of colors (k) ranges from 3 to 8 and the
edge density (p) ranges from 0.01 to 0.5. The parameter settings were designed
to sample across the phase transition following the recommendations given by
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Table 2. Experimental results for several problems from the SATLIB: Latin squares,
all interval series, planning and hanoi (in the same order they appear in the table)

problem Chaff (vsids) min-vsids min/vsids vsids-min
(seconds) (seconds) (seconds) (seconds)

qg7-12 10 2 2 2
qg6-12 28 11 11 21
qg1-08 37 39 78 97
qg2-08 83 26 52 43
qg5-13 170 22 60 139
qg3-09 222 42 69 229
ais10 3 0.1 1 0.1
ais12 37 1 194 25

bw large.c 2 2 4 1
bw large.d 26 95 32 10

hanoi4 1 2 1 6
hanoi5 76043 8955 10661 2484

Table 3. Experimental results for graph coloring

parameters Chaff (vsids) min-vsids min/vsids
vertices density colors mean median mean median mean median

n p k (seconds) (seconds) (seconds) (seconds) (seconds) (seconds)
450 0.018 3 1083 305 452 131 372 107
400 0.02 3 355 52 143 40 82 26
200 0.13 5 893 488 19 7 40 10
150 0.14 5 2214 1112 56 31 81 64
60 0.5 8 696 181 1 1 5 1
50 0.5 8 1151 342 3 1 9 2

Culberson7. The results obtained are shown in Table 3. Notice that in this case
the gains achieve up to two orders of magnitude, and that the performance
improvement is better as the number of colors increases.

Like in CSP solvers, we found that heuristics that rely on selecting variables
that model CSP variables with minimum domain are usually the best option.
Nevertheless, we found that taking into account maximum domains instead of
minimum domains was the best option for the pigeon hole problem. As shown
in Table 4, max-vsids outperforms Chaff up to one order of magnitude, and
exhibits a better scaling behaviour.

5 Conclusions

The results reported in this paper clearly indicate that incorporating CSP-like
variable selection heuristics into Chaff leads to a large improvement on perfor-
mance. Chaff is nowadays considered to be one of the fastest complete SAT
7 http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/settings.html
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Table 4. Experimental results for the pigeon hole problem

holes Chaff (vsids) max-vsids vsids-max
(seconds) (seconds) (seconds)

9 3 1 3
10 29 5 26
11 181 21 321
12 1135 93 1115
13 5822 468 4784
14 21350 2028 24352

solvers, which incorporates a lot of technology developed by the SAT and Con-
straint Programming communities, as well as a careful engineering of all aspects
of the search. Taking into account that our approach outperforms Chaff one order
of magnitude on most problems, the contributions of this paper open an exciting
research avenue in the area of variable selection heuristics for SAT solvers.

We have also incorporated to Satz the techniques described here in order
to build a solver for many-valued clausal forms [2]. The experimental results
reported in [2] provide evidence that keeping track of information about the
origins of the variables in a SAT encoding leads to large performance improve-
ments in a SAT solver that, in contrast to Chaff, relies on look-ahead techniques.
We therefore believe that our approach can lead to substantial improvements in
most state-of-the-art SAT solvers.

The interest of exploiting information of CSP variable domains in SAT solvers
is not limited to variable selection heuristics, it can also have a large impact in
the process of learning conflict clauses. For example, given a CSP variable Xi

with domain size three that is represented by the Boolean variables xi1, xi2, xi3,
if we maintain information of its domain and learn the conflict clause xi1 ∨ xi2,
we can then propagate ¬xi3. This kind of constraint propagation is not achieved
with the existing SAT solvers.

One important lesson that can be learned from the results of this paper is
that, when mapping combinatorial problems with finite-domain variables into
formalisms with Boolean variables, it is worth to maintain some information
about the structure of the original problem. Finally, we would like to point out
that this research was inspired by the research on many-valued satisfiability we
have developed in the last years (see e.g. [1,3,5,6,7,8,9,23]).
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Abstract. In this paper, we address the encoding into CNF clauses of Boolean
cardinality constraints that arise in many practical applications. The proposed
encoding is efficient with respect to unit propagation, which is implemented in
almost all complete CNF satisfiability solvers. We prove the practical efficiency
of this encoding on some problems arising in discrete tomography that involve
many cardinality constraints. This encoding is also used together with a trivial
variable elimination in order to re-encode parity learning benchmarks so that a
simple Davis and Putnam procedure can solve them.

1 Introduction

Many types of constraints that appear in real world problems have no natural expres-
sion in the propositional satisfiability. The cardinality constraint over a set of Boolean
variables (i.e., a constraint on the number of variables that can be assigned the value 1)
is one of these. The encoding problem that we address is: given a set E of Boolean vari-
ables (called input variables) subject to a cardinality constraint requiring that at least μ
and at most ρ of them can be equal to 1, build a CNF formula Ψ(E,μ,ρ) over a set of
variables including E such that Ψ(E,μ,ρ) can be satisfied by a truth assignment if and
only if the values assigned to variables in E by this truth assignment satisfy the cardi-
nality constraint. In this paper, we propose an efficient CNF encoding of the cardinality
constraint.
While there is no general definition of a good encoding, there are at least some com-
mon sense conditions that such an encoding must fulfill. The first one is that the size of
the formula must be kept relatively small with respect to E and the second one is that
the formula must be adapted to the kind of solver to be used. Our encoding requires
O(nlog(n)) variables and O(n2) clauses of length at most 3, where n = |E|. This en-
coding is also efficient in the sense that unit propagation restores the generalized arc
consistency on the variables in E .
The straightforward way of encoding of cardinality constraints is based on a bit adder
that adds one by one the variables in E , as in [6]. The result of the addition is rep-
resented in the usual binary representation of integers, and the Boolean variables that
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compose it are constrained by some clauses so that the integer they represent is in the
prescribed range. While the size of the CNF formula generated by this encoding re-
mains reasonable, its main disadvantage is that a SAT solver based on unit propagation
needs to have all the variables in E assigned a value in order to check the cardinality
constraint. Even if the constraint is violated by a partial assignment, unit propagation
alone does not generate an empty clause. In the encoding described in this paper, the
key feature is a unary representation of integer variables that can represent not only the
value, if known, of an integer but also the interval where it falls if the Boolean variables
in its unary representation are partially assigned. A bit adder based on this representa-
tion allows the derivation of the interval where a variable c falls, given the intervals of
variables a and b such that c = a+b. We obtain a CNF formula where unit propagation
derives all the consequences of every assignment with respect to the generalized arc
consistency. In particular, it derives an empty clause whenever a partial assignment to
the input variables is inconsistent with the cardinality constraint.
In order to subject this encoding to an application where there are these types of con-
straints, we have tested it on a problem arising in 2-D discrete tomography. The specific
problem that we address is the reconstruction of a pattern lying in a 2-D grid, given its
projections in four directions. The projection in some direction is the number of points
belonging to the pattern in that direction. The reconstruction problem is to find a pattern
that complies with the given projections in every direction. This amounts to finding an
assignment to the Boolean variables representing the cells of the grid given many car-
dinality constraints. Each one of these cardinality constraints, represents the fact that
the number of cells belonging to the pattern in some direction, is equal to the projec-
tion in that direction. This is a good test for our encoding scheme since each variable is
involved in four different cardinality constraints. We compared, using some instances
of discrete tomography, the performance of our encoding solved by the state of the art
SAT solver zchaff [15] versus a commercial constraint solver.
The cardinality constraints also appear in parity learning instances. These benchmarks
have been the center of a challenge to solvers. We show that they can be solved easily
using a basic DP procedure, by separating them into two parts: an XOR-CNF formula
and a formula containing a mixture of cardinality constraint and some XOR-CNF rela-
tions.
At this point, one may make some general remarks on the issue of encoding into CNF.
The benchmarks that are extensively used to assess the efficiency of SAT algorithms
are generally taken as they are. The issue of finding the best encodings or even the
pertinence of encoding them into SAT formulas is rarely brought up. In the challenges
that are organized for SAT, only two categories of submission are welcomed: solvers
and benchmarks. The issue of improving the proposed encodings in ignored. As the
most interesting benchmarks are the hardest ones, ignoring the encoding may have this
consequence: some intrinsically easy problems may be made hard by an inappropriate
encoding, and, as they are hard, they may be considered as interesting benchmarks. If
the final goal is the practical solving of hard real world problems and not only to make
solvers overcome inappropriate encodings by rediscovering in the CNF formulas some
deductions that are obvious in the original problem, then a careful encoding is crucial
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and must be considered as a third type of contribution beside solvers and benchmarks
in the challenges organized for SAT.
The paper is organized as follows. The encoding is described in Section 2, where cor-
rectness and efficiency are proved. Then in Section 3 the encoding is applied to the
discrete tomography problems after a brief description of these problems. In Section 4,
the learning parity instances are revisited in the light of this new encoding of cardinality
constraints.

2 Efficient CNF Encoding of Cardinality Constraints

We give first the notations that will be used throughout this paper. The truth values
TRUE and FALSE of propositional logic will be denoted 0 and 1. An instantiation or
a truth assignment I of a set V of propositional variables is a function that maps each
variable v ∈ V to a non empty set I(v) ⊆ {0,1}. A variable v is said to be fixed to 0 or
assigned the value 0 by an instantiation I if I(v) = {0}, fixed to 1 if I(v) = {1}, and free
if I(v) = {0,1}. In non-ambiguous contexts, v = 1 denotes I(v) = {1} and v = 0 denotes
I(v) = {0}. An instantiation I of V is said to be complete if it fixes all the variables in
V . The instantiations that are not complete are said to be partial.
For any CNF formula Φ and any instantiation I of a subset of the variables of Φ, Φ|I
denotes the formula obtained by replacing the variables that are fixed by I with their
truth values.
A unit clause is a clause that includes only one literal. Unit propagation denotes the
process that fixes each variable occurring in a unit clause in such a way as to satisfy this
clause, up until the empty clause is produced or no unit clause remains.

2.1 The Problem

The goal is to translate a cardinality constraint over a set E of Boolean variables into a
CNF formula. The cardinality constraint specifies that the number p of variables fixed
to 1 among a set E of Boolean variables is at least μ and at most ρ. The CNF formula
Ψ(E,μ,ρ) is defined on a set V ⊃ E of propositional variables. The variables in V \E
are called encoding variables.
The encoding must be correct in the sense that for any complete instantiation I of E ,
Ψ(E,μ,ρ)|I is satisfiable if and only if I satisfies the cardinality constraint.
The encoding must also be efficient in the sense that for any partial instantiation I of
E , unit propagation on Φ(E,μ,ρ)|I must restore the generalized arc consistency on the
variables in E , specifically:

– if more than ρ variables in E are fixed to 1 or if more than n−μ variables in E are
fixed to 0 then unit propagation produces the empty clause,

– else if ρ variables in E are fixed to 1 then unit propagation fixes to 0 all the other
variables in E ,

– else if n− μ variables in E are fixed to 0 then unit propagation fixes to 1 all the
other variables in E .
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2.2 Encoding Principle

The proposed encoding uses a unary representation of integers. The value of an integer
x such that 0 ≤ x ≤ n is represented by 1 x times followed by 0 n− x times. An integer
variable v with domain 0..n is represented by a set V = {v1,v2, . . . ,vn} of n proposi-
tional variables. Each possible value of v is encoded as a complete instantiation of V , as
described above. If v = x, then v1 = 1, v2 = 1, ..., vx = 1 and vx+1 = 0, ......., vn = 0. A
partial instantiation of V is said to be pre-unary if for each vi = 1, v j = 1 for any j < i
and for each vi = 0, v j = 0 for any j, i ≤ j ≤ n. A unary instantiation is then a complete
pre-unary instantiation.
The main advantage of such a representation is that the integer variable can be specified
as belonging to an interval. Indeed, the inequality x ≤ v ≤ y is specified by the partial
pre-unary instantiation of V that fixes to 1 any vi such that i ≤ x and fixes to 0 any v j

such that j ≥ y + 1.
Conversely, any partial pre-unary instantiation I of V is related to an integer interval.
The bounds of this interval will be denoted min(I) and max(I). We underline that the
classical binary representation of integers does not allow one to specify such member-
ship relations as our representation does.

Example: With n = 6, if I is a partial instantiation such that v1 = v2 = 1, v5 = v6 = 0,
and v3,v4 are free, then min(I) = 2 and max(I) = 4. Then the corresponding integer
variable v is such that 2 ≤ v ≤ 4.

The number of variables fixed to 1 by an instantiation I will be denoted N(I). When I
is the unary representation of an integer, N(I) is then the value of this integer.
The encoding of a cardinality constraint on a set E of variables is done in two parts: a
totalizer and a comparator.

The Totalizer. The totalizer is a CNF formula Φ(E) defined on 3 sets of variables:

– E = {e1, . . . ,en}: the set of input variables,
– S = {s1, . . . ,sn}: the set of output variables,
– a set L of variables called linking variables.

These sets of variables can be described by a binary tree built as follows. We start from
a isolated node labeled by the integer n and we proceed iteratively: to each terminal
node labeled by m > 1, we connect two children labeled by �m/2	 and m−�m/2	,
respectively. This procedure produces a binary tree with n leaves labeled by 1. Next,
each variable in E is allocated to a leaf in a bijective way. The set S of output variables
is allocated to the root node. To each internal node labeled by an integer m, a set of
m new variables is allocated which will be used to represent a unary value belonging
to 1..m. The union of the set of variables allocated to the internal nodes is the set L of
linking variables.

Example: for n = 5, E = {e1,e2,e3,e4,e5}, and S = {s1,s2,s3,s4,s5} the following tree
is obtained:
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We will now define a set of clauses that ensures that in any complete instantiation of
the variables of the totalizer, the set of variables related to any non-leaf node r with
children a and b encodes the unary representation of α + β, where α and β are the
integers encoded by the sets of variables related to a and b.
Let r be an internal node related to children a and b. Let R = {r1, . . . ,rm} be the set
of variables related to r, A = {a1, . . . ,am1} be the set of variables related to a, and
B = {b1, . . . ,bm2} be the set of variables related to b. The following conjunction of
clauses is related to the node r:∧

0≤α≤m1
0≤β≤m2
0≤σ≤m
α+β=σ

(C1(α,β,σ)∧C2(α,β,σ)) (1)

with the following notations:

a0 = b0 = r0 = 1,am1+1 = bm2+1 = rm+1 = 0

C1(α,β,σ) = (aα ∨bβ ∨ rσ)

C2(α,β,σ) = (aα+1 ∨bβ+1 ∨ rσ+1)

Notice that C1(α,β,σ) is the CNF representation of the relation σ ≥ α + β and
C2(α,β,σ) is the CNF representation of the relation σ ≤ α+ β.
The obtained formula is simplified by removing the clauses including the constant 1
and reducing the clauses including the constant 0. Notice that each clause includes at
most three literals.

Lemma 21 (forward propagation) Let Φ(E) be a totalizer with n input variables. If
p input variables are fixed to 1, q input variables are fixed to 0, and all the other



Efficient CNF Encoding of Boolean Cardinality Constraints 113

variables of the totalizer are free then the partial instantiation IS of S obtained after
unit propagation in Φ(E) is pre-unary and such that min(IS) = p and max(IS) = n−q.

Proof: By induction on the number n of input variables.
For n = 1 the totalizer includes only one variable that is either the input and the output
variable. The property is then obvious. Now let us consider that the property is true for
any n < ν.
Let A = {a1,a2, ...,aνA} denote the set of the νA = �ν/2	 variables associated to the first
child of the root and B = {b1,b2, ...,bνA} denote the set of the νB = ν−�ν/2	 variables
associated to the other child. Considering the leaves of the tree below each child of the
root, we get a partition of the input set E into two disjoint subsets EA and EB. Let pA

denote the number of variables fixed to 1 in EA, pB denote the number of variables fixed
to 1 in EB, qA denote the number of variables fixed to 0 in EA and qB denote the number
of variables fixed to 0 in EB. Clearly, we have p = pA + pB and q = qA +qB. Let IA and
IB denote the instantiations of A and B obtained after unit propagation in Φ(E).
It follows from the induction hypothesis that IA and IB are pre-unary, min(IA) = pA,
max(IA) = νA −qA, min(IB) = pB, max(IB) = νB −qB.
It is easy to see that for every t such that 1 ≤ t ≤ p there exist tA, tA ≤ min(IA), and
tB, tB ≤ min(IB) such that t = tA + tB. Thanks to the clause atA ∨ btB ∨ st of the C1 type
associated to the root node, unit propagation fixes to 1 the variable st . Consequently, all
the variables s1 to sp are set to 1. Thanks to the clauses C2 associated to the root node,
we can prove by similar arguments that unit propagation fixes to 0 the variables sn−q+1

to sn.
For the variables st such that p < t ≤ n−q, it is easy to see that for every couple (tA,tB)
such that tA + tB = t, either tA > min(IA) or tB > min(IB). Consequently, at least one of
the variables atA or btB is not equal to 1. Then no clause atA ∨btB ∨ st can be reduced to
the unit clause st . The same arguments applied to the causes C2 can be used to prove
that the clause st can not be produced. Then the variables st such that p < t ≤ n−q are
all free. So IS is pre-unary, min(IS) = p, and max(IS) = n−q.
Then IS is the unary representation of the smallest interval containing N(IE).

Lemma 22 (backward propagation) Let Φ(E) be a totalizer with n input variables.
If:

– p input variables are fixed to 1, q input variables are fixed to 0 (p + q < n), the
remaining input variables being free,

– and the output variables sp+1 to sn−q are all fixed to the same value ε (0 or 1)

then all the input variables remaining free are instantiated to ε by unit propagation.

Proof: By induction on the number n of input variables.
For n = 1 the property is obvious. Now let us consider that the property is true for any
n < ν.
We use the same notations as in the proof of the previous lemma. If we consider solely
the assignment to the input variables, the unit propagation assigns to the output vari-
ables the values such that min(IS) = p and max(IS) = n−q. Suppose that sp+1 to sn−q

variables are assigned the value 0. Let t any integer such that 1 ≤ t ≤ n− p. Clearly, we
have sp+t = spA+pB+t = 0. If pA + t ≤ νA, there is a clause of type C1 apA+t ∨bpB ∨sp+t .
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By unit propagation, this clause assigns the value 0 to apA+t . Then every variable apA+t

such that pA + t ≤ νA is assigned the value 0. By the same argument we can prove that
every variable bpB+t such that pB + t ≤ νB is also assigned the value 0. By the induc-
tion hypothesis, all the free input variables below the nodes A and B (i.e. all free input
variables) are assigned 0.
Similar arguments using the clauses of type C2 allow the derivation of the conclusion
that all the free input variables are assigned 1, if the variables sp+1 to sn−q are assigned
the value 1.

The Comparator. The comparator is a set of unary clauses that are satisfied if and
only if the instantiation of the input variables of the totalizer represents an interval
that matches with the cardinality constraint. Then the constraint μ ≤ N(EI) ≤ ρ will be
specified as follows: ∧

1≤i≤μ

(si)
∧

ρ+1≤ j≤n

(s j) (2)

We denote by Ψ(E,μ,ρ), the conjunction of the CNF formula representing the totalizer
and the CNF representing the comparator.

2.3 Correctness and Efficiency of the Encoding

The correctness and the efficiency of the proposed CNF encoding of the cardinality
constraint follows directly from Lemma 21 and 22.

Theorem 23 The CNF encoding of a cardinality constraint described in the section 2.2
is correct and efficient.

Proof

1. Correctness: It follows from Lemma 21 that for any complete instantiation of the
input variables, unit propagation fixes all the other variables of the totalizer in such a
way that the instantiation of the output variables is the unary value of the number of
input variables fixed to 1. Then the conjunction of the totalizer and the comparator
is satisfiable if and only if the number of input variables fixed to 1 belongs to the
interval encoded by the unary clauses of the comparator.

2. Efficiency: Let p be the number of input variables fixed to 1, q be the number of
input variables fixed to 0 (p + q < n), μ be the lower bound and ρ be the upper
bound of the interval encoded by the comparator. It follows from lemma 21 that
unit propagation fixes s1 to sp to 1 and fixes sn−q+1 to sn to 0. In addition, the
clauses of the comparator allow unit propagation to fix sρ+1 to sn to 0 and to fix s1

to sμ to 1.
If p > ρ then unit propagation fixes sρ+1 to 1, which is in conflict with the clause
(sρ+1) of the comparator, thus the empty clause is produced.
In the same way, if q > n−μ then unit propagation fixes sμ to 0, which is in conflict
with the clause (sμ) of the comparator.
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If p = ρ then, because the n− p output variables sρ+1 to sn−q are fixed to 0 by
the unit clauses of the comparator, it follows from Lemma 22 that unit propagation
fixes the free input variables to 0 .
If q = n−μ then, because the n−q output variables s1 to sμ are fixed to 1 by the unit
clauses of the comparator, it follows from Lemma 22 that unit propagation fixes the
free input variables to 1.

2.4 Complexity Issues

The binary tree used to specify the totalizer has Θ(logn) levels. Each of these levels
requires n linking (or output) variables, thus the totalizer includes Θ(n logn) encoding
variables.
For sake of simplicity, let us consider that n is a power of 2. For each node related to
a set of m linking (or output) variables, there are less than 2m2 clauses. Let us number
the levels from 1 to l, where l is the number of the root level. For any i such that
1 ≤ i ≤ l, the level l− i includes 2i nodes, each related to n/2i variables. Then the level
n− i includes less than 2i(2(n/2i)2) = 2n2/2i clauses. So the totalizer includes O(n2)
clauses. Given that the root node of the totalizer requires Ω(n2) clauses, and that the
comparator requires n clauses, the encoding requires Θ(n2) clauses.
Clearly enough, if the cardinality constraint is ρ ≤ N(IE) ≤ μ, all the properties de-
scribed above remain true if any variable with rank upper than μ is initially fixed to
0. This allows one to simplify the formula, using unit propagation, and then reduce its
size. If μ is the same order of magnitude as n, this simplification does not change the
size complexity of the encoding.

In the worst case, because unit propagation must fixe all the encoding variables,
restoring the generalized arc consistency requires time Θ(n logn). This time complexity
is not optimal, given that a dedicated algorithm using the rules described section 2.1 can
restore the generalized arc consistency of a Boolean cardinality constraint in time O(n).

3 Discrete Tomography Problems

We apply the encoding of the cardinality constraints described in the previous section
to a problem arising in discrete tomography. Tomography is a non-destructive method
used to examine the interior of solid opaque objects. It consists of sending X-rays at
different angles through the object and recording the attenuation at the opposite side.
The attenuation reflects the density of the object in a given direction. The problem
is then to reconstruct the studied object’s image using the attenuation of the X-rays.
Tomography is used in many fields ranging from medical imagery to geology and as
described in Gardner et al [10] in the determination of the crystalline structure using
high resolution transmission electron microscopy. Several mathematical tools have been
developed for solving the reconstruction problem in the continuous case. We focus on
the reconstruction of 2-D objects given their discrete projections in 4 directions.
This problem have been investigated under various conditions in [17, 4, 19, 9, 13, 1, 21,
3]. Recently Gardner et al [10] proved the NP-Completeness of the problem of testing
the existence and the uniqueness of a pattern given its projections in at least 3 directions.
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In the 2-D discrete case, the pattern to be reconstructed lies in a grid having n rows
and m columns. Each cell of the grid, i.e. a unitary square [i, i+ 1]× [ j, j + 1], is either
black, filled, if it belongs to the pattern or white, empty, if it does not. We will denote
the cell located at the intersection of row i and column j by ci, j. The i-th row projection
and the j-th column projection of the pattern are the numbers of filled cells in the i-
the row and the j-th column respectively. The vertical and horizontal projections of
a pattern in a grid n×m are denoted by two vectors H = (h1, ...,hi, ...,hn) ∈ Nn and
V = (v1, ...,v j, ...,vm) ∈ Nm, hi and v j being the i-th row projection and the j-th column
projection respectively. Similarly, the k-th diagonal projection is the number of filled
cells among the cells ci, j such that i+ j = k + 1. The l-th antidiagonal projection is the
number of filled cells among the cells ci, j such that m + i− j = l + 1. Figure 1 shows
the projections of the pattern 6.
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Fig. 1. A pattern representing 6 and its projections, i.e. the number of black cells, in the
four directions, yielding the vectors H = {4,3,1,1,1,5,3,2,2,5} for the horizontal lines, V =
{5,5,3,3,3,4} for the vertical lines, S{0,0,2,3,2,2,2,3,1,2,2,1,2,2,2,0} for the diagonal 45
degrees directions ,T{0,1,2,1,1,0,3,3,2,2,2,3,2,3,1,0} for the diagonal -45 degrees direc-
tions.

We adresse specifically this NP-Complete [10] problem:
RECONSTRUCT: Given m,n∈ N, 4 vectors H = (h1,h2, ...,hm), V = (v1,v2, ...,vn), S =
(s1,s2, ...,sm+n−1) and T = (t1,t2, ...,tm+n−1), is there a pattern P falling in a m×n grid
such that the horizontal, vertical, diagonal, and antidiagonal projections are respectively
H, V , S and T?
We convert this problem into SAT. Every cell ci, j in the grid is represented by a Boolean
variable xi, j such that:

xi, j =
{

1 if ci, j is filled
0 if ci, j is empty
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An instance R (n,m,H,V,S,T ) of RECONSTRUCT is then encoded into a SAT instance
F (n,m,H,V,S,T ) that is the conjunction of cardinality constraints in every direction.
Namely, F = H (n,m,H)∧V (n,m,V )∧S(n,m,S)∧T (n,m,T ) where:

H (n,m,H) =
∧

i=1..n

Ψ({xi, j, j = 1..m},hi,hi)

V (n,m,V ) =
∧

j=1..m

Ψ({xi, j, i = 1..n},v j,v j)

S(n,m,S) =
∧

k=1..m+n−1

Ψ({xi, j, i+ j = k + 1},sk,sk)

T (n,m,T ) =
∧

k=1..m+n−1

Ψ({xi, j,m+ i− j = k + 1}, tk, tk)

In order to test the efficiency of encoding this problem into CNF formula, we have
used two types of instances, randomly generated instances and hand-crafted instances.
The latter are obtained by drawing a pattern as done for Figure 1 and computing the
projections in each direction in order to get an instance of RECONSTRUCT. Note that
by solving the instance obtained, we do not necessarily get the pattern used to generate
it. The uniqueness of the the pattern corresponding to some projections can be obtained
by augmenting their number, but this is not the purpose of this work. We have also used
test instances generated by randomly filling every cell with a prescribed probability p.
Not surprisingly, some of our experiments not reported here have shown that the most
difficult instances to reconstruct were the instances built using a probability p = 0.5.
The few experimental results presented in this section meet two aims. First, verify that
the CNF encoding can be competitive with a commercial constraint programming sys-
tem for solving hand-crafted instances of the discrete tomography problem. Second,
address the scalability of the CNF encoding on the discrete tomography problem. To
this end, we compare the efficiency of solving it with the CNF encoding against the
efficiency of solving it using a dedicated solver. All experiments concerning the CNF
encoding were done with the ”state of the art” SAT solver zchaff [15].

CNF Encoding versus CHIP. This comparison is based on two series of instances de-
rived from the hand-crafted images shown figure 2. Each instance of size n×n consists
of the n first lines and the n first columns of the related image.
Two solving methods are compared for each instance: CHIP V5 [5], the commer-
cial constraint programming system from COSYTEC, and zchaff. The cardinality con-
straints were translated into the CHIP language by using the ChipAmong constraint [2].
The default heuristic of CHIP was used. Table 1 gives the run times required for solving
each instance on a SUN workstation clocked at 450 MHz.
Clearly, thanks to the proposed CNF encoding of the cardinality constraints, our test
instances can be solved with zchaff in the same run time as CHIP.

CNF Encoding versus Dedicated Solver. The preceding results show that our CNF
encoding of cardinality constraints allows zchaff to outperform the general integer con-
straint programming system CHIP on some instances of the discrete tomography prob-
lem, but these results are restricted to a few test instances. In addition, CHIP is not
specialized in solving cardinality constraints over Boolean variables.



Fig. 2. The two patterns: mouse and letters, used in the comparison of CNF encoding plus zchaff
versus CHIP.

In order to give an idea of the scalability of the proposed encoding scheme, we will
now compare it with a solver dedicated to the discrete tomography problem. To this
end, we developed an enumerative solver that maintains generalized arc consistency at
each node in the search tree and uses the following heuristic to select the branching
variable and value:
For each projection, let P be the number of 1 not yet assigned, V be the number of 0 not
yet assigned and U be the number of free variables. Of course U = V + P. The weight
w1(v)w2(v) is assigned to each variable v, where

– w1(v) is the sum of the e(P/U) for the four projections related to v,
– w2(v) is the sum of the e(V/U) for the four projections related to v.

Table 1. CPU in seconds for solving instances of the discrete tomography problem with CHIP
V5 and zchaff.

Instance CHIP V5 zchaff
mouse-12 0.04 0.09
mouse-14 0.37 0.30
mouse-16 1.60 0.41
mouse-18 2.84 4.45
mouse-20 19.8 35.4
mouse-22 >3600 92.0
letters-12 0.06 0.60
letters-14 1.41 0.66
letters-16 242 66.1
letters-18 >3600 19.8
letters-20 >3600 620
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The branching variable v is chosen among those of maximum weight. The first branch-
ing value is 1 iff w2(v) > w1(v).
Figure 2 compares the run times of zchaff and the dedicated solver on a PC running at
2 GHz, for randomly generated instances of the discrete tomography problem. It is not
very surprising that the dedicated solver clearly outperforms the association of zchaff
and CNF encoding, but, interestingly, the ratio between the two run times does not
grow accordingly to the size of the problem. We think that such a result is extremely
promising in terms of scalability and tractability of cardinality constraints under CNF
encoding.

Table 2. Dedicated solver versus CNF-encoding+zchaff on random patterns (100 instances for
each row). The fact that the instances are satisfiable introduces great variations in the ratios. CPU
is given in seconds.

Size of the grid Dedicated solver CPU Encoding + zchaff CPU ratio
15×15 0.05 2.7 54
16×16 0.04 10.6 265
17×17 0.07 19 271
18×18 0.11 24 218
19×19 0.15 56 373
20×20 0.33 85 258
21×21 0.27 127 470
22×22 1.42 136 96
23×23 1.8 136 76
24×24 4.1 215 52
25×25 8.6 267 31

4 Parity Learning Instances Revisited

The instances arising from the parity learning problem on 32 bits have been proposed
by Crawford [6] for the DIMACS challenge [12]. These instances appeared to be very
challenging and none of the algorithms existing at that time were able to solve them.
Later, in a paper by Selman & al [18], developing efficient algorithms for these in-
stances is presented as one of the ten challenges in propositional reasoning and search.
Following this challenge, two algorithms that solve the par32 instances were published,
one by Warners and Van Maaren [20] and the other by Li [14]. The two algorithms do
some specific transformations exploiting the special structure of the par32 instances.
In short, we recall only the parity learning problem expression. The reader may refer to
[6] for a full and detailed description. We give the sketch of the encoding that we have
made for these instances and the experimental results.
Given m sets of subscripts Ai (1 ≤ i ≤ m) such that Ai ⊆ {1,2, ...,n} and m bits y1,
y2,...,ym find n bits, a1, a2, ..., an such that among the m bits bi defined as

bi = yi ⊕ak1 ⊕ak2 ⊕ ...

where k j ∈ Ai, at most e are equal to 1.
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When e = 0 or more generally in the case where all the bi’s are assigned a value, the
problem is reduced to find an assignment to an XOR-CNF formula which is known
to be polynomial. Even if XOR-SAT is polynomial, a straightforward encoding of the
XOR clauses, as it is done in [6], lead to a problem that is difficult for standard SAT
solvers. XOR-SAT is polynomial because variable elimination can be done without
adding any XOR clause. Indeed, by performing a trivial variable elimination all the
ai’s can be eliminated. For example, from bi = yi ⊕ ak1 ⊕ ak2 ⊕ ..., one can deduce
ak1 = bi ⊕ yi⊕ak2 ⊕ ... and then ak1 can be replaced everywhere by (bi ⊕ yi ⊕ak2 ⊕ ...).
When m > n all the ai’s can be eliminated. In general we have m > n, which is the case
of the most difficult instances of this problem, indeed in [6] m is empirically chosen
to be m = 2n. We obtain, then, an XOR-CNF formula, formed by the remaining m−n
equations, involving only the bi’s subject to the cardinality constraint that at most e of
them are equal to 1. We encode then, the XOR-CNF formula using the same method
described in [6] and the cardinality constraint using the method of Section 2. We denote
the resulting formula by FC. The n equations giving the ai’s are encoded as usual into a
formula FX .
It is easy to see that given the values of the bi’s, unit propagation on FX assigns all
the ai’s the correct values. Clearly, the satisfiability of the parity learning instance is
equivalent to the satisfiability of FC. The satisfiability of FC is the hard part. By finding
a solution that satisfies FC, if any, one can derive the correct values of the ai’s by a
straightforward unit propagation performed on FX after assigning to the variables com-
mon to FC and FX the values they have in this solution.
One may argue that the variable elimination used in the above encoding is partly a
solving procedure. An answer this argument is that an analogous preprocessing, simu-
lating this variable elimination done on the XOR equations, can be done by a specific
algorithm on the benchmarks as they were encoded by [6]. However while this variable
elimination is trivial on the initial problem, discovering it on the encoded formula with-
out knowing the initial problem, is much harder. The algorithm proposed by [20] uses
a two phase algorithm as we do by separating the problem into two formulas. However,
while they use a sophisticated techniques working on the CNF formulas, we use a trivial
method to separate the hard part from the easy one by working directly on the initial
problem. This fits with the idea, explained in the introduction, about the importance of
not taking the SAT benchmarks as they are but to try to improve their encoding.
We have re-encoded the parity learning instances of the DIMACS benchmark database
and we have used, to solve them, a simple Davis and Putnam procedure [8, 7] based on
unit propagation and mom’s heuristic for variable selection. The results are summarized
in table 3, the performances of the basic DP are compared to zchaff and Eqsatz [14].
The latter has been designed for solving these instances. The aim of these experiments
is to show that these instances are not intrinsically hard but their apparent hardness
comes from their intial encoding.

5 Related Work

The only example of polynomial size CNF encoding of Boolean cardinality constraint
that we found in the literature is the one used by Crawford to propositionalize parity
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Table 3. The performances of basic DP, Eqsatz and zchaff on the parity learning instances before
and after re-encoding them. The performances are given in terms of CPU time in seconds on a
Pentium 2Ghz PC under Linux.

Instance of parity Before re encoding After re encoding
learning Eqsatz DP zchaff Eqsatz DP zchaff

par32-1.cnf 308 - - 42 24 0.9
par32-2.cnf 11 - - 37 106 205
par32-3.cnf 1241 - - 2 49 806
par32-4.cnf 190 - - 60 150 2
par32-5.cnf 2771 - - 3 1 0.9

learning problem [6]. Like us, Crawford uses a set of clauses that totalizes the number
of bits set to 1. But because integers are represented in base two, this totalizer does not
allow unit propagation to restore generalized arc consistency.

In fact, encoding constraints into CNF in such a way that unit propagation restores
arc-consistency is a very recent research topic. To the best of our knowledge, the first
contribution in this field is the paper of Gent [11] on the CNF encoding of binary con-
straints. The results of Gent are not directly comparable with ours because we do not
address the same kind of constraints. It is however interesting to note that, unlike our
encoding, Gent’s encoding allows unit propagation to restore arc-consistency with an
optimal worst case time complexity.

6 Conclusion

In this paper we proposed a new CNF encoding scheme for Boolean cardinality con-
straints, which allows unit propagation to maintain generalized arc consistency of the
encoded constraints. We experimentally showed that, using this encoding method, a
SAT solver can address discrete tomography problems and be competitive with a gen-
eral constraint programming system (Cosytec CHIP), and even with a dedicated solver.
We also showed that, associated with a technique of trivial variable elimination, the pro-
posed encoding scheme allows one to drastically improve the efficiency of solving the
par32 problem. This problem was hitherto considered as very hard, essentially because
of its encoding.
These results confirm that in the area of solving problems under CNF encoding, the
encoding scheme is as important as the solver. Then it is very important to define which
properties a ”good” CNF encoding must verify. The encoding scheme proposed in this
paper connects generalized arc consistency in the input problem to unit propagation in
the encoded problem. As a research perspective, this could be extended to cardinal-
ity constraints on non-binary domains, like the among constraint of [2] or the global
cardinality constraint of [16].
We think it could be useful to revisit the encoding schemes currently used in the SAT
benchmarks and, in a more general way, to propose new tools for efficient CNF encod-
ing of usual global and arithmetic constraints, in the spirit of Gent’s work [11] on binary
constraints.



122 Olivier Bailleux and Yacine Boufkhad

References

1. E. BARCUCCI, A. DELLUNGO, M. NIVAT, AND R. PINZANI, Reconstructing convex poly-
ominoes from horizontal and vertical projections, Theoret. Comput. Sci., (1996), pp. 321–
347.

2. N. BELDICEANU AND E. CONTJEAN, Introducing global constraints in CHIP, Mathemati-
cal and Computer Modelling, 12 (1994), pp. 97–123.

3. Y. BOUFKHAD, O. DUBOIS, AND M. NIVAT, Reconstructing (h, v)-convex 2-dimensional
patterns of objects from approximate horizontal and vertical projections, Theoret. Comput.
Sci., 290(3) (2003), pp. 1647–1664.

4. S. CHANG, The reconstruction of binary patterns from their projections, Comm. ACM,
(1971), pp. 21–25.

5. COSYTEC SA, CHIP C++ Library, Reference Manual, Version 5.4, October 2001.
6. J. CRAWFORD, Instances of learning parity function. http://www.intellektik.informatik.tu-

darmstadt.de/SATLIB/Benchmarks/SAT/DIMACS/PARITY/descr.html.
7. M. DAVIS, G. LOGEMANN, AND D. LOVELAND, A machine program for theorem proving,

Communications of the ACM, 5 (1962), pp. 394–397.
8. M. DAVIS AND H. PUTNAM, A computing procedure for quantification theory, Journal of

the ACM, 7 (1960), pp. 201–215.
9. A. DELLUNGO, Polyominoes defined by two vectors, Theoret. Comput. Sci., 127 (1994),

pp. 187–198.
10. R. G. GARDNER, P. GRITZMANN, AND D. PRANGENBERG, Ont the computational com-

plexity of reconstructing lattice sets from their x-rays, Discrete Mathematics, (1999), pp. 45–
71.

11. I. P. GENT, Arc consistency in sat, in Proceedings of the Fifteenth European Conference on
Artificial Intelligence (ECAI 2002), 2002.

12. D. JOHNSON AND M. TRICK, eds., Second DIMACS implementation challenge: cliques,
coloring and satisfiability, vol. 26 of DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, American Mathematical Society, 1996.

13. A. KUBA, The reconstruction of two-directionaly connected binary patterns, Comput.
Graph. Image Process, 27 (1984), pp. 249–265.

14. C. LI, Integrating equivalency reasoning into davis-putnam procedure, in AAAI: 17th Na-
tional Conference on Artificial Intelligence, AAAI / MIT Press, 2000.

15. M. MOSKEWICZ, C. MADIGAN, Y. ZHAO, L. ZHANG, AND S. MALIK, Chaff: Engineering
an efficient sat solver, in 39th Design Automation Conference, June 2001.
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Abstract. This paper presents a two-stage hybrid algorithm for pickup
and delivery vehicle routing problems with time windows and multiple
vehicles (PDPTW). The first stage uses a simple simulated annealing
algorithm to decrease the number of routes, while the second stage uses
LNS to decrease total travel cost. Experimental results show the effec-
tiveness of the algorithm which has produced many new best solutions
on problems with 100, 200, and 600 customers. In particular, it has im-
proved 47% and 76% of the best solutions on the 200 and 600-customer
benchmarks, sometimes by as much as 3 vehicles. These results further
confirm the benefits of two-stage approaches in vehicle routing. They
also answer positively the open issue in the original LNS paper, which
advocated the use of LNS for the PDPTW and argue for the robustness
of LNS with respect to side-constraints.

1 Introduction

Multiple vehicle routing problems with time windows (VRPTW) have received
considerable attention in the last decades. These problems are often approached
by meta-heuritics, since problems with as few as 100 customers are currently
beyond the scope of state-of-the-art systematic search algorithms. Recent work
on the VRPTW has produced significant improvements in solution quality and
execution time, often by combining several approaches or heuristics. Compara-
tively, little research was devoted to pickup and delivery problems with multiple
vehicles and time windows (PDPTW) until recently (e.g., [14,15,16,21]). Cus-
tomers in the PDPTW are divided into pickup and delivery pairs. Given such a
pair (p, d), a routing must service customers p and d with the same vehicle and
must schedule the pickup customer p before the delivery customer d. In standard
benchmarks [14], the goal is to minimize the number of used vehicles and, in case
of ties, the total travel cost.

The difficulty in pickup and delivery problems, which partly explains why
it is less studied than the VRPTW, lies in the side-constraints, which compli-
cate the neighborhoods and invalidate many of the traditional VRPTW moves
[18]. However, many practical applications naturally exhibit pickup and delivery
constraints in their modeling. This includes dial-a-ride problems, airline schedul-
ing, bus routing, tractor-trailer problems, helicopter support of offshore oil field
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platforms, and logistics and maintenance support [16]. More generally, indus-
trial vehicle routing problems are rarely pure and often feature side-constraints.
Because of its practical relevance and its side-constraints, the PDPTW is a nat-
ural model to evaluate the robustness and scalability of various approaches with
respect to side-constraints.

This paper proposes a two-stage hybrid algorithm for the PDPTW. The
overall structure of the algorithm is motivated by the recognition that minimizing
the objective function directly may not be the most effective way to decrease the
number of routes in vehicle routing problems (e.g., [1,8]). Indeed, the objective
function often drives the search toward solutions with low travel cost, which may
make it difficult to reach solutions with fewer routes but higher travel cost. To
overcome this limitation, our algorithm divides the search in two steps: (1) the
minimization of the number of routes and (2) the minimization of total travel
cost. This two-step approach makes it possible to design algorithms tailored to
each sub-optimization.

Our algorithm uses two distinct local search procedures to exploit the speci-
ficities of each subproblem. The first step uses a very simple simulated annealing
(SA) algorithm to minimize the number of routes. The SA algorithm only uses
relocation of pairs of customers and one of its key aspects is a lexicographic
evaluation function which minimizes the number of routes (primary criterion),
maximizes the sum of the squares of the route sizes (secondary criterion), and
minimizes travel cost of the routing plan (third criterion). The second criterion
was also used successfully in other applications (e.g., graph coloring [9] and,
more recently, vehicle routing [1]). The second step uses large neighborhood
search (LNS) [19] to minimize total travel cost. It is motivated by our expe-
rience that LNS is particularly effective in minimizing total travel cost when
given a solution that minimizes the number of routes, and when the problem is
highly constrained [1]. The use of LNS for pickup and delivery problems was in
fact suggested in the original LNS paper [19], because of its ability to handle
side-constraints gracefully.

Experimental results on difficult PDPTW problems demonstrate the effec-
tiveness of the algorithm. On the standard 100, 200, and 600 customers bench-
marks [14], our algorithm produces 2, 25 (47%), and 46 (76%) new best solutions
respectively, while matching or being close to best known solutions on the other
instances. In several 600-customer instances, the algorithm decreases the num-
ber of vehicles by as much as 3. These results further confirm the effectiveness
of two-stage approaches in vehicle routing, answers positively the open question
in [19] on the potential of LNS for the PDPTW, and demonstrate the critical
role of the first phase to boost LNS. Similarly, this research confirms that the
structure of LNS makes it relatively easy to incorporate pickup and delivery
constraints in our previous hybrid algorithm [1], validating Shaw’s claim on the
robustness of LNS wrt side constraints.

The rest of this paper is organized as follows. Section 2 specifies the PDPTW
and describes the notations. Section 3 gives an overview of the overall algorithm.
Section 4 presents the simulated annealing algorithm, while Section 5 describes
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the LNS algorithm for minimizing travel costs. Section 6 presents the exper-
imental results. Section 7 discusses related work and Section 8 concludes the
paper.

2 Problem Formulation

This section defines the pickup and delivery vehicle routing problem with time
windows (PDPTW) and the various concepts used in this paper.

Customers. The problem is defined in terms of N customers who are repre-
sented by the numbers 1, . . . , N and a depot represented by the number 0. The
set {0, 1, . . . , N} thus represents all the sites considered in the problem. We use
Customers to represent the set of customers and Sites to represent the set of
sites (The distinction between customers and sites simplifies the formalization
of the problem and of the algorithm). We use Customersp and Customersd to
denote the pickup and delivery customers respectively. The travel cost between
sites i and j is denoted by cij . Travel costs satisfy the triangular inequality
cij + cjk ≥ cik. The normalized travel cost c′

ij between sites i and j is defined as

c′
ij = cij / max

i,j∈Sites
cij .

Every customer i has a service time si ≥ 0. Given a pickup customer i, its
delivery counterpart is denoted by @i. Every pickup customer has a demand
qi ≥ 0 and its counterpart has demand q@i = −qi.

Vehicles. The PDPTW is defined in terms of m identical vehicles. Each vehicle
has a capacity Q.

Routes. A vehicle route, or route for short, starts from the depot, visits a
number of customers at most once, and returns to the depot. In other words,
a route is a sequence 〈0, v1, . . . , vn, 0〉 or 〈v1, . . . , vn〉 for short, where all vi are
different. The customers of a route r = 〈v1, . . . , vn〉, denoted by cust(r), is the
set {v1, . . . , vn}. We also use route(c) to represent the route of customer c. The
size of a route, denoted by |r|, is the number of customers |cust(r)|. The travel
cost of a route r = 〈v1, . . . , vn〉, denoted by t(r), is the cost of visiting all its
customers, i.e.,

t(r) = c0v1 + cv1v2 + . . . + cvn−1vn + cvn0.

if the route is not empty (n ≥ 1) and is zero otherwise.

Routing Plan. A routing plan is a set of routes {r1, . . . , rm} (m ≤ N) visiting
every customer exactly once, i.e.,{⋃m

i=1 cust(ri) = Customers
cust(ri) ∩ cust(rj) = ∅ (1 ≤ i < j ≤ m)
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Observe that a routing plan assigns a unique successor and predecessor to every
customer. These successors and predecessors are sites. The successor and prede-
cessor of customer i in routing plan σ are denoted by succ(i, σ) and pred(i, σ).
For simplicity, our definitions often assume an underlying routing plan σ and we
use i+ and i− to denote the successor and predecessor of i in σ.

Time Windows. The customers and the depot have time windows. The time
window of a site i is specified by an interval [ei, li], where ei and li represent the
earliest and latest arrival times respectively. Vehicles must arrive at a site before
the end of the time window li. They may arrive early but they have to wait until
time ei to begin service. Observe that e0 represents the time when all vehicles
in the routing plan leave the depot and that l0 represents the time when they
must all return to the depot. The departure time of customer i, denoted by δi,
is defined recursively as{

δ0 = 0
δi = max(δi− + ci−i , ei) + si (i ∈ Customers).

The earliest service time of customer i, denoted by ai, is defined as

ai = max(δi− + ci−i , ei) (i ∈ Customers).

The earliest arrival time of a route r = 〈v1, . . . , vn〉, denoted by a(r), is given by
δvn

+ cvn0 if the route is not empty and is e0 otherwise. A routing plan satisfies
the time window constraint for customer i if ai ≤ li. A routing plan σ satisfies
the time window constraint for the depot if ∀r ∈ σ : a(r) ≤ l0.

Capacities. The demand of a route r at customer c, denoted by q(c), is the
sum of demands of customers on r up to c, i.e.,

q(c) =
∑

i∈cust(r) & δi≤δc

qi.

The capacity constraint of a customer is satisfied if q(c) ≤ Q.

Pickup and Deliveries. The pickup and deliveries are represented by prece-
dence and coupling constraints. The precedence constraint of c ∈ Customersp

is satisfied if dc ≤ δ@c. Similarly, the coupling constraint of c is satisfied if
route(c) = route(@c).

The PDPTW. A solution to the PDPTW is a routing plan σ = {r1, . . . , rm}
satisfying the capacity constraints, time window constraints, and pickup and
delivery constraints, i.e.,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q(i) ≤ Q (i ∈ Customers)
a(rj) ≤ l0 (1 ≤ j ≤ m)
ai ≤ li (i ∈ Customers)
route(i) = route(@i) (i ∈ Customersp)
δi ≤ δ@i (i ∈ Customersp)
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Function PDPTWoptimize

1. σ := RouteMinimize();
2. return TravelCostMinimize(σ);

Fig. 1. The Two-Stage Hybrid Algorithm for Minimizing Routes and Travel Costs.

The size of a routing plan σ, denoted by |σ|, is the number of non-empty routes
in σ, i.e., {r ∈ σ | cust(r) �= ∅}. The PDPTW problem consists of finding a
solution σ which minimizes the number of vehicles and, in case of ties, the total
travel cost, i.e., a solution σ minimizing the objective function specified by the
lexicographic order

f(σ) = 〈|σ|,
∑
r∈σ

t(r)〉.

3 Overview of the Algorithm

Our algorithm is motivated by the recognition that minimizing the original ob-
jective function is not always the most effective way to approach the problem.
Indeed, the objective function often drives the search towards solutions with low
travel costs. The reduction in the number of routes occurs more as a side-effect
of the travel cost minimization than as a primary feature of the search. In addi-
tion, focusing on travel cost may make it extremely difficult to reach solutions
with fewer routes since it may require considerable degradation of the travel cost
component of the objective function. To overcome this limitation, our algorithm
separates the optimization into two stages: the minimization of the number of
routes and the minimization of travel costs. Each of these two stages is opti-
mized by an algorithm exploiting the underlying structure of the subproblem.
(Of course, the second phase may sometimes reduce the number of vehicles as
well as a side-effect of reducing travel distance.) The overall algorithm is de-
picted in Figure 1. The next two sections discuss each suboptimization in detail.
Observe that two-stage algorithms has been very successful on the traditional
VRPTW, where they have produced many new best solutions recently [1,8].

4 Minimizing the Number of Routes

The first stage of our algorithm consists of minimizing the number of routes or,
equivalently, the number of vehicles used in the routing plan. It uses simulating
annealing [11] because of its success in reducing routes on the VRPTW and the
overall simplicity of its implementation.

4.1 The Neighborhood

The SA neighborhood is based on a simple pair relocation operator, which is also
used in [12,14,16]. Given a solution σ, N (σ) denotes the neighborhood of σ, i.e.,



128 Russell Bent and Pascal Van Hentenryck

the set of feasible solutions that can be reached from σ by using pair relocation,
which is defined as follows.

Pair Relocation. For customers i, j, and k, first place i after j, i.e., remove arcs
(i−, i), (i, i+), (j, j+) and add arcs (i−, i+), (j, i), and (i, j+). Second, place @i
after k, i.e., remove arcs (@i−,@i), (@i,@i+), (k, k+), and add arcs (@i−,@i+),
(k,@i), and (@i, k+).

A Random Sub-neighborhood. An interesting feature of our SA algorithm
is how it explores the neighborhood. Each iteration focuses on a (random) sub-
neighborhood of N obtained by randomly choosing a customer c from Cus-
tomers and by constructing all the pair relocations using c and @c. The sub-
neighborhood is explored exhaustively to determine whether it contains a solu-
tion improving the best available routing plan. We denote by N (c, σ) the subset
of N (σ) that can be reached by using pair relocation and customers c and @c.

4.2 The Evaluation Function

The evaluation function is another fundamental aspect of our simulated anneal-
ing algorithm. As mentioned earlier, the objective function 〈|σ|,

∑
r∈σ t(r)〉 is not

always appropriate, since it may lead the search to solutions with a small travel
cost and makes it impossible to remove routes. To overcome this limitation, our
simulated algorithm uses a more complex lexicographic ordering

e(σ) = 〈|σ|,−
∑
r∈σ

|r|2,
∑
r∈σ

t(r)〉.

especially tailored to minimize the number of routes. The first component is,
of course, the number of routes. The second component maximizes

∑
r∈σ |r|2

which means that it favors solutions containing routes with many customers and
routes with few customers over solutions where customers are distributed more
evenly among the routes. The intuition is to guide the algorithm into removing
customers from some small routes and adding them to larger routes. Components
of this type are used on many problems, a typical example being graph coloring
[9]. The third component minimizes the travel cost of the routing plan.

4.3 The Simulated Annealing Algorithm

Figure 2 depicts the SA algorithm. The algorithm consists of a number of local
searches (lines 2-22), each of which start from the best solution found so far
and from the starting temperature. Each local search performs a number of
iterations (lines 5-20) and decreases the temperature (line 21). These two steps
are repeated until the time limit is exhausted or the temperature has reached its
lower bound. Lines 6-19 describe one iteration and are most interesting. Lines
6-8 compute the sub-neighborhood

N (c, σ) = 〈σ1, . . . , σs〉 where e(σi) ≤ e(σj) (i < j)
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Function RouteMinimize

1. σb := getInitialSolution();
2. while (time < timeLimit) {
3. σ := σb;
4. t := startingTemperature;
5. while (time < timeLimit & t > temperatureLimit) {
6. for( i := 1; i ≤ maxIterations; i++) {
7. c := random(Customers);
8. 〈σ1, . . . , σs〉 := N(c,σ) where e(σi) ≤ e(σj) (i < j);
9. if e(σ1) < e(σb) then {
10. σb := σ1;
11. σ := σ1;
12. } else {
13. r := �random([0, 1])β × s	;
14. Δ := e(σ) − e(σr);
15. if Δ ≥ 0 then
16. σ := σr;
17. else if random([0, 1]) ≤ eΔ/t then
18. σ := σr;
19. }
20. }
21. t := α × t;
22. }
23. }
24. return σb;

Fig. 2. The Simulated Annealing Algorithm to Minimize the Number of Routes.

for a random customer. Lines 9-11 select the solution σ1 minimizing f in N (c, σ)
if it improves the best solution found so far. These lines introduce an aspiration
criterion [5] in the simulated annealing algorithm. Lines 13-18 are the core of the
algorithm. Line 13 chooses a random element σr ∈ N (c, σ) and σr is selected
as the next routing plan if it does not degrade the current solution (line 15)
or with the traditional probability of simulated annealing otherwise (line 17).
Observe also line 13 which biases the search towards “good” moves in N (c, σ)
when β > 1.

5 Minimizing the Travel Cost

Our algorithm uses large neighborhood search (LNS) to minimize travel cost.
LNS was proposed in [19] for the VRPTW, where it was shown particularly
effective on the class 1 problems from the Solomon benchmarks, producing sev-
eral improvements over the then best published solutions. However, the algo-
rithm performed poorly on the class 2 benchmarks where it could not reduce the
number of routes satisfactorily [19] (Our own experimental results confirm the
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findings of [19] on pickup and delivery problems). By separating the overall opti-
mization in two stages, our algorithm directly addresses this LNS weakness and
exploits its strength in minimizing travel cost. The rest of this section describes
the LNS algorithm in detail. In general, the algorithm adapts the heuristics and
strategies described in [19], although it departs on a number of issues which are
critical to scale LNS to large-scale problems.

The Neighborhood and the Evaluation Function. Given a solution σ,
the neighborhood of LNS, denoted by NR(σ), is the set of solutions that can
be reached from σ by relocating at most p pairs of customers (where p is a
parameter of the implementation). Since LNS also uses subneighborhoods and
explores them in a specific order, we use additional notations. In particular,
NR(σ, S) denotes the set of solutions that can be reached from σ by relocating
the customers in S. Also, given a partial solution σ with customers Customers\S,
NI(σ, S) denotes the solutions that can be obtained by inserting the customers
S in σ. Finally, LNS uses the original objective function, which involves the
number of routes. This is important since, in some cases, minimizing travel costs
makes it possible to decrease the number of routes further.

The Algorithm. At a high level, the LNS algorithm can be seen as a local
search where each iteration selects a neighbor σc in NR(σb) and accepts the
move if f(σc) < f(σb). It can be formalized as follows:

for(i := 1;i ≤ maxIterations; i++) {
select σc ∈ NR(σb);
if f(σc) < f(σb) then

σb := σc;
}

In practice, it is important to refine and extend the above algorithm in three
ways. The first modification consists of exploring the neighborhood by increasing
number of allowed relocations. The second change generalizes the algorithm to a
sequence of local searches. The third modification consists of exploring the sub-
neighborhood NR(σb, S) more exhaustively to find its best solution. The overall
algorithm is depicted in Figure 3. Observe line 2 which adds another loop, line 4
which selects a set of customers S of size 2n, line 5 which selects a best neighbor
in NR(σb, S), and line 8 which reinitializes the number of allowed iterations.
In fact, the algorithm is now very close to variable neighborhood search [6]. It
remains to describe how to select customers and how to implement line 5 in the
above algorithm.

Selecting Customers to Relocate. The LNS algorithm adapts the tradi-
tional customer selection [19] to the PDPTW. The implementation is depicted
in Figure 4. It first selects a customer pair randomly (lines 1-2) and iterates lines
4-7 to remove the n− 1 remaining customer pairs. Each such iteration selects a
pickup customer from S (the already selected customers) and ranks the remain-
ing pickup customers according to a relatedness criterion (lines 4-5). The new
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Function TravelCostMinimize(σb)

1. for(l := 1;l ≤ maxSearches; l++)
2. for(n := 1;n ≤ p; n++)
3. for(i := 1;i ≤ maxIterations; i++) {
4. S := SelectCustomers(σb, n);
5. select σc ∈ NR(σb, S) such that f(σc) = minσ∈NR(σb,S)f(σ);
6. if f(σc) < f(σb) then {
7. σb := σc;
8. i := 1;
9. }

Fig. 3. The LNS Algorithm to Minimize Travel Cost.

Function SelectCustomers(σ,n)

1. c := { random(Customersp) };
2. S := {c, @c};
3. for(i := 2;i ≤ n; i++) {
4. c := random(S ∩ Customersp);
5. 〈c0, . . . , c N

2 −i〉 := Customersp \ S such that
relateness(c, ci) ≥ relateness(c, cj) (i ≤ j);

6. r := �random([0, 1])β × |Customersp \ S|	;
7. S := S ∪ {cr, @cr};
8. }

Fig. 4. Selecting Customers in the LNS Algorithm.

customer to insert is randomly selected in line 6 and, once again, the algorithm
biases the selection toward related neighbors. The relatedness measure is defined
as in [19]:

relateness(i, j) =
1

c′
ij + vij

where vij = 1 if route(i) �= route(j) and is zero otherwise.

The Exploration Algorithm. Our LNS algorithm uses a branch and bound
algorithm to explore the selected sub-neighborhood. The algorithm is depicted in
Figure 5. If the set of customers to insert is empty, the algorithm checks whether
the current solution improves the best solution found so far. Otherwise, it selects
the customer pair whose best insertion degrades the objective function the most.
The algorithm then explores all the partial solutions obtained by inserting c
and @c by increasing order of their travel costs. Also, observe that only the
partial solutions whose lower bounds are better than the best solution found
so far are explored by the algorithm. The lower bound satisfies the inequality
Bound(σ, S) ≤ minσ′∈NI(σ,S) f(σ′).
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Function LDSexplore(σc,S,σb,d,dmax)

1. if d ≤ dmax then {
2 if S = ∅ then {
3. if f(σc) < f(σb) then σb := σc;
4. } else {
5. c := arg-maxc∈S minσ∈NI (σ,{c,@c}) f(σ);
6. Sc := S \ {c, @c};
7. 〈σ0, . . . , σk〉 := NI(σ, {c, @c}) where f(σi) ≤ f(σj) (i ≤ j);
8. for(i := 1; i ≤ k; i++) {
9. if Bound(σi, Sc) < f(σb) then {
10. LDSexplore(σi, Sc, σb, d, dmax);
11. d := d + 1;
12. }
13. }
14. }
15. }

Fig. 5. The Branch and Bound Algorithm with a Limited Discrepancy Strategy.

The bounding function is the cost of a minimum spanning k-tree [4] on the
insertion graph with the depot as distinguished vertex, generalizing the well-
known 1-tree bound of the traveling salesman problem. The insertion graph
vertices are the customers. Given a solution σ over customers C = ∪r∈σcust(r)
and a set S of vertices to insert, the insertion graph edges come from three
different sets:

1. the edges already in σ;
2. all the edges between customers in S;
3. all the feasible edges connecting a customer from C and a customer from S.

For large-scale problems, finding the best reinsertion is too time-consuming.
Our algorithm uses limited discrepancy search (LDS) [7] to explore only a small
part of the search tree. More precisely, it only uses one LDS phase which allows
up to d discrepancies. Note that the tree is not binary and the heuristic selects
the insertion points by increasing lower bounds.

Observe also that the neighborhoodNI(σ, {c,@c}) is of size O(N2). On large-
scale problems or on problems with wide time windows, the computation cost
of maintaining this neighborhood during branching can become quite expensive.
To overcome this difficulty, our algorithm only maintains the y best feasible
insertion points found initially (where y is an implementation parameter). This
approximation is critical to scale LNS to large-scale problems.

6 Experimental Results

This section reports preliminary experimental results on the algorithm. All re-
sults are given on a 1.2Ghz AMD Athlon Thunderbird K7 processor running
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Table 1. 100 Customers.

Best SA/LNS Best SA/LNS
V TD Pub V TD Time V TD Pub V TD Time

lc101 10 828.937 LL 10 828.937 0.00 lc201 3 591.557 LL 3 591.557 0.00
lc102 10 828.937 LL 10 828.937 0.00 lc202 3 591.557 LL 3 591.557 0.00
lc103 9 1082.35 SAM 9 1035.35 0.02 lc203 3 585.564 LL 3 591.173 0.00
lc104 9 860.011 SAM 9 860.011 0.33 lc204 3 590.599 SAM 3 590.599 4.47
lc105 10 828.937 LL 10 828.937 0.00 lc205 3 588.876 LL 3 588.876 0.00
lc106 10 828.937 LL 10 828.937 0.00 lc206 3 588.493 LL 3 588.493 0.00
lc107 10 828.937 LL 10 828.937 0.01 lc207 3 588.286 LL 3 588.286 0.00
lc108 10 826.439 LL 10 826.439 0.00 lc208 3 588.324 LL 3 588.324 0.00
lc109 9 1027.60 SAM 9 1000.6 42.57
lr101 19 1650.80 LL 19 1650.80 0.00 lr201 4 1253.23 SAM 4 1253.23 0.01
lr102 17 1487.57 LL 17 1487.57 0.01 lr202 3 1197.67 LL 3 1197.67 0.01
lr103 13 1292.68 LL 13 1292.68 0.01 lr203 3 949.396 LL 3 949.396 0.13
lr104 9 1013.39 LL 9 1013.39 0.00 lr204 2 849.05 LL 2 849.05 0.53
lr105 14 1377.11 SAM 14 1377.11 0.00 lr205 3 1054.02 LL 3 1054.02 0.01
lr106 12 1252.62 LL 12 1252.62 0.00 lr206 3 931.625 LL 3 931.625 0.78
lr107 10 1111.31 LL 10 1111.31 0.00 lr207 2 903.056 LL 2 903.056 0.01
lr108 9 968.966 LL 9 968.966 0.00 lr208 2 734.848 LL 2 734.848 0.01
lr109 11 1208.96 SAM 11 1208.96 0.00 lr209 3 930.586 SAM 3 930.586 12.97
lr110 10 1159.35 LL 10 1159.35 0.00 lr210 3 964.224 LL 3 964.224 0.04
lr111 10 1108.90 LL 10 1108.9 0.00 lr211 2 884.294 LL 2 913.837 1.23
lr112 9 1003.77 LL 9 1003.77 0.00
lrc101 14 1708.70 SAM 14 1708.70 0.00 lrc201 4 1406.94 SAM 4 1406.94 0.14
lrc102 12 1558.07 SAM 12 1558.07 0.00 lrc202 3 1374.27 LL 3 1374.27 0.01
lrc103 11 1258.74 LL 11 1258.74 0.00 lrc203 3 1089.07 LL 3 1089.07 0.01
lrc104 10 1128.40 SAM 10 1128.40 0.01 lrc204 3 818.67 SAM 3 818.663 0.18
lrc105 13 1637.62 SAM 13 1637.62 0.00 lrc205 4 1302.20 LL 4 1302.20 0.05
lrc106 11 1424.73 SAM 11 1424.73 0.00 lrc206 3 1159.03 SAM 3 1159.03 0.01
lrc107 11 1230.14 SAM 11 1230.14 0.00 lrc207 3 1062.05 SAM 3 1062.05 0.05
lrc108 10 1147.43 SAM 10 1147.43 0.00 lrc208 3 852.758 LL 3 852.758 0.11

Linux, using g++ with the -O flag, and double precision floating-point numbers.
The results are rounded to six significant digits. Our experimental results use
the standard PDPTW benchmarks available at

http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html

See [14] for their descriptions. For prior results, we use the abbreviations LL=[14]
and SAM=[21].

Our algorithm was run with a fixed configuration on all benchmarks, which is
necessarily suboptimal, in order to demonstrate the robustness of the algorithm
across many different problems. Simulated annealing was allowed to run for 5
minutes, with initial temperature of 2000, cooling factor of 0.95, 2500 iterations
per temperature, a minimum temperature of 0.01, and β = 10. LNS was run
with a maximum customer pairs removed of 18, 500 attempts for each removal
size, 15 as the relatedness determinism, 3 discrepancies, and 15 initial insertion
points maintained for each pair removed. LNS is allowed 60 minutes to find a
solution (90 minutes for the 600-customer benchmarks) although, in practice, it
finds the best solution much quicker in many cases.

Tables 1, 2, and 3 report the experimental results for 100, 200, and 600
customers. The tables compare our algorithm with the best known solutions on
these standard benchmarks. For each benchmark, we give the number of vehicles
and the travel cost of the best known solution, as well as the best solutions found
by our algorithm among 5 runs (10 for the 600-customer instances). We also
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Table 2. 200 Customers.

Best SA/LNS Best SA/LNS
V TD Pub V TD Time V TD Pub V TD Time

lc1 2 1 20 2704.57 LL 20 2704.57 0.00 lc2 2 1 6 1931.44 SAM 6 1931.44 0.00
lc1 2 2 19 2764.56 LL 19 2764.56 0.05 lc2 2 2 6 1881.40 SAM 6 1881.40 0.09
lc1 2 3 18 2772.18 SAM 17 3134.08 26.78 lc2 2 3 6 1845.54 SAM 6 1844.33 2.05
lc1 2 4 17 2708.90 SAM 17 2693.41 14.29 lc2 2 4 6 1767.12 SAM 6 1778.54 5.63
lc1 2 5 20 2702.05 LL 20 2702.05 0.00 lc2 2 5 6 1891.21 LL 6 1891.21 0.00
lc1 2 6 20 2701.04 LL 20 2701.04 0.00 lc2 2 6 6 1857.78 SAM 6 1857.78 0.05
lc1 2 7 20 2701.04 LL 20 2701.04 0.05 lc2 2 7 6 1850.13 SAM 6 1850.13 0.01
lc1 2 8 20 2689.83 SAM 20 2689.83 0.09 lc2 2 8 6 1824.34 LL 6 1824.34 3.87
lc1 2 9 18 2724.24 LL 18 2724.24 0.36 lc2 2 9 6 1854.21 SAM 6 1854.21 1.32
lc1 2 10 18 2741.56 LL 18 2741.56 1.00 lc2 2 10 6 1817.45 SAM 6 1817.45 0.27
lr1 2 1 20 4819.12 SAM 20 4819.12 2.07 lr2 2 1 5 4073.10 SAM 5 4073.10 1.58
lr1 2 2 18 4228.21 SAM 17 4666.09 1.86 lr2 2 2 4 3796.16 LL 4 3796.00 7.36
lr1 2 3 15 3761.52 LL 15 3657.19 3.53 lr2 2 3 4 3100.03 SAM 4 3100.38 46.49
lr1 2 4 11 2968.57 SAM 10 3146.06 21.41 lr2 2 4 3 2754.96 SAM 3 2956.15 30.14
lr1 2 5 17 4331.14 SAM 16 4760.18 5.22 lr2 2 5 4 3438.39 SAM 4 3438.39 2.46
lr1 2 6 15 4068.74 SAM 14 4175.16 2.03 lr2 2 6 4 3201.54 SAM 4 3208.53 16.74
lr1 2 7 13 3190.75 SAM 12 3851.36 7.12 lr2 2 7 3 3190.75 LL 3 3337.28 41.52
lr1 2 8 10 2718.23 SAM 9 2871.67 41.18 lr2 2 8 3 2295.44 SAM 3 2407.66 39.59
lr1 2 9 15 4224.35 SAM 14 4411.54 37.14 lr2 2 9 4 3198.44 SAM 4 3198.44 1.59
lr1 2 10 12 3654.80 LL 11 3744.95 4.70 lr2 2 10 3 3447.42 SAM 3 3478.67 44.10
lrc1 2 1 19 3606.06 SAM 19 3606.06 0.06 lrc2 2 1 7 2997.06 SAM 6 3690.10 10.80
lrc1 2 2 16 3621.30 SAM 15 3681.36 47.48 lrc2 2 2 6 2674.16 SAM 6 2666.01 0.41
lrc1 2 3 14 3255.33 SAM 13 3161.75 27.06 lrc2 2 3 5 2620.85 SAM 5 2523.59 53.78
lrc1 2 4 10 2890.02 SAM 10 2655.27 10.67 lrc2 2 4 4 2202.89 SAM 4 2795.7 4.94
lrc1 2 5 16 3750.52 SAM 16 3715.81 2.20 lrc2 2 5 5 2785.75 SAM 5 2776.93 2.86
lrc1 2 6 17 3368.66 SAM 17 3368.66 0.97 lrc2 2 6 5 2707.75 SAM 5 2707.96 2.51
lrc1 2 7 16 3326.18 SAM 15 3417.16 17.17 lrc2 2 7 5 2546.77 SAM 4 3050.03 16.67
lrc1 2 8 14 3164.50 LL 14 3087.62 14.99 lrc2 2 8 4 2442.04 SAM 4 2401.84 40.99
lrc1 2 9 15 3100.88 SAM 14 3129.65 20.97 lrc2 2 9 4 2209.94 SAM 4 2750.30 23.75
lrc1 2 10 13 2884.71 SAM 13 2833.85 56.06 lrc2 2 10 4 2059.16 SAM 3 2699.55 31.46

report the time in minutes taken by LNS to the best solution (the simulating
annealing time being fixed). Bold-face entries indicate improvement over the best
known solution.

The tables indicate that our algorithm produces very high-quality solutions
across the board. For 100 customers, it produces two new best solutions and
matches 54 (93%). For 200 customers, it improves 28 (47%) best solutions and
matches 24 (40%). For 600 customers, it produces 46 new solutions (77%), while
matching 5 more (8%). Since previous work does not report computation times,
it is impossible to make comparisons. Most 100-customer instances are solved
quickly, spending little time in LNS in almost all instances. On the 200-customer
instances, the variation in running time is much larger and can range from a
few seconds to almost an hour. The 600-customer instances spend significant
amounts of time in LNS. Note that these times are comparable to those of our
state-of-the-art VRPTW algorithm [1].

In summary, these preliminary results are extremely encouraging and demon-
strate that the approach produces very high-quality results in reasonable times.

7 Discussion and Related Work

This paper originated as an attempt to generalize our hybrid algorithm for the
VRPTW to pickup and delivery problems. The hope was to validate the claim
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Table 3. 600 Customers.

Best SA/LNS Best SA/LNS
V TD Pub V TD Time V TD Pub V TD Time

lc1 6 1 60 14095.6 LL 60 14095.6 0.01 lc2 6 1 19 7977.98 SAM 19 7977.98 0.88
lc1 6 2 59 14164.0 LL 58 14379.5 1.96 lc2 6 2 19 8483.50 SAM 19 8253.67 19.06
lc1 6 3 54 15920.6 SAM 51 14569.3 46.45 lc2 6 3 18 7500.13 SAM 18 7436.50 64.37
lc1 6 4 48 13567.5 SAM 48 13750.6 89.21 lc2 6 4 18 8513.88 LL 18 9479.88 89.99
lc1 6 5 60 14086.3 LL 60 14086.3 0.82 lc2 6 5 19 8596.84 LL 19 8047.37 53.37
lc1 6 6 60 14090.8 LL 60 14090.8 0.51 lc2 6 6 19 8328.40 SAM 19 8237.58 53.36
lc1 6 7 60 14083.8 LL 60 14083.8 0.82 lc2 6 7 19 8704.89 SAM 19 8038.56 48.81
lc1 6 8 59 14670.4 SAM 59 14554.3 11.32 lc2 6 8 18 8147.00 LL 19 7855.38 88.57
lc1 6 9 56 14993.4 LL 55 14648.1 85.44 lc2 6 9 19 8258.20 SAM 19 8304.29 43.55
lc1 6 10 57 15337.7 LL 54 14870.3 59.96 lc2 6 10 18 7963.86 SAM 18 7853.27 55.24
lr1 6 1 59 24149.1 SAM 59 22838.3 53.04 lr2 6 1 12 18842.4 SAM 12 18840.8 23.63
lr1 6 2 46 22854.4 SAM 45 20985.7 55.46 lr2 6 2 11 20243.4 LL 11 22348.2 59.90
lr1 6 3 37 19975.6 LL 37 18685.9 82.16 lr2 6 3 10 17855.1 SAM 10 16657.5 59.69
lr1 6 4 28 14717.3 SAM 28 14199.9 86.05 lr2 6 4 7 14595.6 SAM 7 14223.2 82.71
lr1 6 5 42 21750.6 SAM 40 22188.8 78.88 lr2 6 5 11 15907.5 SAM 10 21250.1 88.26
lr1 6 6 37 20376.7 SAM 35 20406.2 59.73 lr2 6 6 10 19160.3 SAM 9 21722.8 89.44
lr1 6 7 31 16709.3 SAM 28 16963.8 86.42 lr2 6 7 8 16778.0 LL 8 16262.0 59.80
lr1 6 8 21 12978.3 SAM 21 12620.1 88.01 lr2 6 8 8 11671.2 SAM 6 13344.1 38.08
lr1 6 9 37 21821.2 SAM 34 21273.3 88.05 lr2 6 9 10 18791.2 SAM 9 18853.4 58.22
lr1 6 10 30 19120.7 LL 29 18373.9 59.09 lr2 6 10 8 19070.6 SAM 8 18869.2 17.08
lrc1 6 1 54 18251.2 SAM 53 17930.0 24.34 lrc2 6 1 17 13172.6 SAM 17 13111.6 22.16
lrc1 6 2 47 16736.9 SAM 45 16040.3 32.52 lrc2 6 2 15 11587.8 SAM 15 11463.0 55.74
lrc1 6 3 39 15525.2 SAM 36 14407.6 54.82 lrc2 6 3 13 12428.64 SAM 11 15167.3 78.21
lrc1 6 4 27 12138.4 SAM 25 11308.6 89.82 lrc2 6 4 11 8282.80 SAM 8 12512.5 89.42
lrc1 6 5 49 17368.4 SAM 47 16803.9 87.75 lrc2 6 5 15 12401.5 SAM 15 12309.7 46.47
lrc1 6 6 48 17869.8 SAM 45 17126.4 89.60 lrc2 6 6 13 12679.3 SAM 14 12894.1 72.36
lrc1 6 7 42 16020.3 SAM 40 15493.5 59.15 lrc2 6 7 12 12998.4 SAM 12 13851.5 38.01
lrc1 6 8 37 15626.0 LL 36 15352.6 58.93 lrc2 6 8 12 10898.3 SAM 12 11877.8 89.35
lrc1 6 9 37 15342.6 SAM 37 15253.7 71.08 lrc2 6 9 11 11917.2 SAM 11 14810.5 56.60
lrc1 6 10 34 14137.5 SAM 33 13830.5 59.25 lrc2 6 10 10 13165.4 SAM 9 12874.8 73.08

in [19] that LNS should handle side-constraints gracefully. The algorithm pre-
sented here keeps the two-stage approach of the original algorithm, but it differs
in several important ways. First, the SA algorithm was no longer able to use the
wealth of moves available for the VRPTW. It is now based on a single move,
pair relocation, which is also used in other algorithms for the PDPTW [12,16].
However, despite its simplicity, the SA algorithm boosts the quality of LNS sig-
nificantly, since LNS cannot decrease the number of vehicles sufficiently on many
benchmarks. The LNS adaptation to the PDPTW was less drastic. The key idea
is to select and reinsert pickup and delivery customers in pairs. Additional ap-
proximations, i.e., maintaining only a subset of the insertion points, was also
necessary to obtain high-quality solutions on large-scale problems and problems
with many customers.

Single vehicle pickup and delivery problems were first introduced by [17] in
1980. Small instances of multiple vehicle problems with time windows were in-
troduced and solved optimally in [3]. A good survey of the various models and
techniques utilized in early work on pickup and delivery problems can be found
in [18]. More recent advances on multiple vehicle problems has focused on meta-
heuristics including tabu search and simulated annealing. Tabu search was used
in [12,16] to minimize another objective function, i.e., total schedule duration,
in pickup and delivery problems. They use pair relocation as one of their neigh-
borhood operators to move customers between routes. They also introduced pair
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exchange operators and a single customer relocation within the same route. A
tabu search/simulated annealing hybrid was successfully used in [14] to solve
the PDPTW. This algorithm was compared in detail in the experimental sec-
tion. Excellent results were also produced in [21] but the report is not available
unfortunately. A squeaky wheel algorithm was also proposed in [15], but it does
not seem to be competitive with the two earlier algorithms in solution quality.

8 Conclusion

This paper proposed a two-stage hybrid algorithm for pickup and delivery vehi-
cle routing problems with multiple vehicles and time windows (PDPTW). The
algorithm minimizes the number of vehicles using simulated annealing in the first
stage, and minimizes travel cost using LNS in the second stage. Experimental
results show the effectiveness of the approach which produced many new best
solutions on instances with 100, 200, and 600 customers.

More precisely, the results demonstrate that the two-stage approach boosts
the solution quality of LNS significantly, that a simple simulated annealing algo-
rithm is excellent in reducing the number of vehicles, and that LNS, with appro-
priate reductions in its underlying search space, is very effective in optimizing
travel cost. The paper also settles positively the open issue in the original LNS
paper, which advocated the use of LNS for the PDPTW because of its ability to
handle side-constraints gracefully. More generally, these results seem to indicate
that a two-step approach, combining SA and LNS, should produce high-quality
results for vehicle routing problems with additional side-constraints.

There are many open issues that deserve attention. As research moves to
large-scale problems involving several hundreds or thousands of customers, scal-
ing the algorithms raise new interesting challenges that were not systematically
studied here. It is indeed unlikely that the same algorithmic configuration would
perform effectively on all instances. It would be interesting to study the impact
of various decisions on the behaviour of the algorithm and to study how to tune
these decisions dynamically during search. It is also clear that a unique algo-
rithm does not exist for all purposes. It would be interesting to study algorithms
producing high-quality results for the PDPTW in short times, even if there is
some decrease in solution quality and robustness. Finally, it is of great interest
to evaluate the approach on complex problems with additional side-constraints.
Obviously, progress in that respect will strongly depend on the availability of
such complex instances.
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CH used for storing the error information of the CH problem (similar notion was defined
by Bistarelli et al. [4]). We give also an algorithm for enforcing CH-2-C of a CH problem.
While classical consistency algorithms [19] aim to reduce the size of constraint problems,
our CH-2-C algorithm works by explicating error information that is originally implicit
in CH problems. We also suggest ways of utilizing such extracted information to help
prune non-fruitful computation in a branch-and-bound searching algorithm, which forms
the basis of our finite domain CH solver. We have constructed a prototype of the solver,
and performed experiments on a set of randomly generated CH problems that confirm
the efficiency and robustness of our proposal.

This paper is a revised and extended version of another by the same authors [3].
The rest of the paper is organized as follows. Section 2 provides necessary back-

ground definitions. In Section 3, we present an equivalent redefinition of the CH frame-
work using the notion of error indicators and hierarchy problem, which are central
in the definition of constraint hierarchy k-consistency and the associated enforcement
algorithm in Section 4. In Section 5, we give a constraint hierarchy 2-consistency en-
forcement algorithm and discuss its complexity. The finite domain CH solver, which
has a branch-and-bound backbone, is introduced in Section 6, followed by experimental
results in Section 7. Related works are discussed in Section 8 before summarizing the
major results and shedding light on possible future direction of research in Section 9.

2 Constraint Hierarchies

Let D be a constraint domain. A variable x is an unknown that has an associated vari-
able domain D(x) ⊆ D, which defines the set of possible values for x. An n-ary
constraint c is a relation over Dn. A labeled constraint cs is a constraint c with a
strength s ∈ {0, . . . , k}. The strengths are totally ordered. Constraints with strength
s = 0 are required constraints (or hard constraints) and those with strength 1 ≤ s ≤ k
are non-required constraints (or soft constraints). The larger the strength, the weaker
the constraint is. In addition, each labeled constraint may be associated with a weight w
(for use with the global comparators). A constraint hierarchy H is a multiset of labeled
constraints. The symbol Hi denotes a set of labeled constraints with strength s = i.
H0, the required level, denotes the set of required constraints which must be satisfied.
H1, . . . , Hk, the non-required level, denote the sets of non-required constraints which
can be violated but should be satisfied as much as possible. We use an example in Fig-
ure 1 to explain CHs in more details. There are three levels in the constraint hierarchy
H . There are no required constraints in the required level H0. However, there are two

V = {x, y, z} and D(x) = D(y) = D(z) = {1, 2}
H = {H0, H1, H2, H3}
H0 = ∅, H1 = {c1

1 : x > y, c1
2 : x = 2}, and

H2 = {c2
1 : y = 3, c2

2 : z < y}
H3 = {c3

1 : z = 1, c3
2 : x + y + z > 4}

Fig. 1. An example of constraint hierarchy.
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strong constraints c1
1 and c1

2 in H1, two medium constraints c2
1 and c2

2 in H2 and two
weak constraints c3

1 and c3
2 in H3.

A valuation θ = {v1 �→ d1, . . . , vn �→ dn} for a set of variables {v1, . . . , vn}
assigns to each vi the value di ∈ D(vi). Let c be a constraint and θ a valuation. The
expression cθ is the boolean result of applying θ to c. We say that cθ holds if cθ is
true. An error function e(cθ) measures how well a constraint c is satisfied by valuation
θ. The error function returns non-negative real numbers and must satisfy the property:
e(cθ) = 0 ⇔ cθ holds. A trivial error function is an error function that gives 0 if cθ
holds and 1 otherwise. The value e(cθ) returned by an error function is an error value.
We use vars(c) (or vars(θ)) to denote the set of all variables in constraint c (or valuation
θ). The possible valuations for the variables {x, y, z} are {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8}.
Figure 2 gives the error values of all valuations in the complete search tree using the
trivial error function. The error values of a valuation θ are computed for each constraint
(e(c1

1θ), e(c
1
2θ), e(c

2
1θ), e(c

2
2θ), e(c

3
1θ), e(c

3
2θ)). Since, for example, θ1 satisfies c3

1 but
violates c1

1, e(c3
1θ1) = 0 and e(c1

1θ1) = 1 respectively. We can obtain the error values
of other valuations similarly. In order to compare values, a number of comparators
are defined: locally-better (l-b), weighted-sum-better (w-s-b), worst-case-better (w-c-
b), and least-squares-better (l-s-b). We can use these comparators to define solutions of
CHs [8].

θ Error values for e(ci
jθ) θ Error values for e(ci

jθ)
θ1 (1, 1, 1, 1, 0, 1) θ5 (0, 0, 1, 1, 0, 1)
θ2 (1, 1, 1, 1, 1, 1) θ6 (0, 0, 1, 1, 1, 0)
θ3 (1, 1, 1, 0, 0, 1) θ7 (1, 0, 1, 0, 0, 0)
θ4 (1, 1, 1, 1, 1, 0) θ8 (1, 0, 1, 1, 1, 0)

Fig. 2. The possible valuations and their error values.

3 A Reformulation of Constraint Hierarchies

To facilitate subsequent illustration of the CH local consistency concept, we formulate
the CH framework [8] (in particular in the definition of comparators and solution set)
using error indicators (as defined in [4]).

We denote an error value by ξ, possibly with subscripts. Let I = {ξ1, . . . , ξN} be
a poset (partially ordered set), each element ξj of which is an error indicator. Given
a constraint hierarchy H = {H0, . . . , Hn} where n is the number of non-required
levels, and for all i ∈ {0, . . . , n}, Hi = {ci

1, . . . , c
i
ki
} with ki being the number of

constraints in level i. An error indicator ξθ of a valuation θ for a set of variables V
is a tuple of error values such that ξθ = 〈〈ξθ

0
1, . . . , ξθ

0
k0
〉, . . . , 〈ξθ

n
1 , . . . , ξθ

n
kn
〉〉 and
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∀a ∈ {0, . . . , n},∀b ∈ {1, . . . , ka}, ξθ
a
b = e(ca

bθ) if vars(ca
b ) ⊂ V and ξθ

a
b = 0 if

vars(ca
b ) �⊂ V . Error indicators provide a measure of the “badness” of valuations with

respect to H .
To explain the meaning of the error indicator of a valuation, we use the example in Fig-

ure 1 with the trivial error function. If θ = {z �→ 2}, then ξθ = 〈〈〉, 〈0, 0〉, 〈0, 0〉, 〈1, 0〉〉.
If θ = {x �→ 1, y �→ 2}, then ξθ = 〈〈〉, 〈1, 1〉, 〈1, 0〉, 〈0, 0〉〉. If θ = {x �→ 2, y �→
2, z �→ 1}, then ξθ = 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 1〉〉.

The comparator predicate better in the original CH formulation is redefined using a
partial order, denoted by ≺. We define ≺ to be irreflexive and transitive over I . Hence,
it preserves the meaning of better. Intuitively, ξ′ ≺ ξ′′ means ξ′′ is “better” than ξ′ in
I . In general, ≺ will not provide a total ordering. For convenience, we define � such
that ∀ξ′, ξ′′ ∈ I, ξ′ � ξ′′ → (ξ′ ≺ ξ′′) ∨ (ξ′ = ξ′′).

We can redefine l-b in the original formulation as a partial order ≺l−b as follows.
Given any two valuations θ and σ, and the corresponding error indicators ξθ and ξσ ,
≺l−b is defined as:

ξθ ≺l−b ξσ ≡ ∃l > 0 such that ∀i ∈ {0, . . . , l − 1},
∀j ∈ {1, . . . , ki}, ξθ

i
j = ξσ

i
j

∧∃a ∈ {1, . . . , kl}, ξσ
l
a < ξθ

l
a

∧∀b ∈ {1, . . . , kl}, ξσ
l
b ≤ ξθ

l
b.

The intuitive meaning of ξθ ≺l−b ξσ is that valuation σ is locally-better than valu-
ation θ.

Similarly, we can define g-b≺g−b, and its instances w-s-b≺w−s−b, w-c-b≺w−c−b,
and l-s-b≺l−s−b respectively. Given any two valuations θ and σ, and the corresponding
error indicators ξθ and ξσ:

ξθ ≺g−b ξσ ≡ ∃l > 0 such that ∀i ∈ {0, . . . , l − 1},
g(〈ξθ

i
1, . . . , ξθ

i
ki
〉) = g(〈ξσ

i
1, . . . , ξσ

i
ki
〉)

∧g(〈ξσ
l
1, . . . , ξσ

l
kl
〉) < g(〈ξθ

l
1, . . . , ξθ

l
kl
〉),

where g is a combining function for error values:

ξθ ≺w−s−b ξσ ≡ ξθ ≺g−b ξσ , where g(〈ξi
1, . . . , ξ

i
ki
〉) ≡

∑
j∈{1,...,ki} ξi

j ,

ξθ ≺w−c−b ξσ ≡ ξθ ≺g−b ξσ , where g(〈ξi
1, . . . , ξ

i
ki
〉) ≡ maxξi

j | j ∈ {1, . . . , ki}},
ξθ ≺l−s−b ξσ ≡ ξθ ≺g−b ξσ , where g(〈ξi

1, . . . , ξ
i
ki
〉) ≡

∑
j∈{1,...,ki} ξi

j
2
.

Notice that by definition, all local/global comparators ignore constraints in hierarchy
levels greater than or equal to l.

We are now ready to define the solution set S of a CH with variables V by:

S0 = {θ | vars(θ) = V, ξθ
0
i = 0 for all i ∈ {1, . . . , k0}} and

S = {θ ∈ S0 | ∀σ ∈ S0, ξθ �≺ ξσ}.

The following lemma gives the monotonicity of the introduced comparators, which are
collectively denoted by ≺better and �better in the rest of the paper.
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Lemma 1. Given any two error indicators ξ′ and ξ′′. If for all a, b we have ξ′′a
b ≤ ξ′a

b ,
then ξ′ �better ξ′′.

Notice that the above lemma lets us compare valuation for both local and global
comparators (because the�better order implies all the orders induced from any specific
comparator) and for arbitrary error functions.

We also introduce the notion of a hierarchy problem which is a CH augmented with
error information.

Definition 1 (Hierarchy Problem and Error Indicator Store). A hierarchy problem
P = 〈H, IH〉 is a constraint problem, where H is a CH with variables V and IH is a
set containing error indicator stores ξx=d for all variables x ∈ V and for all d ∈ D(x).
Each ξx=d is used for keeping an estimate (a lower bound) of the errors of valuations
involving {x �→ d}.

Definition 2 (Solution of a Hierarchy Problem). A valuation θ is a solution of P =
〈H, IH〉 if (1) θ is a solution of H and (2) ξθ �better ξx=d for all ξx=d ∈ IH .

In other words, solutions of P = 〈H, IH〉 are solutions of H which have a “worse” error
than the estimates provided in IH . By the definition, the solutions of H always contain
those of 〈H, IH〉. Equality holds when the error estimates provided in IH fails to “filter”
out any solutions of H .

Theorem 1. Consider a CH H and the associated hierarchy problem P = 〈H, IH〉,
and denote the solution sets of H and P by SH and SP respectively.

– SP ⊆ SH , and
– SP = SH if ξθ �better ξx=d for all (x �→ d) ∈ θ and θ ∈ SH .

In particular, a hierarchy problem 〈H, IH〉 must share the same solution as H if all
ξx=d ∈ IH contain only the error value 0 (i.e. no error information). This fact is useful
in ensuring the correctness of our local consistency algorithm and the completeness of
our branch-and-bound solver later.

4 Local Consistency in CHs

The classical notion of local consistency [19] characterizes when a constraint problem
contains non-fruitful values. The main purpose of detecting local inconsistency is thus
to remove the inconsistent values from the variable domains and constraints. Hence,
the problem is “simpler” to solve when the problem is smaller. However, we adopt a
more general notion of local consistency used for SCSP: “Applying a local consistency
algorithm to a constraint problem means explicitating some implicit constraints, thus
possibly discovering inconsistency at a local level” [5]. We adapt this general notion for
CH, and define constraint hierarchy k-consistency (CH-k-C).

Before defining CH-k-C, we need two operations, MAX and MIN , on error
indicators. Given a CH H with n non-required levels and any two error indicators,
ξθ, ξσ ∈ I , for H .MAX (ξθ, ξσ) is defined as

〈〈max(ξθ
0
1, ξσ

0
1), . . . , max(ξθ

0
k0

, ξσ
0
k0

)〉, . . . , 〈max(ξθ
n
1 , ξσ

n
1 ), . . . , max(ξθ

n
kn

, ξσ
n
kn

)〉〉

andMIN (ξθ, ξσ) is



Solving Finite Domain Constraint Hierarchies 143

〈〈min(ξθ
0
1, ξσ

0
1), . . . , min(ξθ

0
k0

, ξσ
0
k0

)〉, . . . , 〈min(ξθ
n
1 , ξσ

n
1 ), . . . , min(ξθ

n
kn

, ξσ
n
kn

)〉〉
where ki is the number of constraints in level i of H .

Given two error indicators,MIN (orMAX ) combines the two indicators by taking
the best (or the worst). ObviouslyMAX andMIN are commutative and associative.
Thus, it makes sense to write MAX{ξ1, . . . , ξK} and MIN{ξ1, . . . , ξK}) for any
K > 2.

Given a CH H with variables V . If x ∈ V and d ∈ D(x), we define

approxk(x �→ d) =
MAX{MIN{ξθ | vars(θ) = {x} ∪ U, (x �→ d) ∈ θ} | U ⊂ V, |U | = k − 1}

for any 1 ≤ k ≤ |V |. We call it k-approximation, which provides an estimate of
the “badness” of valuations involving the assignment x �→ d for all m-ary constraints
involving x with m ≤ k. Since the error indicators of all valuations involving x �→ d
might not be comparable, we can only give an approximation, and approx|V |(x �→ d)
gives an error estimate involving all constraints in the problem. However, calculating
approx|V |(x �→ d) is computationally expensive, and approxk(x �→ d) for some small
k < |V | gives a more practical approximation.

Referring to the same example in Section 2,

approx2(y �→ 2)
=MAX{MIN{ξ{x�→1,y �→2}, ξ{x�→2,y �→2}},

MIN{ξ{y �→2,z �→1}, ξ{y �→2,z �→2}}}
=MAX{MIN{〈〈〉, 〈1, 1〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉},

MIN{〈〈〉, 〈0, 0〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈0, 0〉, 〈1, 1〉, 〈1, 0〉〉}}
=MAX{〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈0, 0〉, 〈1, 0〉, 〈0, 0〉〉}
= 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉

The following theorem states that approxk(x �→ d) is monotonically decreasing in k.

Theorem 2. If H is a CH with variables V , x ∈ V and d ∈ D(x), then approxk2(x �→
d) �better approxk1(x �→ d), ∀1 ≤ k1 ≤ k2 ≤ |V |.

By using Lemma 1 we can show that k-approximations provide upper bounds for
the error indicators of complete valuations for any comparators.

Theorem 3. If H is a CH with variables V , x ∈ V and d ∈ D(x), then ξθ �better

approx|V |(x �→ d) �better approxk(x �→ d) for all 1 ≤ k ≤ |V | and all θ such that
vars(θ) = V and (x �→ d) ∈ θ, where �better represents any locally/globally better
comparator.

Theorem 3 suggests that k-approximations can be used as the basis of the notion of local
consistency in CH.

A hierarchy problem P = 〈H, IH〉 is constraint hierarchy k-consistent (CH-k-C) if
the error indicator stores in IH explicitly indicate the implicit inconsistency information
in all m-ary constraints in H where m ≤ k. Formally, we define CH-k-C as follows.
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Definition 3 (CH k-Consistency (CH-k-C)). Given a hierarchy problem P = 〈H, IH〉
with variables V . P is CH-k-C if, for all ξx=d ∈ IH , ξx=d �better approxk(x �→ d)
for some 1 ≤ k ≤ |V |.

The CH-k-C condition of P = 〈H, IH〉 imposes that the estimated error information
of H placed in the error indicator stores in IH is at least as accurate as that provided by k-
approximations. In addition, explicating the error P = 〈H, IH〉 using k-approximations
makes P CH-k-C without changing the solution space of P .

Theorem 4. Given a hierarchy problem P = 〈H, IH〉with variables V . If each ξ′
x=d ∈

I ′
H is defined as follows:

ξ′
x=d =

{
ξx=d if ξx=d �better approxk(x �→ d)
approxk(x �→ d) if approxk(x �→ d) �better ξx=d

where ξx=d ∈ IH , then the hierarchy problem P ′ = 〈H, IH〉 is (1) CH-k-C and (2)
shares the same solution set as P .

A simple corollary follows directly from Theorems 1 and 4.

Corollary 1. Given a hierarchy problem P = 〈H, IH〉 with variables V , and P ′ =
〈H, IH〉 defined so that each ξ′

x=d ∈ I ′
H is:

ξ′
x=d =

{
ξx=d if ξx=d �better approxk(x �→ d)
approxk(x �→ d) if approxk(x �→ d) �better ξx=d

where ξx=d ∈ IH . Denote the solution sets of H , P , and P ′ by SH , SP , and SP ′

respectively.

SH = SP ⇔ SH = SP ′

5 A CH-2-C Enforcement Algorithm

Arc-consistency algorithm is a common and practical technique to detect local inconsis-
tency in classical CSPs [2,15].We design and implement an algorithm to enforce CH-2-C.
The purpose of the CH-2-C algorithm is to explicate and place in IH the implicit error
information in a CH that is otherwise not visible. Such an algorithm is given in Figure 3.
The subroutines ch1c pri and ch2c pri, in Figures 4 and 5 respectively, are responsible
for handling unary and binary constraints respectively. The CH-2-C algorithm ensures
that all error indicator stores ξx=d are updated to reach approx2(x �→ d).

Consider a general CH of nc labeled constraints with nv number of variables. In
addition, the size of the largest variable domain is of nd. The time complexity of the
subroutine ch1c pri is simply of O(nd), since the only repeating operations, lines 4 to
6 in Figure 4, are placed inside a single loop. These operations are repeated until each
element in a variable domain is tested. However, the time complexity of the subroutine
update (Figure 6) is of O(nd

2). Therefore, in the worst case, the time complexity of the
subroutine ch2c pri is of O(nd

2) as shown in Figure 5. Lines 3 to 5 in the pseudocode of
the CH-2-C algorithm are the operations for checking constraints as shown in Figure 3.
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Algorithm 1: The CH-2-C algorithm.

ch2c(H , V , D, IH )
begin

1 for l← 1 to n do

2 for k← 1 to |Hl| do

3 let c be the kth constraint in Hl;
4 IH ← ch1c pri(c, l, k, D, IH );
5 IH ← ch2c pri(c, l, k, D, IH );

6 return IH ;
end

Fig. 3. The CH-2-C algorithm.

ch1c pri(c, l, k, D, IH )
begin

1 if |vars(c)| = 1 then

2 let {x} = vars(c);
3 for each d ∈ D(x) do

4 let θ = {x �→ d};
5 let ξ = ξx=d ∈ IH ;
6 if ξl

k < e(cθ) then ξl
k ← e(cθ);

7 return IH ;
end

Fig. 4. A subroutine to check unary constraints.

Since these operations should repeat until all the constraints are considered, the time
complexity should be of O(ncnd

2).
Since an error indicator is a tuple which stores error values of the corresponding

constraints, the space complexity for each error indicator is of O(nc). The memory
requirement of the CH-2-C algorithm depends on the number of error indicator stores in
IH . Therefore, we require nvnd error indicators. The space complexity of the CH-2-C
algorithm is simply of O(nvndnc) in the worst case.

Notice that some better local consistency algorithms could be defined when consid-
ering only a specific comparator (see for instance [4] for specific operators dealing with
l-b).

6 A Branch-and-Bound Finite Domain CH Solver
The simplest way to find the solution set of a CH is to construct the complete search tree
for the problem, so that we can calculate and compare the error values of each valuation.
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ch2c pri(c, l, k, D, IH )
begin

1 if |vars(c)| = 2 then

2 let {x, y} = vars(c);
# Update each ξx=dx

∈ IH

3 IH ← update(x, y, c, l, k, D, IH );
# Update each ξy=dy

∈ IH

4 IH ← update(y, x, c, l, k, D, IH );

5 return IH ;
end

Fig. 5. A subroutine to check binary constraints.

update(x, y, c, l, k, D, IH )
begin

1 let ξmin be an error value;
2 for each dx ∈ D(x) do

3 ξmin←∞;
4 for each dy ∈ D(y) do

5 let θ = {x �→ dx, y �→ dy};
6 if e(cθ) < ξmin then ξmin← e(cθ);

7 let ξ = ξx=dx
∈ IH ;

8 if ξl
k < ξmin then ξl

k ← ξmin;

9 return IH ;
end

Fig. 6. A subroutine to update error indicator stores.

However, traversing the complete search tree and comparing all the valuations are tedious
and time-consuming. We propose to combine the CH-2-C and the branch-and-bound
algorithms so as to prune non-fruitful branches of the search tree.

The input to our solver is a hierarchy problem P = 〈H, IH〉, in which IH contains no
error information. In other words, the error indicator stores in IH contain only the error
value 0. The backbone of our solver is a standard branch-and-bound algorithm, since CH-
solving is an optimization problem.A branch-and-bound algorithm always maintains the
set of potential best solutions collected so far. The idea is to invoke the CH-2-C algorithm
at each node in the search tree, hoping that the overhead in the CH-2-C algorithm can
be more than compensated by the pruning that can take place. The correctness and
completeness of this step is ensured by Corollary 1, so that maintaining CH-2-C will
not change the solution space of the hierarchy problem and the associated CH. At each
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Fig. 7. A Branch-and-bound CH Solver with Pruning.

CH-2-C tree node, before search proceeds down a selected branch corresponding to a
variable assignment, say x �→ d, the solver tries to verify if ξx=d in IH of that tree node
is not worse than the error indicator of each potential solution. If that is the case, search
proceeds; otherwise, there is no point to explore the selected branch any further, and
search is backtracked to try another branch. When a leaf node is reached, we compare
the error indicator ξ of the valuation associated with the leaf node against the error
indicators of all the collected solutions. If the error indicator of any collected solution
is worse than ξ, then the collected solution will be replaced by the current valuation.

Our CH-2-C algorithm ensures that each error indicator store ξx=d is approx2(x �→
d). By Theorem 3, the error indicator of every complete valuation involving assignment
x �→ d must be worse than approx2(x �→ d). If at a search node, ξx=d is worse than

Algorithm 2: A Branch-and-bound CH Solver with Pruning.

bb solv(H , IH , V , D, S0, in out IS0 , ≺better)
begin

# Any classical arc consistency algorithm
1 D← arc consistent(H0, D);
2 if D contains an empty variable domain then
3 return S0;

4 else if D contains all singleton variable domain then
5 let θ be the valuation corresponding to D;
6 let ξθ be the error indicator corresponding to θ;
7 ξθ ← cal error values(H , θ, ξθ);
8 for each σ ∈ S0 do
9 if ξσ ≺better ξθ then

10 S0 ← S0 − {σ}; IS0 ← IS0 − {ξσ};
11 else if ξθ ≺better ξσ then return S0;

12 S0 ← S0 ∪ {θ}; IS0 ← IS0 ∪ {ξθ};
13 return S0;

for each ξx=d ∈ IH do
if d �∈ D(x) then

IH ← IH − {ξx=d};

IH ← ch2c(H , V , D, IH );
14 choose variable x ∈ V for which |D(x)| ≥ 2;
15 W ← D(x);
16 for each d ∈W do

if go(ξx=d, S0, IS0 , ≺better) then
17 S0 ← bb solv({H0 ∧ x = d,H1, . . . , Hn}, IH , V , D, S0, IS0 , ≺better);

18 return S0;
end
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the error indicators of each potential solution collected so far, there is no point to search
on since all the possible valuations down that branch must be worse than the potential
solutions. The details of our finite domain CH solver is shown in Figure 7, which is
a simple adaptation of a basic branch-and-bound solver with the CH-2-C algorithm.
The numbered lines give the backbone of the algorithm, while the unnumbered lines
are new additions to enable CH-2-C enforcement. The algorithm use as parameters the
constraints in H and and the stores in IH , the variables V and the domain D. It also
needs the set of assignments S0 satisfying constraints in H0, and the corresponding set
of error indicators IS0 . The algorithm is also parametric w.r.t. the type of comparator we
want to use (≺better).

Although CH-2-C encompasses also crisp notions of node and arc consistency, we
employ classical algorithms [19] for processing the required constraints in H0 (lines 1)
for performance reasons. Lines 5 to 13 deal with the case of a leaf node. Here there is a
call to subroutine cal error value that computes the error e(cθ) for each θ. The CH-2-C
algorithm is invoked between lines 13 and 14. Lines 14 to 17 perform the basic variable
instantiation (or searching) recursively. The call to the subroutine go determines whether
the error indicator store of the variable assignment of the selected branch in IH of the
current node is not worse than the error indicator of each of the collected solutions so
far.

7 Experimental Results

We compare the performance of our proposed solver with generate-and-test, basic
branch-and-bound, and the reified constraint approach by Lua (the Lua’s solver here-
after) [16]. DeltaStar is only a theoretical framework [11], and clp(FD,S) cannot in the
current implementation deal with hierarchies. Since both Lua’s solver and ours are based
on a branch-and-bound backbone, we first implement a solver engine Sg , which searches
using ILOG’s default goal definition, in ILOG Solver 4.4 in a generate-and-test fashion.
In order to provide a basic Branch-and-Bound solver (without CH-2-C enforcement) for
comparison, we define an alternative ILOG goal to obtain Sb. Our proposed solver Sc

is obtained by implementing additional functions and an alternative goal definition Gc

in Sg . While the input to our solvers is a CH, the input to Lua’s solver Sr (“r” stands
for “reified constraint”) is a CSP with reified constraints for implementing a specific
comparator and error function. Our comparison ensures fairness since all four solvers
share the same backbone.

Our experiments are conducted on Sun Ultra 5/400 workstations with 256MB RAM.
We record the execution time taken by Sg , Sb, Sc, and Sr to find the solution set of each
problem instance using a particular comparator, denoting these timings tg , tb, tc, and
tr. For each problem instance and comparator, we compute three ratios: tg/tc, tb/tc,
and tr/tc. Each number in the following tables corresponds to the average of the same
type of ratios for fifteen problem instances in a particular problem set Pi and a particular
comparator. The columns on the left compare Sg and Sc, while the ones in the middle
compare Sb and Sc, and the ones on the right compare Sr and Sc (only for global
comparators). Our 3-part experiments test the effect of variable domain size, number of
variables, and number of hierarchy levels on the performance of our proposed solver.
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In each part, four sets of CHs: P1, P2, P3, and P4, each of which contains 15 problem
instances, are generaged randomly. All problem instances have no hard constraints to
make them more “difficult” to solve.

In the first part, the number of variables and the number of hierarchy levels are fixed
(|V | = 5, H = {H0, H1, H2}, |H0| = 0, and |H1| = |H2| = 5) across all instances,
while problems in the same set share a specific domain size: Pi has domains of size 10i
for i ∈ {1, 2, 3, 4}.

tg/tc (Mean) tb/tc (Mean) tr/tc (Mean)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P1 8 5 7 10 6 4 6 7 5 4 5
P2 36 15 37 13 18 22 19 9 9 19 9
P3 267 67 261 171 121 47 123 31 113 42 115
P4 385 72 342 76 37 35 39 23 17 27 18

In the second part, the variable domain size and the number of hierarchy levels are
fixed (|D(x)| = 5 for all variables x, H = {H0, H1, H2}, |H0| = 0, and |H1| =
|H2| = 5) across all instances, while problems in the same set share a specific number
of variables: Pi has 2(i + 1 variables for i ∈ {1, 2, 3, 4}.

tg/tc (Mean) tb/tc (Mean) tr/tc (Mean)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P1 1.2 0.9 1.3 1.2 1.2 1.3 1.5 1.4 1.1 1.1 1.4
P2 6 3 6 5 5 3 5 4 5 3 5
P3 7 3 7 4 5 4 5 3 4 4 4
P4 24 8 24 26 3 7 3 5 1.4 6 1.4

In the third part, the number of variables and the variable domain size are fixed
(|V | = 5, |D(x)| = 20 for all variables x, and |H0| = 0) across all instances, while
problems in the same set share a specific number of hierarchy levels: Pi has i + 1
non-required levels each with 5 constraints for i ∈ {1, 2, 3, 4}.

tg/tc (Mean) tb/tc (Mean) tr/tc (Mean)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P1 146 108 151 122 44 44 44 32 37 39 39
P2 209 130 212 116 51 116 50 34 38 104 39
P3 232 168 219 50 42 121 44 21 31 113 29
P4 122 154 124 75 58 132 60 26 51 128 52

The CH-2-C algorithm incurs overhead in the branch-and-bound search. For the
larger problems in P2, P3, and P4, the extra effort paid by the CH-2-C algorithm at
each search node is demonstrated worthwhile. This result is in line with the behavior
of embedding classical consistency techniques in basic tree search in solving classical
CSPs.

The Lua’s solver relies on classical constraint propagation to enforce the semantics
and the operations of the comparators via reified constraints. While the approach, based
on existing technology, is clever and clean, the pruning power of reified constraints is
relatively weak. On the other hand, Sc executes a dedicated algorithm for maintaining
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CH-2-C to help pruning and solution filtering, thus attaining a higher efficiency. In
particular, Sr performs the worst on the w-c-b comparator, since the error combining
constraint is implemented using the IlcMax constraint in ILOG Solver 4.4, which is
again weak in propagation.

8 Related Work

Many efficient algorithms have been proposed to solve CHs, such as DeltaBlue [12],
SkyBlue [22], DETAIL [18], Indigo [6], Generalized Local Propagation [17], and Ultra-
violet [7], apply Local Propagation [24]. Besides, Cassowary and QOCA algorithms [9],
adapting the Simplex algorithm [21], can also solve CHs efficiently. However, they are
designed for the real number domain. We focus on finite domain CHs solving techniques;
we can categorize the techniques into four different approaches.

First, the Incremental Hierarchical Constraint Solver (IHCS) [20] proposes to trans-
form a given constraint hierarchy into a set of best configurations (a set of constraints).
Therefore, a given CH can be transformed into a set of classical CSPs. However, it can
only find l-b solutions using the trivial error function. The second approach is to trans-
form CHs into ordinary constraint systems based on reified constraint propagation [16].
This approach can only find solutions for global comparators (w-s-b, w-c-b, and l-s-b).
The third approach exploits the fact that CH is an instance of the SCSP framework [5].
Bistarelli et al. [4] show how a c-semiring can be constructed to model all instances of
globally-better. In addition, only the w-c-b can enjoy semiring-based arc-consistency
techniques [5] supported in clp(FD,S) [14]. The clp(FD,S) solver, however, limits the
size of the semiring to only 32 elements, making it difficult to model any practically
sized problems. The last is the refining approach used by DeltaStar [13]. It is a generic
finite domain CH solver which can find solutions for arbitrary comparators in theory.
However, it recomputes the solution in each recursive step causing significant overhead.
Hence, it is used only as a general and theoretical framework for solution, from which
efficient algorithms, such as DeltaBlue (only equality constraints) and Cassowary (a
very restricted finite domain subsolver), are inspired and designed for some subset of
the general problem [11].

This paper is also related to many work in soft constraint processing aiming to show
how information gained through local consistency checking during preprocessing can
be used to enhance branch-and-bound search using local computations as global bounds.
In fact, when dealing with Constraint Hierarchies with only 2 levels, w-s-b and w-l-b
correspond to weighted CSPs and w-c-b to fuzzy CSPs. Some work, similar to our,
already appear (see for example Weighted CSPs [25], and Valued CSPs[23,10]). The
bounds computed by these works are better then ours when we restrict our computations
to only 2-level, and to a specific comparator.

Our results are somewhat more general. We are able to compute bounds for CH with
any number of levels and without fixing a priori a comparator. To reach better bounds we
can easily fix a comparator and define a specific approxk(x �→ d) function. Bistarelli
et al. [4]defined such operators for the specific case of l-b.
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9 Conclusion

We formally define constraint hierarchy k-consistency (CH-k-C), based on error indica-
tors. Incorporating a CH-2-C enforcement algorithm in a branch-and-bound algorithm,
we obtain a general finite domain CH solver, which works for arbitrary comparators.
Search space is pruned by utilizing the error information generated by the CH-2-C al-
gorithm. Experiments confirm the efficiency of our research prototype, which brings us
one step towards practical finite domain CH solving.

There is room for future research. First, our implementation and even the CH-2-C
algorithm are hardly optimized. They have much scope for improvement. Second, we
test our solver only on random problems. Experiments on more structured problems and
real-life problems are needed. Third, our consistency-based and Lua’s reified constraint
approaches do not compete. It would be interesting to study if the two methods can be
combined to produce more pruning. Fourth, the efficiency of branch-and-bound algo-
rithms can be sensitive to variable and value orderings. It is worthwhile to investigate
good ordering heuristics specific to the CH-2-C and the branch-and-bound algorithms.
Fifth, the current proposal of our solver guarantees the correctness of local and global
comparators. In addition, it is easy to check that our solver can support regional compara-
tor [26], regionally-better comparator. The existing comparators, although rigorously
and mathematically defined, might be too general for a specific real-life situation. It
would be interesting to introduce new comparators that should be of particular relevance
to real-life problems and applicable to our solver.
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Abstract. This paper presents a constraint programming model and
search strategy to formulate and solve staff scheduling problems in health
care. This is a well-studied problem for which many different approaches
have been developed over the years but it remains a challenge to suc-
cessfully apply any given instance of a method to the various contexts
encountered. We show how the main categories of rules involved may be
expressed using global constraints. We describe a modular architecture
for heuristic search. The resulting flexible and rather general constraint
programming approach is evaluated on benchmark problems from differ-
ent hospitals and for different types of personnel.

1 Introduction

In many industries and public services work is carried out on a continuous basis,
twenty-four hours a day, seven days a week. Health care workers (nurses and
doctors) are in such a situation. Managing hospital personnel is a perpetual
balancing act between three very important, yet often contradictory, objectives:
high quality care provided to patients, good working conditions for the staff,
and low costs. The first corresponds to the mission of the health care sector, the
second contributes significantly to personnel retention, and the third ensures
that we make the best of limited financial resources. Warner [19] recognizes
three levels of decision making in managing a nursing staff, and much of it
applies equally to doctors:

i. The staffing decision (strategic): dimensioning care units by determining the
amount of staff required for each skill.

ii. The scheduling decision (tactical): building the actual schedules that specify
when each staff member works and what task is performed, in a scheduling
horizon spanning from one week to several months.

iii. The allocation decision (operational): readjusting daily because of unforeseen
events such as illness or an increase in demand.

We focus here on the second level and consider the number of care units, the
amount of staff and the demand fixed from the first level. Since financial costs
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are primarily influenced by that first level, the two objectives that remain are the
quality of the care provided and working conditions for the staff. Such objectives
do not readily lend themselves to formalization. The problem is to some extent
fuzzy in the sense that optimality is not easily defined through a formula. In
practice, human judgement is required to make a choice from a set of candidate
schedules meeting predefined criteria.

There are two main families of solutions in staff scheduling: rotating sched-
ules and personalized schedules. When the personnel is interchangeable, rotating
schedules, a repeating pattern of sequences of work and rest days alternating over
a few weeks, are particularly well adapted. In effect, everyone has an identical
schedule but that is out of phase with the others, thus ensuring fairness among
the staff. When members of the personnel have individual restrictions or prefer-
ences that must be taken into consideration, such as unavailabilities due to other
activities or particular skills, rotating schedules become inappropriate. Person-
alized schedules for each member of personnel are then preferred. That latter
family is typical for doctors and even for nurses.

Staff scheduling is a well-studied problem for which many different approaches
have been developed over the years (see for example [6] for a recent survey in
the health care sector). In particular, constraint programming has been applied
to nurse scheduling. A semi-automated system is described in [1]. A step by
step procedure is implemented in [9] for a French hospital, possibly requiring
manual adjustments during the scheduling process. Redundant modeling is used
in [8] to generate one-week schedules for nurses in a Hong-Kong hospital. An-
other system written in CHIP is currently used by a French hospital [7]. Finally,
[12] combines constraint programming and local search to produce schedules for
several German hospitals.

Staff scheduling in health care remains a challenging problem: most of the
time it is still solved by hand through a lengthy process, and where automated
systems are involved they tend to be strongly linked to a particular context.
There are significant differences between hospitals or even between care units
of a hospital in the rules governing the schedules, due to government or union
regulations but also to local traditions emerging over the years. Nevertheless,
the rules encountered fall into a few categories common to all contexts (see Sect.
2).

We make two contributions in this paper. First, we describe a flexible and
rather general constraint programming approach to the staff scheduling prob-
lem in health care (doctors or nurses), the hibiscus software. Though this
may not be a new domain of application for constraint programming, we be-
lieve its widespread use of global constraints and the different contexts to which
it is successfully applied are indeed novel in this area. Second, we propose a
modular architecture for heuristic search that combines ranking information on
variable/value pairs from the individual constraints present in the model.

In the rest of the paper: Section 2 describes the staff scheduling problem in
health care; Section 3 lays down the constraint programming model for hibis-
cus; Section 4 develops its search heuristics, including the modular architecture
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combining information from the constraints; Section 5 presents and discusses the
results on real data sets; Section 6 summarizes the contributions and identifies
future research directions.

2 Staff Scheduling in Health Care

Scheduling is about assigning resources to tasks (here, staff members to work
shifts) in time, while respecting various constraints (here, the rules below). The
resulting work schedules consist of sequences of work shifts of several types
separated by rest periods. A sample schedule is given at Fig. 4.

2.1 The Rules

We present the main categories of rules for this problem, based on the relevant
literature and on our own experience with many hospitals in the Montreal area
[6,11,2,10,18,4,5,17]. Concrete examples of such rules are given in Sect. 3.

Demand (DEM). A sufficient number and variety of shifts must be staffed
throughout the scheduling horizon in order to guarantee minimum coverage.

Availability (AVA). A given staff member, according to his qualifications,
full/part time status, vacation, and outside responsibilities, is not available at all
times. We distinguish preassignments (AVA1), forbidden assignments (AVA2), and
candidate vacation days (AVA3) from which a certain number must be selected.

Distribution (DIS). Many rules aim at a fair distribution of shifts among
staff members and at balanced individual schedules. We distinguish individual
workloads (DIS1), constrained to lie in a given range over the whole scheduling
horizon or subsets of it to encourage a uniform workload, balance for a certain
type of shift among the staff (DIS2), either evenly or according to some crite-
rion such as seniority, distribution of weekends off (DIS3) across the scheduling
horizon for individual staff members, and relative proportion of certain types of
shifts (DIS4) in individual schedules.

Ergonomics (ERG). This is the largest and most heterogeneous category. Vari-
ous rules ensure a certain level of quality for the schedules produced and may be
specified either globally for the staff or only for certain individuals. We distin-
guish patterns of shifts over certain days (ERG1) such as alternating between two
types of shifts on weekends, length of stretches of shifts of identical type (ERG2)
to avoid working too few or too many days in a row on a certain shift, patterns
of stretches (ERG3) such as forward rotation (going from day shifts to evening
shifts to night shifts to day shifts again), patterns of stretches of a given length
(ERG4) that ask for at least so many consecutive shifts of a certain type right
after shifts of another type, and preferences and aversions (ERG5).

Rules regarding demand and availability are always hard. Some distribution
and ergonomic rules may be soft.
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3 hibiscus Constraint Programming Model

Let H denote the index set for successive days of the planning horizon, P for
staff members, and Q for possible shifts, including off and vacation. A shift type
is a set of shifts sharing a particular property (e.g. morning shifts, work shifts).
More generally, a shift type may include any subset of Q. Considering a partition
α of Q into m classes, α = {Q1, · · · , Qm}, the type of a shift q with respect to
α, denoted by tα(q), is the index i such that q ∈ Qi.

3.1 Variables

For each staff member i ∈ P and each day j ∈ H, we define an assignment
variable Xij ∈ Q that indicates which shift is assigned to i on day j. For
short, we use Xi• (respectively X•j) to represent successive assignment variables
〈Xi1, Xi2, . . . , Xi |H|〉 associated to staff member i (respectively 〈X1j , X2j , . . . , X|P |j〉
associated to day j).

In addition to assignment variables, we define as needed some auxiliary vari-
ables in order to implement the constraints of the problem. In particular, con-
sidering a partition α as before, it is possible to define an auxiliary variable
Y ∈ {1, 2, . . . ,m} that indicates the type of an assignment variable Xij as fol-
lows: Y = tα(Xij).

3.2 Constraints

Most availability constraints (AVA) such as preassignments and forbidden as-
signments are easily modeled as unary constraints (Xij = q or Xij �= q). We
rather focus on the higher arity constraints required. Again, this is a nice appli-
cation domain for constraint programming because it showcases several of the
global constraints developed over the years. We first review those higher arity
constraints that are needed, establishing a notation and concentrating on their
semantics, filtering capability, and computational complexity. We then go back
to the rules presented in Sect. 2 and, using real cases, provide instances together
with the way we model them using the following constraints.

SUM Constraints. Consider a vector U = 〈U1, U2, . . . , Un〉 of integer variables
and an additional integer variable S. Constraint SUM(U, S) guarantees that S is
the sum of variables Ui (1 ≤ i ≤ n). The filtering algorithm we use only checks
bound consistency and its time complexity is linear in n.

EXTENSION Constraints. Given a vector U = 〈U1, U2, . . . , Un〉 of finite domain
variables, constraint EXTENSION(U, T ) defines in extension the set T of ad-
missible n-tuples for U. The filtering algorithm that maintains generalized arc-
consistency is exponential in n. For that reason, we use this type of constraint
only when a small number of variables is involved.
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DISTRIBUTION Constraints [15]. Consider vectors U = 〈U1, U2, . . . , Un〉 of finite
domain variables, C = 〈C1, C2, . . . , Cm〉 of integer variables, and V = 〈v1, v2, . . . ,
vm〉 of values. Constraint DISTRIBUTION(C, V, U) guarantees that each Cj

equals the number of variables in U whose value is vj . Its filtering algorithm
achieves generalized arc consistency and runs in polynomial time. This constraint
could be implemented using m ordinary cardinality constraints. However, it is
possible to reduce the complexity of filtering by treating simultaneously the m
possible values in a global constraint.

SLIDING DISTRIBUTION Constraints [16]. Consider vector V=〈v1, v2, . . . , vm〉,
vector U = 〈U1, U2, . . . , Un〉 of finite domain variables taking their values in V ,
and two vectors of m integers λ and λ. Constraint SLIDING DISTRIBUTION(U, V,
λ, λ, w) guarantees that in each subsequence of U of length w, value vk (1 ≤ k ≤
m) appears between λk and λk times. This constraint is conceptually equivalent
to DISTRIBUTION constraints expressed on each position of a sliding window but
treating them all at once improves the filtering capability.

STRETCH Constraints [14]. Consider a set V = {v1, v2, . . . , vm} and a sequence
s = 〈s1, s2, . . . , sn〉 whose elements belong to V . We call stretch of type v ∈ V
in s any maximal subsequence 〈si, si+1, . . . , sj〉 of elements all equal to v. The
length of the stretch equals j − i + 1. Consider a vector U = 〈U1, U2, . . . , Un〉
and let λ and λ be two vectors of m integers. Constraint STRETCH(U, V, λ, λ)
guarantees that the length of any stretch of type vk (1 ≤ k ≤ m) lies between
λk and λk. The difference with the previous constraint is that we are counting
consecutive variables of a certain value. The filtering algorithm of the constraint
exhibits a running time that is quadratic in m and linear in λ and λ.

PATTERN Constraints [13]. We call k−pattern any sequence of k elements
such that no two successive elements have the same value. Consider a set V =
{v1, v2, . . . , vm} and a sequence s = 〈s1, s2, . . . , sn〉 of elements of V . Consider
now the sequence 〈vi1 , vi2 , . . . , vi�

〉 of the types of the successive stretches that
appear in s. Let P be a set of k−patterns. Vector s satisfies P if and only if every
subsequence of k elements in 〈vi1 , vi2 , . . . , vi�

〉 belongs to P. For example, let
s = 〈a, a, b, b, b, a, c, c〉 and P = {(a, b, a), (a, b, c), (b, a, c)}. The sequence of the
types of the successive stretches that appear in s is 〈a, b, a, c〉. Since (a, b, a) and
(b, a, c), the two subsequences of three elements in 〈a, b, a, c〉, both belong to P,
s satisfies P. Constraint PATTERN(U, P) guarantees that any assignment for U
satisfies P. The filtering algorithm of constraint PATTERN is low polynomial.

3.3 Instances of the Rules

Demand Constraints (DEM). A demand constraint makes it possible to control
the number of staff members that are present at a particular period of a day. A
so-called period is simply defined by an interval of time in the day (for example,
between noon and 4pm). Observe that staff member i is present at a particular
period on day j if and only if shift Xij covers the considered period.
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Let us consider the following simplified example where there are five shifts
in Q: q1 from midnight to 8am, q2 from 8am to 4pm, q3 from 8am to 8pm, q4
from 4pm to midnight, and q5 (off). Therefore, the day is partitioned according
to four time periods p1 =[midnight, 8am], p2 =[8am, 4pm], p3 =[4pm, 8pm] and
p4 =[8pm, midnight]. Note that p1 is covered by shift q1, p2 by q2 and q3, p3
by q3 and q4, and p4 by q4. Consider vectors q = (3, 5, 6, 3) and q = (6, 8, 9, 6)
indicating the minimum and maximum workforce required for each period (q

�
≤

workforce at p� ≤ q�). In order to express the constraint, we first introduce
a vector M = 〈M1, . . . , M5〉 of auxiliary variables to represent the number of
occurrences of each shift during day j. Then, we state

DISTRIBUTION(M, Q, X•j),

SUM(〈M1〉, S1), SUM(〈M2, M3〉, S2), SUM(〈M3, M4〉, S3), SUM(〈M4〉, S4),

3 ≤ S1 ≤ 6, 5 ≤ S2 ≤ 8, 6 ≤ S3 ≤ 9, 3 ≤ S4 ≤ 6.

Workload Constraints (DIS1). A workload constraint is defined by a 5-tuple
(i, jbeg, jend, h, h) and imposes that the number of hours worked by staff member
i over the time period (set of successive days) [jbeg, jbeg+1 . . . jend] lies between h
and h.

Let us consider the following example where there are seven shifts in Q: off
(that lasts 0 hours); D4 and E4 (4 hours); D6 (6 hours); D8, N and E8 (8 hours).
We consider the workload constraint with (i, jbeg, jend, h, h) = (i, 15, 21, 30, 35)
that requires staff member i to work between 30 and 35 hours over the third
week of the horizon (from day 15 to day 21). A straightforward way to express
the constraint is to state 30 ≤ h(Xi 15) + h(Xi 16) + · · · + h(Xi 21) ≤ 35, where
h(X) represents the duration of the shift assigned to X. Note that, in this case,
simple bound consistency would normally be applied.

We use in hibiscus the following more powerful way to express the con-
straint. Let αDIS1 = {Q1, . . . , Qp} be the partition of Q into classes of shifts hav-
ing the same duration and h1, . . . , hp be the durations of shifts in Q1, . . . , Qp.
In our example, there are four classes and the possible durations of the shifts
are 0, 4, 6, and 8. Let T represent the set of tuples (m1 . . .mp) such that
h ≤

∑
1≤k≤p hkmk ≤ h and

∑
1≤k≤p mk = jend − jbeg + 1. For the exam-

ple, T = {(m1,m2,m3,m4) : 30 ≤ 0 ∗ m1 + 4 ∗ m2 + 6 ∗ m3 + 8 ∗ m4 ≤ 35
and m1 + m2 + m3 + m4 = 7} = {(3, 0, 0, 4), (3, 0, 1, 3), . . .}. We introduce
auxiliary variables Y = 〈Y1, . . . , Yjend−jbeg+1〉, where Yk = tαDIS1(Xijbeg+k−1)
(1 ≤ k ≤ jend − jbeg + 1) and multiplicity variables M = 〈M1, . . . , Mp〉, where
Mk (1 ≤ k ≤ p) will count the number of variables in {Xijbeg , . . . , Xijend} whose
assigned value belongs to class Qk. To express the constraint, we state

DISTRIBUTION(M, 〈1, . . . , p〉, Y), EXTENSION(M, T ).

Note that this way of expressing the constraint ensures generalized arc con-
sistency. The filtering algorithm is exponential in p but this is not a problem in
practice since the number of possible durations never exceeds five in the instances
encountered.
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In some cases, workloads are expressed not on calendar weeks but on a sliding
window of a given number of days. For example in any nine consecutive days,
five or six must be worked:

SLIDING DISTRIBUTION(X, 〈off, day, evening, night〉, 〈3, 1, 1, 1〉, 〈4, 9, 9, 9〉, 9).

Distribution of Weekends Off (DIS3). Consider a staff member i ∈ P who may
work at most two weekends in a row. Note that to work on a weekend means
that the considered staff member performs a work shift on Saturday or Sunday,
or even performs a Friday work shift that overlaps Saturday, for example a night
shift from 8pm to 4am. We introduce auxiliary variables W = 〈W1, W2, . . .〉 with
Wk ∈ {y, n} indicating whether weekend k is worked at all (y) or not (n) by staff
member i. Let Hk ⊂ H be the set of days that correspond to weekend k and
Qj ⊂ Q the set of work shifts for day j. We then state

Wk = y ⇔
∨

j∈Hk

∨
v∈Qj

(Xij = v)

STRETCH(W, 〈y, n〉, 〈1, 1〉, 〈2,∞〉).

Length of Stretches of Shifts of Identical Type (ERG2). Consider a staff member
i ∈ P who may work at least two but at most seven day shifts in a row or evening
shifts in a row, and at least three but at most six night shifts in a row. This rule
can be expressed as

STRETCH(Xi•, 〈day, evening, night, off〉, 〈2, 2, 3, 1〉, 〈7, 7, 6,∞〉).

Consider another rule that says that stretches of night shifts must be at
least fourteen days apart. We introduce partition αERG2 = {Q1 = {night}, Q2 =
Q \ Q1} and auxiliary variables Y = 〈Y1, . . . , Y|H|〉, where Yk = tαERG2(Xik) (1 ≤
k ≤ |H|). Since class Q2 includes any shift that may separate two stretches of
night shifts, this rule can be expressed as

STRETCH(Y, 〈1, 2〉, 〈1, 14〉, 〈∞,∞〉).

Patterns of Stretches (ERG3). Consider a staff member i ∈ P and the set of shifts
Q = {day, evening, night, off}. In order to impose homogeneous stretches of work
and forward rotation (recall from Sect. 2), we introduce the set P of 3-patterns
{odo, oeo, ono, dod, eoe, non, doe, eon, nod} (with d=day, e=evening, n=night, and
o=off). The first three patterns in P ensure that the stretches are homogeneous:
for example, a day-stretch is preceded and followed by rests and not any other
type of work shift. The last six patterns allow us to move from one work stretch
to another of the same type or one type forward. We then state

PATTERN(Xi•, P).
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Patterns of Stretches of a Given Length (ERG4). Any staff member i ∈ P work-
ing three consecutive night shifts must then have at least three days off. Such
constraints can be expressed using STRETCH and EXTENSION constraints. Because
of space limitations, we can only outline this combination. An auxiliary variable
Yij is linked to each Xij , with a domain containing two values corresponding to
night, two others to off, and one to all the other shifts. The first “night” value is
reserved to represent stretches of three nights and the first “off” value to repre-
sent stretches of three days off. A set of pairs T is then built to only allow the
right transitions from one shift to another. Finally the following constraints are
stated:

STRETCH(Y, 〈3nights, 3offs, night, off, others〉, 〈3, 3, 1, 1, 1〉, 〈3, 3, 2,∞,∞〉),

EXTENSION(〈Yij , Yij+1〉, T ) (1 ≤ j ≤ |H| − 1).

4 hibiscus Search Heuristics

This section describes the search heuristics used to complement the model just
described. In an initial phase, vacations are taken care of. Vacation days are
often preassigned or are otherwise considerably restricted in their location. Con-
sequently they generally have little impact on the search for good solutions and
are fixed first.

4.1 Problem Decomposition

Next consider our decision variables Xij arranged in a matrix whose rows cor-
respond to staff members and columns to days of the planning horizon, thus
offering a natural graphical representation of a schedule. Note that most of the
constraints identified in Sect. 2 link variables horizontally, on individual sched-
ules, while demand constraints (DEM) link them vertically. The many contexts
we examined may be partitioned in two classes: those whose vertical constraints
are tight (a precise demand as opposed to one lying in a certain range) while
the (horizontal) workload constraints (DIS1) are loose (within a range); those
whose vertical constraints are loose but whose workload constraints are tight (a
set number of hours per week). The former typically corresponds to emergency
room physicians and the latter to nurses.

So while the types of constraints encountered may be the same, the relative
tightness of some has an impact on which dimension of the problem is harder
to solve and hence on which search strategy offers better chances of success. For
these two classes, which to our knowledge have always been treated separately
in the literature, we use different decomposition strategies but using the same
model. They are decomposition by day (i.e. column by column) and decomposi-
tion by individual schedule (i.e. row by row) (see Fig. 1). The decision of which
one to use is solely based on which constraints are tight.
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Fig. 1. Two decompositions of the staff scheduling problem.

Either case induces subproblems that must be tackled in a certain order. Days
are ordered chronologically to help the satisfaction of horizontal ergonomic con-
straints and individual schedules are ordered randomly for lack of a significantly
better ordering.

4.2 Variable/Value Ordering Heuristic

We describe a simple framework for the definition of heuristics to select vari-
able/value pairs whose main asset is its modular structure following that of the
constraint programming model for the problem at hand. To each constraint of
the model (hard or soft) we may associate an incentive heuristic whose goal is to
favor, among uninstantiated variables, value assignments that bring us closer to
satisfying that constraint. Each incentive heuristic associates a score to potential
assignments and those scores are then combined to dynamically select the next
variable/value pair (see Fig. 2).

Model Strategy

hard

soft
heuristic

heuristic

choices

static
choicesconstraint

constraint

conceptual link

scores computation

dynamic

Fig. 2. Modular architecture of the variable/value ordering heuristic.

Incentive heuristic h acts on a subset Xh = {Xh
1 , Xh

2 , . . . Xh
k} of the variables

of the problem. Given the current domains of those variables, function

φh : Xh
1 ×DXh

1
∪ · · · ∪ Xh

k ×DXh
k
→ R

assigns numerical scores to variable/value pairs. LetH denote the set of incentive
heuristics present and X the set of our decision variables Xij . For each potential
assignment (X, v) we compute a weighted sum of the individual scores
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π(X, v) =
∑

h∈H : X∈Xh

ωh · φh(X, v).

We then select the assignment with the largest π() value.
An incentive heuristic can be designed for every type of constraint in the

model in order to bring its contribution to the variable/value ordering heuristic.
In what follows, we detail one such example and outline another.

Incentive Heuristic for Demand Constraints (DEM). As we saw in Sect.
3.2, demand is broken down for each period of a day. To ease the exposition
and without loss of generality, we present the heuristic for the demand on one
given period and express it in the slightly more general context of a cardinality
constraint. Let X represent a set of m variables, DX the current domain of a
variable X, T the subset of values of interest, and ν and ν two natural numbers.
The number of times variables from X are assigned a value from T must be at
least ν and at most ν.

We introduce n, the number of variables that necessarily take their value in
T , and n, the number of variables that necessarily take their value outside T .
These are computed as

n = |{X ∈ X : DX ⊆ T}|
n = |{X ∈ X : T ∩DX = ∅}|.

We also propose ñ = m−n+n
2 as a rough estimate of the final number of values

from T in X.

νν0 m

ñ

ñ

ñ

ñ ≤ ν

ν < ñ < ν

ñ ≥ ν

Fig. 3. Three cases of the incentive heuristic for the demand constraint.

Three cases may arise, which we give below with the corresponding score
function and which we also illustrate at Fig. 3.

If ñ < ν, we wish to encourage assignments from T :

φh(X, v) =
{

1 if v ∈ T ,
0 otherwise.

If ν ≤ ñ ≤ ν, we remain neutral:
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Table 1. Instances tested.

Origin |P | |H| |Q| success rate avg time std dev
CHILD 41 42 5 80% 9.5 15.8
BC 54 42 12 70% 8.4 5.1
ERMGH 41 42 4 80% 78.3 192.7
HSC 18 28 8 100% 25.0 53.5

φh(X, v) = 0.

If ñ > ν, we wish to discourage assignments from T :

φh(X, v) =
{

0 if v ∈ T ,
1 otherwise.

An incentive heuristic for workload constraints (DIS1) can be designed along
the same lines since it is a straightforward generalization to weighted cardinality
in which weights correspond to the duration of shifts.

5 Experimental Results

The “Optimization of Health Care Management” research team in Montreal has
been collecting data from several hospitals in order to create a set of benchmarks
on which to evaluate several approaches (column generation, 0-1 linear program-
ming, tabu search, constraint programming) developed by different members of
the team over the years. Some initial results have already been obtained and an
extensive comparison should soon be possible. In this section, we present some
experiments performed on real-world instances from that evolving benchmark:
they originate from three hospitals in Montreal.

5.1 Data Sets

Table 1 presents some characteristics of these instances. The first four columns
respectively give the name of the instance, the number of staff members, the
number of days in the scheduling horizon, and the number of shifts. CHILD and
BC are nurse scheduling instances originating from two different units of the
same hospital; ERMGH is a nurse scheduling instance from a different hospital;
HSC is a physician scheduling instance from still another hospital. A complete
description of the instances may be found in [3]. Note that the number of decision
variables equals |P | · |H| and the size of all domains equals |Q|. Therefore, these
instances are quite large.

5.2 Experiments

For the experiments reported here, the search heuristic was kept simple by using
a single incentive heuristic at a time, thereby not requiring the setting of weights
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ωh for the combination of different influences. We will eventually investigate the
interplay between several incentive heuristics.

For decomposition by individual schedule, recall that the order in which the
subproblems are solved is chosen randomly, whereas for decomposition by day,
subproblems are solved in chronological order. At this early stage of experimen-
tation with incentive heuristics, chronological variable ordering for the former
decomposition and smallest-domain-first variable ordering for the latter per-
form slightly better than the fully-fledged variable/value ordering heuristic, and
so they are used to produce the results reported here. However, the incentive
heuristic approach does yield the best results for value ordering and is therefore
retained in that capacity. In order to better evaluate the robustness of our algo-
rithm and to offer several candidate solutions to the decision maker, we break
ties at random during value ordering.

hibiscus was implemented using the ilog Solver C++ constraint program-
ming library. In our experiments, we performed ten runs of one hour each (on
a Sun Ultra-10, 440 MHz). Each run finishes with a success (when a feasible
solution is found) or a failure.

Table 1 presents the results obtained. The fifth column gives the success
rate based on the ten runs. The sixth and seventh columns respectively give
the average computation time and the standard deviation in seconds for the
successful runs. In every instance, the success rate is high and the majority of
solutions are found within a few seconds.

n◦ Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 - - - - - - - - D D - - A B H H - B - B A - D - B - - -
2 - E E - - - - - - - - - - - - C H H H - - - E - D - - -
3 - F - B - - - - C - B - B A - F - E - - - - F - A - - H
4 - C - A E E E - - - F F - - - - - - - - - - - - - - - -
5 - D C C H - H - E E E - - - F D C C - H H - C C C H - -
6 - A - D - H - - F - D - - - B - - D - - - - B - - A - -
7 - B - H C D C - B - - A - - - B - F - A B - A H - B - -
8 - - - - - - - - A - C - H H D - D - E E E - - - F F - -
9 F - D - - A B E - H - B - - A - F - F - - H H E - - H -
10 H H - F B - - H H - A - - - - - - - - - - D - - E - B A
11 E - H - F - - D - C - D C D C - B - - - - C - D - - A B
12 D - F - D C D C - F - H - - - - - - - - - B - - H E E E
13 C - B - - B A F - B - - - - E E E - - - - F - F - D C D
14 B - - E - - - B - - H C D C - A A - B - - E - B - - - -
15 G - G - G - - G - G - G - - G - G - G - - G - G - G - -
16 A - A - A - - A - A - E E E - - - A A - - A - A - C D C
18 - - - - - - - - - - - - - - - - - - D C D - - - - - - -
19 - - - - - - - - - - - - - - - - - - C D C - - - - - - -

Fig. 4. A sample schedule for HSC. “-” corresponds to off.

5.3 Discussion

Warner [19] proposes a short check-list to compare staff scheduling approaches:

Coverage : Are the tasks adequately covered by the schedule provided? Oth-
erwise the hospital must call on additional personnel.
Quality : How good are the working conditions of the staff, based on union
rules, hospital rules, and individual preferences?
Stability : Are individual schedules fairly homogeneous? Then staff members
can more easily organize their social and family life.
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Flexibility : How elegantly does the approach deal with changes from one
scheduling horizon to the next (personnel turnover, going from full time to
part time, vacation, change of preferences, etc.)?
Fairness : Are the tasks equally shared among the staff, while taking into
account varying status (seniority, full time vs part time)?
Cost : What amount of resources (human, time, computing power) were
required to build the schedule?

Coverage is a requirement of the vast majority of the methods proposed, includ-
ing ours, and therefore it is necessarily achieved. Quality and fairness depend on
how the corresponding rules are handled. Some methods, typically local search
but also others, associate penalties to rule violations and try to minimize their
weighted combination. We treat most of those rules as (hard) constraints, pos-
sibly with some amount of tolerance built in: it is therefore easier to guarantee
a certain level of quality and fairness. The danger is that the instance becomes
over-constrained and some of the recent work on soft constraints could prove
useful. Currently, the search heuristic described in Sect. 4 allows us to add in-
centives for preferences (ERG5) and to aim for a given target in cases where the
constraint has been loosened somewhat by a certain tolerance. Being able to
enforce weekly workloads and special rules for weekends off helps in achieving
stability in the resulting schedules. As for flexibility, the fact that schedules have
been produced for different hospital contexts, with similar categories of rules
but often very distinct instantiations of those rules, shows that our method goes
beyond adapting from one scheduling horizon to the next in a given context. Nev-
ertheless, we believe that the weakest part of hibiscus is currently its search
strategy: it could be made more robust. To its defense, we clearly have not yet
explored its full potential in combining incentives. As for cost, human cost is
very low since no assistance is required and computational cost is also low.

6 Conclusion

This paper presented a constraint programming model and search strategy to
formulate and solve staff scheduling problems in health care. hibiscus turns out
to be quite flexible and able to adapt to many different situations encountered
in staff scheduling. This is first due to its global constraints, such as constraints
on stretches that make it possible to capture the large number of rules present
in this type of application. Another promising feature is the flexible technique
proposed in order to introduce search heuristics. We are presently generalizing
the introduction of heuristics in hibiscus. Again note that, in real life, there is
generally no evaluation function to optimize, but simply preferences generally
expressed in a fuzzy way, such as: to favour or discourage some particular shifts
for a staff member, to balance the types of shifts assigned to a staff member,
to balance unpopular shifts between staff members, and so forth. The heuristic
approach explored in hibiscus seems to be well suited to deal with this kind of
soft constraint.
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Abstract. In many situations, a set of hard constraints encodes the feasible con-
figurations of some system or product over which users have preferences. We
consider the problem of computing a best feasible solution when the user’s util-
ities are partially known. Assuming bounds on utilities, efficient mixed integer
linear programs are devised to compute the solution with minimax regret while
exploiting generalized additive structure in a user’s utility function.

1 Introduction

The problem of interactive decision making has received a fair amount of attention
over the years [10, 17], but recently has seen increasing interest within AI as automated
decision aids become more prevalent. As has been argued elsewhere [6, 4], there are
many situations in which the set of decisions and their dynamics are fixed, while the
utility functions of different users vary widely. In such a case, some form of utility
elicitation must be undertaken in order to capture user preferences to a sufficient degree
to allow an (approximately) optimal decision to be taken. Different approaches to this
problem have been proposed, including Bayesian methods that quantify uncertainty
about preferences probabilistically [7, 4], and methods that simply pose constraints on
the set of possible utility functions and refine these incrementally [17, 5, 16].

These issues arise as well in the context of constraint-based optimization problems.
For instance, in a car rental scenario, possible configurations are defined by attributes
such as automobile size and class, manufacturer, seating and luggage capacity, etc.
Available cars are limited by the configurations offered by manufacturers and stock
availability, with hard constraints used to encode infeasible configurations (e.g., no lux-
ury sedans have 4-cylinder engines). Different customers have different preferences for
configurations in this restricted decision space [14], and this information must be ob-
tained in an effective way. Typically, categorical preferences are obtained from the cus-
tomer, and imposed as constraints; but if no feasible solution is found, these constraints
are relaxed incrementally.

While interactive preference elicitation has received little attention in the CSP com-
munity, optimizing with respect to a given set of preferences over configurations has
been studied extensively, with many frameworks proposed for modeling such systems

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 168–182, 2003.
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[15, 3]. Most frameworks can be viewed as adding “soft” constraints that have associ-
ated penalties or values that indirectly represent a user’s preferences for different config-
urations. However, modeling preferences as constraints and assuming complete utility
information is often problematic. For instance, users may have neither the ability nor
the patience to provide full utility information to a system. Furthermore, in many if not
most instances, an optimal decision (or some approximation thereof) can be determined
with a very partial specification of the user’s utility function.

In this paper, we adopt a somewhat different view. We assume a user’s preferences
are represented directly as a utility function over possible configurations. In the car
rental scenario, this utility function can be thought as a measure of the value (not neces-
sarily monetary) of each car from the customer’s point of view. Given a utility function
and the hard constraints defining the decision space, we have a standard constraint-
based optimization problem. However, as argued earlier, it is unrealistic to expect users
to express their utility functions with complete precision, nor will we generally require
full utility information to make good decisions. Thus we are motivated to consider the
problem of “optimizing” in the presence of partial utility information. Specifically, we
assume that bounds on utility function parameters are provided, and consider the prob-
lem of finding a feasible solution that minimizes maximum regret [11] within the space
of feasible utility functions. We show that this minimax problem can be formulated and
solved using a set of linear integer programs (IPs) and mixed integer programs (MIPs)
in the case where utility functions have no structure. In practice, some utility structure
is necessary if we expect to solve problems of realistic size. We therefore also consider
problems where utility functions can be expressed using a generalized additive form
[1] (which includes linear functions and graphical models like UCP-nets [5] as special
cases). We derive two solution techniques for solving such structured problems: the first
gives rise to a MIP with fewer variables combined with an effective constraint genera-
tion procedure; the second encodes the entire minimax problem as a single MIP using
a cost-network to formulate a compact set of constraints.

Though our emphasis is on solving problems using the minimax regret criterion,
we also briefly discuss how preference elicitation relates to this model. Specifically, we
describe methods that can be used to refine utility uncertainty in a way that quickly
reduces minimax regret. Throughout, our emphasis is on the compact formulation and
solution of the constrained optimization problems as mixed integer programs. While
these can be solved using a variety of techniques, including branch-and-bound methods
with various constraint propagation techniques, we do not consider specialized methods
for solving these MIPs (our experiments, for example, use generic MIP solvers). We
leave this investigation to future research.

2 Constraint-Based Optimization and Minimax Regret

We begin by describing the basic problem assuming a known utility function to estab-
lish background and notation, and then define the minimax regret decision criterion for
solving constraint-based decision problems given only incomplete utility information.
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2.1 Optimization with Known Utility Functions

We assume a finite set of attributes X = {X1, X2, . . . , XN} with finite domains. An
assignment x ∈ Dom(X) is often referred to as a state. For simplicity of presentation,
we assume these attributes are boolean, but nothing important depends on this. We also
have a set of hard constraints C over these attributes. Each constraint C�, � = 1, ..., L, is
defined over a set X[�] ⊂ X, and thus induces a set of legal configurations of attributes
in X[�]. We assume that the constraints C� are represented in some logical form and can
be expressed compactly: for example, we might write X1 ∧ X2 ⊃ ¬X3 to denote the
legal configurations of X1, X2, X3. We let Feas(X) denote the subset of feasible states
(i.e., assignments satisfying C).

Suppose we have a known utility function u : Dom(X) → R. Our aim is to find an
optimal feasible state x∗; i.e., any

x∗ ∈ arg max
x∈Feas(X)

u(x).

For this reason, we sometimes call feasible states decisions. This problem can be for-
mulated in an explicit fashion as a (linear) 0-1 integer program:

max
{Ix,Xi}

∑
x

uxIx subject to A and C, (1)

where we have:

– variables Ix: for each x ∈ Dom(X), Ix is a boolean variable indicating whether x
is the decision made (i.e., state chosen).

– variables Xi: Xi is a 0-1 variable corresponding to the ith attribute.
– coefficients ux: for each x ∈ Dom(X), constant ux denotes the (known) utility of

state x.
– constraint set A: for each variable Ix, we impose a constraint that relates it to its

corresponding variable assignment. Specifically, for each Xi: if Xi is true in x, we
constrain Ix ≤ Xi; and if Xi is false in x, we constrain Ix ≤ 1 − Xi. We denote
by A these constraints.

– constraint set C: we impose each feasibility constraint C� on the attributes Xi ∈
X[�]. Logical constraints can be written in a natural way as linear constraints [8].

Note that this formulation assures that, if there is a feasible solution (given the con-
straints A and C), then exactly one Ix will be non-zero.3

2.2 Graphical Utility Models

Unfortunately the IP formulation above is not compact since there is one Ix variable
per state and the number of states is exponential in the number of attributes. In such flat
utility functions, it is not generally possible to formulate the optimization concisely. By
contrast, if some structure on the utility function is imposed, say, in the form of a fac-
tored graphical model, we are then generally able to reduce the number of variables to

3 We assume the utility function is non-negative.
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be linear in the number of parameters of the graphical model. We consider here the GAI
(generalized additive independence) model [1] because of its generality (encompassing
both linear models [13] and UCP-nets [5] as special cases).4

Specifically, assume that our utility function can be written as the sum of K local
utility functions, or factors, over small sets of variables:

u(x) =
∑
k≤K

fk(x[k]). (2)

Here each function fk depends only on a local family of attributes X[k] ⊂ X. We
denote by x[k] the restriction of state x to the attributes in X[k]. An IP similar to Eq. 1
can be used to solve for the optimal decision in the case of a GAI model:

max
{Ix[k],Xi}

∑
k≤K

∑
x[k]∈Dom(X[k])

ux[k]Ix[k] subject to A and C. (3)

Instead of one variable Ix per state, we now have a set of local state variables Ix[k] for
each family k and each instance x[k] ∈ Dom(X[k]). Similarly, we have one associated
constant coefficient ux[k] denoting fk(x[k]). Ix[k] is true iff the assignment to X[k] is
x[k]. Each Ix[k] is related logically to the attributes X ∈ X[k] by constraint set A as
before, and constraint set C is also imposed as above.

Notice that the number of variables and constraints in this IP (excluding the ex-
ogenous feasibility constraints C) is now linear in the number of parameters of the
underlying utility model, which will be linear in the number of attributes |X| if we as-
sume that the size of each utility factor fk is bounded. This compares favorably with
the exponential size of the IP for unfactored utility models in Sec. 2.1.5

2.3 Minimax Regret

If the utility function is unknown, then we have a slightly different problem. We can-
not maximize expected utility because the utility function is unspecified. However, if
we have constraints on the utility function (e.g., in the form of bounds), we can opti-
mize using other criteria. A very natural criterion is minimax regret [11, 5, 16]: prefer
the (feasible) assignment x that obtains minimum max-regret, where max-regret is the
largest quantity by which one could “regret” choosing action x (while allowing the
utility function to vary within the bounds).

More formally, let U denote the set of feasible utility functions, reflecting our partial
knowledge of the user’s preferences. The set U may be a finite; but more commonly it
will be continuous, defined by bounds (or constraints) on (sets of) utility values u(x)
for various states. The pairwise regret of state x with respect to state x′ over feasible
utility set U is defined as

R(x,x′,U) = max
u∈U

u(x′) − u(x), (4)

4 For example, UCP-nets encompass GAI with some additional restrictions. Hence any algo-
rithm for GAI models automatically applies to UCP-nets, though one might be able to exploit
the structure of UCP-nets for additional computational gain.

5 Generally, this IP would be solved using some form of search directly on the Xi variables, in
which case there would be no need to explicitly represent Ix[k] (state) variables.
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which is the most one could regret choosing x instead of x′ (e.g., if an adversary could
impose any utility function in U). The maximum regret of decision x is:

MR(x,U) = max
x′

R(x,x′,U) (5)

= max
x′

max
u∈U

u(x′) − u(x) (6)

The minimax regret of feasible utility set U is:

MMR(U) = min
x

MR(x,U) (7)

= min
x

max
x′

max
u∈U

u(x′) − u(x) (8)

If the only information we have about a user’s utility function is that it lies in
the set U , then a decision x∗ that minimizes max-regret—that is, an x∗ such that
MR(x∗,U) = MMR(U)—seems reasonable. Specifically, without distributional in-
formation over the set of possible utility functions, choosing (or recommending) a
minimax-optimal decision x∗ minimizes the worst case loss with respect to possible
realizations of the utility function u ∈ U . Our goal is now to formulate the minimax
regret optimization (Eq. 8) in a computationally tractable way.

3 Minimax Regret with Flat Utility Models

If we make no assumptions about the structure of the utility function, Eq. 8 can be
interpreted directly as a semi-infinite, quadratic, mixed-integer program (MIP):

min
{Mx,Ix,Xi}

∑
x

MxIx subj. to

{
Mx ≥ ux′ − ux ∀x ∈ X, x′ ∈ Feas(X′), u ∈ U
A and C

where we have:

– variables Mx: for each x, Mx is a continuous variable denoting the max regret
when that state is chosen.

– variables Ix: for each x, Ix is a boolean variable indicating whether x is the state
chosen.

– coefficients ux: for each u ∈ U and each state x, ux denotes the utility of x given
utility function u.

– constraint sets A and C (defined as above).

The set of constraints on the Mx variables is problematic. First, if U is continuous
(the typical case we consider here), then the set of constraints of the form Mx ≥ ux′ −
ux is also also continuous, since it requires that we “enumerate” all utility values ux
and ux′ corresponding to any utility function u ∈ U . Furthermore, it is critical that
we restrict our attention to those constraints associated with x′ in the feasible set of
states (i.e., those satisfying C). Fortunately, we can often tackle this seemingly complex
optimization in much simpler stages.

In this paper we consider the case where all utility parameters ux are independent
and have simple upper and lower bounds (e.g., asking standard gamble queries would
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provide such bounds [7, 4]). Specifically, we assume an upper bound ux↑ and a lower
bound ux↓ on each ux, thus defining the feasible utility set U . These assumptions allow
us to compute the minimax regret in three simpler stages, which we now describe.6

First, we note that the pairwise regret for an ordered pair of states can be easily
computed since each ux is bounded by an upper and lower bound: R(x,x′,U) = u′

x↑−
ux↓ if x �= x′, and R(x,x′,U) = 0 if x = x′. Let rx,x′ denote this pairwise regret
value for each x, x′, which we now assume has been pre-computed for all pairs.

Second, using Eq. 5, we can also compute the max regret MR(x,U) of any state x
based on the pre-computed pairwise regret values rx,x′ . Specifically, we can enumerate
all feasible states x′, retaining the largest pairwise regret:

MR(x,U) = max
x′∈Feas(X′)

rx,x′ . (9)

Alternatively, we can search through feasible states “implicitly” with the following IP:

MR(x,U) = max
{Ix′ ,X′

i}

∑
x′

rx,x′Ix′ subject to A and C. (10)

Third, letting mx denote the value of MR(x,U), we can then compute the minimax
regret MMR(U) readily. We simply enumerate all feasible states x and retain the one
with the smallest (precomputed) max regret value mx:

MMR(U) = min
x∈Feas(X)

mx (11)

Again, this enumeration may be done implicitly using the following IP:

MMR(U) = min
{Ix,Xi}

∑
x

mxIx subject to A and C. (12)

In this flat model case, the two IPs above are not necessarily practical, since they require
one indicator variable per state. However, this reformulation does show that the original
quadratic MIP with continuous constraints can be solved in stages using finite, linear
IPs. More importantly, these intuitions will next be applied to develop an analogous
procedure for graphical utility models.7

4 Minimax Regret with Graphical Models

The optimization for flat models is interesting in that it allows us to get a good sense
of how minimax regret in a constraint-satisfaction setting works. From a practical per-
spective, however, the above model has little to commend it. By solving IPs with one
Ix variable per state, we have lost all of the advantage of using a compact and natu-
ral constraint-based approach to problem modeling. As we have seen when optimizing

6 This transformation essentially reduces the semi-infinite quadratic MIP to a finite linear IP.
7 Note that this strategy hinges on the fact that we can independently determine upper and lower

bounds on the utility value of each state. If utility values are correlated by more complicated
constraints, this strategy may not work.
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with known utility functions, if there is no a priori structure in the utility function, there
is very little one can do but enumerate (feasible) states. On the other hand, when the
problem structure allows for modeling via factored utility functions the optimization
becomes more practical. We now show how much of this practicality remains when our
goal is to compute the minimax-optimal state, given uncertainty in a factored utility
function represented as a graphical model.

Assume a set of factors fk, k ≤ K , defined over local families X[k], as described in
Sec. 2.2. The parameters of this utility function are denoted by ux[k] = fk(x[k]), where
x[k] ranges over Dom(X[k]). As in the flat-model case, we assume upper and lower
bounds on each of these parameters, which we denote by ux[k]↑ and ux[k]↓, respectively.
By defining u(x) as in Eq. 2, pairwise regret, max regret and minimax regret are all
defined in the same manner outlined in Sec. 2.3. We now show how to compute each of
these quantities in turn.

4.1 Computing Pairwise Regret and Max Regret

As in the unfactored case (Sec. 3), it is straightforward to compute the pairwise regret
of any pair of states x and x′. For each factor fk and assignment pair x[k],x′[k], we
define the local pairwise regret: rx[k],x′[k] = ux′[k]↑ − ux[k]↓ when x[k] �= x′[k], and
rx[k],x′[k] = 0 when x[k] = x′[k]. With factored models, R(x,x′,U) is the sum of local
pairwise regrets:

R(x,x′,U) =
∑

k

rx[k],x′[k]. (13)

We can compute max regret MR(x,U) by substituting Eq. 13 into Eq. 5:

MR(x,U) = max
x′∈Feas(X′)

∑
k

rx[k],x′[k] (14)

which leads to the following IP formulation:

MR(x,U) = max
{Ix′[k],X

′
i}

∑
k

∑
x′[k]

rx[k],x′[k]Ix′[k] subject to A and C (15)

The above IP differs from its flat counterpart (Eq. 10) in the use of one variable Ix′[k]
per utility parameter, and is thus more compact and efficiently solvable.

4.2 Computing Minimax Regret

We can compute minimax regret MMR(U) by substituting Eq. 14 into Eq. 7:

MMR(U) = min
x∈Feas(X)

max
x′∈Feas(X′)

∑
k

rx[k],x′[k] (16)
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which leads to the following MIP formulation:

MMR(U) = min
{Ix[k],Xi}

max
x′∈Feas(X′)

∑
k

∑
x[k]

rx[k],x′[k]Ix[k] subject to A and C (17)

= min
{Ix[k],Xi,M}

M

subject to

{
M ≥ ∑

k

∑
x[k] rx[k],x′[k]Ix[k] ∀x′ ∈ Feas(X′)

A and C (18)

In Eq. 17, we introduce the variables for the minimization, while in Eq. 18 we transform
the minimax program into a min program. The new continuous variable M corresponds
to the max regret of any state. In contrast with the flat IP (Eq. 12), this MIP has a
number of Ix[k] variables that is linear in the number of utility parameters. However,
this MIP is not generally compact because Eq. 18 has one constraint per feasible state
x′. Nevertheless, we can get around the potentially large number of constraints in either
of two ways.

Constraint Generation The first technique we consider for dealing with the large
number of constraints in Eq. 18 is constraint generation, a common technique in op-
erations research for solving problems with large numbers of constraints (much like
cutting plane and column generation methods). This approach proceeds by repeatedly
solving the MIP in Eq. 18, but using only a subset of the constraints on M associated
with the feasible states x′. At the first iteration, all constraints on M are ignored. At
each iteration, we obtain a solution indicating some decision x with purported minimax
regret; however, since certain unexpressed constraints may be violated, we cannot be
content with this solution. Thus, we look for the unexpressed constraint on M that is
maximally violated by the current solution. This involves finding a witness x′ that max-
imizes regret w.r.t. the current solution x ; that is, a decision x′ (and, implicitly, a utility
function) that an adversary would chose to cause a user to regret x the most.

Recall that finding the feasible x′ that maximizes R(x,x′,U) involves solving a sin-
gle IP given by Eq. 15. We then impose the specific constraint associated with witness
x′ and re-solve the MIP in Eq. 18 at the next iteration with this additional constraint. It
is not hard to see that if no constraint is violated at the current solution x, then x is the
minimax-optimal configuration. The procedure is finite and guaranteed to arrive at the
optimal solution. The constraint generation routine is not guaranteed to finish before it
has the full set of constraints, but is relatively simple and in practice (as we will see)
tends to generate a very small number of constraints. Thus in practice we solve this very
large MIP using a series of small MIPs, each with a small number of variables and a set
of active constraints that is also, typically, very small.

A Cost Network Formulation A second technique for dealing with the large num-
ber of constraints in Eq. 18 is to use a “cost network” to generate a compact set of
constraints that effectively summarizes this set. This type of approach has been used
recently, for example, to solve Markov decision processes [12]. The main benefit of
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the cost network approach is that, in principle, it allows us to formulate a MIP with a
feasible number of constraints.8

To formulate a compact constraint system, we first transform the MIP of Eq. 18 into
the following equivalent MIP by introducing penalty terms ρx[�] for each feasibility
constraint C�:

MMR(U) = min
{Ix[k],Xi,M}

M

subject to

{
M ≥ ∑

k

∑
x[k] rx[k],x′[k]Ix[k] +

∑
� ρx′[�] ∀x′ ∈ Dom(X′)

A and C

= min
{Ix[k],Xi,M}

M

subject to

⎧⎪⎨⎪⎩
M ≥ ∑

k Rx′[k] +
∑

� ρx′[�] ∀x′ ∈ Dom(X′)

Rx′[k] =
∑

x[k] rx[k],x′[k]Ix[k] ∀k,x′[k] ∈ Dom(X′[k])

A and C
(19)

The MIP of Eq. 18 has one constraint on M per feasible state x′, whereas the MIP of
Eq. 19 has one constraint per state x′ (whether feasible or not). Therefore, to effectively
maintain the feasibility constraints on x′, we add penalty terms ρx′[�] that essentially
make a constraint on M meaningless when its corresponding state x′ is infeasible. This
is achieved by defining a local penalty function ρ�(x′[�]) for each logical constraint C�

that returns −∞ when x′[�] violates C� and 0 otherwise.
This transformation has, unfortunately, increased the number of constraints. How-

ever, it in fact allows us to rewrite the constraints in a much more compact form, as
follows. Instead of enumerating all constraints on M , we analytically construct the con-
straint that provides the greatest lower bound, while simply ignoring the others. This
greatest lower bound GLB is computed by taking the max of all constraints on M :

GLB = max
x′

∑
k

Rx′[k] +
∑

�

ρx′[�]

= max
x′
1

max
x′
2

. . .max
x′

N

∑
k

Rx′[k] +
∑

�

ρx′[�]

This maximization can be computed efficiently by using variable elimination [9], a
well-known form of non-serial dynamic programming [2]. The idea is to distribute
the max operator inward over the summations, and then collect the results as new
terms which are successively pulled out. Space precludes a detailed presentation of
the algorithm—we instead illustrate its workings by means of an example.

To illustrate, consider the following simple example. Suppose we have the attributes
X1, X2, X3, X4, a utility function decomposed into the factors f1(x1, x2), f2(x2, x3),

8 We have observed, however, the constraint generation approach described above is usually
faster in practice and much easier to implement, even though it lacks the same worst case
run-time guarantees. Indeed, this same fact has been observed in the context of MDPs [18].
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f3(x1, x4) and two logical constraints with associated penalty functions ρ1(x1) and
ρ2(x3, x4). We then obtain

GLB = max
x′
1
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2

max
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]]]]

by distributing the individual max operators inward over the summations. To compute
the GLB, we successively formulate new terms that summarize the result of completing
each max in turn, as follows:

Let Ax′
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3
= max
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2
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Let GLB = max
x′
1

ρx′
1
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1

Notice that this incremental procedure can be substantially faster than enumerating
all states x′. In fact the complexity of each step is only exponential in the local subset
of attributes that indexes each auxiliary A variable.

Based on this procedure, we can substitute all the constraints on M in the MIP
in Eq. 19 with the following compact set of constraints that analytically encodes the
greatest lower bound on M :
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1
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1)

By encoding constraints in this way, the constraint system specified by the MIP
in Eq. 19 can be generally encoded with a small number of variables and constraints.
Overall we obtain a MIP where: the number of Ix variables is linear in the number of
parameters of the utility function; and the number of auxiliary variables and constraints
that are added is locally exponential w.r.t. the largest subset of attributes indexing some
auxiliary variable. In practice, since this largest subset is often very small compared
to the set of all attributes, the resulting MIP encoding is compact and readily solvable.
More precisely, the complexity of this algorithm depends on the order in which the
variables in X′ are eliminated, but is exponential in the tree width of the graph induced
by the elimination ordering (which is generally only locally exponential) [9].

5 Empirical Results

To test the plausibility of this approach we implemented the solution strategy outlined
above and ran a series of experiments to determine whether graphical structure was
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Fig. 1. Car Problem.

sufficient to permit practical solution times. We implemented the constraint generation
approach outlined in Sec. 4.2 and used CPLEX as the generic IP solver. Our experiments
considered two realistic domains—car rentals and house buying—as well as randomly
generated synthetic problems. In each case we imposed a factored graphical structure
to reduce the required number of utility parameters (upper and lower bounds).

For the house buying problem, we modeled the domain with 20 (multivalued) vari-
ables that specify various attributes of single family dwellings that are normally relevant
to making a purchase decision. The variables we used included: square footage, age,
size of yard, garage, number of bedrooms, etc. In total, there were 47,775,744 possible
configurations of the variables.We then used a factored utility model consisting of 29
local factors, each defined only on one, two or three variables. In total, the number of
local utility values (utilities for local configurations) was reduced to 160. Therefore a
total of 320 upper and lower bounds had to be specified, a significant reduction over the
nearly 108 values that would have been required using a unfactored model. The local
utility functions represented complementarities and substitutabilities between variables,
such as requiring a large yard and a fence to allow a pool, etc.

The rental car problem features 26 multi-valued variables encoding attributes rele-
vant to consumers considering a car rental, such as: automobile size and class, manu-
facturer, rental agency, seating and luggage capacity, etc. The total number of possible
variable configurations is 61,917,360,000. There are 36 local utility factors, each de-
fined on at most five variables. Constraints encode infeasible configurations (e.g., no
luxury sedans have 4-cylinder engines).

For both the car and real estate problems, we first computed the configuration with
minimax regret given manually chosen bounds on the utility functions. The generation
technique of Sec. 4.2 took 40 sec for the car problem and 2 sec for the real estate prob-
lem. Interestingly, only 7 constraints were generated in finding the minimax-optimal
configuration in both the car and real estate problems (out of the 61,917,360,000 and



Constraint-Based Optimization with the Minimax Decision Criterion 179

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
0.1

1

10

100

1,000

Relative utility range

T
im

e 
(s

ec
on

ds
)

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
1

10

100

1,000

Relative utility range

N
um

be
r 

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 2. Real estate problem.

47,775,744 constraints, respectively). The structure exhibited by the utility functions of
each problem is largely responsible for this small number of required constraints.

In practice, the minimax regret techniques proposed in this paper would normally
be interleaved with some preference elicitation technique. As the bounds on utility pa-
rameters get tighter, we would like to know the impact on the running time of our
constraint generation algorithm. To that effect, we carried out an experiment where we
randomly set bounds, but with varying degrees of tightness. Figures 1 and 2 show how
tightening the bounds decreases the running time exponentially, and the number of con-
straints generated. For this experiment, bounds on utility were generated at random,
but the difference between the upper and lower bounds of any utility was capped at a
fixed percentage of some predetermined range. Figures 1 and 2 show scatterplots of
random problems for varying percentages. As those figures suggest, a significant speed
up is obtained as elicitation converges to the true utilities. Intuitively, the optimization
required to compute minimax regret benefits from tighter bounds since some config-
urations emerge as clearly dominant, which in turn requires the generation of fewer
constraints.

We carried out a second experiment with synthetic problems. A set of random prob-
lems of varying sizes was constructed by randomly setting the utility bounds as well
as the variables on which each utility factor depends. Each utility factor depends on at
most 3 variables and each variable has at most 5 values. Figure 3 shows the results as
we vary the number of variables and factors (the number of factors is always the same
as the number of variables). The running time and the number of constraints generated
increases exponentially with the size of the problem. Note however that the number of
constraints generated is still a tiny fraction of the total number of constraints (if they
were all enumerated). For problems with 10 variables, only 8 constraints were neces-
sary (out of 278,864) on average; and for problems of 30 variables, only 47 constraints
were necessary (out of 2.8 × 1016) on average.
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Fig. 3. Artificial random problems – varying sizes

We also tested the impact of elicitation on the efficiency of our constraint generation
technique in Figure 4. Here, problems of 30 variables and 30 factors were generated
randomly while varying the relative range of the utilities w.r.t. some predetermined
range. Each factor has at most 3 variables chosen randomly and each variable can take
at most 5 values. Once again, as the bounds get tighter, some configurations emerge as
clearly dominant, which allows an exponential reduction in the running time as well as
the number of required constraints.

6 Concluding Remarks

We have developed a technique for computing minimax optimal decisions in constraint-
based decision problems when a user’s utility function is only partially specified in the
form of upper and lower bounds on utility parameters. While the corresponding opti-
mizations are potentially complex, we derived methods whereby they could be solved
effectively using several IPs and MIPs. Furthermore, we showed how graphical struc-
ture in the utility model could be exploited to ensure that the resulting IPs are compact
or could be solved using an effective constraint generation procedure.

There are a number of directions in which this work can be extended. Of critical
importance is the development of good elicitation strategies that reduce minimax regret
quickly. While this work has focused on the computation of minimax-optimal assign-
ments to variables, our current thrust is the incorporation of this approach into querying
strategies that can be used to tighten only the most relevant utility parameter bounds.
We have devised several elicitation strategies that we hope will work well in practice;
but these have yet to be implemented (so their performance still needs to be verified).
We briefly describe two of these methods.
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Fig. 4. Artificial random problems – varying relative utility range.

The optimistic query method works as follows: at each iteration we compute the
maximax optimal state x∗ (i.e, that with the greatest upper bound on utility). We then
query the user about the utility parameters of that factor in such a way that its lower
bound on utility is raised to be close (say, within ε) to the upper bound of the state
with the second-highest upper bound (which can be computed in a similar way), or its
upper bound is reduced to below that of the second state. In either case, we have made
progress: in the first case, we have reduced minimax regret to ε; in the second case, we
have reduced the regret of every other decision (by an amount equal to the reduction of
the upper bound for x∗, less ε).

The current solution query method involves computing the minimax optimal state
x∗ using one of the methods described, as well as its regret-maximizing “witness” xw

(i.e., the state an adversary chooses in order to maximize our regret). We then ask
queries about the utility parameters at the both states (e.g., asking a midpoint query
about each parameter, thus reducing each interval by half). The intuition behind this ap-
proach is that gaining tighter information about the current minimax optimal allocation
and its witness is the best way to ensure an improvement in regret level (since these are
the parameters that play a role in the active constraints at the current solution).

Apart from elicitation, we are also exploring the use of search and constraint-
propagation methods for solving the constraint-optimization problems associated with
computing minimax regret. Our goal in this paper was to provide a precise formulation
of these computational problems as integer programs, and use off-the-shelf software
to solve them. We expect that optimization techniques that are specifically directed to-
ward these problems should prove fruitful. Along these lines, we hope to develop deeper
connections to existing work on soft constraints, valued CSPs, etc. Finally, we are quite
interested in the possibility of integrating Bayesian methods for reasoning about uncer-
tain utility functions with the constraint-based representation of the decision space.
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Abstract. Most previous theoretical study of the complexity of the con-
straint satisfaction problem has considered a simplified version of the
problem in which all variables have the same domain. We show here that
this apparently minor simplification can in fact change the complexity of
the problem, and hence mask the existence of certain tractable constraint
types. In this paper we describe a new algebraic framework which allows
us to deal more precisely with problems where different variables may
have different domains. Using this new framework we are able to identify
new tractable classes of constraints, by combining algorithms devised for
the simplified, single domain, problem. We also systematically develop
an algebraic structural theory for the general problem, and show that
this theory can be used to generalise earlier results about the complexity
of certain constraint types.

1 Introduction

There is a striking difference between theoretical studies of the complexity of the
Constraint Satisfaction Problem (CSP), and more applied work on this problem:
in most theoretical studies constraint satisfaction problems are assumed to have
the same domain for all variables (we will call such problems one-sorted), while
in practice the different variables of a CSP often have different domains (we will
call problems of this type multi-sorted). This apparently minor simplification
can have serious consequences for the analysis of the complexity of different
forms of constraint; it can in fact mask the difference between tractability and
NP-completeness for certain problems.

Example 1. Consider the following relation of arity 5 containing 17 tuples (shown
vertically):

� =

⎛⎜⎜⎜⎜⎝
3 3 1 1 1 1 3 3 3 3 1 1 3 3 1 1 3
1 3 0 2 1 3 0 2 1 3 0 2 1 3 1 3 3
2 2 2 2 0 0 0 0 2 2 2 2 2 2 0 0 2
c c c c c c c c c c c c a a a a a
b b b b b b b b a a a a b b b b a

⎞⎟⎟⎟⎟⎠
F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 183–198, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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If we consider this relation in the usual way as a one-sorted relation over the
domain {0, 1, 2, 3, a, b, c}, then it does not fall into any of the many known (one-
sorted) tractable classes1 [2,3,7,9,13,19,20,24,27,28].

However, if we consider this relation as a multi-sorted relation, over the two
separate domains {0, 1, 2, 3} and {a, b, c} (in the sense defined below), then it
can easily be shown to be tractable, using the results obtained in this paper (see
Example 8). Note that to establish the tractability of a multi-sorted relation it
is not sufficient simply to show that the projections onto each separate domain
are tractable (see Example 5).

This paper is part of a general investigation into how the complexity of the
constraint satisfaction problem varies with the forms of constraints which are
allowed. Considerable progress has been made in this investigation over the past
few years. For example, a complete characterisation of tractable constraint types
is now known for both 2-element domains [26] and 3-element domains [1]. In
addition, a number of novel efficient algorithms have been developed for solving
particular types of CSPs [2,10,13,20].

However, almost all previous work on complexity has focused on the one-
sorted CSP; the first goal of this paper is to develop an approach which allows us
to study the complexity of multi-sorted constraint satisfaction problems, where
different variables have different domains. Using this approach, we show that
many of the known algorithms for the one-sorted case can be combined, and
hence applied to much broader classes of constraint satisfaction problems.

The second goal of the paper is to further develop the strong links between the
study of complexity of the CSP and the mathematical study of finite algebras.
These links were introduced and developed for the one-sorted case in [19,18,6].
In the multi-sorted case, these links allow one to use even more effectively the
powerful mathematical theory developed for classifying the structure of finite
algebras [23,16]. For example, early versions of the results given here have already
been successfully applied to obtain new tractable classes [3,2]. Moreover, the
results described in this paper are heavily used in proving a dichotomy theorem
for constraint satisfaction problems over a 3-element domain [1].

As an example of the flexibility of the multi-sorted approach developed here,
we consider the analysis of constraints which restrict the domain of each individ-
ual variable in their scope. By using the link with finite algebras described below,
we are able to generalize and strengthen the dichotomy result of [12] classifying
all constraints which restrict the domain of each variable to two possible values.

2 The Multi-sorted Constraint Satisfaction Problem

The central notion in the mathematical study of constraints and constraint sat-
isfaction problems is the notion of a relation. In this paper we will allow multi-
sorted relations, that is, relations over an arbitrary collection of sets. These are
defined as follows.
1 This was established by using the program Polyanna [15] available from

http://www.comlab.ox.ac.uk/oucl/research/areas/constraints/software/
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Definition 1. For any collection of sets A = {Ai | i ∈ I}, and any list of
indices (i1, i2, . . . , im) ∈ Im, a subset � of Ai1 × Ai2 × · · · × Aim

, together with
the list (i1, i2, . . . , im), will be called a multi-sorted relation over A with arity m
and signature (i1, i2, . . . , im). For any such relation �, the signature of � will be
denoted σ(�).

In the special case where A contains only a single set A, we shall refer to a
relation over A as a one-sorted relation over the set A.

Example 2. Let A = {A1, A2}, where A1 = {0, 1, 2, 3} and A2 = {a, b, c}.
The relation �, defined in Example 1, can be viewed as a multi-sorted relation

over A with arity 5 and signature (1, 1, 1, 2, 2).

Given any set of multi-sorted relations, we can define a corresponding class of
multi-sorted constraint satisfaction problems, in the following way.

Definition 2. Let Γ be a set of multi-sorted relations over a collection of sets
A = {Ai | i ∈ I}. The multi-sorted constraint satisfaction problem over Γ ,
denoted MCSP(Γ ), is defined to be the decision problem with

Instance: A quadruple (V ;A; δ; C) where
– V is a set of variables;
– δ is a mapping from V to I, called the domain function;
– C is a set of constraints, where each constraint C ∈ C is a pair 〈s, �〉,

such that
• s = (v1, . . . , vmC

) is a tuple of variables of length mC , called the
constraint scope;

• � is an element of Γ with arity mC and signature (δ(v1), . . . , δ(vmC
)),

called the constraint relation.
Question: Does there exist a solution, i.e., a function ϕ, from V to

⋃
A∈A A,

such that, for each variable v ∈ V , ϕ(v) ∈ Aδ(v), and for each constraint
〈s, �〉 ∈ C, with s = (v1, . . . , vm), the tuple (ϕ(v1), . . . , ϕ(vm)) belongs to �?

Example 3. Constraint satisfaction problems in which each variable has a dis-
tinct set of possible values frequently arise in the study of databases, although a
rather different vocabulary is normally used, as in the following definition.

Definition 3. A relational database is a finite collection of tables. A table con-
sists of a scheme and an instance:

A scheme is a finite set of attributes, where each attribute has an associated
set of possible values, referred to as a domain.

An instance is a finite set of rows, where each row is a mapping that associates
with each attribute of the scheme a value in its domain.

A standard problem in the context of relational databases is the Conjunctive
Query Evaluation problem [21,29]. In this problem we are asked if a conjunc-
tive query to a relational database, that is, a query of the form ∃x1 . . .∃xk(�1 ∧
. . . ∧ �n) where �1, . . . , �n are atomic formulas, has a solution. An instance of a
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multi-sorted constraint satisfaction problem corresponds to a conjunctive query
over a relational database by a simple translation of terms: ‘attributes’ have to
be replaced with ‘variables’, ‘tables’ with ‘constraint relations’, ‘scheme’ with
‘signature’, ‘instance’ with ‘constraint relation’, and ‘rows’ with ‘tuples’. Hence
a conjunctive query is equivalent to a multi-sorted CSP instance whose variables
are the variables of the query. For each atomic formula �i in the query, there
is a constraint C such that the scope of C is the list of variables of �i and the
constraint relation of C is the set of models of �i.

In the special case where Γ is a set of one-sorted relations over a single set A, we
shall use the notation CSP(Γ ), and refer to this as a one-sorted problem class.
An instance of CSP(Γ ) can be specified by a triple (V ;A; C).

Example 4. Consider the Graph q-Colorability problem. An instance of this
problem consists of a graph G, and the question is whether the vertices of G can
be labelled with q colours so that adjacent vertices are assigned different colours.

Each instance G of Graph q-Colorability corresponds to an instance PG

of CSP({�=A}), where A is a q-element set and �=A = {(a, b) ∈ A2 | a �= b}. The
variables of PG are the vertices of the graph G, and for each edge {v, w} of G,
there is a constraint ({v, w}, �=A) in PG.

In the remainder of the paper we shall be concerned with distinguishing between
those sets of relations which give rise to tractable problems (i.e., problems for
which there exists a polynomial-time solution algorithm) and those which do
not. In order to be able to classify infinite, as well as finite, sets of relations, we
define the notion of a tractable set of relations in a way that depends on finite
subsets only.

Definition 4. A set of multi-sorted relations, Γ , is said to be tractable, if
MCSP(Γ ′) is tractable for each finite subset Γ ′ ⊆ Γ .

A set of multi-sorted relations, Γ , is said to be NP-complete, if MCSP(Γ ′)
is NP-complete for some finite subset Γ ′ ⊆ Γ .

It might be tempting to assume that the complexity of a set of multi-sorted
relations could be determined by considering each of the domains involved sep-
arately; in other words, by separating the relations into a number of one-sorted
relations, and analysing the complexity of each of these. However, in general this
simple approach does not work, as the next example demonstrates.

Example 5. Consider the sets A1 = {0, 1} and A2 = {a, b, c}, and the relations

�1 =
(

1 0 0
a b c

)
, �2 =

(
0 1 0
a b c

)
, �3 =

(
0 0 1
a b c

)
over {A1, A2}, each with signature (1, 2).

If we divide each of these relations into two separate one-sorted relations,
then we obtain just the unary relations {0, 1} and {a, b, c} over the sets A1 and
A2 respectively. Each of these unary relations individually is clearly tractable.
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However, by establishing a reduction from the NP-complete problem One-in-
Three [14], it can be shown that the set of multi-sorted relations Γ = {�1, �2, �3}
is NP-complete.

To obtain the reduction we note that the One-in-Three problem may
be expressed as CSP({�}) where � = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Given any
problem instance P = (V ; {0, 1}; {C1, . . . , Cq}) ∈ CSP({�}), we introduce q
auxiliary variables v1, . . . , vq, distinct from the variables in V , and set P ′ =
(V ∪{v1, . . . , vq}; {A1, A2}; δ; {C1

1 , C2
1 , C3

1 , C1
2 , . . . , C3

q }), where δ(v) = 1 if v ∈ V ,
δ(v) = 2 otherwise, and for each Ci = 〈(w1, w2, w3), �〉, the new constraints are
C1

i = 〈(w1, vi), �1〉, C2
i = 〈(w2, vi), �2〉, and C3

i = 〈(w3, vi), �3〉. It is easy to
check that P and P ′ are equivalent.

The next example indicates that a set of constraints which is NP-complete when
viewed as one-sorted, can become tractable when viewed as multi-sorted: the
tractability is due to the signatures of the relations rather than the tuples they
contain.

Example 6. Let A1 and A2 be two distinct supersets of a set A0, and let Γ
be the set containing the single binary disequality relation �=A0 , as defined in
Example 4, but now considered as a multi-sorted relation over {A1, A2} with
signature (1, 2).

Because of the signature, this constraint can only be imposed between two
variables when one of them has domain A1 and the other has domain A2. Hence,
in this case MCSP(Γ ) corresponds to the problem of colouring a bipartite graph
with |A0| colours, which is clearly tractable.

It is often desirable to convert a multi-sorted constraint satisfaction problem
into a one-sorted problem. The most straightforward way to do this for a given
multi-sorted problem instance (V ;A; δ; C), is to take B =

⋃
A∈A A, and replace

each constraint relation with a one-sorted relation over B containing exactly the
same tuples.

However, applying this procedure to the disequality relation in Example 6
gives the usual disequality relation over A, which for |A| > 2 is NP-complete (see
Example 4). Hence, this straightforward conversion method does not necessarily
preserve the tractability of Γ . To ensure that we do preserve the tractability of
Γ , we shall make use of a more sophisticated conversion technique, based on the
following definition. Note that in this definition, and throughout the paper, the
ith component of a tuple a is denoted by a[i].

Definition 5. For any m-ary relation � over {A1, . . . , An} with signature σ(�)
= (i1, . . . , im), let A = A1 × A2 × · · · × An and define the one-sorted m-ary
relation χ(�) over A as follows:

χ(�) = {(a1, a2, . . . , am) ∈ Am | (a1[i1], . . . , am[im]) ∈ �}.
For any set of relations Γ , the set {χ(�) | � ∈ Γ} will be denoted χ(Γ ).

Note that for any one-sorted relation �, we have χ(�) = �.

Example 7. Let � be the binary disequality relation �=A0 over {A1, A2} with
signature (1, 2), as in Example 6. In this case χ(�) is the relation consisting of
all pairs ((a, a′), (b, b′)) ∈ (A1×A2)× (A1×A2) such that a, b′ ∈ A0 and a �= b′.
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Proposition 1. Let Γ be a set of multi-sorted relations over the finite sets
A1, . . . , An. The set Γ is tractable if and only if the corresponding set of one-
sorted relations χ(Γ ) is tractable.

Proof: Let P = (V ; {A1, . . . , An}; δ; C) be an instance of MCSP(Γ ) where C =
{C1, C2, . . . , Cq} and each Ci = 〈si, �i〉.

Consider the one-sorted instance P ′ = (V ;A; C′) where A = A1 ×A2 × · · · ×
An, C′ = {C ′

1, C
′
2, . . . , C

′
q}, and each C ′

i = 〈si, χ(�i)〉. Note that every solution
to P can be used to construct a solution for P ′ by extending the value assigned
to each variable (arbitrarily) to a tuple over A. Conversely, every solution to P ′

can be used to obtain a solution for P by projecting the tuple over A assigned
to each variable v onto the co-ordinate given by δ(v). Hence we have a reduction
from MCSP(Γ ) to CSP(χ(Γ )).

Furthermore, every tuple in every constraint relation of P is replaced by a
fixed number of tuples (depending only on the cardinalities of the sets A1, . . . , An

and on the arities of the constraint relations), to obtain the corresponding con-
straint relation in P ′. Hence, for any finite subset of Γ the reduction can be
carried out in linear time.

The same arguments can be applied in the reverse direction to obtain a
polynomial-time reduction from CSP(χ(Γ )) to MCSP(Γ ). �

3 Polymorphisms and Tractability Results

In earlier papers [19,18,6] it has been shown that in the one-sorted case the com-
plexity of CSP(Γ ) is determined by certain algebraic properties of the relations
in Γ , known as polymorphisms. In this section, we first state some of these earlier
results on the complexity of the one-sorted case, and then show how they can
be extended to the multi-sorted case.

Definition 6. Let � be a one-sorted relation over a set A, with arity m.
The operation f : Ak → A is said to be a polymorphism of the relation � if,

for any tuples (a11, . . . , am1), . . . , (a1k, . . . , amk) ∈ � the tuple (f(a11, . . . , a1k),
. . . , f(am1, . . . , amk)) also belongs to �.

For any given set of one-sorted relations Γ , the set of all those operations which
are polymorphisms of every relation in Γ is denoted Pol(Γ ).

Theorem 1 ([19,17]). Let Γ, Γ0 be sets of one-sorted relations over a finite
set A. If Γ0 is finite, and Pol(Γ ) ⊆ Pol(Γ0), then there is a polynomial time
reduction from CSP(Γ0) to CSP(Γ ).

Furthermore, certain simple forms of polymorphism have been shown to be suf-
ficient to ensure tractability of the associated one-sorted relations [19,18].

Definition 7. – An operation f is called a constant operation if there is some
fixed c ∈ A such that f(x1, . . . , xn) = c for all x1, . . . , xn.
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– A binary operation f is called a semilattice operation2 if it satisfies the
following three identities: f(x, f(y, z)) = f(f(x, y), z); f(x, y) = f(y, x);
f(x, x) = x.

– An n-ary operation f is called a near-unanimity operation if f(y, x, . . . , x) =
f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) = x for all x, y ∈ A.

– A ternary operation f is called an affine operation if f(x, y, z) = x − y + z
for all x, y, z ∈ A, where (A,+,−) is an Abelian group.

Proposition 2 ([19,18]). Let Γ be a set of one-sorted relations over a finite
set A.

If Pol(Γ ) contains either a constant operation, or a semilattice operation, or
a near-unanimity operation, or an affine operation, then CSP(Γ ) is tractable.

To extend the above results to the multi-sorted case, we need to define a suitable
extension of the notion of a polymorphism. As we have shown in the previous
section (see Example 5), we cannot simply separate out different domains and
consider polymorphisms on each one separately; we must ensure that all of the
domains are treated in a co-ordinated way. In the following definition, this is
achieved by defining different interpretations for the same operation applied to
different sets.

Definition 8. Let A be a collection of sets. An n-ary multi-sorted operation
t on A is defined by a collection of interpretations {tA | A ∈ A}, where each
tA is an n-ary operation on the corresponding set A. The multi-sorted operation
t on A is said to be a polymorphism of a multi-sorted relation � over A with
signature (δ(1), . . . , δ(m)) if, for any (a11, . . . , am1), . . . , (a1n, . . . , amn) ∈ �, we
have

t

⎛⎜⎝ a11 · · · a1n

...
...

am1 · · · amn

⎞⎟⎠ =

⎛⎜⎝ tAδ(1)(a11, . . . , a1n)
...

tAδ(m)(am1, . . . , amn)

⎞⎟⎠ ∈ �.

For any given set of multi-sorted relations Γ , the set of all those multi-sorted
operations which are polymorphisms of every relation in Γ is denoted MPol(Γ ).

The next theorem is the main result of this section. It establishes the re-
markable fact that the known one-sorted tractable classes listed in Proposition 2
can be combined in almost arbitrary ways to obtain new multi-sorted tractable
classes.

Note that a multi-sorted operation, t, is said to be idempotent if all of its
interpretations tA satisfy the identity tA(x, x, . . . , x) = x.

Theorem 2. Let Γ be a set of multi-sorted relations over a collection of finite
sets A = {A1, . . . , An}.

If, for each Ai ∈ A, MPol(Γ ) contains a multi-sorted operation fi such that

– fAi
i is a constant operation; or

– fAi
i is a semilattice operation; or

2 Note that in some earlier papers [19,17] the term ACI operation is used
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– fAi
i is a near-unanimity operation; or

– fi is idempotent and fAi
i is an affine operation,

then MCSP(Γ ) is tractable.

The proof of Theorem 2 is set out in Propositions 3, 4, and 5.
Before giving these proofs, we need to give a precise definition for the notion

of k-consistency, which is widely used in the study of constraint satisfaction
problems, but is unfortunately defined in the literature in a number of slightly
different ways.

For an n-ary relation � and a set of indices I = {i1, . . . , ik} ⊆ {1, . . . , n},
the relation prI� = {(ai1 , . . . , aik

) | (a1, . . . , an) ∈ �} is called the projection
of � onto I. (It will sometimes be convenient to abuse this notation by using
the variables from a constraint scope as indices of the corresponding constraint
relation.)

Definition 9. Let P = (V ;A; δ; C) be an instance of a multi-sorted constraint
satisfaction problem. For any subset W of V , the subproblem of P generated
by W , denoted P

W
, is defined to be the problem instance (W ;A; δ

W
; C′), where

the constraints C′ are obtained from the constraints of P as follows: for each
constraint 〈s, �〉 ∈ C of P, choose s′ = s∩W to be a list of those elements of W
occurring in s, and set 〈s′,prs′�〉 as a constraint of P

W
.

Definition 10. For any k ≥ 2, a constraint satisfaction problem P is said to be
k-consistent if for any subset W containing k − 1 variables, and any variable v,
any solution to P

W
can be extended to a solution to P

W∪{v}.

If P is i-consistent for 1 ≤ i ≤ k, then it is said to be strong k-consistent.

Any constraint satisfaction problem instance P can be modified to obtain a k-
consistent problem instance P ′ without changing the set of solutions, by solving
all subproblems involving k variables, and then imposing additional constraints
on all subsets of k−1 variables that allow only these solutions. This procedure is
called ‘establishing k-consistency’, and P ′ is said to be the k-consistent instance
associated with P (see [8] for the one-sorted case).

Definition 11. A class C of constraint satisfaction problems is said to be of
essential width k if any problem instance P from C has a solution if and only if
the k-consistent problem associated with P contains no empty constraint.

Note that Feder and Vardi [13] introduced a very similar notion of width, which
they characterised in terms of Datalog programs.

Every class of problems with finite essential width is tractable, because, for
any fixed k, establishing k-consistency takes polynomial time, and recognising
the presence of empty constraints can be carried out in linear time.

Proposition 3. Let Γ be a set of multi-sorted relations over A = {A1, . . . , An}.
If, for each Ai ∈ A, MPol(Γ ) contains a multi-sorted operation fi such that fAi

i

is either a semilattice operation or a near-unanimity operation, then MCSP(Γ )
has finite essential width, and is, therefore, tractable.
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A proof of Proposition 3 can be derived from the results of [13,18,19].
The next proposition deals with the most involved part of the proof of The-

orem 2, because it exploits the subtle interaction between affine operations, and
the operations considered in Proposition 3, above. To state this proposition, we
first need to define certain sets of multi-sorted relations which can be associated
with a given set of multi-sorted relations.

Definition 12. Let Γ be a set of multi-sorted relations over a collection of sets
A.

– The set of all multi-sorted relations over A which have the same multi-sorted
polymorphisms as Γ will be denoted 〈Γ 〉.

– For any subset B of A, the set of all multi-sorted relations in Γ which are
multi-sorted relations over B will be denoted ΓB.

Proposition 4. Let Γ be a set of multi-sorted relations over A = {A1, . . . , An}.
If MCSP(〈Γ 〉Al+1,...,An

) is of finite essential width, and for each Ai ∈ A with
i ≤ l, MPol(Γ ) contains an idempotent multi-sorted operation gi such that gAi

i

is affine, then MCSP(Γ ) is tractable.

Proof: (sketch) Due to space restrictions, we can only give a very brief outline
here of a polynomial-time algorithm for MCSP(Γ ).

Let P be any instance of MCSP(Γ ). The variables of P can be split into
two parts, those with domains in A1, . . . , Al (the “affine” part), and those with
domains in Al+1, . . . , An (the “finite width” part).

Consider first the affine part. The conditions of Proposition 4 mean, in par-
ticular, that, for i ≤ l, gAi

i (x, y, z) = x−iy+iz where +i,−i are the operations of
an Abelian group on the base set Ai. It can be shown that in this case MPol(Γ )
also contains a single ternary idempotent operation d such that dAi(x, y, z) =
gAi

i (x, y, z) for i = 1, 2, . . . , l. It follows that Pol(χ(〈Γ 〉A1,...,Al
)) contains an affine

operation, and hence, any problem instance from CSP(χ(〈Γ 〉A1,...,Al
)) is solvable

in polynomial time, by an algorithm similar to Gaussian elimination. The same
is true for the class MCSP(〈Γ 〉A1,...,Al

). Moreover, this solution algorithm can
be modified to efficiently compute a basis of the solution space; in other words,
to find a representation for the complete set of solutions which is polynomial in
the size of the problem.

Now consider the finite width part. If we restrict P to these variables, then we
need only consider subproblems of size at most k, where k is the essential width
of CSP(〈Γ 〉Al+1,...,An). For each solution to such a bounded-size subproblem we
can efficiently compute a basis for the possible extensions of that solution to the
affine part, as described above. Combining these basis sets, we can find a basis for
the complete set of possible solutions to the affine part, and check if it is empty. �

Proposition 5. Let Γ be a set of multi-sorted relations over A = {A1, . . . , An}.
If MCSP(〈Γ 〉Al+1,...,An

) is tractable, and for each Ai ∈ A with i ≤ l, MPol(Γ )
contains a multi-sorted operation gi such that gAi

i is constant, then MCSP(Γ ) is
tractable.
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Proof: Assume that MPol(Γ ) contains a multi-sorted operation gi, for i =
1, 2, . . . , l, such that gAi

i is constant. Note that in this case the unary opera-
tion g′

i(x) = gi(x, . . . , x) also belongs to MPol(Γ ). Hence, the operation g(x) =
g′
1(. . . g

′
l(x) . . .) belongs to MPol(Γ ) and is constant for all A1, . . . , Al. Denote

the constant value of gAi by ci.
Take a problem instance P = (V ; {A1, . . . , An}; δ; C) of MCSP(Γ ), and set

W = {v ∈ V | δ(v) > l}. Then the instance P
W

belongs to MCSP(〈Γ 〉Al+1,...,An
),

and therefore is tractable, by assumption. Solve P
W

. If it has no solution then
neither does P. Otherwise, let ϕ be a solution. We claim that the mapping
ψ : V → A1 ∪ . . . ∪An defined as follows

ψ(v) =
{

cδ(v), if δ(v) ≤ l,
gAδ(v)(ϕ(v)), otherwise

is a solution to P.
To establish this, note that for any constraint C = 〈s, �〉 ∈ C there is a tu-

ple a ∈ � such that a[v] = ϕ(v) for v ∈ s ∩W . Setting b = g(a) ∈ � we get
b[v] = cδ(v) = ψ(v) if δ(v) ≤ l, and b[v] = gAδ(v)(ϕ(v)) = ψ(v) otherwise. Thus
ψ satisfies every constraint in C, and hence is a solution to P. �

Example 8. Recall the relation � over the sets A1 = {0, 1, 2, 3} and A2 =
{a, b, c}, defined in Example 1. We can now prove that {�} is tractable. To
see this, it is sufficient to check that � has two multi-sorted polymorphisms
t(x, y, z) and g(x, y), where

– tA1 is the affine operation of the group Z4, and tA2 is the (ternary) maximum
operation on A2, with respect to the order a < b < c (which is idempotent).

– gA1(x, y) = y, and gA2 is the (binary) maximum operation on A2, with
respect to the order a < b < c (which is a semilattice operation).

Hence we can apply Theorem 2, and conclude that MCSP({�}) is tractable.

4 From Polymorphisms to Algebras

Polymorphisms provide a powerful tool for studying the constraint satisfaction
problem. However, as was observed in [6], we get an even more powerful tool
if we consider the set of polymorphisms along with the set on which they are
defined.

Definition 13. An algebra is an ordered pair (A;F ), where A is a nonempty
set and F is a family of finitary operations on A. The set A is called the universe
(or the base set), and the operations from F are called basic. An algebra is said
to be finite if its universe is finite.

The advantage of working explicitly with algebras, rather than just sets of poly-
morphisms, is that one can exploit the well-developed mathematical theory of
algebras. This idea was pursued for the one-sorted case in [6]. Here we briefly



An Algebraic Approach to Multi-sorted Constraints 193

summarise the relevant aspects of the one-sorted case, and then consider how
the link with algebras can be extended to the multi-sorted case.

First we observe that we can associate any set Γ of one-sorted relations with
a corresponding algebra AΓ = (A; PolΓ ). In the reverse direction, we can start
with an algebra and obtain a corresponding set of one-sorted relations, in the
following way. Given any set of operations, C, on a set A, the set of all relations
over A for which all operations from C are polymorphisms is denoted Inv(C).
Hence, given any algebra (A;F ), we can define an associated set of one-sorted
relations Inv(F ). We will say that an algebra (A;F ) is tractable if the associated
set of one-sorted relations Inv(F ) is tractable.

Using the definitions above, and Theorem 1, we can translate questions about
the tractability of a set of one-sorted relations into questions about the tractabil-
ity of the corresponding algebra.

Corollary 1. Let Γ be a set of one-sorted relations over a finite set A. The set
Γ is tractable if and only if the corresponding algebra AΓ is tractable.

It follows from Corollary 1 that all maximal tractable sets of one-sorted relations
can be defined by specifying a suitable algebra. Of course, we may need very
many operations to define an arbitrary algebra. However, in all known cases,
including those listed in Proposition 2 and in papers [1,2,3,5,10,11], we need very
few operations to ensure that an algebra is tractable. Hence the algebraic theory
we have sketched here allows a very concise description of all known maximal
tractable sets of one-sorted relations, even though each maximal tractable set
contains infinitely many relations.

One simple way to extend these ideas to the multi-sorted case is to combine
Corollary 1 with Proposition 1, as follows.

Corollary 2. Let Γ be a set of multi-sorted relations over the collection of finite
sets {A1, . . . , An}. The set Γ is tractable if and only if the corresponding algebra
Aχ(Γ ) is tractable.

However, this simple extension is rather unsatisfactory, because of the potentially
large size of the universe of Aχ(Γ ). For example, if we have 10 distinct domains
each with 20 elements then Aχ(Γ ) is an algebra with 2010 elements. In the
remainder of this section we are going to show that, for any set of multi-sorted
relations over {A1, . . . , An}, we can define a collection of algebras {A1, . . . ,An},
where the universe of each Ai is the set Ai, and the complexity of the multi-
sorted problem is determined by this collection of smaller algebras. Using these
results for the case just mentioned, we may deal with 10 individual 20-element
algebras, which is much more convenient, and allows a more complete analysis
of the algebraic structure.

To develop this novel theory concerning the tractability of collections of al-
gebras we need to introduce a little more standard algebraic terminology. First
we note that algebras can be grouped into families which share the same set of
basic operations.

Definition 14. The collection of algebras A = {(Ai;FAi) | i ∈ I} is said to
be a collection of similar algebras if there exists some fixed set F of multi-sorted
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operations over the sets {Ai | i ∈ I}, such that each set of basic operations FAi

is the set of interpretations of the functions in F on the set Ai. The set F is
called the set of basic operations of the collection A.

Definition 15. For any collection of similar algebras A = {(Ai;FAi) | i ∈ I}
with basic operations F , we define MInv(A) to be the set Γ of all multi-sorted
relations over the sets {Ai | i ∈ I} such that MPol(Γ ) = F .

A collection of algebras A will be called tractable if the set of multi-sorted rela-
tions MInv(A) is tractable. Similarly, A will be called NP-complete if MInv(A)
is NP-complete.

The following theorem shows that, for any set Γ of multi-sorted relations
over a finite collection of finite sets, A, there exists a finite algebra A, and a
collection A of similar algebras whose universes are the members of A, such
that Γ , A, and A are all tractable or intractable simultaneously.

Definition 16. Let A1 and A2 be similar algebras with universes A1, A2 and
basic operations F . A mapping ϕ : A1 → A2 is called a homomorphism from
A1 to A2 if ϕfA1(a1, . . . , ak) = fA2(ϕ(a1), . . . , ϕ(ak)) for all f ∈ F and all
a1, . . . , ak ∈ A1, where k is the arity of f .

If the map ϕ is surjective, then A2 is called a homomorphic image of A1.

Theorem 3. Let Γ be a set of multi-sorted relations over the finite sets
{A1, . . . , An}.

The following are equivalent:

(a) Γ is tractable;
(b) Aχ(Γ̂ ) is tractable, where Γ̂ = Γ ∪ {=A1 , . . . ,=An

}, and each =Ai
is the

binary equality relation on Ai;
(c) {A1, . . . ,An} is tractable, where each Ai is the image of Aχ(Γ̂ ) under the

homomorphism ϕi given by ϕi(a) = a[i].

A corresponding equivalence also holds when “tractable” is replaced by “NP-
complete”.

Proof: Omitted, see [4]. �

5 Applications to One-Sorted Problems

As well as providing a sound framework for the analysis of the complexity of
multi-sorted constraint satisfaction problems, the results developed in this paper
have some surprising applications to the one-sorted case. (For example, see [1].)

We will complete this paper by describing an application of the results pre-
sented above to the analysis of the complexity of one-sorted constraint satis-
faction problems in which the constraints limit each variable to at most two
possible values (which may be different for different variables). In other words,
we consider sets Γ , containing one-sorted relations, such that for each � ∈ Γ ,
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each unary projection pri� contains at most two elements. This problem was
previously considered in [12], which established a dichotomy theorem for the
complexity of such sets of relations: they are either tractable or NP-complete.

Using the results of this paper we can not only establish this dichotomy,
we can also give a precise characterisation of the tractable cases (which are not
described in [12]). In fact, we establish the general result that for any set, Γ , con-
taining one-sorted relations, the one-sorted problem class CSP(Γ ) is polynomial-
time equivalent to a certain multi-sorted constraint satisfaction problem, where
the domains are the unary projections of the (non-unary) relations in Γ . In the
case where all these projections have size at most 2, we can then apply Theo-
rems 2 and 3 to obtain a complete characterisation of all the tractable cases.

Definition 17. Let Γ be a set of one-sorted relations.
For any relation � ∈ Γ , the set Δ(�) is defined to be the set of all unary

projections of �, and the set Δ(Γ ) is defined to be the union of the sets Δ(�)
over all non-unary � ∈ Γ .

Definition 18. Let Γ be a set of one-sorted relations where Δ(Γ ) = {A1,
. . . , Ak}.

For any relation � ∈ Γ with arity n, the set Γ
 is defined to be the set of all
multi-sorted relations over Δ(Γ ) of the form �∩ (Ai1 × . . .×Ain) with signature
(i1, . . . , in), for all possible choices of i1, . . . , in.

The set Γ+ is defined to be the union of the sets Γ
 over all non-unary � ∈ Γ .

Proposition 6. Let Γ be a finite set of one-sorted relations.
The one-sorted problem CSP(Γ ) is polynomial-time equivalent to the multi-

sorted problem MCSP(Γ+).

Proof: First we reduce CSP(Γ ) to MCSP(Γ+). Consider any problem instance
P = (V ;A; C) ∈ CSP(Γ ). Let U be the set of variables constrained by unary
constraints only. For any v ∈ U , if the intersection of the unary constraints
imposed on v is empty, then P has no solution. Otherwise, we can assign v with
an arbitrary value from this intersection. Hence, we may assume that U = ∅.

Let Δ(Γ ) = {A1, A2, . . . , Ak}. For each v ∈ V , let 〈sv, �v〉 ∈ C be a non-
unary constraint whose scope contains v. The set prv�v is equal to some element
Ai ∈ Δ(Γ ); set δ(v) equal to i. It is not hard to see that P is equivalent to
the multi-sorted problem P ′ = (V ; {A1, . . . , Ak}; δ; C′) where C′ contains the
constraint 〈s, � ∩

∏
v∈s Aδ(v)〉 for each 〈s, �〉 ∈ C.

To show the converse reduction, we notice that Γ+ can be viewed as a set
of one-sorted relations over the set A. Moreover, every multi-sorted problem in-
stance in MCSP(Γ+) can be viewed as a one-sorted instance. Hence, we have
a trivial reduction from MCSP(Γ+) to CSP(Γ+). By using well-known basic
properties of polymorphisms (see, for example, [25]), any f ∈ Pol(Γ ) is also
a polymorphism of all unary relations Ai, all Cartesian products of the form
Ai1 × . . .×Ail

, and all relations of the form �∩ (Ai1 × . . .×Ail
), for any � ∈ Γ .

Hence, Pol(Γ ) ⊆ Pol(Γ+), so CSP(Γ+) is polynomial-time reducible to CSP(Γ ),
by Theorem 1. �
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Corollary 3. Let Γ be a set of one-sorted relations over a finite set, such that
|Ai| ≤ 2 for each Ai ∈ Δ(Γ ).

If, for each Ai ∈ Δ(Γ ) there is an operation fi ∈ MPol(Γ+) such that fAi
i

is either a constant operation, or a semilattice operation, or a near-unanimity
operation, or an affine operation, then CSP(Γ ) is tractable. Otherwise, it is NP-
complete.

Proof: Let A1, . . . ,Ak be the algebras corresponding to Γ+ as defined in The-
orem 3. If the conditions of the corollary hold, then Γ+ ⊆ MInv(A1, . . . ,Ak) is
tractable, by Theorem 2. (The requirement in Theorem 2 for affine operations
to be idempotent can be shown to be unnecessary when all sets contain at most
2 elements, by a careful examination of the possible cases.)

Conversely, if for a certain Ai there is no operation with the required proper-
ties then, by the dichotomy theorem for one-sorted constraints on a two-element
set [26,6], MInv({Ai}) ⊆ MInv({A1, . . . ,Ak}) is NP-complete. Hence, by The-
orem 3, Γ+ is also NP-complete, and therefore Γ is NP-complete, by Proposi-
tion 6. �

6 Conclusion

Practical constraint satisfaction problems often involve different domains for
different variables. We have shown in this paper that analyzing the complexity
of such problems by simply assuming that all these domains are subsets of some
single large domain can give a misleading picture of their complexity. To remedy
this problem, we have presented a set of algebraic tools that allow one to deal
more accurately with such multi-sorted problems.

Using these tools we have been able to show that certain existing polynomial-
time algorithms for the one-sorted case can be combined, to give a more powerful
polynomial-time algorithm, solving much wider classes of multi-sorted problems.

Finally, we have further investigated the significant link between the study
of the constraint satisfaction problem and the study of finite algebras, by ex-
tending this link to the multi-sorted case. Elements of this extended algebraic
machinery have already proved to be essential tools in the study of the complex-
ity of the conventional one-sorted constraint satisfaction problem. We therefore
believe that the theory developed here will lead to a deeper understanding of the
structure of both one-sorted and multi-sorted constraint satisfaction problems.
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Abstract. We study a generalization of the constraint satisfaction prob-
lem (CSP), the periodic constraint satisfaction problem. An input in-
stance of the periodic CSP is a finite set of “generating” constraints
over a structured variable set that implicitly specifies a larger, possibly
infinite set of constraints; the problem is to decide whether or not the
larger set of constraints has a satisfying assignment. This model is nat-
ural for studying constraint networks consisting of constraints obeying
a high degree of regularity or symmetry. Our main contribution is the
identification of two broad polynomial-time tractable subclasses of the
periodic CSP.

1 Introduction

The constraint satisfaction problem (CSP) is a general framework in which many
combinatorial search problems can be expressed. An instance of a CSP consists of
a network of constraints over a set of variables; the problem is to decide whether
or not there is an assignment to the variable set satisfying all of the constraints.

Periodic Constraint Satisfaction Problems. This paper investigates a strict gen-
eralization of the CSP, the periodic constraint satisfaction problem. In this gen-
eralization, the full constraint network – of which satisfiability is to be decided
– is specified implicitly. An instance of the periodic CSP is a finite set of “gen-
erating” constraints over a large, structured variable set, for instance, the set
of lattice points in k-dimensional space. A corresponding full set of constraints
is obtained by repeating the generating set periodically, and the problem is to
decide whether or not the full set of constraints has a satisfying assignment.
This model is natural for studying large, possibly infinite constraint networks
consisting of constraints obeying a high degree of regularity or symmetry. Such
constraint networks arise naturally in many domains, such as scheduling, plan-
ning, and hardware design [20,19].

So that our results may enjoy maximal applicability, we study a very general
formulation of the periodic CSP where the underlying variable set of an instance
is a group G (that is, the algebraic structure), and the input constraint network
is expanded into the full constraint network according to the action of a sub-
group of G. This formulation is essentially that studied by Freedman in [12], and
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encompasses the model studied by Orlin in [21] and subsequently in [20,19]. Our
main contribution is the identification of two broad polynomial-time tractable
subclasses of the periodic CSP. (In this context, “polynomial-time” is measured
with respect to the input constraint network.) These tractability results encom-
pass the periodic variants of 2-SAT and Horn SAT, and we believe the results
to be quite remarkable in light of the fact that the periodic CSP is undecidable
in general [12].

Tractability. The identification of tractable subclasses is a classic approach to
coping with computationally hard problems. There are multiple ways to restrict
the CSP in hopes of obtaining such tractable subclasses [22]. One way is to
restrict the constraint language, or the types of constraints that are permitted
in instances. This is the form of restriction which was studied by Schaefer in his
now classic dichotomy theorem [23], and since then has been studied in several
other contexts [7].

Schaefer’s theorem showed that every constraint language over a two-element
domain gives rise to a CSP subclass which is either in P or is NP-complete. This
dichotomy theorem and the many others that have followed [7] are valuable
because they identify all of the ways tractability can arise from restrictions on
the constraint language. In addition, knowledge of intractable subclasses can be
quite useful in developing further proofs of intractability. Consequently, much
attention has been directed towards extending Schaefer’s theorem to constraint
languages over any finite domain. This has resulted in the identification of many
new polynomial-time algorithms for subclasses of the CSP [18,11,15,8,1,9,5,3,10],
some of which are quite sophisticated, as well as a dichotomy theorem on CSP
complexity classifying all constraint languages over a three-element domain, due
to Bulatov [2].

This paper studies the complexity of the periodic CSP from the standpoint
of restricting the constraint language, and hence takes the first steps towards the
long-term research goal of establishing a dichotomy theorem on the complexity
of the periodic CSP over finite domains.

The Closure Properties Approach. An algebraic approach to studying the relative
expressiveness of constraint languages was introduced in [18] and further stud-
ied in [14,15,16,4,1,5,2,3,9]. In this approach, a dual perspective on constraint
languages is given by studying the set of functions under which a constraint
language is closed, or the closure properties of a constraint language. Many of
the tractability results cited above demonstrate that closure under an operation
of a particular type is sufficient for a constraint language to be tractable, in the
context of the CSP. The tractability results for the periodic CSP given in this
paper are also phrased in this form: we show that any constraint language closed
under a semilattice operation or a dual discriminator operation gives rise to a
tractable subclass of the periodic CSP.

Related Work. Orlin [21] demonstrated the PSPACE-completeness of a number
of periodic variants of NP-complete languages, including a problem which he
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called dynamic satisfiability; in our framework, dynamic satisfiability is obtained
as a particular case by setting the group to be Z (the integers), that is, the lattice
points in one-dimensional space.

Marathe, Hunt, and Stearns, in joint work with Radhakrishnan in [20] and
Rosenkrantz in [19], studied problems arising from a variety of periodic specifi-
cations, focusing on approximation algorithms.

Freedman [12] showed that for group Z2 and H a subgroup of finite index,
the periodic version of 3-SAT is undecidable, while the periodic version of 2-
SAT is decidable; however, he gave no running time analysis of his procedure for
periodic 2-SAT. He also demonstrated that the periodic version of 3-colorability
is undecidable.

2 Preliminaries

This section presents the definitions and notation used throughout the paper. We
will assume that the reader has familiarity with basic notions of group theory.

2.1 Constraint Satisfaction Problems

We first introduce the basic terminology of constraint satisfaction problems.

Definition 1. A relation over a set D is a subset of Dk (with k ≥ 1), and is
said to have arity k. For any tuple t ∈ Dk, we denote the ith coordinate of t
by t[i]. When R is a relation of arity k and i ∈ {1, . . . , k}, let πi(R) denote the
relation {t[i] : t ∈ R}. A constraint language is a finite set of relations which
are all over the same set (and may be of different arities).

Definition 2. A constraint over variable set V and domain D is an expres-
sion of the form R(x1, . . . , xk), where R is a relation over D with arity k and
x1, . . . , xk are variables in V .

A collection of constraints yields a constraint satisfaction problem (CSP).
Note that we consider only CSPs where all variables have the same domain,
although our results are easily generalized to the more general formulation where
different variables may have different domains.

Definition 3. A constraint satisfaction problem (CSP) is a set C of constraints,
each of which is over the same variable set V and domain D; an assignment to C
is a function f : V → D. The assignment f satisfies a constraint R(x1, . . . , xk) ∈
C if (f(x1), . . . , f(xk)) ∈ R, and satisfies C if it satisfies every constraint C ∈ C.

Having defined a CSP and an associated notion of satisfiability, we can now
formally define the decision problem for CSPs over a particular constraint lan-
guage.

Definition 4. Let Γ be a constraint language over a finite domain D. The
CSP(Γ ) decision problem is to decide, given a CSP C (of finite size) over do-
main D, where each constraint in C has relation from Γ , whether or not C is
satisfiable.
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Example 1. Let D = {T, F}, V = {−1, 2, 4, 5}, and R0 = D2 \ {(F, F )}, R1 =
D2 \ {(F, T )}, R2 = D2 \ {(T, T )}. The CSP C = {R0(2, 5), R2(2, 5), R1(−1, 4)}
over V and D is satisfiable, for example, by the assignment f : V → D such that
f(2) = F and f(x) = T for all x ∈ V \ {2}.

Every instance of the CSP({R0, R1, R2}) problem can be reduced in a simple
and assignment-preserving manner to the standard boolean 2-satisfiability prob-
lem, and vice-versa. For example, the CSP C is equivalent to the 2-satisfiability
formula (2 ∨ 5) ∧ (¬2 ∨ ¬5) ∧ (−1 ∨ ¬4). ��

We now define formally the periodic constraint satisfaction problem.

Definition 5. Let Γ be a constraint language over a finite domain D, G be a
(possibly infinite) group, and H be a subgroup of G. The PeriodicCSP(Γ ;G,H)
decision problem is to decide, given a CSP C (of finite size) over variable set G
and domain D, where each constraint in C has relation from Γ , whether or not
the (possibly infinite) CSP

HC def= {R(hg1, . . . , hgk) : h ∈ H,R(g1, . . . , gk) ∈ C}

is satisfiable.

The following are examples of periodic CSPs.

Example 2. Let D = {T, F}, let G be (Z,+), let H be (3Z,+), and let C be the
formula

C = {R2(2, 5), R0(2, 5), R′(−1, 4, 3)}
where R′ = D3 \ {(F, F, F )} and R0, R2 are defined as in Example 1.

We have

HC = . . . ∪ {R2(−1, 2), R0(−1, 2), R′(−4, 1, 0)}∪

{R2(2, 5), R0(2, 5), R′(−1, 4, 3)} ∪ {R2(5, 8), R0(5, 8), R′(2, 7, 6)} ∪ . . . .

The infinite set of constraints HC is satisfied by the assignment f : Z→ {T, F}
where f(x) is defined to be F if x is congruent to 2 modulo 6, and T otherwise.

��

Example 3. Let D = {T, F}, let G be (Z,+), let H be (5Z,+), and let C be the
formula

{R1(1, 5), N(−4), Y (10), R2(2, 6)}
where Y = {(T )}, N = {(F )} and R1, R2 are defined as in Example 1.

We have

HC = . . . ∪ {R1(−4, 0), N(−9), Y (5), R2(−3, 1)}∪

{R1(1, 5), N(−4), Y (10), R2(2, 6)} ∪ {R1(6, 10), N(1), Y (15), R2(7, 11)} ∪ . . . .

It can be seen that the infinite set of constraints HC contains the constraints
Y (5), R1(1, 5), and N(1). Since no assignment can satisfy these three constraints,
we conclude that HC is unsatisfiable. ��
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Observe that when C is an instance of the PeriodicCSP(Γ ;G,H) problem,
the containment C ⊆ HC holds, so any satisfying assignment for HC is also
a satisfying assignment for C. Thus, if HC is satisfiable, then C is satisfiable.
Example 3 demonstrates that the converse does not hold: the example CSP C is
easily seen to be satisfiable – no variable appears in more than one constraint –
but HC is not satisfiable.

2.2 Closure Properties

We now define the notion of the closure properties of a constraint language, which
gives a dual perspective (on constraint languages) relevant to considerations of
complexity. A number of papers have studied this dual viewpoint [18,16,14,4,5],
and we refer the reader to these papers for more information.

Definition 6. Let ⊗ : Dm → D be a m-ary operation on D and let R be a k-ary
relation over D. Suppose t1, . . . , tm ∈ R. The expression ⊗(t1, . . . , tm) is defined
to be a k-tuple via a coordinate-wise action:

⊗(t1, . . . , tm) def= (⊗(t1[1], . . . , tm[1]),⊗(t1[2], . . . , tm[2]), . . . ,⊗(t1[k], . . . , tm[k])).

The relation ⊗(R) is defined to be the set {⊗(t1, . . . , tm) : t1, . . . , tm ∈ R}.

Definition 7. A relation R is closed under ⊗ if ⊗(R) ⊆ R. A constraint lan-
guage Γ is closed under ⊗ if all relations in Γ are closed under ⊗. A constraint
R(x1, . . . , xk) is said to be closed under ⊗ if its relation R is closed under ⊗. A
set of constraints C is said to be closed under ⊗ if all constraints in C are closed
under ⊗.

3 H-Arc Consistency

In this section, we introduce a strengthened version of arc consistency for pe-
riodic CSPs, called H-arc consistency. Under a mild assumption, an instance
of the PeriodicCSP(Γ ;G,H) problem can be transformed into one that is H-arc
consistent in polynomial time; the procedure for doing this will be used as a
subroutine in both of the algorithms we give for PeriodicCSP(Γ ;G,H), in the
next two sections.

Definition 8. Let D be a finite set. A CSP C over variable set V and domain D
is arc consistent if for all pairs of constraints C1(v1, . . . , vk), C2(v′

1, . . . , v
′
l) ∈ C,

vi = v′
j (with 1 ≤ i ≤ k, 1 ≤ j ≤ l) implies that πi(C1) = πj(C2).

Definition 9. Let D be a finite set, G be a group, and H be a subgroup of G. A
CSP C over variable set G and domain D is H-arc consistent if for all pairs of
constraints C1(g1, . . . , gk), C2(g′

1, . . . , g
′
l) ∈ C, Hgi = Hg′

j (with 1 ≤ i ≤ k, 1 ≤
j ≤ l) implies that πi(C1) = πj(C2).
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It is easy to see that H-arc consistency implies arc consistency.
We now identify a computational problem which, when solvable, makes es-

tablishing H-arc consistency possible.

Definition 10. Let G be a group and H be a subgroup of G. The same coset
problem for (G,H) is to decide, given two group elements g1, g2 ∈ G, whether
or not Hg1 = Hg2 (that is, whether g1 and g2 are in the same right coset).

The following is the main theorem of this section, which identifies some key
properties of H-arc consistency.

Theorem 1. Let Γ be a constraint language over domain D, G be a group, and
H be a subgroup of G. Suppose C is an instance of the problem
PeriodicCSP(Γ ;G,H). Then there exists a CSP C′ (over variable set G and do-
main D) with the following four properties:

1. C′ is H-arc consistent.
2. HC′ has the same satisfying assignments as HC.
3. If the same coset problem for (G,H) is decidable in polynomial time, then
C′ can be computed in polynomial time from C.

4. For any operation ⊗ under which Γ is closed, every relation of C′ is closed
under ⊗.

Proof. The following algorithm computes C′ from C:
While there are two (not necessarily distinct) constraints

C1(g1, . . . , gk), C2(g′
1, . . . , g

′
l) ∈ C

where gi and g′
j (for some 1 ≤ i ≤ k, 1 ≤ j ≤ l) are in the same right coset

and πi(C1) �= πj(C2), replace the constraints C1(g1, . . . , gk), C2(g′
1, . . . , g

′
l) by

D1(g1, . . . , gk), D2(g′
1, . . . , g

′
l), where

D1 = {t ∈ C1 : t[i] ∈ πj(C2)},
D2 = {t ∈ C2 : t[j] ∈ πi(C1)}.

Let C′ denote the set of constraints after the algorithm terminates.
The loop iterates at most polynomially many times, since there are at most

polynomially many pairs gi and g′
j in the same coset, and a constant number

of possibilities for the sets πi(C1), πj(C2). The loop condition takes polynomial
time to check, assuming that the same coset problem for (G,H) can be solved
in polynomial time, so property (3) is satisfied.

By the loop condition, property (1) will be satisfied by the set of constraints
which results when the algorithm terminates.

It is straightforward to verify that if C1 and C2 are closed under ⊗, then D1
and D2 are closed under ⊗. From this, property (4) follows by induction.

It remains to verify property (2). Suppose the loop terminates after s it-
erations. Let C = C0, C1, . . . , Cs = C′ denote the different sets of constraints
encountered during the execution of the algorithm.
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Any solution to C′ is a solution to C, since when a replacement step is per-
formed, D1 ⊆ C1 and D2 ⊆ C2; thus, any solution to HC′ is a solution to HC.

Now let f be a satisfying assignment for HC. We show that if f satisfies
HCi, then f satisfies HCi+1. (By induction, it will follow that f is a satisfying
assignment for HC′.) Let C1(g1, . . . , gk), C2(g′

1, . . . , g
′
l) denote the constraints in

Ci that were replaced; gi and g′
j denote the variables that were identified to be in

the same coset; and D1(g1, . . . , gk), D2(g′
1, . . . , g

′
l) denote the new constraints in

Ci+1. It suffices to show that if f satisfies C1(hg1, . . . , hgk) and C2(hg′
1, . . . , hg′

l)
for all h ∈ H, then f satisfies D1(hg1, . . . , hgk) and D2(hg′

1, . . . , hg′
l) for all

h ∈ H.
Suppose h ∈ H. Since gi and g′

j are in the same coset, there exists h′ such
that gi = h′g′

j . Since C2(hh′g′
1, . . . , hh′g′

l) is satisfied by assumption, f(hgi) =
f(hh′g′

j) ∈ πj(C2). By assumption, C1(hg1, . . . , hgk) is satisfied by f ; since
f(hgi) ∈ πj(C2), D1(hg1, . . . , hgk) is also satisfied by f . (The proof that all
constraints D2(hg′

1, . . . , hg′
l) are satisfied is symmetric.) �

4 Semilattice Operations

In this section, we show that instances of the PeriodicCSP(Γ ;G,H) problem
closed under a semilattice operation are tractable in polynomial time (under a
mild assumption on the “computability” of G and H).

Definition 11. A semilattice operation is a binary operation ⊗ : D2 → D that
is associative, commutative and idempotent. Note that when ⊗ is an semilattice
operation, we can unambiguously define ⊗ on a finite subset of D as follows: for
S = {s1, . . . , sk}, ⊗(S) = ⊗(s1,⊗(s2, . . .⊗ (sk−1, sk))).

In previous work, it was shown that instances of the CSP(Γ ) problem closed
under a semilattice operation are tractable. Note that Horn clauses are examples
of constraints closed under a semilattice operation [18], so this tractability result
implies the tractability of Horn SAT.

Theorem 2. [18] Let Γ be a constraint language. If Γ is closed under a semi-
lattice operation, then CSP(Γ ) is decidable in polynomial time.

We have the following tractability result for the periodic constraint satisfac-
tion problem. Note that this result strictly generalizes Theorem 2; this is seen
by setting H to be the subgroup containing only the identity element and G to
be any sufficiently large finite group.

Theorem 3. Let Γ be a constraint language, G be a group, and H be a subgroup
of G. If Γ is closed under an semilattice operation and the same coset problem for
(G,H) is decidable in polynomial time, then PeriodicCSP(Γ ;G,H) is decidable in
polynomial time. Moreover, if an instance of PeriodicCSP(Γ ;G,H) is satisfiable,
it has an H-invariant satisfying assignment.
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By an H-invariant satisfying assignment, we mean a satisfying assignment
f : G→ D such that for all g ∈ G and h ∈ H, the equality f(g) = f(hg) holds.
Proof. Suppose that ⊗ is an semilattice operation under which Γ is closed.
The following is a decision procedure for PeriodicCSP(Γ ;G,H): given a problem
instance C, apply the H-arc consistency algorithm of Theorem 1 to C, and let C′

denote the resulting CSP. If there is a constraint in C′ such that its associated
relation is the empty set, reject ; otherwise, accept.

If the algorithm rejects, then HC′ has no satisfying assignment, since no
assignment can satisfy the constraint C ∈ C′ ⊆ HC′ with the empty set as asso-
ciated relation. Since HC and HC′ have the same set of satisfying assignments,
HC is not satisfiable.

If the algorithm accepts, then let f : G→ D be such that for all constraints
C(g1, . . . , gk) ∈ C′, f maps all elements of Hgi to ⊗(πi(C)). This definition is
unambiguous because C′ is H-arc consistent. We claim that f is a satisfying
assignment for HC; it suffices to show that f satisfies every constraint in HC′.

Let C(g1, . . . , gk) be a constraint in C′, let t1, . . . , tm be the tuples in C
and suppose h ∈ H. Observe that (f(hg1), . . . , f(hgk)) = (f(g1), . . . , f(gk)) =
(⊗(π1(C)), . . . ,⊗(πk(C))) = ⊗(t1, . . . , tm). The tuple ⊗(t1, . . . , tm) is in C since
C′ is closed under ⊗. Thus (f(hg1), . . . , f(hgk)) ∈ C, and we conclude that f
satisfies C(hg1, . . . , hgk). �

This theorem can be readily generalized to constraint languages closed under
a set function; for the definition of this notion and more information, we refer
the reader to [8].

Theorem 4. Let Γ be a constraint language, G be a group, and H be a subgroup
of G. If Γ is closed under a set function and the same coset problem for (G,H)
is decidable in polynomial time, then PeriodicCSP(Γ ;G,H) is decidable in poly-
nomial time. Moreover, if an instance of PeriodicCSP(Γ ;G,H) is satisfiable, it
has an H-invariant satisfying assignment.

It is easy to see that the same coset problem for group G = (Z,+)k and
subgroup H = (d1Z,+) × · · · × (dkZ,+) for any k ≥ 1 and d1, . . . , dk ≥ 0 is
solvable in polynomial time, yielding the following corollary.

Corollary 1. Suppose that Γ is a constraint language closed under a set func-
tion, G is the group (Z,+)k and H is the G-subgroup (d1Z,+)× · · · × (dkZ,+)
for some k ≥ 1 and d1, . . . , dk ≥ 0. Then, PeriodicCSP(Γ ;G,H) is decidable in
polynomial time.

In fact, using an algorithm of [13] it can be shown that the same coset
problem is solvable for (Z,+)k paired with any subgroup definable by a finite
set of equations of the form w = w′, where w,w′ are elements of Zk.

5 Dual Discriminator Operations

In this section, we show that instances of the PeriodicCSP(Γ ;G,H) problem
closed under a dual discriminator operation are tractable in polynomial time.
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The tractability result of the previous section required an assumption on the
“computability” of G and H; we will need such assumptions for this section’s
result, as well.

Definition 12. For any set D, let Δ : D3 → D be the ternary operation defined
as Δ(x, y, z) = y if y = z; x otherwise. We call Δ the dual discriminator on D.

As with semilattice operations, closure under dual discriminators was previ-
ously shown to ensure tractability in the context of CSP(Γ ). This tractability
result strictly generalizes the tractability of 2-SAT – it is easily verified that the
relations R0, R1, and R2 given by Example 1 are closed under Δ.

Theorem 5. [17, Theorem 13] Let Γ be a constraint language. If Γ is closed
under a dual discriminator operation, then CSP(Γ ) is decidable in polynomial
time.

In previous work, a structure theorem was proved on constraints closed un-
der a dual discriminator operation – namely, that any such constraint can be
decomposed into binary constraints of a few particular types.

Definition 13. A binary constraint is a constraint which has a relation of arity
two. A complete constraint is a binary constraint C where the relation of C
is equal to π1(C) × π2(C). A permutation constraint is a binary constraint C
where the relation of C is equal to {(d, σ(d)) : d ∈ π1(C)} for some bijection
σ : π1(C) → π2(C). A two-fan constraint is a binary constraint C = R(v, w)
where the relation R is equal to ({x}×π2(C))∪(π1(C)×{y}) for some x, y ∈ D.
The element x is called the v-fanout, and the element y is called the w-fanout.

Lemma 1. [17, Propositions 10 and 12], [6, Lemma 3.4] If C is a constraint
over domain D closed under the dual discriminator on D, then C is logically
equivalent to a conjunction of complete constraints, permutation constraints, and
two-fan constraints.

In light of Lemma 1, when studying constraints closed under a dual discrim-
inator, we are justified in focusing on the three types of binary constraints given
by Definition 13. This observation motivates the following definitions.

Definition 14. Say that a CSP C is implicative if it is finite, arc consistent,
contains only permutation constraints and two-fan constraints, and contains no
constraint with empty set as the associated relation.

Let G be a group and H be a subgroup of G. Say that a CSP C over variable
set G is H-implicative if it is implicative and H-arc consistent.

We give a graph-theoretic characterization of implicative CSPs in the next
definition and subsequent lemmas.

Definition 15. Suppose that the CSP C is implicative.
Define the implication graph of C to be the directed graph G where:
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– The vertex set of G consists of all expressions of the form (v = d) and
(v �= d), with v ∈ V and d ∈ D.

– The edge set of G is the union of the set {(v = d, v �= d′) : d, d′ ∈ D, v ∈
V, d �= d′} and the edge sets of the constraints in C, where we define the edge
set of a constraint as follows.
• If R(v1, v2) is a permutation constraint with relation R = {(d, σ(d)) :

d ∈ π1(C)}, define the edge set of C to be the union of the sets

{(v1 = d, v2 = σ(d)) : d ∈ π1(C)} {(v2 �= σ(d), v1 �= d) : d ∈ π1(C)}

{(v2 = σ(d), v1 = d) : d ∈ π1(C)} {(v1 �= d, v2 �= σ(d)) : d ∈ π1(C)}

• If R(v1, v2) is a two-fan constraint with relation R = ({x} × π2(C)) ∪
(π1(C)× {y}), define the edge set of C to be the union of the sets

{(v1 = d, v2 = y) : d �= x, d ∈ π1(C)}

{(v2 �= y, v1 �= d) : d �= x, d ∈ π1(C)}

{(v2 = d, v1 = x) : d �= y, d ∈ π2(C)}

{(v1 �= x, v2 �= d) : d �= y, d ∈ π2(C)}

A feature of the implication graph of a CSP is the following lemma, whose
proof is straightforward given the above definition, and omitted.

Lemma 2. Suppose that C is an implicative CSP (over variable set V and do-
main D), and that f : V → D is a satisfying assignment. For every pair of
vertices c, c′ in the implication graph of C such that there is a path from c to c′,
if f satisfies c, then f satisfies c′.

We are now able to establish a sufficient condition for such an implicative
CSP to be satisfiable.

Lemma 3. Suppose that C is an implicative CSP. If there is no path in the
implication graph of C from a vertex v = d to the vertex of its “negation” v �= d,
then the CSP C is satisfiable.

Proof. We prove this by induction on the number of variables of C. We define
a partial function f as follows. Pick a variable v and and value d ∈ D, and set
f(v) = d. For all vertices of the form v′ = d′ such that there exists a path in the
implication graph of C from v = d to v′ �= d′, set f(v′) = d′. Note that this is
well-defined, because if there were paths from v = d to both v′ = d1 and v′ = d2
(for distinct d1, d2), then there would be a path from v = d to v′ �= d1 (as there
is an edge from v′ = d2 to v′ �= d1). By the symmetry of the graph, there would
be a path from v′ = d1 to v �= d, implying that there is a path from v = d to
v �= d, a contradiction to Lemma 2.

Let C′ be the subset of C containing those constraints where neither variable
has been defined by f .
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We claim that any extension f ′ of f satisfying C′ will satisfy C. It suffices
to show that any such extension f ′ will satisfy C \ C′. For constraints in C \ C′

containing two variables on which f is defined, this is clear from the definition
of the implication graph. Any constraint C in C \ C′ containing a variable v on
which f is defined and a variable w on which f is not defined must be a two-fan
constraint, where f(v) is the v-fanout; consequently, any value of f(w) for which
f satisfying C′ will result in f satisfying C, as C is arc consistent.

The implication graph of C′ is a subgraph of the implication graph of C, so
C′ is satisfiable by induction. �

We now give an analog of implication graph (Definition 15) for periodic
CSPs. Because one can naively extend Definition 15 to infinite constraint sets
by allowing the implication graph to be infinite, it is worth noting that our second
notion of implication graph is a finite graph, albeit one with edge weights.

Definition 16. (Implication graph of HC) Let G be a group and H a subgroup
of G with finite index. Let S be a subset of G containing exactly one element of
G from each right H-coset. Let r : G→ S map a group element g to the element
of S which is in the same right coset as g.

Suppose that C is an H-implicative CSP over variable set G.
Define the implication graph of HC relative to S to be the directed graph G

with edge labels where:

– The vertex set of G consists of all expressions of the form (g = d) and
(g �= d), with g ∈ S and d ∈ D.

– The edge set of G consists of all edges of the form r′(e), where e is an edge
from the implication graph of C and r′ acts on an edge e by mapping the
two variables of e under the map r. (For example, r′(g1 = d2, g2 �= d2)

def=
(r(g1) = d2, r(g2) �= d2).)
The label of the edge r′(e) is equal to the group element r(g1)g−1

1 g2r(g2)−1,
where g1 and g2 are the two variables of e and the edge is directed from the
vertex with variable g1 to the vertex with variable g2.

Define the weight of a path in G with edges e1, . . . , es to be the group product
l1 · · · ls, where li is the label of ei (for all 1 ≤ i ≤ s).

The following lemma is analogous to Lemma 2, and describes how to derive
implications concerning satisfying assignments from the implication graph.

Lemma 4. Suppose that C is an H-implicative CSP (over variable set G and
domain D), and that f : G → D is a satisfying assignment. For every pair of
vertices g ∼ d, g′ ∼′ d′ in the implication graph of HC (with ∼,∼′∈ {=, �=})
such that there is a path of weight w from g ∼ d to g′ ∼′ d′, if f(g) ∼ d, then
f(wg′) ∼ d′.

Next, we present a parallel of Lemma 3 – a sufficient condition for an H-
implicative periodic CSP to be satisfiable, based on properties of the implication
graph.
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Lemma 5. (Sufficient condition for satisfiability of HC) Let G be a group and
H a subgroup of G with finite index. Let S be any subset of G containing exactly
one element of G from each right H-coset. Suppose that C is an H-implicative
CSP over variable set G.

If there is no path with identity weight in the implication graph of HC (relative
to S) from a vertex v = d to the vertex of its “negation” v �= d, then the CSP
HC is satisfiable.

Proof. We show that for any finite subset C′ of HC, there is no path from a
vertex v = d to its negation v �= d in the implication graph of C′. Every such
finite subset C′ is then satisfiable by Lemma 3, and that HC is satisfiable follows
by a standard compactness argument.

Suppose there is a path from in the implication graph of a finite subset C′ of
HC. Let e1, . . . , es be the edges of the path, and let g1, . . . , gs+1 be the elements
of G from the vertices on the path. Letting r and r′ be defined as in Definition
16, r′(e1), . . . , r′(es) is a path in the implication graph of HC with path weight
equal to

(r(g1)g−1
1 g2r(g2)−1)(r(g2)g−1

2 g3r(g3)−1) · · · (r(gs)g−1
s gs+1r(gs+1)−1).

After cancellations, this is equal to r(g1)g−1
1 gs+1r(gs+1)−1 which is the identity

element, because g1 = gs+1. �

We are almost in position to state and prove the tractability result of this
section. Before doing so, however, we identify the computability assumptions on
a group-subgroup pair (G,H) needed for PeriodicCSP(Γ ;G,H) to be tractable.

Definition 17. Let G be a group and H be a subgroup of G. Say that (G,H) is
Δ-helpful if

– H is of finite index,
– the same coset problem for (G,H) is decidable in polynomial time,
– products and inverses can be computed in polynomial time, and
– given a directed graph with edge weights from G and two specified vertices

w1, w2, it can be checked whether or not there is a path from w1 to w2 with
edge weight equal to the identity of G in polynomial time. (The weight of a
path is defined as in Definition 16.)

The following is our second tractability result – namely, that closure under
the dual discriminator implies efficient decidability.

Theorem 6. Let Γ be a constraint language, G be a group, and H be a subgroup
of G. If Γ is closed under the dual discriminator operation Δ and (G,H) is Δ-
helpful, then PeriodicCSP(Γ ;G,H) is decidable in polynomial time.

Proof. Fix S to be a subset of G containing exactly one element of G from each
right H-coset. Let r : G→ S map a group element g to the element of S which
is in the same right coset as g.
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Let C be a PeriodicCSP(Γ ;G,H) problem instance. By Lemma 1, any con-
straint from C is equivalent to a set of binary constraints which can be computed
from C in polynomial time. Thus, we can assume without loss of generality that
every relation in Γ is a binary relation.

The following is an algorithm to decide satisfiability of HC.

1. Perform steps (b), (c), and (d) below.
2. While there is a path in the implication graph of HC from g = d to g �= d of

identity weight (for some g ∈ S and d ∈ D), do the following:
(a) For every constraint R(g1, g2) where gi (for either i = 1 or 2) is in the

same coset as g, replace R with R′ = {t ∈ R : t[i] �= d}
(b) Apply the algorithm of Theorem 1 to C (replacing C with the new set of

constraints C′)
(c) If C contains a constraint with empty relation, reject.
(d) Remove all complete constraints from C.

3. If the loop terminates without rejecting, then accept.

Proof of Correctness. When the algorithm of Theorem 1 is applied to C, C
remains Δ-closed. It follows that, after step (b), by Lemma 1, every constraint
in C is either a complete constraint, a permutation constraint, or a two-fan
constraint. We will argue that every step of the algorithm preserves satisfiability
of HC, implying that if the algorithm rejects in step (c), it does so correctly.
Removing complete constraints as in (d) does not affect whether or not HC
is satisfiable, because of the H-consistency of C. Suppose that step (a) of the
algorithm is executed; this means that a path of identity weight was found from
g = d to g �= d. By Lemma 4, no satisfying assignment of HC could map g to d,
and hence no satisfying assignment could map any element of the coset Hg to
d, and so the replacement of step (a) does not change the satisfiability of HC.
Moreover, the replacement of step (a) preserves the Δ-closure of C.

If the algorithm accepts, then HC is satisfiable by Lemma 5.

Polynomiality of Running Time. Observe that the implication graph G of HC
can be constructed in polynomial time (by the Δ-helpfulness of HC): r can be
computed in polynomial time (as the (G,H) same coset problem is decidable
in polynomial time), and thus the labels of the edges of G can be computed in
polynomial time (as products and inverses in G can be computed in polynomial
time). The loop of step (2) is executed at most a constant number of times, since
there are only a constant number of pairs (g, d) with g ∈ S and d ∈ D. �

Using an algorithm of [13] it can be shown that the pair consisting of the
group G = (Z,+)k and a subgroup of the form H = (d1Z,+) × · · · × (dkZ,+)
(for any k ≥ 1 and d1, . . . , dk ≥ 0) is Δ-helpful; hence, we obtain the following
corollary.

Corollary 2. Suppose that Γ is a constraint language closed under a dual dis-
criminator operation, G is the group (Z,+)k and H is the G-subgroup (d1Z,+)×
· · · × (dkZ,+) for some k ≥ 1 and d1, . . . , dk ≥ 0. Then, PeriodicCSP(Γ ;G,H)
is decidable in polynomial time.
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6 Conclusions and Future Work

We identified two broad tractable subclasses of the periodic CSP, which were de-
scribed using the language of closure properties. One prominent and intriguing
open question is whether or not the periodic version of CSPs consisting of linear
equations over a finite field (equivalently, constraints closed under an affine op-
eration [18]) are tractable, or even decidable. We conjecture that this subclass of
the periodic CSP is decidable in polynomial time; demonstrating that such CSPs
have “periodic” solutions and that an upper bound on the size of the period is
computable might be intermediate steps to resolving this conjecture. As far as
the non-periodic, usual CSP is concerned, constraints of the described form are
decidable in polynomial time via Gaussian elimination.

Resolution of this conjecture in the positive would provide a full dichotomy
theorem for constraint languages over domain size two, by combining the results
in this paper with the undecidability result of Freedman [12]. This dichotomy
theorem would give a direct correspondence between CSP complexity and pe-
riodic CSP complexity (in domain size two), stating that those constraint lan-
guages Γ such that CSP(Γ ) is tractable give rise to a tractable periodic CSP,
while those constraint languages Γ such that CSP(Γ ) is NP-complete give rise
to an undecidable periodic CSP. In addition, such a resolution would also sug-
gest the conjecture that for all constraint languages Γ , general problems of the
form PeriodicCSP(Γ ; (Z,+)k, (d1Z,+)× · · · × (dkZ,+)) are decidable in polyno-
mial time if and only if CSP(Γ ) is. Roughly speaking, this second conjecture
states that constraint languages that are tractable in the context of the CSP
are well-behaved in that they are also tractable in the context of the periodic
CSP! A similar well-behavedness phenomenon seems to take place in the case
of the quantified CSP [7], where the tractable constraint languages (in domain
size two) are exactly the non-trivial tractable constraint languages in the case
of CSP (given by Schaefer’s theorem). We believe that further investigation and
validation of this phenomenon may prove to be fruitful in understanding the
problem structure of CSPs and the variants thereof.
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Abstract. In this paper, we propose a new language-independent representation
of adhoc constraints, called a box constraint collection. Using constructive disjunc-
tion, this representation achieves domain consistency. We develop an algorithm
to automatically generate a box constraint collection for a given adhoc constraint.
The result is guaranteed to be complete and correct, and achieve domain consis-
tency. The constructive disjunction propagator for the box constraint collection
can be efficiently implemented using indexicals. We give correctness and com-
pleteness result for our compilation scheme, and outline optimization techniques.
Experiments show that our representation is simple, compact, and propagates ef-
ficiently.

1 Introduction

Constraint programming is a promising technique for solving many difficult combi-
natorial problems. Since real-life constraints can be difficult to describe in symbolic
expressions, or provide very weak propagation from their symbolic representation, they
are sometimes represented in the form of the sets of solutions or sets of nogoods. This
adhoc representation provides strong propagation through generalized arc consistency
techniques. However, the adhoc representation is expensive in terms of memory and
computation, when the adhoc constraint is large.

There is interest in determining less expensive methods for building propagators
for adhoc constraints. The first step in this direction was the automatic generation of
propagation rules pioneered by Apt and Monfroy [4]. They represent an adhoc constraint
as a set of simple rules of the form x1 = v1 ∧ . . . ∧ xn = vn → y �= a such that rule
consistency, which is weaker than domain consistency, is achieved. These rules can be
extended to x1 ∈ S1 ∧ . . . ∧ xn ∈ Sn → y �= a, such that domain consistency is
achieved. They propose two algorithms to generate all non-redundant rules for a given
adhoc constraint.

Apt and Monfroy’s work is extended byAbdennadher and Rigotti [2], who express the
propagation rules in CHRs [10] so that user-defined predicates are allowed. They develop
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the PROPMINER algorithm, which generates all non-redundant propagation rules based
on the set of user-defined predicates. Constraint handling rules, while expressive, are
less efficient than other approaches to implementing constraint solvers.

Indexicals are powerful, and efficient language to define constraint propagation. Dao
et al. [8] propose a framework and two algorithms to learn indexical operators (a subset
of the indexical operators available in GNU Prolog [9]) that achieve bounds-consistency
for adhoc constraints. They require that the indexicals must not delete a solution of the
original constraint, and at the same time they try to minimize the cases that a nogood
is wrongly classified as a solution. Under this formulation, the output indexicals are
correct (i.e. they will not remove a solution), but may be incomplete (i.e. they may not
detect all nogoods). However, they show that indexicals with good pruning power can
often be discovered. Barták [5] gives an efficient filtering algorithm as the basis of the
implementation of a binary tabled constraint by clustering the tuples into boxes, but does
not discuss how to find the boxes.

In this paper, we propose a new language-independent representation for adhoc
constraints, the box constraint collection. The idea is to break up an adhoc constraint into
pieces and cover these pieces using box constraints as tiles. With the aid of constructive
disjunction and a suitable choice of forms of constraint to use in the collection, our new
representation achieves domain consistency. We can compile this representation using
the indexical language provided by SICStus Prolog, to provide efficient propagators for
adhoc constraints.

We describe an algorithm, bccFinder, that automatically generates a box constraint
collection for an adhoc constraint. The output representation is guaranteed to be com-
plete, correct, and achieve domain consistency. We also suggest a compilation scheme
which generates efficient indexicals for box constraint collections, and outline opti-
mization techniques. Experiments confirm the compactness of our representation and
efficiency in propagation.

2 Propagation Based Constraint Solving

In this section we give our terminology for constraint satisfaction problems, and propa-
gation based constraint solving.

An integer valuation θ is a mapping of variables to integer values, written {x1 �→
d1, . . . , xn �→ dn}. We extend the valuation θ to map expressions and constraints in-
volving the variables in the natural way. Let vars be the function that returns the set of
(free) variables appearing in a constraint or valuation.

A domain D is a complete mapping from a fixed (countable) set of variables V to
finite sets of integers. A false domain D is a domain with D(x) = ∅ for some x. A
domain D1 is stronger than a domain D2, written D1 % D2, if D1(x) ⊆ D2(x) for all
variables x.

In an abuse of notation, we define a valuation θ to be an element of a (non-false)
domain D, written θ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

We are also interested in the notion of an initial domain, denoted by Dinit. The initial
domain gives the initial values possible for each variable.

A constraint c over variables x1, . . . , xn, written as c(x1, . . . , xn), restricts the values
that each variable xi can take simultaneously. An adhoc constraint c(x1, . . . , xn) is
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Fig. 1. (a) An adhoc constraint cadhoc, and (b) broken into a box constraint collection.

defined extensionally as a set of valuations θ over the variables x1, . . . , xn. We say θ ∈ c
is a solution of c. For any valuation θ on variables x1, . . . , xn, with θ �∈ c, we call θ a
nogood of c.

Often we define constraints intensionally using some well understood mathematical
syntax. For an intensionally defined constraint c we have that θ ∈ c iff vars(θ) =
vars(c) ∧ Z |=θ c, where Z is the integers. For example the constraint x1 = x2 + 1
where Dinit(x1) = Dinit(x2) = {1, 2, 3} defines the solution set {{x1 �→ 2, x2 �→
1}, {x1 �→ 3, x2 �→ 2}}.

Two constraints c1 and c2 are equivalent to each other, denoted by c1 ≡ c2, if they
define the same set of solutions.

A constraint satisfaction problem (CSP) [15] consists of a set of constraints {c1, . . . ,
ck} over a set of variables {x1, . . . , xn}, where each variable xi can only take values
from its domain Dinit(xi), a set of integers. Solving a CSP requires finding a value for
each variable from its domain so that no constraint is violated, i.e. all constraints are
satisfied.

We adopt the notion of propagation solver from Schulte and Stuckey [14]. A prop-
agator f is a monotonically decreasing function from domains to domains. A prop-
agation solver for a set of propagators F and current domain D, solv(F,D), repeat-
edly applies all the propagators in F starting from domain D until there is no further
change in resulting domain. We say two sets of propagators F1 and F2 are equivalent if
solv(F1, D) = solv(F2, D) for all D % Dinit.

Define the generalized arc consistent propagator (or equivalently the domain con-
sistent [14] propagator) for a constraint c as

dom(c)(D)(x) = {θ(x) | θ ∈ D and θ ∈ c(that is θ is a solution of c)}

3 Box Constraint Collections

Formally, an adhoc constraint c over variables x1, . . . , xn is a set of valuations in Dinit

representing the solutions of c. Adhoc constraints are usually implemented as tabled
constraints by listing all the solutions or nogoods, incurring space and time overhead.
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Example 1. The adhoc constraint cadhoc over x and y for Dinit(x) = Dinit(y) =
{1, 2, 3, 4, 5} shown in Fig. 1(a) can be represented by the set of solutions { (1, 3),
(2, 2), (2, 3), (3, 1), (3, 2), (3, 4), (3, 5), (5, 3) } or the set of nogoods { (1, 1), (1, 2),
(1, 4), (1, 5), (2, 1), (2, 4), (2, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 4),
(5, 5) }.

Often we represent a constraint in an adhoc manner because it is difficult (or un-
wieldy) to describe it using a symbolic expression. However, it may be easier to find
symbolic expressions if we examine part of the solution space. Therefore, we propose
representing an adhoc constraint cadhoc with a set of simple constraints in DNF. The idea
is similar to the use of Karnaugh-Veitch-diagrams [13] for finding prime implicants.

The core idea is to use a disjunction of constraints as “tiles” to cover the solution
space of an adhoc constraint. By carefully choosing the shapes of the tiles we can achieve
domain consistency using constructive disjunction. Triangles and rectangular boxes are
good tile shapes for filling grids.

A box B =
∏n

j=1

[
lBj ..uB

j

]
is an n-dimensional hyper-cube, where

[
lBj ..uB

j

]
is a

interval of integers lBj and uB
j . If c(x1, . . . , xn) is a constraint on variables x1, . . . , xn,

then
∧n

j=1 lBj ≤ xj ≤ uB
j ∧ c(x1, . . . , xn) is a box constraint, which we write as

B ⇒ c. We restrict the form of constraints c to two templates. Either c is true and then
B ⇒ c is simply the box B, or c is of the form

∑n
j=1 ajxj ≤ a0, then we call B ⇒ c a

triangle. A box constraint collection (BCC) is simply a disjunction of box constraints.
We represent an adhoc constraint cadhoc over variables x1, . . . , xn as a collection of

m box constraints

cadhoc(x1, . . . , xn) ≡
m∨

i=1

Bi ⇒ ci(x1, . . . , xn). (1)

Example 2. A box constraint collection representation of the adhoc constraint cadhoc

shown in Fig. 1(a) is

[3..3]× [4..5]⇒ true ∨ [1..2]× [2..3]⇒ x + y ≥ 4
∨ [5..5]× [3..3]⇒ true ∨ [3..3]× [1..2]⇒ true

The box constraint [1..2] × [2..3] ⇒ x + y ≥ 4 represents the conjunction 1 ≤ x ≤
2 ∧ 2 ≤ y ≤ 3 ∧ x + y ≥ 4. The BCC representation for cadhoc is shown in Fig. 1(b).

Representing a constraint using a box constraint collection is more compact than a set
of solutions. However, disjunctive constraints do not usually propagate as effectively as
other representations. But disjunctions of box constraints can be propagated effectively,
achieving generalized arc consistency.

Lemma 1. If each constraint ci in (1) is implemented by generalized arc consistent
propagator dom(ci), then using constructive disjunction [16] on this representation
achieves generalized arc consistency for cadhoc.
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Fig. 2. Freeing the representation by adding “dont care” tuples to cadhoc for (a) x = 4 and (b)
x = 3 ∧ y = 3, and (c) the resulting box constraint collection ctri.

4 Separable Nogoods

We can improve the description of an adhoc constraint by a box constraint collection by
determining parts of the constraint which can be represented separately without losing
generalized arc consistency of the resulting set of propagators.

Example 3. Consider cadhoc defined in Fig. 1(a). Since x �= 4 is implied by cadhoc we
can extract this as a separate constraint, we are then free to model the remainder of cadhoc

by filling in some boxes in the x = 4 column and this will not change the propagation
behavior. Fig. 2(a) shows cadhoc with “dont care” annotations in the x = 4 column.

Similarly the remaining nogood (3,3) is such that unless x (y) is assigned to 3, it will
not remove the value 3 from the domain of y (x). In this situation, we can represent this
nogood with an extra constraint ¬(x = 3 ∧ y = 3) without changing the propagation
behavior. Fig. 2(b) shows cadhoc with “dont care” annotation at x = 3 ∧ y = 3.

Note that now we can represent cadhoc by the conjunction of constraints x �= 4,
¬(x = 3 ∧ y = 3) and ctri defined as the box constraint collection

[1..3]× [1..3]⇒ x + y ≥ 4 ∨ [3..5]× [3..5]⇒ x + y ≤ 8

We obtain the same propagation behavior. The representation is smaller in terms of the
number of box constraints and propagates more efficiently.

These two observations for separability of nogoods in the above example can be
formalized as follows.

Lemma 2. Let c be an adhoc constraint such that c → x �= d for some x ∈ vars(c)
and d ∈ Dinit(x). Let S be a set of solutions for vars(c) where x = d. Then {dom(x �=
d), dom(c ∪ S)} and {dom(c)} are equivalent.

Lemma 3. Let c be an adhoc constraint on variables (x1, . . . , xn) with nogood θ �∈ C
such that there are no other nogoods θ′ �∈ c and 1 ≤ i ≤ n where θ(xi) = θ′(xi).
Then {dom((x1, . . . , xn) �= (θ(x1), . . . , θ(xn))), dom(c ∪ {θ})} and {dom(c)} are
equivalent.
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5 Building Box Constraint Collections

In this section, we describe a greedy algorithm, bccFinder, which computes a com-
pact box constraint collection for a given adhoc n-ary constraint cadhoc with solutions
solutions and nogoods nogoods. Before we find the set of box constraints, we remove
the set of separable nogoods from cadhoc, by adding extra constraints as discussed in
Section 4. This leaves a description of the constraint involving three kinds of tuples:
solutions, nogoods, and “dont cares” which may be included or not since they will be
removed by other constraints. Then, we repeatedly find box constraints for the remaining
uncovered solutions. A valuation θ is covered by the constraint c if θ ∈ c; otherwise, it
is uncovered. Fig. 3 shows the pseudo-code of bccFinder.

Since we would like to reduce the number of box constraints in the collection, we
want each box constraint B ⇒ c to cover as many uncovered solutions as possible.
Although finding the optimal collection is in practice infeasible, we can find a relatively
large box B by greedily growing one, until we cannot find any corresponding c, where
c is an instantiation of one of our templates ct. For the code shown, ct is always of the
form of

∑n
j=1 ajxj ≤ a0 since such constraints are straightforward to find, and have

generalized arc consistency propagators which are efficiently computable [14].
To find B ⇒ c, we randomly pick an uncovered solution and put it into the (unit) box

B and initialize C, the constraints on the coefficients aj , to true. As a result, each aj is
unconstrained. Then, we iteratively try to enlarge B in each dimension j. We first reduce
the lower bound lBj until either the lower bound of xj is reached, or no enlargement is
possible. Then we try to increase the upper bound uB

j .
Let B′ be the enlarged B. The procedure update is called so that for each valuation

θ ∈ B′ −B of the form θ ≡ {x1 �→ d1, . . . , xn �→ dn} we either (a) add the constraint∑n
j=1 ajdj ≤ a0 if θ ∈ solutions to ensure θ is included in the box constraint, or (b)

add the constraint
∑n

j=1 ajdj > a0 if θ ∈ nogoods. This update procedure is an exact
version of an algorithm by Anthony and Frisch [3] for constraint induction.

If the constraints are satisfiable, there exist values for aj and we continue expanding
the box. If the constraints are unsatisfiable, we first remove all the constraints added in
the last expansion and try expanding in a different direction. Eventually every expansion
leads to failure (or we have covered the entire space). At this stage we simply choose a
value for each aj that satisfies the current constraints. In our implementation, we solve
for aj’s with the SICStus Prolog clp(Q) constraint-solving library [1].

We have created a single box constraint. We add this to our collection, and move all
the solutions covered by this box constraint into the “dont care” category. This continues
until there are no solutions remaining (which are not “dont care”). We then simplify
the resulting collection if possible, by replacing

∑n
j=1 ajxj ≤ a0 by true if B →∑n

j=1 ajxj ≤ a0 and removing box constraints which are subsumed by other box
constraints.

A box constraint collection with only boxes (B ⇒ true) can be found similarly,
except that B stops expanding along a particular dimension if B′ contains at least one
nogood.

The box constraint collection being returned is always equivalent to the given adhoc
constraint, because when bccFinder terminates, all solutions will be covered, while all
nogoods will remain uncovered.
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bccFinder(n,solutions,nogoods)
cB := false
cS := constraints for separable nogoods
separable := nogoods of cS

nogoods := nogoods − separable
while (∃θ ∈ solutions)

B := a unit box equal to θ
C := true
for j := 1 to n

while (lBj > min(Dinit(xj)))
B′ := B with lB

′
j = lBj − 1

C′ := update(C, B′, B, solutions, nogoods)
if (C′ is not satisfiable) break
B := B′
C := C′
solutions := solutions − B

endwhile
while (uB

j < max(Dinit(xj)))
B′ := B with uB′

j = uB
j + 1

C′ := update(C, B′, B, solutions, nogoods)
if (C′ is not satisfiable) break
B := B′
C := C′
solutions := solutions − B

endwhile
endfor
let φ be a solution of C

cB := cB ∨ (B ⇒
∑n

j=1 φ(aj)xj ≤ φ(a0))
endwhile
simplify cB

return cB ∧ cS

update(C,B′,B,solutions,nogoods)
for each θ ∈ B′ − B

if θ ∈ solutions
C := C ∧∑n

j=1 ajθ(xj) ≤ a0

elseif θ ∈ nogoods
C := C ∧∑n

j=1 ajθ(xj) > a0

endif
endfor
if C is satisfiable

return C
else return false

Fig. 3. Pseudo-code of bccFinder.

The bccFinder algorithm always terminates because each while loop removes at
least one valuation (θ) from solutions.

Although in worst case clp(Q) takes exponential time to solve for the coefficients
of ct, our experiments confirm that our bccFinder algorithm is capable of returning a
box constraint collection for an adhoc constraint in a reasonable amount of time.

There are many possible improvements to the simple algorithm shown here. For
example we should not examine an expansion where all the valuations in B′ − B are
in nogoods, and we should find large rectangular boxes first before starting the box
expansion.

6 Compilation of Box Constraint Collection

In this section, we will explain how a box constraint collection can be compiled into
indexicals. The constraint system FD [7,16] is based on domain constraints and func-
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Table 1. The (partial) indexical grammar and its semantics in SICStus Prolog.

Rule Semantics

r → dom(y) yσ

r → t1..t2 {i ∈ Z : t1σ ≤ i ≤ t2σ}
r → {t1, . . . , tn} {t1σ , . . . , tnσ}
r → r1 /\ r2 r1σ ∩ r2σ

r → r1 \/ r2 r1σ ∪ r2σ

r → r1 ? r2 ∅ if r1σ = ∅; r2σ otherwise
t → integer t
t → inf −∞
t → sup +∞
t → min(y) minimum value of yσ

t → max(y) maximum value of yσ

t → t1 + t2 t1σ + t2σ

t → t1 − t2 t1σ − t2σ

tional rules called indexicals. Indexicals provide an efficient approach to implementing
propagators for constraints.

A domain constraint is an expression x ∈ I , where I is a finite set of integers. A store
σ is a set of domain constraints. The expression xσ denotes the intersection I1∩ . . .∩ In

for all constraints x ∈ Ik in σ, where 1 ≤ k ≤ n. If σ does not contain a constraint
x ∈ I , xσ is the set Z of integers. A variable x is determined in σ if xσ is a singleton
set.

An indexical has the form x in r, where r is a range generated by r in Table 1.
The value of x in r in σ is x ∈ rσ , where rσ is the value of r in σ, a set of integers.
A range may consist of other ranges or terms. A term t is generated by t in Table 1. The
value of t in σ, tσ , is an integer. Table 1 summarizes how the values of rσ and tσ are
computed.

6.1 Basic Compilation

We illustrate the compilation process with the following example.

Example 4. The representation of ctri from Example 3 is a disjunction of two box
constraints

[1..3]× [1..3]⇒ x + y ≥ 4 (2)

∨ [3..5]× [3..5]⇒ x + y ≤ 8 (3)

The indexicals1 for (2) and (3) are respectively

X in ((4-max(Y))..3) X in (3..(8-min(Y)))
Y in ((4-max(X))..3) Y in (3..(8-min(X)))

1 The syntax of SICStus Prolog, shown in teletype font, requires variables to be in upper case.
Upper and lower case variables of the same name should be understood interchangeably.
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These maintain generalized arc consistency [14].
We can create an indexical for X for the box constraint collection by combining these

indexical rules as follows:

Y13 in {0} \/ (dom(Y) /\ (1..3))
Y35 in {6} \/ (dom(Y) /\ (3..5))
X in ((dom(Y) /\ (1..3)) ? ((4-max(Y13))..3)) \/

((dom(Y) /\ (3..5)) ? (3..(8-min(Y35))))

Y13 records the maximum value of Y in the interval [1..3]. The additional value 0 is
added to the domain of Y13 to ensure it is always non-empty (and thus does not cause
failure). We call this additional value a dummy value and the constraint between Y and
Y13 a confinement constraint. Similarly Y35 records the minimum value of Y in the
interval [3..5]. The rule for X joins the constraints together, using the Y13 or Y35 to give
the appropriate value of Y for the box of interest.

We can automatically map the indexical expressions for constraints ci(x1, . . . , xn) to
create indexical expression for a disjunction of box constraints∨m

i=1Bi⇒ci(x1, . . . , xn)
such that if each indexical for ci(x1, . . . , xn) maintains generalized arc consistency, then
so does this indexical.

Let Bi = [ai1..bi1]× · · · × [ain..bin] then define the indexicals

Maxij in {aij − 1} \/ (dom(Xj) /\ (aij ..bij))
Minij in {bij + 1} \/ (dom(Xj) /\ (aij ..bij))

Minij and Maxij are called the confinement variables of Xj over Bi. The indexical
expression for Xk for a single box constraint Bi ⇒ ci(x1, . . . , xn) is then

(dom(X1) /\ (ai1..bi1)) ? · · · ? (dom(Xn) /\ (ain..bin)) ? (r′
ik /\ (aik..bik))

where r′
ik is the indexical rik for Xk and constraint ci(x1, . . . , xn) with max(Xj)

replaced by max(Maxij), min(Xj) replaced by min(Minij) and dom(Xj) replaced
by dom(Xj) /\ (aij ..bij). We call each dom(Xj) /\ (aij ..bij) a guard for r′

ik.
The indexical expression for Xk for the disjunction of box constraints ∨m

i=1Bi ⇒
ci(x1, . . . , xn) is obtained by unioning the expressions for each box constraint for Xk.

Theorem 1. The indexical for box constraint collection

c ≡
m∨

i=1

(
n∧

j=1

aij ≤ xj ≤ bij ∧ ci(x1, . . . , xn))

achieves generalized arc consistency if each indexical for ci achieves generalized arc
consistency.

This guarantees that, by choosing the constraints ci carefully, the box constraint
collection of an adhoc constraint achieves generalized arc consistency.

Adding terms t→ min(r) and t→ max(r) to the indexical language would allow
the expression of constructive disjunction of triangles without confinement variables.
We conjecture that this would speed up the propagation markedly.
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6.2 Optimizing Compilation

The basic compilation generates correct but inefficient indexicals, because there are
many redundant operations. We can improve the computation of confinement variable
domains, as illustrated by the following example.

Example 5. The confinement indexical

Y13 in {0} \/ (dom(Y) /\ (1..3)).

is invoked whenever the domain of Y is modified, and performs an expensive intersection
operation. If we instead initialize the domain of Y13 to {0} \/ (1..3) then we can
replace this intersection. So we replace the single indexical by

Y13 in {0} \/ (1..3)
Y13 in {0} \/ dom(Y).

Furthermore once dom(Y) and 1..3 are disjoint, the domain of Y13 cannot change.
We can add (using SICStus Prologs extended indexicals) a check that removes the second
indexical if Y13 in {0}.

Since set operations are expensive, a guard dom(X) /\ (L..U) ? r should be
removed or replaced with a more efficient indexical operation whenever possible. We
can remove the guard if L..U is the initial domain of X, or r becomes empty for any
values in dom(X) outside L..U. In both situations the guard is redundant.

Example 6. Consider the indexical for X in Example 4. If Y13 takes its dummy value 0,
then ((4 - max(Y13))..3) is the empty domain. Similarly for the other disjunct.
Hence the following indexical is equivalent

X in ((4 - max(Y13))..3) \/ (3..(8-min(Y35)))

By suitably choosing the dummy values, all guards for indexicals Inf..b and
a..Sup can be removed, where a and b are constants and Inf and Sup are terms
involving min(Y) and max(Y) of other variables Y.

For the remaining guards, we can replacedom(X) /\ (L..U)withmin(X)..U
if L is the lower bound of the initial domain of X, because if its domain intersects L..U,
the minimum value in its domain must be smaller than U. Similarly, we can replace a
guard with L..max(X) if U is the upper bound of its initial domain.

Also, we can remove L..U from r /\ (L..U) if r is always inside the range.
Other optimization techniques include combining indexicals, removing confinement

variables and rearranging the execution order of indexicals. However, due to space
limitations, they will not be discussed further.

7 Experiments

In this section, we compare the efficiency of two BCC representations (box and triangle)
and another approach to representing adhoc constraints in SICStus Prolog.We implement
the bccFinder algorithm and conduct the experiments using SICStus Prolog 3.9.1 on
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1..1 2..2 3..3 5..5X

Y Y Y

true

2..3 3..3 1..2 4..5

Fig. 4. A DAG representation of cadhoc from Fig. 1.

a Sun Blade 1000 with 2GB of memory (our largest benchmark consumes around only
20MB).

SICStus Prolog introduced in release 3.9.0 a new constraint, case, for encoding
arbitrary n-ary adhoc constraints. To use the case constraint, users must first obtain a
directed acyclic graph (DAG) from the list of solutions of the constraint. In the DAG,
each node n is either the special leaf node true or includes a variable xn and a disjoint
set of ranges lnj ..unj each with a pointer to the next node nj . A tuple θ satisfies the
relation defined by the graph rooted by node n if n is the leaf node true, or there exists
j such that lnj ≤ θ(xn) ≤ unj and θ satisfies the relation defined by graph rooted at
nj

2.
Thecase constraint is a built-in global constraint equipped with an efficient filtering

algorithm [6] to traverse the DAG for maintaining generalized arc consistency. In other
words, the case technology consists of two parts: the DAG representation and the
filtering algorithm. It is thus appropriate to compare the space and time tradeoffs of the
BCC and the DAG (expanded into a tree3) representations when both are compiled into
indexicals. We give also the results of using the case constraint for reference purposes.
We envisage the possibility of an efficient filtering algorithm for maintaining generalized
arc consistency of a BCC.

Example 7. A case constraint defining cadhoc is given by the DAG show in Fig. 4. The
indexical representation of the tree of the DAG is

X in ((dom(Y) /\ (2..3)) ? (2..2)) \/
((dom(Y) /\ (3..3)) ? ((1..1) \/ (5..5))) \/
((dom(Y) /\ ((1..2)\/(4..5))) ? (3..3)),

Y in ((dom(X) /\ (1..1)) ? (3..3)) \/
((dom(X) /\ (2..2)) ? (2..3)) \/
((dom(X) /\ (3..3)) ? ((1..2) \/ (4..5))) \/
((dom(X) /\ (5..5)) ? (3..3)).

We compare the propagation efficiency among box (indexicals for boxes only),
tri-box (indexicals for triangles and boxes), cas (DAG in the case constraint), and

2 Actually the definition is slightly different but effectively equivalent.
3 The filtering algorithm treats the DAG like a tree. The DAG representation is simply more

compact.
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Table 2. Performance comparisons on random 3-dimensional convex hull constraints.

cas/dag box tri-box W = 10 W = 20
N

B gen B gen T B gen cas dag box tri-box cas dag box tri-box

6025 448 1.14 294 27.25 52 18 15.70 37.85 71.12 62.73 35.22 45.05 117.43 111.26 67.28
4754 324 0.70 205 19.74 41 18 13.64 23.07 49.27 41.78 24.89 29.35 81.78 75.18 50.38
7086 385 1.80 287 42.71 57 23 15.62 37.52 60.31 59.98 36.67 37.87 94.20 109.72 75.64
7302 347 1.67 278 57.87 50 18 24.47 18.40 58.97 64.94 34.23 25.69 94.87 113.07 71.48
5598 339 1.18 262 29.20 47 24 14.16 35.76 50.17 56.68 28.97 37.08 88.31 98.60 61.56

Table 3. Performance comparisons on ternary non-linear inequality constraints.

cas/dag box tri-box W = 10 W = 20
N

B gen B gen T B gen cas dag box tri-box cas dag box tri-box

24591 225 8.48 224 186.81 4 32 101.74 7.99 21.93 25.15 9.70 12.76 36.65 43.67 16.54
20987 489 8.66 309 142.39 7 59 81.37 10.60 41.83 31.20 18.07 16.46 69.05 50.79 31.91
19671 471 8.76 215 122.36 8 47 90.83 11.56 39.86 24.34 17.34 21.46 65.05 44.35 31.92
17886 699 8.30 271 109.50 4 87 65.12 11.51 56.31 27.66 21.77 21.78 94.43 46.47 37.12
21938 499 7.32 238 134.07 15 10 94.38 10.50 44.12 24.94 10.19 17.04 73.34 42.87 21.51

dag (DAG in indexicals). The first three experiments simply test raw propagation. For
each variable x in the constraint, we repeat M times picking a subset S ⊆ Dinit(x)
where |S| = W , and adding the constraints x �= v for each v ∈ S. These constraint
additions are then removed, and the next set S is selected.

We restrict our attention to benchmarks with structure, such as convex hull and
non-linear inequality constraints, since BCC is designed for real-life constraints with
meaning and thus reasonable patterns. Our experiment on random constraints show that
BCC performs worse than case constraints, as expected.

In the first experiment, the adhoc constraint in each problem instance is defined by
the convex hull generated by 15 random points chosen from the Cartesian product space
of the variable domain 1..30. Table 2 gives the results. N is the number of solutions, B
and T are the number of boxes and triangles respectively, and gen is the generation time
(in seconds). For cas and dag, we consider each path from root to leaf in the DAG as
a box. We use the same DAG for both cas and dag, so that they share the same B and
gen. The columns cas, dag, box and tri-box report the execution time (in seconds) of
the propagation test when M = 5000, and W = 10 or W = 20.

The second experiment deals with non-linear inequalities of the form ax3 + by3 +
cz3 + dxyz + ex + fy + gz ≤ h, where the integer coefficients a to h are generated
randomly from the [−9..9]. The initial domain for each variable is 1..30. Results are
summarized in Table 3.

We observe from the two experiments that both box and tri-box, in particular
tri-box, use many fewer tiles than cas/dag for covering the same set of solutions.
The representation of tri-box is much more compact so that it is always faster than dag
and box. The built-in filtering algorithm allows cas to be almost two times more efficient
than tri-box in some cases, despite the size disadvantage in representation.

To study further the speed comparison, we conduct the third experiment on structured
polyhedrons including dipyramids and sheared rectangular boxes, which are generated
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Table 4. Performance comparisons on structured 3-dimensional polyhedron constraints.

cas/dag box tri-box W = 10 W = 20
N

B gen B gen T B gen cas dag box tri-box cas dag box tri-box

4225 437 1.15 437 39.17 8 0 68.24 34.26 57.39 73.92 4.22 38.44 84.51 112.68 8.56
4858 468 1.30 440 38.85 22 6 48.14 30.53 70.46 87.19 17.44 37.91 113.54 152.76 35.79
4526 240 1.16 30 10.59 28 2 27.26 25.17 30.38 11.69 17.47 30.52 50.48 22.29 34.50
2755 380 0.46 30 5.65 29 5 10.32 33.07 58.63 11.70 24.38 40.23 94.66 24.67 51.53
956 348 0.11 53 1.92 65 12 2.36 23.49 50.80 13.31 44.59 32.51 79.04 26.32 95.87

manually to investigate how the number of triangles and boxes affect the efficiency of
BCC. Results are presented in Table 4.

We found that tri-box fares very well againstdag, since the representation advantage
of tri-box becomes more apparent in polyhedrons with good structures. The size of the
cas/dag representation remains in the same order of magnitude as in the previous two
experiments. The last three benchmarks exhibit even more regular structure so that they
can be covered well also with boxes. In those cases, box is the fastest since the indexicals
for implementing boxes lack the overhead of the confinement variables. This dependency
on the number of boxes and triangles is more a result of the indexical implementation,
but not the representation scheme.

Our last experiment is an application of our method to model induction [12], the
outcome of which is a CSP consisting of only adhoc constraints. We study four different
formulations (or models) of the Langford’s problem (listed as “prob24” in CSPLib [11]):
M1, M1

∗, M1∩ i(f−1,M2) and M1∩ i(f−1,M2)∗. Model M1 is a hand-crafted model
originally with symbolic constraints, but we turn the symbolic constraints into table form.
Model M1

∗ is the same as M1 except solutions of constraints of the same signature are
intersected to form one constraint, which we call constraint merging. Model M1 ∩
i(f−1,M2) is a model constructed from model M1 plus constraints generated from
model induction, while model M1 ∩ i(f−1,M2)∗ is model M1 ∩ i(f−1,M2) with
constraint merging. For more details see [12].

Table 5 summaries the results. The column inst contain the problem instances (in
terms of problem size) and model contains the CSP models. Besides giving the number
of unary and binary constraints in the u and b columns respectively, we give also the
number of distinct unary and binary constraints that are learned in columns ud and
bd. Two constraints are distinct if they have different sets of nogoods. N is the total
number of solutions for the problem, while columns cas, dag, box and tri-box give the
CPU time in seconds to search for all solutions. Variables are chosen using the first-fail
heuristic. It is important to note that the search trees of the same problem using different
constraint representations are the same since generalized arc consistency is enforced in
all cases.

In this application, tri-box is significantly better than even cas for models M1,
M1

∗, and M1 ∩ i(f−1,M2). It is because all constraints in the hand-crafted model M1
are disequality constraints of the form x �= y + k for different k. Such constraints have
a high percentage of connected solutions, allowing the covering of the solutions by
only a few triangles and boxes. In M1

∗ this connectedness and structure are destroyed
by constraint merging which removes some solutions from the constraint. In M1 ∩



Box Constraint Collections for Adhoc Constraints 227

Table 5. Performance comparisons on different models of Langford’s Problem.

inst model u b ud bd N cas dag box tri-box

M1 0 369 0 10 6 4.56 4.88 7.86 0.51
M1* 0 351 0 10 6 4.25 4.51 7.21 0.48(3,9)

M1 ∩ i(f−1, M2) 9 720 9 361 6 5.85 9.63 12.39 4.34
M1 ∩ i(f−1, M2)* 9 351 9 342 6 2.75 6.33 6.97 4.02

M1 0 455 0 11 10 19.09 20.92 34.12 1.97
M1* 0 435 0 11 10 18.06 19.40 31.41 1.86(3,10)

M1 ∩ i(f−1, M2) 10 890 10 446 10 24.49 42.08 54.63 16.62
M1 ∩ i(f−1, M2)* 10 435 10 425 10 11.43 28.19 31.46 15.52

M1 0 550 0 12 0 101.78 110.87 182.27 9.59
M1* 0 528 0 12 0 95.82 102.92 168.50 9.01(3,11)

M1 ∩ i(f−1, M2) 11 1078 11 540 0 144.05 241.05 312.26 92.00
M1 ∩ i(f−1, M2)* 11 528 11 517 0 60.56 151.29 167.48 82.38

i(f−1,M2), constraints generated from model induction are not as structured, but model
M1 is still the backbone. The representation advantage of tri-box degrades for M1 ∩
i(f−1,M2)∗ since the original constraints in M1 are merged with the unstructured
constraints from model induction.

8 Concluding Remarks

We have proposed a new language-independent representation, the box constraint col-
lection, for adhoc constraints. With constructive disjunction, our new representation
achieves generalized arc consistency, if all constraints inside the collection do. We have
developed a greedy algorithm, bccFinder, to compute the box constraint collection of an
adhoc constraint. It creates simple and compact representations of adhoc constraints, in a
reasonable amount of time. We have shown how to implement box constraint collections
as indexicals, and illustrated there efficient propagation on a number of examples. They
are significantly more efficient than the DAG representation implemented by indexicals
(dag).

Box constraint collections can be implemented in other ways than using indexicals.
For binary constraints represented as boxes only (no triangles), Barták [5] gives an
efficient arc consistency algorithm. For the more general case, an implementation similar
to the case constraint seems quite plausible.

We conjecture that the difference in performance between cas and dag is mainly
because the cas implementation propagates on all variables simultaneously, while the
indexical representation runs each indexical separately. Worse, in the indexical represen-
tations (dag, box, and tri-box), when the indexical reduces the domain of xi because
of a change in xj , then all the indexicals are re-executed since xi has changed. But
this re-execution can never find new information. The re-execution does not occur using
case (according to our limited understanding). An internal implementation of the BCC
constraint (like the case constraint) could avoid these overheads, and should lead to
similar speedups (dag/cas) over the indexical representation.
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We restrict our experiments to binary and ternary adhoc constraints. The BCC idea
works for n-ary constraints in general, where n > 0. The bccFinder algorithm, how-
ever, needs improvement to be practical on higher dimensional constraints. This is an
interesting topic for further study.
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Abstract. Combining mutually redundant models with channelling constraints
increases constraint propagation. However, the extra computation efforts of the
additional variables and constraints may outweigh the gain of reduction in search
space. In fact, many of the constraints in redundant modelling are not only logically
redundant but also propagation redundant and hence cannot further reduce search
space. We give general theorems for proving propagation redundancy of one con-
straint with respect to channelling constraints and constraints in the other model.
We define a broad form of channelling constraints that are covered by our approach.
We illustrate, using problems from CSPLib (http://www.csplib.org/),
how detecting and removing propagation redundant constraints can significantly
speed up solving behaviour.

1 Introduction

Finding a good model of a constraint satisfaction problem (CSP) is a challenging task. A
modeller must specify a set of constraints that capture the definitions of the problem, and
the model should also have strong propagation. In other words, the model should be able
to quickly reduce the domains of the variables of the problem, and the implementation
of these propagators should be efficient, and the search space should not be too large.

A common technique to increase the propagation is to add redundant constraints,
which are logically implied by the constraints of the model.Adding redundant constraints
can be beneficial since the constraint solver may extract more information from these
redundant constraints. However, not all logically redundant constraints will contribute
additional propagation information to the constraint solver. Understanding whether the
propagator for a redundant constraint will add useful propagation information is an inter-
esting question. In this paper we show how to determine if a propagator is propagation
redundant with respect to a set of propagators, and hence will not add useful propagation
information.
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An important source of logically redundant constraints arises in redundant mod-
elling [4].A problem can be modelled differently from two viewpoints using two different
sets of variables. By connecting the two different models with channelling constraints,
which relates valuations in the two different models, stronger propagation behaviour can
be observed. However, the additional variables and constraints impose extra computation
overhead. Since each model is complete and only admits the solutions of the problem,
each model is logically redundant with respect to the other model plus the channelling
constraints. In many cases, some of the constraints are also propagation redundant with
respect to the other constraints in the combined model.

Smith [7,8] has examined the redundant models for a number of individual problems
including n-Queens problem, Langford’s problem and the social golfers problems. She
empirically determined propagation redundancy for constraints in these problems. In this
paper we give a theoretical framework which can determine propagation redundancy a
priori.

Walsh [9] also compares the pruning behaviour of the different notions of consis-
tency over the disequations, channelling constraints, and all-different constraints for
permutation problems by introducing the measure of constraint tightness. Propagation
redundancy can be seen as a more specific form of constraint tightness, that allows us
to give generic approaches to proving better pruning behaviour, in particular about the
other constraints in permutation problems.

In order to keep the benefits of redundant modelling without paying all the costs,
we give theorems that allow us to show which constraints in a redundant model are not
giving extra propagation and can be removed. In order to prove propagation redundancy,
we introduce the notion of propagation rules which capture each possible propagation
by a constraint and channel functions which relate these actions from one model to the
other. Due to space limitations, we state the lemmas and theorems without proofs1. We
give experimental results showing the benefits of detecting and removing propagation
redundant constraints. An earlier poster [5] examines this problem when combining
redundant models with permutation channels. This paper extends the study to cover
other forms of channelling constraints.

2 Propagation Based Constraint Solving

In this paper we consider integer and set constraint solving with constraint propagation
and tree search. Boolean constraint solving is considered a special case of the integer
constraint solving.

Constraints. We consider a typed set of variables V = VI ∪ VS made up of integer
variables VI , for which we use lower case notation such as x and y, and sets of integers
variables VS , for which we use upper case notation such as S and T . We use v to denote
variables of either kind.

An valuation θ is a mapping of integer variables to integer values and set variables
to sets of integer values, written {x1 �→ d1, . . . , xn �→ dn, S1 �→ A1, . . . , Sm �→ Am}.

1 A longer version of this paper with the proofs of lemmas and theorems is available at
http://www.cse.cuhk.edu.hk/˜cwchoi/cp03long.pdf.
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We extend the valuation θ to map expressions or constraints involving the variables in
the natural way. Let vars be the function that returns the set of variables appearing in
an expression, constraint or valuation.

A primitive constraint c defines a set of valuations solns(c) each mapping the same
set of variables vars(c). We call solns(c) the solutions of c. For a primitive constraint c
defined by arithmetic expressions we define solns(c) = {θ | vars(θ) = vars(c)∧ |=θ

c}, that is the set of θ that make the constraint c hold. Primitive constraints can also be
defined directly, by giving the set (or table) solns(c).

A constraint is a conjunction of primitive constraints, by abuse of notation, we will
sometimes treat it as a set of primitive constraints. A constraint c is logically redundant
with respect to a set of constraints C if |= C → c.

Domains. A domain D is a complete mapping from a fixed (countable) set of variables
V to finite sets of integers (for the integer variables in VI ) and to finite sets of finite sets
of integers (for the set variables in VS). A false domain D is a domain with D(v) = ∅
for some v. The intersection of two domains D1 and D2, denoted D1�D2, is defined by
the domain D3(v) = D1(v) ∩D2(v) for all v. A domain D1 is stronger than a domain
D2, written D1 % D2, if D1 is a false domain or D1(v) ⊆ D2(v) for all variables v.
A domain D1 is equal to a domain D2, denoted D1 = D2, if D1 and D2 are both false
domains or D1(v) = D2(v) for all variables v. We can understand a domain D as a
constraint in the obvious way, D ↔

∧
v∈V

∨
d∈D(v) v = d.

In an abuse of notation, we define a valuation θ to be an element of a domain D,
written θ ∈ D, if θ(vi) ∈ D(vi) for all vi ∈ vars(θ).

We will be interested in determining the infimums and supremums of expressions
with respect to some domainD. Define the infimum and supremum of an expression ewith
respect to a domain D as infD e = inf {θ(e)|θ ∈ D} and supD e = sup {θ(e)|θ ∈ D}.

We will also use range notation: [l .. u] denotes the set {d | l ≤ d ≤ u} when l and
u are integers, while [L .. U ] denotes the set of sets of integers {A | L ⊆ A ⊆ U} when
L and U are sets of integers.

We shall be interested in the notion of an initial domain, which we denote Dinit .
The initial domain gives the initial values possible for each variable. In effect an initial
domain allows us to restrict attention to domains D such that D % Dinit .

Propagators. A propagator f is a monotonically decreasing function from domains to
domains, i.e. D1 % D2 implies that f(D1) % f(D2), and f(D) % D. A propagator f
is correct for constraint c iff for all domains D

{θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c)

This is a weak restriction since for example, the identity propagator is correct for all
constraints c.

A propagation solver for a set of propagators F and current domain D, solv(F,D),
repeatedly applies all the propagators in F starting from domain D until there is no
further change in resulting domain. In other words, solv(F,D) returns a new domain
defined by
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iter(F,D) = �
f∈F

f(D) and solv(F,D) = gfp(λd.iter(F, d))(D)

where gfp denotes the greatest fixpoint w.r.t % lifted to functions.

Domain Consistency and Set Bounds Consistency. A domain D is domain consistent2

for a constraint c if D is the least domain containing all solutions θ ∈ D of c, i.e, there
does not exist D′ � D such that θ ∈ D ∧ θ ∈ solns(c)→ θ ∈ D′.

A set of propagators F maintains domain consistency for a constraint c, if solv(F,D)
is always domain consistent for c.

Define the domain consistency propagator for a constraint c as

dom(c)(D)(v) = {θ(v) | θ ∈ D ∧ θ ∈ solns(c)} where v ∈ vars(c)
dom(c)(D)(v) = D(v) otherwise

Example 1. Consider the constraint c ≡ x1 = 3x2 + 5x3. Suppose domain D(x1) =
{2, 3, 4, 5, 6, 7}, D(x2) = {0, 1, 2}, and D(x3) = {−1, 0, 1, 2}. The solutions θ ∈ D
of c are θ1 = {x1 �→ 3, x2 �→ 1, x3 �→ 0}, θ2 = {x1 �→ 5, x2 �→ 0, x3 �→ 1}, and
θ3 = {x1 �→ 6, x2 �→ 2, x3 �→ 0}. Hence, dom(c)(D) = D′ where D′(x1) = {3, 5, 6},
D′(x2) = {0, 1, 2}, and D′(x3) = {0, 1}. D′ is domain consistent with respect to c.

Domain consistency is prohibitive to compute for constraints involving set variables.
For that reason, set bounds propagation is typically used where a domain maps a set
variable to a lower bound set of integers and an upper bound set of integers.

We shall enforce this by restricting our attention to domains where the D(S) is a
range, that is D(S) = {A | infD(S) ⊆ A ⊆ supD(S)}. This is managed by only using
set bounds propagators, which maintain this property.

We can define the domain and set bounds propagators dsb(c) for a constraint c as
follows:

dsb(c)(D)(v) = [∩dom(c)(D)(v) .. ∪ dom(c)(D)(v)] where v ∈ vars(c) ∩ VS

dsb(c)(D)(v) = dom(c)(D)(v) otherwise

Note that as defined dsb(c) = dom(c) when vars(c) ⊆ VI . From now on we shall
restrict attention to dsb propagators.

3 Propagation Rules

In order to reason effectively about propagation, it will be useful to break down a prop-
agator into the individual propagation steps that it can perform. That is the role of
propagation rules.

An atomic constraint is one of xi = d, xi �= d, d ∈ Si or d �∈ Si where xi ∈ VI , d
is an integer, an Si ∈ VS . An atomic constraint represents the basic changes in domain
that occur during propagation, the elimination of a value from an integer domain, or
the addition of a value to a lower bound, or removal of a value from an upper bound.

2 Equivalently, hyper-arc or generalized arc consistent [3].
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Atomic constraints of the form xi = d are not strictly necessary. They are equivalent to
removing all other values from the domain.

A propagation rule is of the form C � c where C is a conjunction of atomic
constraints, c is an atomic constraint, and �|= C → c. Note our propagation rules when
restricted to integer variables are similar to the “membership rules” of [2] except we
allow equations on the right hand side.

A propagator f implements a propagation rule C � c if for each D % Dinit
whenever |= D → C, then |= f(D) → c. A propagation rule C � c defines a
propagator (for which we use the same notation) in the obvious way.

(C � c)(D)(v) = {θ(v) | θ ∈ D ∧ θ ∈ solns(c)} if vars(c) = {v} and |= D → C

(C � c)(D)(v) = D(v) otherwise

A propagation rule C1 � c1 subsumes a rule C2 � c2 if |= (Dinit ∧C2)→ C1 and
|= (Dinit ∧ c1)→ c2. We can characterize a propagator f in terms of the propagation
rules that it implements. Let rules(f) be the set of rules implemented by f . Then
prop(f) ⊆ rules(f) are a set of propagation rules such that every r ∈ rules(f) is
subsumed by a rule r′ ∈ prop(f). The set prop(f) can be automatically constructed
by the approach of [1].

Example 2. For the propagator f ≡ dsb(x1 �= x2) for Dinit(x1) = Dinit(x2) =
{1, 2, 3}, prop(f) is

x1 = 1 � x2 �= 1 x1 = 2 � x2 �= 2 x1 = 3 � x2 �= 3
x2 = 1 � x1 �= 1 x2 = 2 � x1 �= 2 x2 = 3 � x1 �= 3

Note that f also implements e.g. x1 �= 1, x1 �= 3 � x2 �= 2, which is subsumed by
x1 = 2 � x2 �= 2.

Example 3. For the propagator f ≡ dsb(S ⊆ T ) for Dinit(S) = Dinit(T ) = {∅ . . .
{1, 2}}. prop(f) is

1 ∈ S � 1 ∈ T 2 ∈ S � 2 ∈ T
1 �∈ T � 1 �∈ S 2 �∈ T � 2 �∈ S

A key result for domain and set bounds propagators dsb(c′), is that the propagation
rules implemented are exactly those C � c where c′ implies C → c.

Lemma 4. dsb(c′) implements C � c iff |= (Dinit ∧ c′)→ (C → c) ��

4 Reasoning about Propagation

In this section we introduce the basic results for reasoning about propagators.
We say a set of propagators F1 is stronger than a set of propagators F2, written

F1 ' F2, if solv(F1, D) % solv(F2, D) for all domains D % Dinit . We say a
set of propagators F1 is equivalent to a set of propagators F2, written F1 ≈ F2, if
solv(F1, D) = solv(F2, D) for all domains D % Dinit . A propagator f is made prop-
agation redundant by a set of propagators F if F ' {f}. It is clear that a constraint
c2 that is logically redundant with respect to constraint c1 is also propagation redundant
with respect to c1.
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Lemma 5. If |= Dinit ∧ c1 → c2 then {dsb(c1)} ' {dsb(c2)}. ��

Typically though a logically redundant constraint c2 will be made logically redundant
by a conjunction of other constraints. It is well known that in general the domain (and
set bounds) propagation of a conjunction of constraints is not equivalent to applying the
domain (and set bounds) propagators individually.

Example 6. Consider the constraint c1 ≡ x1 = 3x2, which is equivalent to c2∧c3 where
c2 ≡ x1 ≤ 3x2 and c3 ≡ x1 ≥ 3x2. If D(x1) = D(x2) = {0, 1, 2, 3, 4, 5, 6, 7}, then
D1 = dsb(c1)(D) and D2 = solv({dsb(c2), dsb(c3)}, D) where D1(x1) = {0, 3, 6}
and D2(x1) = {0, 1, 2, 3, 4, 5, 6}. Hence {dsb(c2), dsb(c3)} �' {dsb(c1)}.

But there are cases where propagation of a conjunction is equivalent to propagation
on the individual conjuncts.

Lemma 7. Let c1 and c2 be two constraints sharing at most one variable x ∈ VI , then
{dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}. ��

Note the same result clearly does not hold when the shared variable is a set variable.
Consider c1 = (S = {1} ∨ S = {2, 3}) and c2 = (S = {2} ∨ S = {1, 3}), then
solv({dsb(c1), dsb(c2), D) = D where D(S) = [∅ .. {1, 2, 3}], but dsb(c1 ∧ c2)(D) is
a false domain.

Propagation rules allow us to break up the consideration of a constraint into individual
parts. That is the domain and set bounds propagator of a constraint is equivalent to the
union of the propagation rules implemented by the propagator.

Lemma 8. {dsb(c′)} ≈ ∪C�c∈prop(dsb(c′)){C � c} ��

5 Redundant Modelling and Channelling Constraints

Redundant modelling [4] models the problem from two different viewpoints. In general,
the propagators defined for the two viewpoints act in different ways and discover infor-
mation at different stages in the search. By joining the two models using channelling
constraints, we can get the advantage of both sources of propagation. Of course, each
model is logically redundant with respect to the other model plus the channelling con-
straints. However, in this section, we show cases in which propagation caused by some
constraints in one model is subsumed by propagation induced from constraints in the
other model through the channelling constraints.

Assume we have one model of the problem MX using variables X , and another
model MY using disjoint variables Y . Channelling constraints are used to join these
two models together by relating X and Y . There is no real agreement on precisely
what channelling constraints may be yet. For the purposes of our theorems we define a
channelling constraints as follows.

Let AX be the atomic constraints for Dinit on variables X , and AY be the atomic
constraints for Dinit on variables Y . A channel function ♦ is a bijection from atomic
constraints AX to AY .
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A channelling constraint (or simply channel) C♦ is the constraint∧
c∈AX

(c⇔ ♦(c))

The channel propagator F♦ is the set of propagation rules inferred from the channel
function ♦.

F♦ =
⋃

c∈AX

{c � ♦(c),♦(c) � c}

Note for channel function ♦, by definition ♦−1 is also a channel function, and C♦ and
C♦−1 , as well as F♦ and F♦−1 , are identical.

We now illustrate how common channels fit into this framework.

Permutation Channels. A common form of redundant modelling is when we consider
two viewpoints to a permutation problem. We can view the problem as finding a bipartite
matching between two sets of objects of the same size. Assume the two viewpoints have
the set of variables X = {x0, . . . , xn}, and Y = {y0, . . . , yn} respectively.

The permutation channel function � is defined as � (xi = j) = (yj = i) and
�(xi �= j) = (yj �= i). The permutation channel C� is equivalent to the conjunction of
constraints

∧n
i=0
∧n

j=0(xi = j ⇔ yj = i).

Boolean Channels. Another common redundant modelling is when we give both an
integer and Boolean model. Suppose the integer variables are X = {x0, . . . , xn}, where
Dinit(xi) = [0 .. ki], and the Boolean variables are Z = {zij | 0 ≤ i ≤ n, 0 ≤ j ≤ ki}

The Boolean channel function) is defined as)(xi = j) = (zij = 1) and)(xi �=
j) = (zij = 0). Note that the atomic constraints zij �= 1 and zij �= 0 are not needed for
Boolean variables since they are equivalent (respectively) to zij = 0 and zij = 1. The
Boolean channel C� is equivalent to the conjunction of constraints

∧n
i=0
∧ki

j=0(xi =
j ⇔ zij = 1).

Set Channels. A common form of redundant modelling is where one model deals with
integer variables, and the other with variables over finite sets of integers, and the relation
xi = j holds iff i ∈ Sj . This generalizes the assignment problem to where two or
more integer variables can take the same value. Suppose the integer variables are X =
{x0, . . . , xn}, where Dinit(xi) = [0 .. k], and the set variables are {S0, . . . , Sk}. The
set channel function {} is defined as {}(xi = j) = (i ∈ Sj) and {}(xi �= j) = (i �∈ Sj).
The set channel C{} is equivalent to

∧n
i=0
∧k

j=0(xi = j ⇔ i ∈ Sj).

5.1 Proving Propagation Redundancy Using Channels

We can now prove the fundamental theorem about propagation redundancy through
channels. The core result is that a propagation rule that is mapped by a channel function
to a rule subsumed by another propagation rule is propagation redundant. We extend
channel functions to map conjunctions of constraints in the obvious manner ♦(c1 ∧
· · · ∧ cn) = ♦(c1) ∧ · · · ∧ ♦(cn).
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Lemma 9. Let C � c be a propagation rule on Y variables, and C ′ � c′ be a
propagation rule on X variables. If C ′ � c′ subsumes ♦−1(C) � ♦−1(c) then
{C ′ � c′} ∪ F♦ ' {C � c}. ��

We can straightforwardly lift this result to talk about propagation rules that are
subsumed by the domain and set bounds propagator for a constraint, and then lift to a
set of propagation rules implemented by some propagator.

Lemma 10. Let C � c be a propagation rule on Y variables, and cX be a constraint
on X variables. If |= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c), then {dsb(cX)} ∪ F♦ '
{C � c}. ��

Corollary 11. Let fY be a propagator on Y variables, and cX be a constraint on X
variables. If |= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c) for all C � c ∈ prop(fY ), then
{dsb(cX)} ∪ F♦ ' {fY }. ��

Often a single constraint does not capture all the propagation effects of a constraint
on the other side of the permutation model. In that case we may need to find for each
particular propagation rule, a constraint on the other side that causes the same propagation
to occur.

Theorem 12. Let fY be a propagator on Y variables. Suppose for each r ≡ (C � c) ∈
prop(fY ), there exists constraint imp(r) on X variables where |= (Dinit ∧ imp(r) ∧
♦−1(C))→ ♦−1(c), then ∪r∈prop(fY ){dsb(imp(r))} ∪ F♦ ' {fY }. ��

The framework just presented is closely related to Brand’s approach [10] of identi-
fying redundant rules in the compilation of constraints into rule-based constraint pro-
grams [2]. While Brand reasons about redundancy at the rule level, we employ propa-
gation rules as an analysis tool to detect redundancy at the constraint level.

5.2 Restrictive and Unrestrictive Channel Functions

The channels themselves may actually restrict the possible solutions in one or both
models involved. We will concentrate on the X model, since the restrictions on the Y
model can be seen by examining the inverse channel function.

A channel function ♦ is restrictive (on the variables X) if �|= Dinit → ∃Y C♦, that
is not all valuations on X variables are extensible to solutions of C♦.

Example 13. The � channel function is restrictive, for example {x1 = 2, x2 = 2}
cannot be extended to be a solution of C�, since it requires y2 to take both values 1 and
2. The) channel function is unrestrictive.Any valuation on X variables can be extended
to a solution of C�. However)−1 is restrictive, for example {z11 = 1, z12 = 1} cannot
be extended to a solution of C� since it requires x1 to be both 1 and 2.

Restrictive channel function can themselves make constraints propagation redundant.
Smith [7] first observes that the permutation channel makes each of the disequations

between variables in either model propagation redundant. Walsh [9] proves this holds
for other notions of consistency.
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Lemma 14 ([9]). F� ' {dsb(xi �= xk)} ��

Implicit in the Boolean channel is that each integer variable can take only one,
and must take one value. This is represented in the Boolean model as the constraint∑ki

j=0 zij = 1. It is enforced by the restrictive channel function)−1.

Lemma 15. F� ' {dsb(
∑ki

j=0 zij = 1)} for all 1 ≤ i ≤ n. ��

The channel function {}−1 is restrictive, since each variable xi ∈ X can only take
a single value j. It means that Sj ∩ Sj′ = ∅ for all 0 ≤ j < j′ ≤ m. It is clear that F{}
makes these constraints propagation redundant.

Lemma 16. F{} ' {dsb(Sj ∩ Sj′ = ∅)} for all 0 ≤ j < j′ ≤ m. ��

Unrestrictive channel functions do not make any constraints (on X) propagation
redundant. Interestingly in this case we can argue about propagation redundancy simply
in terms of logical consequence.

Theorem 17. Let ♦ be an unrestrictive channel function, let cY be a constraint on Y
variables, and cX a constraint on X variables. If |= (Dinit ∧ cX ∧ C♦) → cY , then
{dsb(cX)} ∪ F♦ ' {dsb(cY )}. ��

The reason the channel function must be unrestrictive for this result to hold is that
the |= (Dinit ∧ cX ∧ C♦)→ cY is too weak a condition in the general case.

Example 18. The permutation channel function is restrictive. Now C ≡ x0 + x1 <
2 ∧ C� is such that |= C → y2 = 2 since the only solutions of C are {x0 �→ 0, x1 �→
1, x2 �→ 2, y0 �→ 0, y1 �→ 1, y2 �→ 2} and {x0 �→ 1, x1 �→ 0, x2 �→ 2, y0 �→ 1, y1 �→
0, y2 �→ 2}. But clearly it is not the case that x0 + x1 < 2 → x2 = 2. The problem is
that the channel C� removes solutions of x0 + x1 < 2 like {x0 �→ 0, x1 �→ 0, x2 �→ 0}
from consideration.

6 Example Problems

In the following, we give examples where the constraints in redundant modelling are
propagation redundant.

6.1 All-Interval Series

The all-interval series problem, listed as “prob007” in CSPLib, from musical composi-
tion. The problem is to find a permutation of n numbers from 0 to n− 1, such that the
differences between adjacent numbers form a permutation from 1 to n− 1.

There are two ways to model the problem. The first model, MX , consists of n vari-
ables, X = {x0, . . . , xn−1}. Each xi denotes the number in position i, and Dinit(xi) =
{0, . . . , n−1} for i ∈ {0, . . . , n−1}. We introduce auxiliary variables, {u0, . . . , un−2},
that denote the difference between adjacent numbers. The constraints are:
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– disequality constraints (IX1): ∀0 ≤ i < j ≤ n− 1. xi �= xj and
∀0 ≤ i < j ≤ n− 2. ui �= uj .

– interval constraints (IX2): ∀0 ≤ i ≤ n− 2. ui = |xi − xi+1| − 1.

The second model, MY , also consists of n variables, Y = {y0, . . . , yn−1}. Each yi

denotes the position for the number i, and Dinit(yi) = {0, . . . , n−1} for i ∈ {0, . . . , n−
1}. The auxilliary variables {v0, . . . , vn−2} denote the position where the difference
value of 1 to n− 1 belongs. The constraints are:

– disequality constraints (IY1): ∀0 ≤ i < j ≤ n− 1. yi �= yj and
∀0 ≤ i < j ≤ n− 2. vi �= vj .

– interval constraints (IY2): The constraints ∀0 ≤ i < j ≤ n− 1. (yi − yj = 1)⇒
(vj−i−1 = yj) and (yj − yi = 1) ⇒ (vj−i−1 = yi) enforce that if yi and yj are
adjacent, the position for their difference must be the smaller of them.

In the second model, we observe that only y0 and yn−1 can lead to a difference value
of n − 1. Therefore, we can add the redundant constraints: (IY3) (|y0 − yn−1| = 1) ∧
(vn−2 = min(y0, yn−1)), to force y0 and yn−1 to be adjacent.

The permutation channels for this problem are more interesting because we have
two distinct kinds of variables in each model, each of which is related by a permutation
channel. The channels are xi = j ⇔ yj = i and ui = j ⇔ vj = i.

Example 19. Consider the constraint cY ≡ (yi − yj = 1) ⇒ (vj−i−1 = yj) of the
all-intervals series problem. The propagation rules for dsb(cY ) have the forms

r1 yi = k + 1 ∧ yj = k � vj−i−1 = k
r2 vj−i−1 �= k ∧ yj = k � yi �= k + 1
r3 yi = k + 1 ∧ I � yj �= k

where in r3, I is any conjunction of disequations on vj−i−1 and yj , not including yj �= k
ensuring that vj−i−1 �= yj . We can show for imp(r1) ≡ imp(r2) ≡ imp(r3) ≡ (uk =
|xk − xk+1| − 1) that |= (Dinit ∧ imp(r1)∧ xk+1 = i∧ xk = j)→ (uk = j − i− 1)
and |= (Dinit ∧ imp(r2) ∧ uk �= j − i − 1 ∧ xk = j) → (xk+1 �= i). For the
remaining propagation rules (r3), it is clear that I must contain vj−i−1 �= k since it
does not contain yj �= k and it must force the two to be different. We can show that
|= (Dinit ∧ imp(r3) ∧ uk �= j − i− 1 ∧ xk+1 = i)→ (xk �= j).

Hence the constraint is propagation redundant by Theorem 12. Similarly for the other
(IY2) constraints (yj − yi = 1) ⇒ (vj−i−1 = yi). The disequality constraints (IY1)
yi �= yj and vi �= vj are propagation redundant by Lemma 14. The only non-propagation
redundant constraints in MY is (IY3) (|y0 − yn−1| = 1) ∧ (vn−2 = min(y0, yn−1)).

6.2 n-Queens Problem

In the n-queens problem, the task of which is to place n queens on an n×n chess board
so that no two queens can attack each other.

The first model, MX , consists of n variables, X = {x0, . . . , xn−1}. Each xi denotes
the column position of the queen on row i, and D(xi) = {0, . . . , n − 1}, for i ∈
{0, . . . , n− 1}. The constraints CX enforce that no two queens can be on the same:



Propagation Redundancy in Redundant Modelling 239

– column (QX1): ∀0 ≤ i < j ≤ n− 1. xi �= xj .
– diagonal (QX2): ∀0 ≤ i < j ≤ n− 1. xi − i �= xj − j, xi + i �= xj + j.

The second model, MZ , consists of n×n Boolean variables, Z = {z00, . . . , z0(n−1),
. . . , z(n−1)0, . . . , z(n−1)(n−1)}. Each zij denotes whether we have a queen at row i
column j or not. The constraints CZ enforce that no two queens can be on the same:

– row (QZ1): ∀0 ≤ i ≤ n− 1.
∑n−1

j=0 zij = 1.

– column (QZ2): ∀0 ≤ j ≤ n− 1.
∑n−1

i=0 zij = 1.
– main diagonal (QZ3):

∑n−1
i=0 zii ≤ 1, and

∑n−1
i=0 zi(n−1−i) ≤ 1.

– other diagonal (QZ4): ∀1 ≤ k ≤ n−1.
∑n−1−k

j=0 zj(j+k) ≤ 1,
∑n−1−k

j=0 z(j+k)j ≤
1,
∑n−1−k

j=0 zj(n−1−j−k) ≤ 1,
∑n−1−k

j=0 z(j+k)(n−1−j) ≤ 1.

We combine the two models using the Boolean channel xi = j ⇔ zij = 1.

Example 20. In MZ , the row constraints (QZ1)
∑n−1

j=0 zij = 1 are propagation redun-
dant using Lemma 15.

Consider the main diagonal constraint (QZ3) cZ ≡
∑n−1

i=0 zii ≤ 1. We can show that
cX ≡ x1 �= xi−i− 1∧· · ·xi−1 �= xi−1∧xi+1 �= xi+1∧· · ·xn−1 �= xi+n−i−1 is
such that |= Dinit ∧cX∧C� → cZ . Now dsb(cX) ≈ dsb(x1 �= xi)∪· · ·∪dsb(xn−1 �=
xi) by Lemma 7 since they share only one variable xi. Since ) is an unrestrictive
channel function, by Theorem 17 we have that dsb(cZ) is propagation redundant. A
similar argument applies to all other diagonal constraints (QZ4).

Note that the column constraints (QZ2)
∑n−1

i=0 zij = 1 are not propagation redundant,
although the constraint

∑n−1
i=0 zij ≤ 1 is (using a similar argument to the main diagonal

constraints).

6.3 Balanced Academic Curriculum Problem

The problem “prob030” in CSPLib is to design a balanced academic curriculum. Fol-
lowing the description in [6], we can have both the integer model MX and set model
MS .

Given m courses, and n periods, a, b are the minimum and maximum academic load
allowed per period, c, d are the minimum and maximum number of courses allowed
per period, ti specifies the number of credits for course i, and R is a set of pairs 〈i, j〉
specifying that course i must be taken before course j.

We introduce a set of auxiliary variables lj , which is shared by both models, to
represent the academic load in period j as well as a variable u representing the maximum
academic load in any period, i.e. u = max{lj | 0 ≤ j ≤ n− 1}. The objective function
simply minimizes u. We also introduce another set of shared auxiliary variables qj to
represent the number of courses assigned to a period.

We have the following constraints that is common to both models (B1): ∀0 ≤ j ≤
n − 1. a ≤ lj ≤ b and c ≤ qj ≤ d. We also add the following redundant constraints
(B2): ∀0 ≤ j ≤ n− 1. (

∑n−1
j=0 lj) = (

∑m−1
i=0 ti) and (

∑n−1
j=0 qj) = m.

In the integer model, MX , the variable xi represents the period to which course i is
assigned The constraints for the integer model MX are:
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– (BX1) ∀0 ≤ j ≤ n− 1. (
∑m−1

i=0 ((xi = j)× ti)) = lj
– (BX2) ∀0 ≤ j ≤ n− 1. (

∑m−1
i=0 (xi = j)) = qj

– (BX3) ∀〈i, j〉 ∈ R. xi < xj

In the set model the set variables Sj representing the set of courses assigned to period
j. The constraints for the set model MS are:

– (BS1) ∀0 ≤ i < j ≤ n− 1. Si ∩ Sj = ∅
– (BS2) ∀0 ≤ j ≤ n− 1. (

∑
i∈Sj

ti) = lj
– (BS3) ∀0 ≤ j ≤ n− 1. |Sj | = qj

– (BS4) ∀〈i, j〉 ∈ R.∀1 ≤ k ≤ n− 1.∀0 ≤ k′ ≤ k. (i ∈ Sk)⇒ (j �∈ Sk′)

We can use the set channels to combine the two models, xi = j ⇔ i ∈ Sj .

Example 21. The (BS1) constraint Si∩Sj =∅ is propagation redundant using Lemma 16.
For the (BS4) constraint cS ≡ (i ∈ Sk) ⇒ (j �∈ Sk′) where k′ ≤ k we can show that
|= (Dinit ∧ xi < xj ∧ C{})→ cS . Hence since {} is an unrestrictive channel function
by Theorem 17 we have that dsb(cS) is propagation redundant.

Example 22. In an abuse of notation we use the “pseudo atomic constraint”. x ≤ d to
represent the conjunction x �= d + 1, . . . , x �= supDinit

(x) and x ≥ d to represent the
conjunction x �= infDinit (x), . . . , x �= d− 1.

Consider the (BX2) constraint cX ≡ (
∑m−1

i=0 (xi = j)) = qj , the propagation rules
C � c for dsb(cX) are

qj ≤ d ∧ xi1 = j ∧ · · · ∧ xid
= j � xi �= j

xi1 = j ∧ · · · ∧ xid
= j � qj ≥ d

for all I = {i1, . . . , id} ⊆ {0, . . . ,m− 1} and i ∈ {0, . . . ,m− 1} − I; and

qj ≥ d ∧ xi1 �= j ∧ · · · ∧ xim−d
�= j � xi = j

xi1 �= j ∧ · · · ∧ xim−d
�= j � qj ≤ d

for all I = {i1, . . . , im−d} ⊆ {0, . . . ,m − 1} and i ∈ {0, . . . ,m − 1} − I . Notice
that all the atomic constraints involving qj are mapped to themselves by {}, since qj is
shared by the two models. The rules are mapped to

qj ≤ d ∧ i1 ∈ Sj ∧ · · · ∧ id ∈ Sj � i �∈ Sj

i1 ∈ Sj ∧ · · · ∧ id ∈ Sj � qj ≤ d
qj ≥ d ∧ i1 �∈ Sj ∧ · · · ∧ im−d �∈ Sj � i ∈ Sj

i1 �∈ Sj ∧ · · · ∧ im−d �∈ Sj � qj ≥ d

We have that for cS ≡ |Sj | = qj , |= (Dinit∧cS∧{}(C))→ {}(c) for all the propagation
rules above. Hence, dsb(cX) is propagation redundant using Corollary 11.

Similar reasoning applies to show that each constraint (
∑m−1

i=0 ((xi = j)× ti)) = lj
of (BX1) is made propagation redundant by (BS2) (

∑
i∈Sj

ti) = lj .
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7 Experiments

We can take advantage of the reasoning about propagation redundancy to eliminate
propagators that are propagation redundant. We then get a model with exactly the same
propagation behaviour but with less propagators. This can translate into faster propa-
gation3. In the following experiments, All the benchmarks were executed using ILOG
Solver 4.4 on Sun Ultra 5/400 workstation running Solaris 8.

7.1 All-Interval Series

We compare the different models for solving the all-interval series problem. We search
for all solutions in order to fairly compare the propagation strengths and use a first-fail
heuristic for variables selection, and least to greatest value selection heuristic.

The models under comparison include the single models: MX and MY , the full
combined model MX + C� + MY , and an optimized combined model IX2 + C� + IY3
as discussed in Example 19. Puget and Régin, in their note4, show that all the solutions
can be found more efficiently by replacing (IX1) by (IX1’)alldifferent constraints
on x and u. The pr model uses IX1′ + IX2. The pr full model is the combination of
pr and MY , IX1’ + IX2 + C� + MY . The pr opt model is the optimized combination of
pr and MY , IX1’ + IX2 + C� + IY3 since the same reasoning applies.

Table 1 gives the results of the comparison. We show the results using three sets
of search variables X , Y and X ∪ Y . Entries with a “—” mean unable to solve the
problem after one hour of execution time. Compared with the single models MX and
MY , clearly the full and pr full model reduces the number of fails significantly. The opt
model maintains the same number of fails as the full model and is the fastest for the
smaller instance 12. The pr opt model maintains the same number of fails as the pr
full model, and is the fastest for larger instances 13, 14 and 15, as the alldifferent
constraints is too expensive for the smaller instance. Note that the optimized models opt
and pr opt can solve the size 15 instance much faster than pr, and no other models can
solve this instance within the time limit.

7.2 Balanced Academic Curriculum Problem

Table 2 shows the result of finding the optimal solution and proving optimality for some
smaller instances derived from the problem instances posted in CSPLib. We use the
first-fail heuristic for the search on the integer variables X , and naive enumeration for
search on the set variables S. The table entry with value “—” means that Solver cannot
solve the problem after one hour of execution time.

The full model represents the full combined model between the integer and set model
as discussed in Section 6.3, while the opt model represents the reduced combined model
after removing the redundant propagators as discussed in Example 21 and 22, that is
B1 + B2 + BX3 + C{} + BS2 + BS3. In [6], the authors reported that it is difficult to
find the optimal solution and prove optimality with propagation based solving alone.

3 Note there is no guarantee since e.g. the number of propagation steps may have increased.
4 Available at http://www.csplib.org/prob/prob007/puget.pdf.
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Table 1. Comparing the different models of All-Interval Series Problem

Search n = 12 n = 13 n = 14 n = 15
Model Vars fails (sec) fails (sec) fails (sec) fails (sec)

pr X 38778 (24.32) 156251 (105.26) 674346 (530.47) 3045037 (2328.57)
MX X 880112 (260.92) 4914499 (1589.83) — — — —
full X 39241 (222.07) 158368 (1048.19) — — — —
opt X 39241 (36.34) 158368 (157.84) 685301 (770.57) — —

pr full X 38461 (236.42) 155183 (1088.91) — — — —
pr opt X 38461 (42.77) 155183 (188.94) 670045 (910.90) — —
MY Y — — — — — — — —
full Y 16280 (70.81) 62949 (303.61) 266130 (1458.74) — —
opt Y 16280 (6.36) 62949 (26.00) 266130 (108.54) 1275661 (553.45)

pr full Y 12296 (62.96) 43681 (260.90) 164841 (1127.64) — —
pr opt Y 12296 (7.91) 43681 (25.78) 164841 (101.42) 704097 (458.12)
full X ∪ Y 39195 (222.42) 158282 (1065.77) — — — —
opt X ∪ Y 39195 (36.36) 158282 (158.40) 684592 (783.01) — —

pr full X ∪ Y 38447 (230.65) 155176 (1094.61) — — — —
pr opt X ∪ Y 38447 (42.47) 155176 (198.36) 669950 (898.66) — —

Table 2. Comparing the different models for solving the balanced academic curriculum problem

Search 8 Periods 10 Periods 12 Periods
Model Variables fails (sec) fails (sec) fails (sec)

CPLEX n/a n/a (1.80) n/a (2.27) n/a (20.32)
Hybrid X 101 (0.61) 468 (2.20) 58442 (146.47)
Hybrid Boolean 219 (0.76) 277 (1.03) 315 (2.09)
MX X 101 (0.04) 468 (0.25) 33602 (11.62)
full X 101 (0.24) 470 (1.80) 33530 (192.62)
opt X 101 (0.08) 470 (0.68) 33530 (38.54)
MS S — — — — — —
full S 1577 (2.83) 323 (0.81) 882 (4.56)
opt S 1577 (0.94) 323 (0.24) 882 (0.95)

However, by adding redundant constraints (B2), we were able to solve all the problem
instances with MX alone. The row CPLEX gives the runtime for solving the problem
instances with ILOG CPLEX 8.0 using an integer linear programming (ILP) model
in [6]. The row Hybrid implements the hybrid ILP and CP model described in [6]
together with the redundant constraints (B2) using ILOG Hybrid 1.3. Clearly, the full
model is substantially better in terms of number of fails when compared with the single
model (MX or MS), The hybrid model gives the least number of fails, but suffer from
the overhead of invoking two solvers. The opt model is more efficient and can solve all
the instances in less than 1 second.

8 Conclusion

It is clear that reasoning about propagation redundancy can lead to significantly faster
models, that do not increase the search space. Although we have illustrated the use of the
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theorems herein by hand, the approach can clearly be automated. To use Theorem 12 we
can straightforwardly define the propagation rules for many constraints (parametrically in
Dinit ) or construct them automatically using the approach of [1]. Given the propagation
rules, we can individually check those that are subsumed by constraints in the other
model. If we have a parametric definition, then this check can also be parametric, rather
than needing to consider every individual propagation rule. We can use Theorem 17 to
prove propagation redundancy without considering propagation rules.

There are clearly many important future directions for this line of work. Modern set
bounds propagation solvers (including ILOG Solver 4.4) implement slightly stronger
propagators than dsb(c), by including cardinality reasoning. We can model this extra
propagation using cardinality variables and propagation rules. For a set constraint c to
be propagation redundant we need to prove their redundancy too. For the examples in
this paper this is straightforward. We plan to extend the theorems for the general case.

Similarly, many integer constraint solvers use integer bounds propagation. Clearly
we can extend the notion of propagation rules to integer bounds propagators using the
atomic constraints xi ≤ d and xi ≥ d. The only complication arises in formalizing what
the bounds propagators are for an individual constraint. Usually bounds propagators do
not have a completeness property like Lemma 4.

References

1. S. Abdennadher and C. Rigotti. Automatic generation of rule-based solvers for intentionally
defined constraints. IJAIT 11(2):283–302, 2002.

2. K. Apt and E. Monfroy. Constraint programming viewed as rule-based programming. Theory
and Practice of Logic Programming, 1(6):713–750, 2001.
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Abstract. Over the past few years there has been considerable progress
in methods to systematically analyse the complexity of classical (crisp)
constraint satisfaction problems with specified constraint types. One very
powerful theoretical development in this area links the complexity of a
set of classical constraints to a corresponding set of algebraic operations,
known as polymorphisms.
In this paper we begin a systematic investigation of the complexity of
combinatorial optimisation problems expressed using various forms of
soft constraints. We extend the notion of a polymorphism by introducing
a more general algebraic operation, which we call a multimorphism. We
show that a number of maximal tractable sets of soft constraints, both
established and novel, can be characterised by the presence of particular
multimorphisms.

1 Introduction

In the standard constraint satisfaction framework a constraint is usually taken
to be a predicate, or relation, specifying the allowed combinations of values
for some fixed collection of variables: we will refer to such constraints here as
crisp constraints. Problems with crisp constraints deal only with feasibility : no
satisfying solution is considered better than any other.

A number of authors have suggested that the usefulness of the constraint
satisfaction framework could be greatly enhanced by extending the definition of
a constraint to include also soft constraints, which allow different measures of
desirability to be associated with different combinations of values [1]. In this ex-
tended framework a constraint can be seen as a function, mapping each possible
combination of values to a measure of desirability or undesirability. Problems
with soft constraints deal with optimisation as well as feasibility: we seek an
assignment of values to all of the variables having the best possible overall com-
bined measure of desirability.
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Example 1. Consider an optimisation problem where we have 2n variables,
v1, v2, . . . , v2n, and we wish to assign each variable an integer value in the range
1, 2, . . . , n, subject to the following restrictions:

– The value assigned to v2n must be at least twice the value assigned to vn.
– Each variable vi should be assigned a value that is as close as possible to

i/2.
– Each pair of variables vi, v2i should be assigned a pair of values that are as

similar as possible.

To model this situation we might impose constraints as follows:

– A binary constraint on the pair vn, v2n specified by a function ζ, where
ζ(x, y) = 0 if y ≥ 2x and ∞ otherwise.

– A unary constraint on each vi specified by a function ψi, where ψi(x) =
|x− i/2|r for some r ≥ 1.

– A binary constraint on each pair vi, v2i specified by a function δr, where
δr(x, y) = |x− y|r for some r ≥ 1.

We would then seek an assignment to all of the variables which minimises the
sum of these constraint functions,

ζ(vn, v2n) +
2n∑
i=1

ψi(vi) +
n∑

i=1

δr(vi, v2i).

The cost of allowing additional flexibility in the specification of constraints, in
order to model optimisation criteria as well as feasibility, is generally an increase
in computational difficulty. For example, we establish below that the class of
problems containing only unary constraints and a soft version of the equality
constraint is NP-hard (see Example 5).

On the other hand, for certain types of soft constraint it is possible to solve
the associated optimisation problems efficiently. For example, we establish below
that optimisation problems of the form described in Example 1 can be solved in
polynomial time (see Example 12).

In the case of crisp constraints there has been considerable progress in an-
alyzing the complexity of different types of constraints. This work has led to
the identification of a number of classes of constraints which are tractable, in
the sense that there exists a polynomial time algorithm to determine whether or
not any collection of constraints from such a class can be simultaneously satis-
fied [2,12,20,27]. One powerful result in this area establishes that any tractable
class of constraints over a finite domain must be preserved by a non-trivial al-
gebraic operation, known as a polymorphism [4,19,20].

In the case of soft constraints there has not yet been any detailed investigation
of the tractable cases, except for the special case of a two-valued domain [9], and
the special case of simple temporal constraints [24]. In this paper we take the
first step towards a systematic analysis of the complexity of soft constraints over
arbitrary finite domains. To do this we generalise the algebraic ideas used to
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study crisp constraints, and introduce a new algebraic operation which we call a
multimorphism. Every soft constraint has an associated set of multimorphisms,
and every multimorphism has an associated set of soft constraints. We show that,
for several different types of multimorphism, the associated set of soft constraints
forms a maximal tractable set. In other words, we show that several maximal
tractable classes of soft constraints can be precisely characterised as the set of
all soft constraints associated with a particular multimorphism.

The examples given below demonstrate that the framework we introduce here
can be used to unify isolated results about tractable problem classes from many
different application areas, as well as prompting the discovery of new tractable
classes. For example, the notion of a multimorphism can be used to characterise
tractable subproblems in all of the following areas: in the case of the Satisfi-
ability problem these include the Horn-Sat and 2-Sat subproblems [15]; in
the case of the standard constraint satisfaction problem these include general-
isations of Horn-Sat (such as the so-called ‘max-closed’ constraints [23,20]),
generalisations of 2-Sat (such as the so-called ‘0/1/all’ or ‘implicative’ con-
straints [8,18,25]) and systems of linear equations [20]; in the case of the opti-
misation problem Max-Sat these include the ‘0-valid’ and ‘2-monotone’ con-
straints [9]; in the case of optimisation problems over sets these include the
submodular set functions [17,26] and bisubmodular set functions [14].

2 Definitions

Several alternative mathematical frameworks for soft constraints have been pro-
posed in the literature, including the very general frameworks of ‘semi-ring based
constraints’ and ‘valued constraints’ [1]. For simplicity, we shall adopt the val-
ued constraint framework here (although our results can easily be adapted to
the semi-ring framework, for appropriate semi-ring structures).

In the valued constraint framework, a constraint is specified by a function
which assigns a cost to each possible assignment of values. In general, costs may
be chosen from any valuation structure, satisfying the following definition.

Definition 1. A valuation structure, χ, is a totally ordered set, with a min-
imum and a maximum element (denoted 0 and ∞), together with a commuta-
tive, associative binary aggregation operator (denoted +), such that for all
α, β, γ ∈ χ

α + 0 = α (1)
α + γ ≥ β + γ whenever α ≥ β. (2)

For all of the examples given in this paper we shall use the valuation structure
R+, consisting of the non-negative real numbers together with infinity, with the
usual ordering and the usual addition operation.

Definition 2. An instance of the valued constraint satisfaction problem, VCSP,
is a tuple P = 〈V,D,C, χ〉 where:
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– V is a finite set of variables;
– D is a finite set of values;
– χ is a valuation structure representing possible costs;
– C is a set of constraints. Each element of C is a pair c = 〈σ, φ〉 where σ

is a tuple of variables called the scope of c, and φ is a mapping from D|σ|

to χ, called the cost function of c.

Definition 3. For any VCSP instance P = 〈V,D,C, χ〉, an assignment for P
is a mapping s from V to D. The cost of an assignment s, denoted CostP (s),
is given by the sum (i.e., aggregration) of the costs for the restrictions of s onto
each constraint scope, that is,

CostP (s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.

Example 2 (Standard CSP). For any standard constraint satisfaction problem
instance P with crisp constraints, we can define a corresponding valued con-
straint satisfaction problem instance P̂ in which the range of the cost functions
of all the constraints is the set {0,∞}. For each crisp constraint c of P, we define
a corresponding soft constraint ĉ of P̂ with the same scope; the cost function of
ĉ maps each tuple allowed by c to 0, and each tuple disallowed by c to ∞.

In this case the cost of an assignment s for P̂ equals the minimal possible
cost, 0, if and only if s satisfies all of the crisp constraints in P.

Example 3 (MAX-CSP). For any standard constraint satisfaction problem in-
stance P with crisp constraints, we can define a corresponding valued constraint
satisfaction problem instance P# in which the range of the cost functions of all
the constraints is the set {0, 1}. For each crisp constraint c of P, we define a
corresponding soft constraint c# of P# with the same scope; the cost function
of c# maps each tuple allowed by c to 0, and each tuple disallowed by c to 1.

In this case the cost of an assignment s for P# equals the number of crisp
constraints in P which are violated by s. Hence a solution to P# corresponds to
an assignment which violates the minimal number of constraints of P.

The problem of finding a solution to a valued constraint satisfaction problem is
an NP optimisation problem, that is, it lies in the complexity class NPO (see [9]
for a formal definition of this class). It follows from Examples 2 and 3 that the
general VCSP is NP-hard. To achieve more tractable versions of VCSP, we will
now consider the effect of restricting the forms of cost function allowed in the
constraints.
Definition 4. Let D be a set and χ a valuation structure. A valued constraint
language over D with costs in χ is defined to be a set of functions, Γ , such that
each φ ∈ Γ is a function from Dm to χ, for some m ∈ N, where m is called the
arity of φ.

The class VCSP(Γ ) is defined to be the class of all VCSP instances where
the cost functions of all constraints lie in Γ .
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For any valued constraint language Γ , if every instance in VCSP(Γ ) can be
solved in polynomial time then we will say that Γ is tractable. On the other
hand, if there is a polynomial-time reduction from some NP-complete problem
to VCSP(Γ ), then we shall say that VCSP(Γ ) and Γ are NP-hard.

Example 4 (SAT and MAX-SAT). Let Γ be any valued constraint language
over D, where |D| = 2. In this case VCSP(Γ ) is a Boolean soft constraint satis-
faction problem.

If we restrict Γ even further, by only allowing functions with range {0,∞}, as
in Example 2, then each VCSP(Γ ) corresponds precisely to a standard Boolean
crisp constraint satisfaction problem. Such problems are sometimes known as
Generalized Satisfiability problems [29,15]. The complexity of VCSP(Γ )
for such restricted sets Γ has been completely characterised, and the six tractable
cases have been identified [29,9].

Alternatively, if we restrict Γ by only allowing functions with range {0, 1}, as
in Example 3, then each VCSP(Γ ) corresponds precisely to a standard Boolean
maximum satisfiability problem, in which the aim is to satisfy the maximum
number of crisp constraints. Such problems are sometimes known as Max-Sat
problems [9]. The complexity of VCSP(Γ ) for such restricted sets Γ has been
completely characterised, and the three tractable cases have been identified (see
Theorem 7.6 of [9]).

We note, in particular, that when Γ contains just the single binary function
φXOR defined by

φXOR(x, y) =
{

0 if x �= y
1 otherwise

then VCSP(Γ ) corresponds to the Max-Sat problem for the exclusive-or pred-
icate, which is known to be NP-hard (see Lemma 7.4 of [9]).

Example 5. Let Γ be a soft constraint language over D, where |D| ≥ 3, and
assume that Γ contains just the set of all unary functions, together with the
single binary function φEQ defined by

φEQ(x, y) =
{

0 if x = y
1 otherwise.

Even in this apparently simple case it can be shown [6] that VCSP(Γ ) is NP-
hard, by reduction from the Minimum Multiterminal Cut problem [11].

3 Reductions and Multimorphisms
Let Γ be a valued constraint language, and consider an arbitrary instance P in
VCSP(Γ ). If we choose a subset of the variables of P which is equal to the set
of variables in the scope of some constraint of P, then the values taken by those
variables are explicitly constrained. What is more, if we choose any subset of
the variables of P, then the values may still be constrained implicitly, due to the
combined effect of the constraints of P. The cost function which describes this
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implicit constraint may or may not be an element of Γ , but can, in a sense, be
expressed using elements of Γ .

The next two definitions formalise this idea of a function being expressible
over a valued constraint language.

Definition 5. For any VCSP instance P = 〈V,D,C, χ〉, and any tuple of dis-
tinct variables W = 〈v1, . . . , vk〉, the cost function for P on W , denoted ΦW

P ,
is defined as follows:

ΦW
P (d1, . . . , dk) = min{CostP (s) | s : V → D, 〈s(v1), . . . , s(vk)〉 = 〈d1, . . . , dk〉}

Definition 6. A function φ is expressible over a valued constraint language Γ
if there exists an instance P = 〈V,D,C, χ〉 in VCSP(Γ ) and a list W of variables
from V such that φ = ΦW

P .

The notion of expressibility is a key tool in analysing the complexity of valued
constraint languages, as the next result shows.

Proposition 1. Let Γ and Γ ′ be valued constraint languages.
If Γ ′ is finite, and every φ ∈ Γ ′ is expressible over Γ , then VCSP(Γ ′) is

polynomial-time reducible to VCSP(Γ ).

Proof. Let P = 〈V,D,C, χ〉 be any instance in VCSP(Γ ′), and let c = 〈σ, φ〉 be
a constraint in C. Since φ is expressible over Γ , there exists an instance Pφ in
VCSP(Γ ), and a list of variables W of Pφ, such that ΦW

Pφ
= φ. Hence we can

replace the constraint c with a copy of Pφ, where the variables in the scope σ
are identified with the list of variables W , and the remaining variables of Pφ are
disjoint from V , to obtain a new problem instance P ′. Note that the solutions
to P ′, when restricted to V , correspond precisely to the original solutions to P.

By repeating this construction for each constraint c of P, we can obtain an
instance P ′′ of VCSP(Γ ). Since Γ ′ is finite, there is a bound on the size of the
instances Pφ used in the construction, and so the size of P ′′ is bounded by a
constant multiple of the size of P. Hence we have described a polynomial-time
reduction from VCSP(Γ ′) to VCSP(Γ ).

It follows from Proposition 1 that valued constraint languages that are finite
and express precisely the same set of functions have the same complexity, up
to polynomial-time reduction. Hence to analyse the complexity of a valued con-
straint language it may be sufficient to determine what functions can be ex-
pressed over that language. For example, the next result shows how this idea
can be used to establish NP-hardness of a valued constraint language.

Corollary 1. Let Γ be a valued constraint language over D, with costs in R+.
If there exist d, d′ ∈ D, and α, β ∈ R+, with α < β <∞, such that the binary

function φXOR+ given by

φXOR+(x, y) =

⎧⎨⎩
α if x �= y ∧ x, y ∈ {d, d′}
β if x = y ∧ x, y ∈ {d, d′}
∞ otherwise

is expressible over Γ , then VCSP(Γ ) is NP-hard.
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Proof. Any instance of VCSP({φXOR+}) must have a solution involving only
the two values d and d′, since all assignments involving any other values must
have costs at least as high. Lemma 7.4 of [9] states that the two-valued problem
VCSP({φXOR}) is NP-hard, where φXOR is the Boolean exclusive-or function,
as defined in Example 4. Since adding a constant to all cost functions, and scaling
all costs by a constant factor, does not affect the difficulty of solving a VCSP
instance, we conclude that VCSP({φXOR+}) is also NP-hard.

For crisp constraints, it has been show that the expressive power of a set of rela-
tions is determined by certain algebraic invariance properties of those relations,
known as polymorphisms [4,20,22,21,28]. The concept of a polymorphism is spe-
cific to relations, and cannot be applied directly to the functions in a valued
constraint language. However, we now introduce a more general notion, which
we call a multimorphism, which does apply directly to functions.

Throughout the rest of the paper, the ith component of a tuple t will be
denoted t[i].

Definition 7. Let D be a set, χ a valuation structure, and φ : Dm → χ a
function.

We extend the definition of φ in the following way: for any positive integer
k, and any list of k-tuples, t1, t2, . . . , tm, over D, we define

φ(t1, t2, . . . , tm) =
k∑

i=1

φ(t1[i], t2[i], . . . , tm[i])

We say that F : Dk → Dk is a multimorphism of φ if, for any list of k-tuples
t1, t2 . . . , tm over D we have

φ(F (t1), F (t2), . . . , F (tm)) ≤ φ(t1, t2, . . . , tm).

Example 6. Let D = {0, 1, 2, . . . , |D| − 1} be a subset of the integers, and let
φ : D3 → R+ be the linear function defined by φ(x, y, z) = ax + by + cz, where
a, b, c are positive constants.

Consider the function F : D2→D2 defined by F (x, y)=〈min(x, y),max(x, y)〉.
For any list of pairs, t1, t2, t3, over D we have

φ(F (t1), F (t2), F (t3))
= φ(〈min(t1[1], t1[2]),max(t1[1], t1[2])〉, . . . ,

〈min(t3[1], t3[2]),max(t3[1], t3[2])〉)
= φ(min(t1[1], t1[2]),min(t2[1], t2[2]),min(t3[1], t3[2]))

+ φ(max(t1[1], t1[2]),max(t2[1], t2[2]),max(t3[1], t3[2]))
= (amin(t1[1], t1[2]) + bmin(t2[1], t2[2]) + cmin(t3[1], t3[2]))

+ (amax(t1[1], t1[2]) + bmax(t2[1], t2[2]) + cmax(t3[1], t3[2])
= a(t1[1] + t1[2]) + b(t2[1] + t2[2]) + c(t3[1] + t3[2])
= φ(t1, t2, t3)

Hence F is a multimorphism of φ.
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Example 7. Let R be a relation of arity m, and let φR be the function defined
by

φR(x1, x2, . . . , xm) =
{

0 if 〈x1, x2, . . . , xm〉 ∈ R
∞ otherwise

There is a close relationship between the polymorphisms of the relation R, as
defined in [4,21,28], and the multimorphisms of the function φR.

For any polymorphism f : Dk → D of R, it is easy to show that the function
F : Dk → Dk defined by

F (x1, x2, . . . , xk) = 〈f(x1, x2, . . . , xk), f(x1, x2, . . . , xk), . . . , f(x1, x2, . . . , xk)〉

is a multimorphism of φR.
Furthermore, if F : Dk → Dk is a multimorphism of φR, then it is straight-

forward to check from the definitions that each of the k component functions,
Fi, given by Fi(x1, x2, . . . , xk) = F (x1, x2, . . . , xk)[i], is a polymorphism of R.

The following result means that multimorphisms have the key property that
they extend to all functions expressible over a given language.

Theorem 1. Let Γ be a valued constraint language, and F be a multimorphism
of every function in Γ .

If φ is expressible over Γ , then F is also a multimorphism of φ.

Proof. The proof of this result is a straightforward application of Definition 7
and Definition 6.

In the remainder of the paper we will show that a wide range of tractable opti-
misation problems are characterised by the presence of certain forms of multi-
morphism.

Example 8. For any finite set Q, a function ψ defined on subsets of Q is called
a submodular set function [26] if, for all subsets S and T of Q

ψ(S ∪ T ) + ψ(S ∩ T ) ≤ ψ(S) + ψ(T ).

The problem of submodular set function minimisation consists in finding a subset
S of Q for which ψ(S) is minimal. Such problems arise in a number of different
contexts. For example, Cunningham [10] showed that finding the maximum flow
in a network can be viewed as a special case of the general problem of submodular
function minimisation.

By fixing an arbitrary order for the elements of Q, we can associate each
subset S of Q with a tuple tS of length |Q| over the set {0, 1}, where tS [i] = 1 if
S contains the ith element of Q, and tS [i] = 0 otherwise. Using this association,
it is easy to show that a function ψ is a submodular set function if and only if the
function φ given by φ(tS) = ψ(S) has the multimorphism F : {0, 1}2 → {0, 1}2
given by F (x, y) = 〈min(x, y),max(x, y)〉.

It has been known for a long time that real-valued submodular set functions
can be minimised in polynomial time using the ellipsoid method [16]. Recently,
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several different strongly polynomial, combinatorial algorithms have been pro-
posed for this problem [30,17,13].

However, the best known polynomial-time bounds for general real-valued
submodular set function minimisation are still rather high: the number of oracle
calls has been shown to be O(n7), and the number of fundamental operations
has been shown to be O(n8) [13].

Example 9. For any finite set Q, a function ψ defined on pairs of disjoint subsets
of Q is called a bisubmodular function [14] if for all pairs (S1, S2) and (T1, T2)
of disjoint subsets of Q

ψ(〈S1, S2〉 � 〈T1, T2〉) + ψ(〈S1, S2〉 � 〈T1, T2〉) ≤ ψ(〈S1, S2〉) + ψ(〈T1, T2〉)
where

〈S1, S2〉 � 〈T1, T2〉 = 〈(S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T1)〉
〈S1, S2〉 � 〈T1, T2〉 = 〈S1 ∩ T1, S2 ∩ T2〉

It is known that an integer-valued bisubmodular function ψ can be minimised
in O(n5 log M) time where M designates the maximum value of the function
ψ [14].

By fixing an arbitrary order for the elements of Q, we can associate each pair
of disjoint subsets 〈S1, S2〉 of Q with a tuple t〈S1,S2〉 of length |Q| over the set
{0, 1, 2}, where t〈S1,S2〉[i] = 1 if S1 contains the ith element of Q, t〈S1,S2〉[i] = 2
if S2 contains the ith element of Q, and t〈S1,S2〉[i] = 0 otherwise. Using this
association, it is easy to check that a function ψ is a bisubmodular function if and
only if the function φ given by φ(t〈S1,S2〉) = ψ(〈S1, S2〉) has the multimorphism
F : {0, 1, 2}2 → {0, 1, 2}2 given by F (x, y) = 〈min0(x, y),max0(x, y)〉, where

min0(x, y) =
{

min(x, y) if {x, y} �= {1, 2}
0 otherwise

max0(x, y) =
{

max(x, y) if {x, y} �= {1, 2}
0 otherwise

Hence the bisubmodular functions defined in [14] are also characterised by the
presence of a multimorphism.

4 Multimorphisms and Tractable Languages

In this section we will present several tractable valued constraint languages.
Some of these are translations of known tractable optimisation problems into
the VCSP framework, and others are novel tractable classes. In all cases we are
able to give a characterisation of the tractable language in terms of a single mul-
timorphism. Hence, in all cases we have shown that the presence of a particular
multimorphism is sufficient to guarantee tractability.

Definition 8. Given a function F : Dk → Dk, we will write ΓF to denote the
valued constraint language over D with costs in R+, consisting of all functions
for which F is a multimorphism.
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4.1 Constant Multimorphisms

The first example we give is a rather straightforward family of tractable lan-
guages, characterised by the presence of a single unary multimorphism with a
constant value. Although the proof of tractability for this case is trivial, the
proof that every language characterised by a constant multimorphism is a max-
imal tractable language is more interesting, and provides a simple example of
the techniques we shall use for other cases.

Theorem 2. Let D be a set, and let F : D → D be a constant function.

1. The set of functions ΓF is a tractable valued constraint language.
2. Any valued constraint language Γ such that Γ ⊃ ΓF is NP-hard.

Proof. Let dF be the (constant) value of F .

1. Let φ be any function in ΓF , and let m be the arity of φ. Since F is a
multimorphism of φ, we have, for all d1, d2, . . . , dm ∈ D,

φ(dF , dF , . . . , dF ) ≤ φ(d1, d2, . . . , dm)

Hence any instance P in VCSP(ΓF ) has a solution which assigns the value
dF to every variable, so VCSP(ΓF ) is tractable.

2. Now assume that Γ ⊃ ΓF , and hence Γ contains a function φ of arity m such
that F is not a multimorphism of φ. Hence there exist d1, d2, . . . , dm ∈ D
such that φ(d1, d2, . . . , dm) < φ(dF , dF , . . . , dF ).
If φ(dF , . . . , dF ) <∞, then set μ = (φ(dF , . . . , dF )− φ(d1, . . . , dm))/2, oth-
erwise set μ = 1. Choose i0 such that di0 �= dF . Now define the functions δ
and ψ as follows:

δ(x1, . . . , xm) =
{

0 if 〈x1, . . . , xm〉 ∈ {〈d1, . . . , dm〉, 〈dF , . . . , dF 〉}
∞ otherwise

ψ(x1, x2, x3) =
{

μ if 〈x1, x2, x3〉 ∈ {〈di0 , di0 , di0〉, 〈di0 , dF , dF 〉}
0 otherwise

Note that δ, ψ ∈ ΓF .
We construct the instance P ∈ VCSP(Γ ) with variables

{X1, . . . , Xm, Y1, . . . , Ym, Z1, . . . , Zm}

and constraints

〈〈X1, . . . , Xm〉, φ〉, 〈〈X1, . . . , Xm〉, δ〉,
〈〈Y1, . . . , Ym〉, δ〉, 〈〈Z1, . . . , Zm〉, δ〉,
〈〈Xi0 , Yi0 , Zi0〉, ψ〉

If we set W = 〈Yi0 , Zi0〉, then it is straightforward to check that

ΦW
P (x, y) =

⎧⎨⎩
φ(d1, d2, . . . , dm) if x �= y ∧ x, y ∈ {dF , di0}
μ + φ(d1, d2, . . . , dm) if x = y ∧ x, y ∈ {dF , di0}
∞ otherwise

Hence, by Corollary 1, VCSP(Γ ) is NP-hard.
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Example 10. Recall from Example 4 that the Max-Sat optimisation problem
has just three maximal tractable classes, which are identified in [9]. Two of these
can be characterised by having a constant function as a multimorphism; these
are referred to in [9] as ‘0-valid’ relations, and ‘1-valid’ relations.

4.2 Min-max Multimorphisms

The next example we give is a valued constraint language which can be defined on
any finite totally ordered set D. This language is characterised by the presence
of a single binary multimorphism, which we will call a min-max multimor-
phism. Languages with this multimorphism generalise the class of submodular
set functions used in economics and operations research [26] (see Example 8).

Theorem 3. Let D be a finite totally ordered set, and let F : D2 → D2 be the
function defined by F (d, d′) = 〈min(d, d′),max(d, d′)〉.

1. The set of finite-valued functions in ΓF is a tractable valued constraint lan-
guage.

2. Any valued constraint language Γ such that Γ ⊃ ΓF is NP-hard.

Proof.

1. To establish the tractability of the set of finite-valued functions in ΓF , we
show that this problem can be reduced to the problem of minimising a real-
valued submodular set function [26] over a special family of sets known as a
ring family [30]. This problem can then be solved in polynomial time using
an algorithm due to Schrijver [30]. Details are given in [7].

2. Proof omitted due to space restrictions. See [7] for details.

Example 11. Recall from Example 4 that the Max-Sat optimisation problem
has just three maximal tractable classes, which are identified in [9]. One of these
can be characterised by having a min-max multimorphism; this class is referred
to in [9] as the class of ‘2-monotone’ relations.

Example 12. It is a simple consequence of the definitions that every unary func-
tion has a min-max multimorphism.

We have recently shown that a problem instance P = (V,D,C, R+) involving
unary and binary functions with a min-max multimorphism, including functions
taking infinite values, can be solved in O(|V |3|D|3) time [6]. Note that this
compares very favourably with the best known complexity bound for optimising
submodular set functions of arbitrary arity, as discussed in Example 8.

Let D be the set {0, 1, 2, . . . , |D| − 1}, considered as a set of integers. The
following binary functions all have a min-max multimorphism, and hence any
VCSP instance involving constraints with cost functions of these forms can be
solved in cubic time.
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φ1(x, y) =
{

0 if ax ≤ by + c (for positive constants a, b, c)
∞ otherwise

φ2(x, y) = ax + by + c (for positive constants a, b, c)

φ3(x, y) =
√

x2 + y2

φ4(x, y) = |x− y|r (for r ≥ 1)

Using these observations we conclude that the discrete optimisation problem
described in Example 1 can be solved in cubic time.

Note that some of the functions in Example 12 may appear to be similar to
the soft simple temporal constraints with semi-convex cost functions defined and
shown to be tractable in [24]. However, there are fundamental differences: the
constraints in [24] are defined over an infinite set of values, and their tractability
depends crucially on the aggregation operation used for the costs being idempo-
tent (i.e., the operation min).

4.3 Max-max Multimorphisms

The next example we give is again a valued constraint language which can be
defined on any finite totally ordered set D. This language is characterised by
the presence of a single binary multimorphism, which we will call a max-max
multimorphism. Languages with this multimorphism generalise the class of max-
closed crisp constraints introduced and shown to be tractable in [23].

Theorem 4. Let D be a finite totally ordered set, and let F : D2 → D2 be the
function defined by F (d, d′) = 〈max(d, d′),max(d, d′)〉.

1. The set of functions ΓF is a tractable valued constraint language.
2. Any valued constraint language Γ such that Γ ⊃ ΓF is NP-hard.

Proof. Omitted due to space restrictions. See [7] for details.

Example 13. The constraint language CHIP incorporates a number of constraint
solving techniques for arithmetic and other constraints. In particular it provides a
constraint solver for a restricted class of crisp constraints over natural numbers,
referred to as basic constraints [31]. These basic constraints are of two kinds
which are referred to as “domain constraints” and “arithmetic constraints”. The
domain constraints described in [31] are unary constraints which restrict the
value of a variable to some specified finite subset of the natural numbers. The
arithmetic constraints described in [31] are unary or binary constraints which
have one of the following forms:

aX �= b aX ≤ bY + c
aX = bY + c aX ≥ bY + c

where variables are represented by upper-case letters, and constants by lower
case letters, all constants are non-negative, and a is non-zero.
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If we represent these crisp constraints as soft constraints where the range of
the cost functions is the set {0,∞}, as described in Example 2, then it is easy to
verify that they all have a max-max multimorphism, and hence form a tractable
soft constraint language, by Theorem 4.

Moreover, this tractable language can be extended, as shown in [23], to in-
clude functions corresponding to crisp constraints of the following forms, which
also have a max-max multimorphism.

a1X1 + a2X2 + . . . + arXr ≥ bY + c

aX1X2 . . . Xr ≥ bY + c

(a1X1 ≥ b1) ∨ (a2X2 ≥ b2) ∨ . . . ∨ (arXr ≥ br) ∨ (aY ≤ b)

Example 14. Let D be an ordered domain and χ a valuation structure. A func-
tion φ : Dm → χ is called antitone if the value of φ(d1, d2, . . . , dm) does not
increase when we increase any of the di.

All antitone functions have a max-max multimorphism, and hence form a
tractable class. More importantly, they may be combined with the crisp con-
straints described in Example 13 to form a larger tractable class.

For example, let D = {0, 1, 2, . . . ,M} be a subset of the integers, and let
φ : D2 → R+ be the binary function defined by

φ(x, y) =
{

(M − x)(M − y) if x < y
∞ if x ≥ y

This function can be used to express a preference for larger values for x, y pro-
vided x < y. It is straightforward to check that it has a max-max multimorphism.

4.4 Majority/Minority Multimorphisms
The final example we give is a tractable valued constraint language which can
be defined on any finite set D. This language is characterised by the presence of
a single ternary multimorphism, which we will call a majority/minority mul-
timorphism. Languages with this multimorphism generalise the class of bijective
crisp constraints.

Theorem 5. Let D be a finite set, and let F : D3 → D3 be the function defined
by F (x, y, z) = 〈Maj1(x, y, z),Maj2(x, y, z),Min3(x, y, z)〉 where

Maj1(x, y, z) =
{

y if y = z
x otherwise.

Maj2(x, y, z) =
{

x if x = z
y otherwise.

Min3(x, y, z) =

⎧⎨⎩
x if y = z �= x
y if x = z �= y
z otherwise.

1. The set ΓF is a tractable valued constraint language.
2. Any valued constraint language Γ such that Γ ⊃ ΓF is NP-hard.

Proof. Omitted due to space restrictions. See [7] for details.



Soft Constraints: Complexity and Multimorphisms 257

5 Conclusions

In this paper we have begun a systematic investigation of the complexity of the
optimisation problems resulting from different forms of soft constraint. Since soft
constraints are specified by functions, we have introduced an algebraic property
of a function, which we call a multimorphism, and shown that in a range of cases
the presence of such a property is sufficient to ensure tractability. Indeed, we have
shown that the presence of a multimorphism precisely characterises a number of
tractable problem classes that appear on the surface to be very different.

Further study is needed to determine whether the notion of a multimor-
phism exactly captures the expressive power, and hence the complexity, of soft
constraints over finite domains. If this is true, then multimorphisms are likely to
play a central role in the analysis of complexity for soft constraints, just as the
related notion of a polymorphism does in the analysis of complexity for crisp
constraints [3,4,5,20,21,22]
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Abstract. System dynamics is often modeled by means of parametric
differential equations. Despite their expressive power, they are difficult
to reason about and make safe decisions, given their non-linearity and
the important effects that the uncertainty on data may cause. Either by
traditional numerical simulation or relying on constraint based methods,
it is difficult to express a number of constraints on the solution functions
(for which there are usually no analytical solutions) and these constraints
may only be handled passively, with generate and test techniques. In con-
trast, the framework we propose not only extends the declarativeness of
the constraint based approach but also makes an active use of constraints
on the solution functions, which makes it particularly suited for a num-
ber of decision making problems, such as those arising in the biomedical
applications presented in the paper.

1 Introduction

Many real world problems can be modeled as Continuous Constraint Satisfac-
tion Problems (CCSPs) where variable domains are continuous real intervals
and constraints are equalities and inequalities [7]. Constraint reasoning handles
the uncertainty of model parameters, by modeling them as numerical variables
ranging over given bounds (e.g. intervals of real numbers) and propagates such
knowledge through a network of constraints on these variables, in order to de-
crease the underlying uncertainty (i.e. width of the intervals).

However, parametric differential equations, a general and expressive math-
ematical tool to model system dynamics (e.g. biomedical systems) are not ac-
commodated in the usual CCSP framework. This is not a major problem only if
such systems have analytical solutions, where an explicit representation of the
solution functions can be expressed by means of constraints on the parameters,
making it possible to take full advantage of constraint reasoning.

The handling of differential equations in the constraint setting has already
been addressed [6,8], but only in the limited setting of Initial Value Problems
(IVP), which aim at computing, from a set of differential equations and some
initial values, the trajectory of the corresponding solution functions. In contrast
with classical numerical approaches that compute numerical approximations of
the solutions but do not provide any guarantees on their accuracy, interval meth-
ods [11,14,13], also known as validated methods, do verify the existence of unique
solutions and produce guaranteed error bounds for the solution trajectory along
the whole interval of time T .

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 259–273, 2003.
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For such constraints, often required in decision support problems, the vali-
dated methods require additional generate and test procedures, where such con-
straints are used passively. Certain intervals on the parameters are used to gen-
erate trajectories, which are subsequently tested, so as to accept or reject such
intervals.

In this paper we present a new kind of constraint, a Constraint Satisfaction
Differential Problem (CSDP), which represents a differential equation together
with additional related information, and we include it in the general CCSP
framework extending its expressive power.

Appropriate narrowing functions are defined and used for the propagation of
such constraints. Although not discussed in the paper, it is worth mentioning
that the effectiveness of the whole approach depends significantly on the type
of propagation used in the general CCSP framework. Some examples show the
usefulness of imposing global-hull consistency [2,3,4]), a higher-level consistency
criterion built on top of the usual basic criteria (e.g. box-consistency [1] or 2B-
consistency [9]).

The paper is organised as follows. After a brief overview of the relevant con-
cepts related with differential equations and their solving procedures, section 2
presents differential equations as CSDPs and their integration in an extended
CCSP framework. Section 3 presents a procedure for solving CSDPs. Sections
4 and 5 present two examples in the biomedical area, which show the poten-
tial of the formalism developed. The paper ends with a summary of the main
conclusions.

2 Constraint Satisfaction Differential Problems

2.1 Ordinary Differential Equations

The behaviour of many systems is naturally modelled by a system of first order
Ordinary Differential Equations (ODEs), often parametric. ODEs are equations
that involve derivatives w.r.t. a single independent variable, t, usually represent-
ing time. An ODE system S, represented in vector notation as

dy

dt
= f(y, t)

determines, for an instantiation of y and t, the evolution of y for an increment of
t, and may be regarded as a restriction on the sequence of values that y can take
over t. A solution of the above ODE system, for a time interval T , is a function
s such that:

∀t ∈ T :
ds

dt
= f(s(t), t)

Since S does not fully determine the sequence of values of y (but rather a family
of such sequences, that is, a family of solutions of S), initial / boundary condi-
tions are usually provided with a complete / partial specification of y at some
time point t.
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An Initial Value Problem (IVP) is characterised by an ODE system S to-
gether with the initial condition y(t0) = y0. A solution of the IVP w.r.t. an
interval of time T (t0 ∈ T ) is a solution s of S (during T ) that satisfies s(t0) = y0.

Classical numerical approaches for solving IVPs [16] compute numerical ap-
proximations of the solutions and do not provide guarantees on their accuracy. A
sequence of discrete points t0, t1, . . . , ti is considered within the interval of time
T and for each new point ti+1, the solution s(ti+1) is approximated by a value
si+1 computed from the approximated values at the previous points.

In contrast, interval methods [11,14,13] do verify the existence of unique
solutions and produce guaranteed error bounds for the solution trajectory along
the whole interval of time T . They use interval arithmetic to calculate each
approximation step, explicitly keeping the error term within safe interval bounds.

In most interval approaches, each step between two consecutive points ti
and ti+1 generally consists of two phases. The first validates the existence of a
unique solution and calculates an a priori enclosure of it between the two points.
In the second phase, a tighter enclosure of the solution function at point ti+1 is
obtained through interval arithmetic over a numerical approximation step, with
the error term bounded as a result of the enclosure of the previous phase.

Interval Taylor Series (ITS) methods [11,13] are often used due to its simple
error term form. The enclosure for the set of solutions between points ti and ti+1
may be achieved through the application of the Picard-Lindelf operator [14] or
an alternative higher order method [13]. The tighter enclosure of the solution
function at point ti+1 is obtained through an interval extension of the Taylor
Series expansion around ti.

The recent application of constraint techniques for solving IVPs seems to pro-
vide competitive results either in the precision of the trajectory enclosure bounds
or in the efficiency of the computations [6,8]. The novelty of the approach is the
subdivision of the second phase into a predictor process, for computing an initial
enclosure, and a corrector process, for narrowing this enclosure, both based on
constraint techniques. However, the goal of these methods is not the integration
of differential integration in constraint reasoning. They rather use constraint
propagation techniques for improving the traditional methods for solving IVPs.

2.2 Representing ODE Problems with CSDPs

All the information traditionally associated with an ODE problem may be repre-
sented as a CSDP. Moreover, the framework allows the specification of additional
useful information that cannot be easily handled by classical approaches.

A CSDP is a Constraint Satisfaction Problem (CSP) with a special variable,
a special constraint and additional constraints and variables for representing
additional restrictions. The special variable (xODE), whose domain is a set of
functions, is associated with an ODE system S for every t within the interval T
through the ODE constraint, ODES,T (xODE). Variable xODE , denoted solution
variable, represents those functions that are solutions of S (during T ) and satisfy
all the additional restrictions.
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Definition 1. (ODE Constraint). Let S be an n-ary ODE system defined as
dy
dt = f(y, t), T a real interval, and FT the set of all functions from T to Rn.
The ODE constraint, denoted ODES,T (xODE), is defined by means of:
1. a unary constraint scope: the solution variable xODE;
2. a constraint relation ρ = {〈s〉|s ∈ FT ∧ ∀t ∈ T : ds

dt = f(s(t), t)}.

The other variables of the CSDP, denoted restriction variables, are all real val-
ued variables used to model a number of constraints of interest in many applica-
tions. These constraints, generally denoted as ODE restrictions, associate some
restriction variable with the value of some property of the ODE solutions. Such
a property is specified through a function from the set of functions FT to R.

Definition 2. (ODE Restriction). Let S be an n-ary ODE system defined as
dy
dt = f(y, t), T a real interval, FT the set of all functions from T to Rn, and r
a function from FT to R. An ODE restriction w.r.t. r is defined by means of:
1. a binary constraint scope: the solution variable xODE and a real variable x;
2. a constraint relation ρ = {〈s, v〉|s ∈ FT ∧ v ∈ R ∧ v = r(s)}.

With the above definitions, a CSDP may be formalized as a special CSP.

Definition 3. (CSDP). Let S be an n-ary ODE system dy
dt = f(y, t), T a real

interval, and FT the set of all functions from T to Rn. A CSDP is a CSP where:
1. the set of variables includes the solution variable xODE and m restriction

variables x1,. . . ,xm;
2. the initial domain of the solution variable DxODE is FT and the initial

domains of the restriction variables Dx1,. . . ,Dxm are real intervals;
3. the set of constraints is composed of the ODE constraint ODES,T (xODE)

and a set of ODE restrictions with scope 〈xODE , xi〉(1 ≤ i ≤ m).

In a CSDP, initial and boundary conditions are represented by an appropriate
set of constraints denoted Value restrictions. A Value restriction V aluej,t(x)
associates a variable x with the value of a trajectory component j at a particular
time t.

Definition 4. (Value Restriction). Let S be an n-ary ODE system defined
as dy

dt = f(y, t), T a real interval, tp ∈ T and 1 ≤ j ≤ n. Let FT be the set
of functions from T to Rn, r a function from FT to R, s ∈ FT and sj the jth

component of s. A Value restriction V aluej,tp
(x) is an ODE restriction w.r.t. r

defined as: r(s) = sj(tp).

Besides initial and boundary conditions, and regarding an ODE solution as a
continuous vector function (and each of its components as a continuous real
function), several other conditions of interest may be imposed.

Important properties of a continuous function are its maximum and minimum
values. Maximum restriction Maximumj,τ (x) associates x with the maximum
value of a trajectory component j within a time interval τ (Minimum restrictions
are similar).
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Definition 5. (Maximum Restriction). Let S be an n-ary ODE system de-
fined as dy

dt = f(y, t), τ ⊆ T real intervals and 1 ≤ j ≤ n. Let FT be the set
of functions from T to Rn, r a function from FT to R, s ∈ FT and sj the jth

component of s. A Maximum restriction Maximumj,τ (x) is an ODE restriction
w.r.t. r defined as: r(s) = sj(tp) with tp ∈ τ and ∀t∈τsj(t) ≤ sj(tp).

Other important ODE restrictions provided in the CSDP framework are
Time, Area, First and Last restrictions. A Time restriction Timej,τ,≥θ(x) as-
sociates x with the time within time period τ in which the value of a trajectory
component j exceeds a threshold θ. Similarly, the Area restriction Areaj,τ,≥θ(x)
associates x with the area of a trajectory component j, within time period τ ,
above threshold θ. The First restriction FirstV aluej,τ,≥θ(x) associates x with
the first time within τ in which the value of a trajectory component j ex-
ceeds θ. Restrictions FirstMaximumj,τ (x) and FirstMinimumj,τ (x) associate
x with the first time within τ in which the value of a trajectory component j
is respectively a maximum or a minimum. Last restrictions LastV aluej,τ,≥θ(x),
LastMaximumj,τ (x) and LastMinimumj,τ (x) are similar.

Representing an ODE Problem as a CSDP. Consider the ODE system S:

dy1(t)
dt

= −0.7y1(t)
dy2(t)

dt
= 0.7y1(t)−

ln(2)
5

y2(t) (1)

with a boundary condition y1(0) = 1.25 and an additional restriction requiring
the maximum value of y2 between t = 1 and t = 3 to lie within interval [1.1..1.3],
for which we are interested in the value of y2 at t = 6. Such ODE problem is
represented as a CSDP with the following constraints:
1. an ODE constraint ODES,[0..6](xODE) associating the solution variable

xODE with the ODE system S for every t within the time interval [0..6];
2. a Value restriction V alue1,0(x1) associating variable x1 with y1(0);
3. a Maximum restriction Maximum2,[1..3](x2) associating variable x2 with

the maximum value of y2 within time interval [1..3];
4. a Value restriction V alue2,6(x3) associating variable x3 with y2(6);

The initial domains of restriction variables x1 and x2 are, respectively, Dx1=1.25
for enforcing the initial condition and Dx2=[1.1..1.3] for imposing the maximum
value requirement. Since x3 represents an output variable, its initial domain is
unbounded. The initial domain of the solution variable xODE is the set F[0..6]
of all functions from [0..6] to R2. Figure 1 illustrates the problem, showing the
CSDP solutions (grey area) and the respective restriction variable domains.

2.3 Integrating CSDP Constraints into Extended CCSPs

The full integration of a CSDP within an extended CCSP is accomplished by
sharing the restriction variables of the CSDP. The CSDP is a constraint restrain-
ing the possible values of such variables. The CSDP solving procedure is used as
a safe narrowing procedure to reduce the domains of the restriction variables.
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Fig. 1. The CSDP representation of an ODE problem. Its solutions and variables

Definition 6. (CSDP constraint). A CSDP constraint is a constraint defined
as a CSDP where:
1. the constraint scope is the set of the CSDP restriction variables;
2. the constraint relation is the set of the possible combination values of the

restriction variables from the whole set of solutions of the CSDP.

Definition 7. (Extended CCSP). An extended CCSP is a CSP where each
variable domain is a real interval and each constraint is either an equality con-
straint, an inequality constraint or a CSDP constraint.

3 Solving a CSDP

This section presents a procedure to handle a CSDP aiming at pruning the do-
mains of its restriction variables. This is implemented as a function solveCSDP
which, from a real box representing the domains of the restriction variables, re-
turns a smaller real box discarding some value combinations that can be proved
to be inconsistent with the CSDP. As long as the solveCSDP function is cor-
rect, not eliminating any possible CSDP solution, and contracting, returning a
smaller real box, it may be used by the extended CCSP as a correct narrowing
function for the CSDP constraint.

The additional narrowing functions associated with the CSDP constraints,
together with the usual narrowing functions associated with the numerical con-
straints, completely characterize the set of narrowing functions of an extended
CCSP. This set may be used by a constraint propagation algorithm to prune the
domains of the extended CCSP variables.

The solving procedure for CSDPs that we developed maintains a safe en-
closure for the set of possible ODE solutions based on validated methods for
solving IVPs. This enclosure is used for the representation of the domain of the
solution variable and is denoted the ODE trajectory. The quality improvement
of such enclosure is combined with the enforcement of the ODE restrictions
through constraint propagation on a set of narrowing functions associated with
the CSDP.

The next subsection presents the ODE trajectory enclosure. Subsection 3.2
illustrates some of the narrowing functions associated with the CSDP. Subsection
3.3 describes how these narrowing functions are integrated in the constraint
propagation algorithm for narrowing the domains of the CSDP variables.
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3.1 The ODE Trajectory

An ODE trajectory TR is implemented as a pair of ordered lists TR=〈TP, TG〉.
List TP defines a sequence of k trajectory time points tp along the interval of
time T (associated with the CSDP) together with corresponding n-ary boxes
representing enclosures for the ODE solution values at these points. The first
and last time points of such list are the lower and upper bounds of T respec-
tively. List TG defines the sequence of k− 1 trajectory time gaps (between each
pair of consecutive time points, tpi and tpi+1, of the previous list) and the asso-
ciated n-ary boxes representing enclosures for the ODE solution values between
those points. The boxes associated with the elements of these lists are repre-
sented as TP (tp) and TG([tpi..tpi+1]) and the intervals associated with their jth

component (1 ≤ j ≤ n) as TPj(tp) and TGj([tpi..tpi+1]).
Figure 2 shows an ODE trajectory representing a safe enclosure for the set

of possible ODE solutions of the CSDP presented in 2.2 (see figure 1). The ODE
trajectory is defined through a sequence of seven time points and the time gaps
in between. For each component, the intervals associated to each time point and
time gap are represented, respectively, as a vertical line and a dashed rectangle.

s2(t)

0 1 2 43 5 6
0.0

1.5

s1(t)

0.0

1.5

0 1 2 43 5 6

Fig. 2. An ODE trajectory enclosing the ODE solutions of a CSDP

The ODE trajectory of figure 2 represents the set of all functions from [0..6]
to R2 whose components are continuous functions enclosed by the rectangles and
crossing the vertical lines. This includes any possible ODE solution and so this
ODE trajectory is a safe enclosure for the set of ODE solutions of the CSDP.

During the solving process, the ODE trajectory is modified by the narrow-
ing functions associated with the constraints of the CSDP. Each change of the
trajectory is either the narrowing of some box (associated with a time point or
gap) or the addition of a new time point (and reformulation of the ordered lists).

3.2 CSDP Narrowing Functions

In any constraint propagation algorithm based on a set of narrowing functions,
each such function is a mapping between subsets of the variable domains where
the new element is obtained from the original by eliminating some value combina-
tions incompatible with a particular CSP constraint. Thus, applying a narrowing
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function, the new element cannot be larger (w.r.t. set inclusion) than the original
element (boxes are contracted into smaller boxes) and the discarded elements
cannot contain solutions of the CSP (the procedure is correct).

In the case of the CSDP narrowing functions, the contracting property is
generally attained by preventing the enlargement of any interval domain, either
from a restriction variable or from a component of any box of the ODE trajectory.
Additionally, the correctness property must be guaranteed for each constraint
relation used by the narrowing function for pruning the variable domains.

Associated with the constraint relation of each ODE restriction a pair of
narrowing functions is defined: one responsible for reducing the current domain
I of the restriction variable given the current ODE trajectory enclosure TR and
the other responsible for reducing the uncertainty of TR according to I. In the
first case, the correctness property may be achieved by identifying, within TR,
the functions that maximise and minimise the values of the restriction variable
and guaranteeing that its new domain includes those values. In the second case,
this reduction is achieved through the narrowing of one or more boxes of TR
and correctness is guaranteed if, considering in isolation each narrowed interval,
there are no discarded functions with a value (of the restriction variable) in I.

The following definitions associate narrowing functions with Value and Max-
imum restrictions (similar ones exist for the other types of ODE restrictions).
Definition 8. (Value Narrowing Functions). Let TR=〈TP, TG〉 be the tra-
jectory enclosure representing the domain of xODE and I the domain of x.
Let TR′ be the trajectory enclosure obtained from TR by changing TPj(tp) to
TPj(tp)∩I. The restriction V aluej,tp

(x) has associated the narrowing functions:
1. NF1(〈TR, . . . , I, . . .〉) = 〈TR, . . . , TPj(tp) ∩ I, . . .〉
2. NF2(〈TR, . . . , I, . . .〉) = 〈TR′, . . . , I, . . .〉

Definition 9. (Maximum Narrowing Functions). Let TR=〈TP, TG〉 be the
trajectory enclosure representing the domain of xODE and I=[i1..i2] the domain
of x. Let a be the maximum of the lower bounds of TPj(tp) for any trajectory time
point tp within τ . Let b be the maximum of the upper bounds of TGj([tpi..tpi+1])
for any trajectory time gap [tpi..tpi+1] within τ . Let TR′ be the enclosure obtained
from TR by changing TPj(tp) into TPj(tp)∩ [−∞..i2] and TGj([tpi..tpi+1]) into
TGj([tpi..tpi+1]) ∩ [−∞..i2] for every time point tp and gap [tpi..tpi+1] within τ .
The restriction Maximumj,τ (x) has associated the narrowing functions:
1. NF1(〈TR, . . . , I, . . .〉) = 〈TR, . . . , [a..b] ∩ I, . . .〉
2. NF2(〈TR, . . . , I, . . .〉) = 〈TR′, . . . , I, . . .〉

Figure 3 illustrates the narrowing functions for the Maximum2,[1..3](x2) restric-
tion of the CSDP presented in 2.2 for the enclosure represented in Figure 2.

All the remaining narrowing functions of a CSDP are associated with the
ODE constraint relation and are responsible for reducing the uncertainty of the
trajectory enclosure by the successive application of an Interval Taylor Series
(ITS) method between consecutive time points.

The narrowing function NFlink uses the ITS method to validate (link) some
time gap for which the method was never applied in either direction. As a conse-
quence, besides the safe elimination from the ODE trajectory of some functions
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Fig. 3. Narrowing functions associated with a Maximum restriction

incompatible with the ODE constraint, the time gap may become completely
or partially validated (in this case, a new time point is inserted and the link
narrowing function must be reapplied to completely validate the gap).

The propagate narrowing function NFpropagate prunes the ODE trajectory
through the reapplication of the ITS method over some time gap, which is chosen
to contain the time point with the largest enclosure reduction since the previous
application of the ITS method. This heuristics assumes that, when an enclosure
for the ODE solutions at some time point is reduced by some narrowing function,
the reapplication of the ITS method over the adjacent time gaps may further
prune these gaps. Moreover, the repeated application of the interval step method
triggered by the reduction of the enclosures propagates this pruning along the
ODE trajectory gaps, previously validated with larger starting enclosures.

Additionally, for each ODE restriction, a narrowing function NFimprove may
also be associated with the ODE constraint to improve the ODE trajectory, thus
reducing the restriction variable domain. In general, the narrowing functions
responsible for reducing the domain of the restriction variable (except the Value
narrowing functions) depend on the time gap enclosures of the ODE trajectory.
Therefore, by reducing such time gap enclosures, the restriction variable domain
may eventually be narrowed. This is the goal of an improve narrowing function,
that is, to reduce some time gap enclosure that later may trigger some other
narrowing function associated with an ODE restriction and reduce the domain
of a restriction variable. The reduction of the time gap enclosure is achieved
through the insertion of a new time point within the gap and the subsequent
application of the ITS method linking this point with its adjacent neighbours.

3.3 CSDP Constraint Propagation Algorithm

The constraint propagation algorithm for pruning the domains of the CSDP vari-
ables is derived from the propagation algorithm AC3 [10]. The only difference
is the imposition of an ordering on the application of the narrowing functions.
Since there are no guarantees of monotonicity for the narrowing functions asso-
ciated with the CSDP constraints, the order of their application may be crucial,
not only for the efficiency of the propagation but also for the pruning achieved.

The strategy followed by the algorithm is to propagate as soon as possible
any information related with the restriction variables and delay as much as pos-
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sible the application of the narrowing functions for reducing the ODE trajectory
uncertainty. The reason is that whereas the former are easy to deal with and may
provide fast domain pruning, the latter may be computationally more expensive
as they require the application of the ITS method.

Among the narrowing functions for reducing the ODE trajectory uncertainty,
the selection criterion favours the propagate narrowing function that spread
as much as possible any domain reduction achieved by any other narrowing
function. Moreover, since it does not make sense to try to improve an ODE
trajectory that is not completely validated, the link narrowing function is always
preferred to any of the improve narrowing functions.

Lack of space prevents us to present at greater detail the algorithm that was
developed. These details may be found in [Cru03], together with the proof that
the algorithm is correct and terminates.

4 A Differential Model for Drug Design

The gastro-intestinal absorption process subsequent to the oral administration
of a therapeutic drug is usually modeled by the two-compartment model [17]:

dx(t)
dt

= −p1x(t) + D(t)
dy(t)
dt

= p1x(t)− p2y(t) (2)

where x is the concentration of the drug in the gastro-intestinal tract;
y is the concentration of the drug in the blood stream;
D is the drug intake regimen; p1 and p2 are positive parameters.

The effect of the intake regimen D(t) on the concentrations of the drug in the
blood stream during the administration period is determined by the absorption
and metabolic parameters, p1 and p2. We assume that the drug is taken on
a periodic basis (every six hours), providing a unit dosage that is uniformly
dissolved into the gastro-intestinal tract during the first half hour. Maintaining
such intake regimen, the solution of the ODE system asymptotically converges
to a six hours periodic trajectory called the limit cycle, shown in Figure 4 for
specific values of the ODE parameters.
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Fig. 4. The periodic limit cycle with p1=1.2 and p2=ln(2)/5
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In designing a drug, it is necessary to adjust the ODE parameters to guar-
antee that the drug concentrations are effective, but causing no side effects. In
general, it is sufficient to guarantee some constraints on the drug blood concen-
trations during the limit cycle, namely, by imposing bounds on its values, on
the area under the curve and on the total time it remains above some threshold.
Figure 5 shows maximum, minimum, area (≥ 1.0) and time (≥ 1.1) values for
the limit cycle of figure 4.

t

y(t)maximum

minimum

area (≥1)

time (≥1.1)

Fig. 5. Maximum, minimum, area and time values at the limit cycle

We show below how the extended CCSP framework can be used for sup-
porting the drug design process. We will focus on the absorption parameter, p1,
which may be adjusted by appropriate time release mechanisms (the metabolic
parameter p2, tends to be characteristic of the drug itself and cannot be easily
modified). The tuning of p1 should satisfy the following requirements during the
limit cycle: (i) the concentration in the blood bounded between 0.8 and 1.5; (ii)
its area under the curve (and above 1.0) bounded between 1.2 and 1.3; (iii) it
cannot exceed 1.1 for more than 4 hours.

4.1 Using the Extended CCSP for Parameter Tuning

The limit cycle and all the requirements may be represented as an extended
CCSP. Due to the intake regimen definition D(t), the ODE system has a discon-
tinuity at time t=0.5, and is represented by two CSDP constraints in sequence.

The first, PS1 , ranges from the beginning of the limit cycle (t=0.0) to time
t=0.5, and the second PS2 , is associated to the remaining trajectory of the limit
cycle (until t=6.0). Both CSDP constraints include Value, Maximum Value, Min-
imum Value, Area and Time restrictions for associating variables with different
trajectory properties. Besides variables representing the ODE parameters, the
initial trajectory values and the final trajectory values, there are variables rep-
resenting the maximum and minimum drug concentration values and respective
area (≥1.0) and time (≥1.1) during the time associated with each constraint.

The extended CCSP P connects in sequence the two ODE segments by as-
signing the same variables to both the final values of PS1 and the initial values
of PS2 (parameters p1 and p2 are shared by both constraints). Moreover, the 6
hours period is guaranteed by the assignment of the same variables to both the
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initial values of PS1 and the final values of PS2 . Besides considering all the re-
striction variables of each ODE segment, new variables for the whole trajectory
sum the values in each segment.

CCSP P = (X,D,C) where:
X =< x0, y0, p1, p2, x05, y05, ymax1, ymax2, ymin1, ymin2,

ya1, ya2, yarea, yt1, yt2, ytime >
D =< Dx0, Dy0, Dp1, Dp2, Dx05, Dy05, Dymax1, Dymax2, Dymin1, Dymin2,

Dya1, Dya2, Dyarea, Dyt1, Dyt2, Dytime >
C = { PS1(x0, y0, p1, p2, x05, y05, ymax1, ymin1, ya1, yt1), yarea = ya1 + ya2,

PS2(x05, y05, p1, p2, x0, y0, ymax2, ymin2, ya2, yt2), ytime = yt1 + yt2}
The tuning of drug design may be supported by solving P with the appropriate
set of initial domains for its variables. We will assume p2 to be fixed to a five-
hour half live (Dp2=[ln(2)/5]) and p1 to be adjustable up to about ten-minutes
half live (Dp1=[0..4]). The initial value x0, always very small, is safely bounded
in interval Dx0=[0.0..0.5]. Additionally, the following bounds are imposed by
the previous drug requirements:

Dymin1 = [0.8..1.5], Dymax1 = [0.8..1.5], Dyarea = [1.2..1.3],
Dymin2 = [0.8..1.5], Dymax2 = [0.8..1.5], Dytime = [0.0..4.0].

Solving the extended CCSP P (enforcing global hull consistency), with a preci-
sion of 10−3, narrows the original p1 interval to [1.191, 1.543] in less than 3 min-
utes (the tests were executed in a Pentium 4 at 1.5 GHz with 128 Mb memory).
Hence, for p1 outside this interval the set of requirements cannot be satisfied.

Note the importance of imposing global hull consistency as mentioned above.
With a local consistency criteria (either box- or 2B-consistency), no pruning of
the above parameter domains is achieved. Enforcing bound-consistency [15] does
not achieve the same level of pruning (only prunes the parameter domain to
[1.156..1.580] - an increase of 20% in the domain width) in a comparable time.

This may help to adjust p1 but offers no guarantees on specific choices within
the obtained interval. However, guaranteed results may be obtained for partic-
ular choices of the p1 values. Solving P with initial domains Dx0 = [0.0..0.5],
Dy0 = [0.8..1.5], Dp1 = [1.3..1.4] and Dp2 = [ln(2)/5] narrows the remaining
unbounded domains to:

ymin1 ∈ [0.881..0.891], ymax1 ∈ [1.090..1.102], yarea ∈ [1.282..1.300],
ymin2 ∈ [0.884..0.894], ymax2 ∈ [1.447..1.462], ytime ∈ [3.908..3.967].

Notwithstanding the uncertainty, these results do prove that with p1 within
[1.3..1.4] (an acceptable uncertainty in the manufacturing process), all limit cy-
cle requirements are safely guaranteed. Moreover, they offer some insight on the
requirements showing, for instance, the area to be the most critical constraint.

5 The SIR Model of Epidemics

The SIR model [12] is a well-known model of epidemics which divides a popula-
tion into three classes of individuals and is based of the ODE system:

dS(t)
dt

= −rS(t)I(t)
dI(t)
dt

= rS(t)I(t)− aI(t)
dR(t)

dt
= aI(t) (3)

where S are the susceptibles, individuals who can catch the disease;



Constraint Satisfaction Differential Problems 271

I are the infectives, individuals who have the disease and can transmit it;
R are the removed, individuals who had the disease and are immune/dead;
r and a are positive parameters.

The model assumes that the total population is constant N=S(t)+I(t)+R(t)
and the incubation period is negligible. Parameter r accounts for the efficiency
of the disease transmission (proportional to the frequency of contacts between
susceptibles and infectives) and a measures the recovery rate from the infection.

Important questions in epidemic situations are: whether the infection will
spread or not; what will be the maximum number of infectives; when will it
start to decline; when will it ends; and how many people will catch the disease.

In the following study we will use the extended CCSP framework to answer
each of the above questions. We use the data reported in the British Medical
Journal (4th March 1978) from an influenza epidemic that occurred in an English
boarding school (taken from [12]): a single boy (from a total population of 763)
initiated the epidemic and the evolution of the number of infectives is available
daily, from day 3 to the end of the epidemic (day 14). The goal of our study is
to predict what would happen if a similar disease occurs in a different place, say
a small town with a population of about 10000 individuals. Moreover, if there
is a vaccine to that disease, what would be the vaccination rate necessary to
guarantee that the maximum number of infectives never exceeds some predefined
threshold, for example, half of the total population.

5.1 Using an Extended CCSP for Predicting Epidemic Behaviour

The first step for solving the above problem is to characterize an epidemic disease
which is similar to the one reported in the boarding school.

The classical approach would be to perform a numerical best fit approx-
imation to compute the parameter values r′ and a′ that minimize the resid-
ual:

∑m
j=1

(
I(tj)− Itj

)2 where It1 , . . . , Itm are the infectives observed at times
t1, . . . , tm, and I(t1), . . . , I(tm) their respective values predicted by the SIR
model (3) with r = r′ and a = a′. In [12] this method is used to compute
r = 0.00218 and a = 0.44036 with a residual of 4221.

An alternative approach, possible in a constraints framework, is to relax
the imposition of the ”best” fit and merely impose a ”good” fit, requiring, for
example, that the residual does not exceed 4800.

Such problem can be represented as an extended CCSP P with a CSDP
constraint and a numerical constraint. The CSDP constraint PS , represents
the evolution of the susceptibles and infectives (the 1st and 2nd components
of the model) during the first 14 days (in the equations the r parameter is
multiplied by 0.01 re-scaling it to the interval [0..1]; the best fit value is thus
re-scaled to r=0.218). This CSDP contains several Value restrictions for associ-
ating variables with: the initial values of the susceptible (s0) and infective (i0);
the parameter values (r and a); and the values of the infective at times 3, . . . , 14
(i3, . . . , i14). The numerical constraint defines the residual (R) from the above
variables (i3, . . . , i14) and the observed values (constants k3, . . . , k14).

CCSP P = (X,D,C) where:
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X =< s0, i0, r, a, i3, . . . , i14, R >
D =< Ds0, Di0, Dr,Da,Di3, . . . , Di14, DR >
C = { PS(s0, i0, r, a, i3, . . . , i14), R =

∑14
j=3 (ij − kj)

2}
Assuming very wide initial parameter ranges (Dr=Da=[0..1]), the ”good” fit
requirement can be enforced by solving P with the residual initial domain
DR=[0..4800] (the values of the susceptible and infective are initialized accord-
ingly to the report: Ds0=762, Di0=1). Solving P (enforcing global hull consis-
tency) with precision 10−6, the parameter ranges are narrowed from [0..1] to:

r ∈ [0.213..0.224], a ∈ [0.423..0.468]
Once obtained the parameter ranges that may be considered acceptable to

characterize epidemic diseases similar to the one observed, the next step is to use
them for making predictions in the context of a population of 10000 individuals.

In this case a single CSDP constraint represents the first two components
of the model together with ODE restrictions associating variables with the pre-
dicted values (besides the Value restrictions to associate variables with the pa-
rameter values r and a and the initial values s0 and i0). A Maximum restriction
represents the infectives maximum value imax and a First restriction represents
the time of such maximum tmax. A Last restriction represents the duration tend

of the epidemics as the last time that the number of infectives exceeds 1. Finally
a Value restriction represents the number of people s25 that are still susceptible
at a time (25) safely after the end of the epidemics.

Solving such problem with the parameters ranging within the previously ob-
tained intervals Dr=[0.213..0.224] and Da=[0.423..0.468], the initial value do-
mains Ds0=9999 and Di0=1, and all the other variable domains unbounded,
the results obtained for these domains indicated that:

imax ∈ [8939..9064] clearly suggesting the spread of a severe epidemics;
tmax ∈ [0.584..0.666] and tend ∈ [20.099, 22.405] predicting that the maximum
will occur during the first 14 to 16 hours, starting then to decline and ending
before the 10th hour of day 22;
s25 ∈ [0..0.001] showing that everyone will eventually catch the disease.
If the administration of a vaccine is considered at a rate λ proportional to

the number of infectives then, the differential model must be modified into:

dS(t)
dt

= −rS(t)I(t)− λS(t)
dI(t)
dt

= rS(t)I(t)− aI(t)
dR(t)

dt
= aI(t) + λS(t)

The requirement that the maximum of infectives cannot exceed half of the pop-
ulation is represented by adding the constraint imax ≤ 5000. Solving this CCSP
with the λ initial domain [0, 1.5], its lower bound is raised up to 0.985 indicating
that at least such vaccination rate is necessary to satisfy the requirement.

6 Conclusion

This paper extends the Continuous Constraint framework enabling the declar-
ative expression of system dynamics, traditionally modelled by means of para-
metric differential equations. This is particularly important for decision support
applications where one is interested in finding the range of parameters for which
some constraints on the solutions of such differential equations are met.
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Previous approaches rely on the generation of numerical solutions (either
by traditional or constraint based numerical methods) that have to be subse-
quently tested for the satisfaction of constraints. Given the non-linearity nature
of these constraints, a potentially very large number of values (or intervals) for
the problem parameters have to be tested passively (possibly with Monte Carlo
techniques that only provide probabilistic measures of satisfaction).

The constraint approach proposed in this paper makes an active use of com-
plex constraints, making it more expressive and fully declarative. Although the
paper focuses on these features, we intend to assess its efficiency in the future,
and explore alternative algorithms to solve CSDPs, namely those that have been
proposed to obtain tighter ODE enclosures [6,8].
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Abstract. Evaluation of local search heuristics for constraint satisfac-
tion and satisfiability problems is based on the generation of instances
that are guaranteed to be satisfiable. One popular method for creating
hard satisfiable instances is the use of complete search procedures to fil-
ter out unsatisfiable instances. This approach however has two problems;
first, the size of instances produced is limited considerably and second,
the generated instances are far from being random.
Although one can generate satisfiable instances by reducing certain com-
putational problems to SAT, it is not known how a similar generator can
be developed directly for k-SAT. In this work we provide a generator
for an optimization version of k-SAT that has certain useful properties.
First, we show how to produce weighted instances of MAX k-SAT where
one seeks to maximize the weight of satisfied clauses. Second, we provide
a nice characterization of the optimal solution; in our model not only we
know how the optimal solution looks like but we also prove it is unique.
Finally, we show that our generator has tunable complexity; by appropri-
ately choosing parameters one can control the hardness of the generated
instances leading to an easy-hard-easy pattern in the search complexity
for good assignments and a new type of phase transition.

1 Introduction

The use of distributions for generating random SAT instances is an important
set of benchmark problems for evaluating local search SAT heuristics. Mitchell
and Levesque[10], however, have shown that the value of any study whose goal
is to evaluate the performance of any SAT algorithm depends upon the proper
selection of formula distribution and parameter values. The key property of such
“useful” distributions is that they generate instances that appear to be critically
constrained; at a certain ratio of variables to constraints instances become ex-
tremely hard to solve and the average computational cost of finding a solution
scales exponentially with the size of the input formula[11,5]. One important lim-
itation, however, in the applicability of these distributions is the fact that they
generate both satisfiable and unsatisfiable instances. Since the unsatisfiable in-
stances must be filtered out with the use of complete methods before they can be
used in the evaluation of any incomplete SAT heuristic, the size of the problem
instances considered unfortunately becomes limited.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 274–287, 2003.
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One way to create a satisfiable distribution of SAT formulas is to start from
any assignment (say the all ones assignment) and then create a random formula
at the critical region (for the case of 3-SAT this would be when the ratio of clauses
to variables is about 4.26). Of course the generated formula doesn’t necessarily
satisfy the chosen assignment so one would have to delete all unsatisfied clauses
first. This method would guarantee that the formula generated is satisfiable.
The problem with this approach is that the formula is usually very easy to solve.
Local search heuristics easily come up with assignments for such formulas mainly
because of the abundance of satisfying assignments around the chosen one. Thus
the generated instances are biased and not really on the critical region.

In a similar setting Asahiro, Iwama and Miyano[2] were able to provide hard
instances with a single satisfying assignment using a variant of the previous
method. Although the AIM approach was an improvement over the previous
method, again the generated instances were biased and far from being ran-
dom. Furthermore, the generator lacked any control parameter that could be
used to produce a reasonable phase transition. Other efforts in this area include
the translation of cryptographic problems into SAT instances[4,9]. Although the
translated instances are guaranteed to be satisfiable, in practice they are very
hard to solve because their solution reduces to a simple exhaustive search of
the SAT space (as is usually the case for the cryptographic counterparts). This
suggests that these problems are outside the realm of current SAT solvers and
cannot be used for their evaluation. Furthermore, the translated instances are
neither scalable nor tunable in their hardness.

These drawbacks were remedied in part by Achlioptas et al.[1] where a gen-
erator for satisfiable instances only was developed. This generator was based on
transforming an instance of the quasigroup completion problem (QCP) to a for-
mula that is guaranteed to be satisfiable. The generator starts with a complete
Latin square of order N , that is an N ×N table where each entry has one of the
N possible colors and where there are no repeated colors in any row or column.
Then the colors from a fraction p of the entries get deleted leaving a partial
table that is guaranteed to be satisfiable. This instance is then translated to an
equivalent Boolean formula which is made k-SAT with the usual introduction
of new variables. As demonstrated by Achlioptas et al., this generator has a
number of important characteristics. The first is the ability to finely control the
hardness of the generated instances by tuning the value of p. The second is the
appearance of a new kind of phase transition in the space of problem instances.
It is interesting to note however that while the QCP generator can finely control
the hardness of the generated instances, Achlioptas et al. ask whether a similar
generator can be developed directly for k-SAT.

In this work we introduce a generator for MAX k-WSAT formulas, a weighted
and optimization version of k-SAT. In MAX k-WSAT each clause has a number
associated to it, called weight or multiplicity, which denotes how many copies of
the clause appear in the formula. While in MAX k-SAT one is looking for an as-
signment that maximizes the number of satisfied clauses, in the weighted version
of MAX k-SAT the goal is to find an assignment that essentially maximizes the
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sum of weights of the satisfied clauses, since such clauses contribute their multi-
plicities to the overall number of satisfied clauses. Clearly MAX k-SAT reduces
to this problem by making all weights equal to one.

Our generator has a number of important characteristics. The first one is
a theoretical result proving that the optimal assignment is unique. Since any
satisfiability heuristic when feed with an instance from our generator will try to
maximize the number/weight of satisfied clauses, this characterization provides
algorithm designers with an a priori knowledge of the optimal assignment. We
call this solution the hidden or planted assignment. Thus by knowing what to
expect, algorithm designers will be able to evaluate better the effectiveness of
their algorithms. The second characteristic is the appearance of an easy-hard-
easy pattern in the search complexity for good assignments. Traditional phase
phenomena usually involve a transition from satisfiable to unsatisfiable instances
in the search space. This is not the case here since our generator outputs only
instances that can be satisfied in the MAX k-SAT sense. Under the right choice
of parameters however, an easy-hard-easy pattern emerges that makes it possible
to test algorithms on hard generated instances only. Finally, we were able to link
this behavior with a new threshold phenomenon which is related to the unique-
ness of the hidden assignment. Below the threshold, there are other solutions
that achieve equal total weight and differ from the hidden one in a few variables.
Above the threshold however, the hidden assignment becomes the unique opti-
mal solution. Thus there exists a transition from a phase where there are more
than one good assignments to a phase where the optimal assignment is unique.
The point to be made is that this transition coincides with the hardest to solve
problem instances.

2 The Model

We start our exposition by showing how to generate instances of the MAX
2-WSAT problem. Later in Section 4, we will extend our results to instances
of MAX k-WSAT. In general, MAX k-WSAT consists of Boolean expressions
in Conjunctive Normal Form, i.e. collection of clauses in which every clause
consists of exactly k literals and has a positive integer weight associated to it
denoting the multiplicity of each clause in the formula. Given an instance of this
problem, one is looking for an assignment to the variables that satisfies a set of
clauses with maximum total weight. It is clear that MAX 2-WSAT is NP-hard
as MAX 2-SAT reduces to it by setting all weights equal to one. In this work we
will present a generator for a degenerate version of MAX 2-WSAT, in which all
weights to the clauses are either β or β + 1, where β is a fixed integer greater
than 0. While this simplification may seem very restrictive at first sight, it is
all we need to create a generator of k-SAT instances with useful computational
properties. Furthermore, even when k = 2 the problem still remains NP-hard.

To generate a formula with the above properties we first start with 2n vari-
ables, n green and n blue, create the clauses and finally assign weights to them.
Here we adopt the view of working with weights directly and not actually creating
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multiple instances of the same clause as proofs become simpler. Furthermore, as
explained in Section 5.1, this leads to faster implementations of heuristics treat-
ing WSAT formulas. We call our model Fn,p,δ, where n indicates the number of
variables of each color and p, δ are the parameters used to control the maximum
total weight achieved by the hidden assignment (Figure 1). The user can choose
any values for δ and p provided p + δ ≤ 1. The reason for this restriction will
become clear in Lemma 1. We do not include the weight β in the definition of
the model as this will be set to a specific value later on (Lemma 2).

The model Fn,p,δ (with super-clauses)

1. Start with 2n variables, n green and n blue.
2. (Create the formula) For every pair of variables x, y, irrespective of their

color and without repetitions, add to the formula the “super-clause” c(x, y) =
(xȳ + x̄y).

3. (Assign the weights)
– For all clauses c(x, y), with probability p set the weight w(x, y) of the clause

equal to β + 1, otherwise set it equal to β.
– For all clauses c(x, y), such that x, y have different colors and w(x, y) = β,

with probability δ(1 − p)−1 ≤ 1 increase the weight of the clause to β + 1.

Fig. 1. Description of the generator.

By looking at Figure 1 one should observe that the “clauses” c(x, y) are not
really clauses in the ordinary 2-SAT sense. In fact, c(x, y) = (x + y) · (x̄ + ȳ).
We chose, however, to work with super-clauses as the results are much easier to
describe and the passing to ordinary 2-SAT expressions is again easy. We will
denote the two simple clauses of c(x, y) by c1

x,y = (x+y) and c2
x,y = (x̄+ ȳ). It is

also clear from the model that the generated formulas are “dense” in that they
consist of all possible combinations of the 2n variables. Thus it makes no sense
to try to satisfy all super-clauses but it makes sense to try to satisfy a suitable
subset of those that incurs the maximum possible total weight. We will be able to
show later on (Theorem 1) that the best assignment is the one that has the green
variables set to true and the blue set to false (or vice versa). However, before we
proceed with our main result we need a few definitions and preliminary lemmas.

Definition 1. A super-clause is called monochromatic if it consists of variables
of the same color.

Definition 2. An assignment is said to split the variables if exactly n variables
are set to true and n are set to false (irrespective of their color).

We are now ready to prove the first fact that is a simple consequence of the
model Fn,p,δ.
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Lemma 1. (Monochromatic clauses are lighter on average)
If x, y have the same color then w(x, y) = β+1 with probability p and β otherwise.
If x, y have different colors then w(x, y) = β + 1 with probability p + δ and β
otherwise.

Proof. The first statement is obvious since by definition monochromatic clauses
have weight β+1 with probability p. To prove the second statement observe that
a non-monochromatic clause will have weight β + 1 if it was initially assigned
this weight, or if it had weight β and with probability δ(1 − p)−1 increased its
weight. The probability of these two events is p + (1− p)δ(1− p)−1 = p + δ. ��

This lemma provides an alternative definition for our model and is used in
the proof of the optimality of the hidden assignment. The next lemma is used
to reduce the space of good assignments. Since our goal is to be able to generate
formulas where assignments are planted, this lemma allows algorithm designers
to test their algorithms by knowing what to expect.

Lemma 2 (Look for split assignments). When the weight β is at least n2,
the best assignments split their variables.

Proof. Suppose there is an assignment A that achieves total weight W and has
0 < k < n variables set to True and 2n− k variables set to False. We will show
that by choosing β accordingly, there exists a better assignment that achieves
greater weight and has its variables split.

Consider the bipartite graph (A,B) formed by putting the true variables on
side A and the false on side B. Furthermore, for every pair (x, y) where x ∈ A
and y ∈ B add the edge from x to y and assign to it the weight of the super-clause
c(x, y).

Consider now an arbitrary super-clause c(x, y) = (xȳ + x̄y). This super-
clause simply spells the fact that x and y must have different truth values in
order for c(x, y) to be satisfied and contribute its weight w(x, y) to the total
sum. Thus, given the particular assignment A, there can be at most k(2n − k)
satisfied super-clauses and the total weight W incurred by A will be equal to
the sum of the edges’ weights in the bipartite graph. Let there be m edges of
weight β + 1 and the rest with weight β. Then the total weight will be equal to
W = m(β + 1) + [k(2n− k)−m]β = k(2n− k)β + m, where the m term comes
from the edges with weight β + 1. In any case, m ≤ k(2n− k) < n2. Thus,

W < k(2n− k)β + n2 = n2β − [(n− k)2β − n2]. (1)

Consider now any assignment A′ that have its variables split and let m′

be the number of edges of weight β + 1. By the same argument as before the
total weight W ′ achieved by A′ will be at least W ′ = n2β + m′ ≥ n2β. Since
0 < k < n, by choosing β = n2 we see that the term [(n − k)2β − n2] in (1) is
always positive, thus making the weight W smaller than the weight W ′ of any
assignment with split variables. We conclude that it is always best to look for
split assignments. ��
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Observe that the previous discussion is valid only if the super-clauses are
satisfied as a whole or at least in the NAESAT sense (NAESAT for Not All
Equal SAT, is the variant of SAT where we don’t allow all literals in a clause
to have the same truth value). To pass to ordinary 2-SAT models, since most
algorithms are not restricted in their search for assignments, we modify the
model by assigning the weight w(x, y) to each of the clauses c1

x,y and c2
x,y of the

super-clause. Call this new model F ′
n,p,δ. Now, we have to take into account the

weight incurred by these clauses even if both literals have the same truth value.

Lemma 3 (Equivalence of the two models). An assignment A achieves
total weight W for a formula f generated according to Fn,p,δ if and only if it
achieves total weight W + cf when the formula is generated according to F ′

n,p,δ,
where cf in a constant that is easily computable and depends only on the partic-
ular formula f .

The proof is very similar to the proof of Lemma 2 and is omitted from this
extended abstract. Again we only have to look for split assignments in the new
model since by choosing β = n2, the best assignments for formulas generated
according to F ′

n,p,δ split their variables.

3 Characterizing the Optimal Assignment

In the previous section we showed that the two models are equivalent. Thus
from now on we will work only with formulas that consist of super-clauses. To
simplify things further we will work only with split assignments since by Lemma
2 we are allowed to do so.

Our goal in this section is to show that for a suitable choice of the parameter
δ, the optimal assignment is one that has the green variables set to True and the
blue variables set to False (or vice versa).

Definition 3. We say an assignment has distance k from the optimal one, where
0 ≤ k ≤ n

2 , if it has split the variables and furthermore it has k blue and n− k
green variables set to True.

Thus in some sense the value of k counts the distance from the planted
assignment which has k = 0 and as we will show in a while it is the optimal one
with high probability.

Theorem 1 (Optimality of hidden assignment). There is a constant such
that for values of δ ≥ Ω(

√
(1− p) lnn/n), the assignment which has only the

green variables set to true is optimal with high probability.

Proof. We only give a sketch of the proof here since this result is provided only
for completeness. We leave a full proof for the final version of the paper. The
first lemma we need is one which shows that assignments of distance k from the
hidden one achieve total weight close to their expected values. This is easy to
prove since by using Chernoff bounds we can estimate with great accuracy the
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The model Fk
n,p,δ (with super-clauses)

1. Start with 2n variables, n green and n blue.
2. (Create the formula) For every k-tuple of variables x1, x2, . . . , xk, irrespective

of their color and without repetitions, add to the formula the “super-clause”

c(x1, x2, . . . , xk) = ¬(x1x2 · · ·xk + x̄1x̄2 · · · x̄k).

3. (Assign the weights)
– For all clauses c(x1, x2, . . . , xk), with probability p set the clause weight

w(x1, x2, . . . , xk) equal to β + 1, otherwise set it equal to β.
– For all non-monochromatic clauses c(x1, x2, . . . , xk), such that

w(x1, x2, . . . , xk) = β, with probability δ(p − 1)−1 increase the weight of
the clause to β + 1.

Fig. 2. Generator for k-WSAT formulas.

total weight achieved by the given assignment. An immediate corollary of this
result is that no assignment of distance greater than some predefined k0 achieves
better weight than the hidden one.

The second lemma we need is one which proves that any assignment of dis-
tance smaller than a predefined value k1, has a neighboring assignment that
achieves even better weight except of course the hidden assignment. This last
result suggests that these assignments cannot be optimal. Combining the two
lemmas, we get that the hidden assignment is optimal with high probability for
the range of δ described in the theorem. ��

The optimality theorem characterizes implicitly the values of p for which it is
safe to assume that the hidden assignment is optimal with high probability. Since
by the definition of the model we know that δ must be less than 1− p, it is clear
that the theorem will be true for values of p satisfying 1−p ≥ Ω(

√
(1− p) lnn/n)

or equivalently

p ≤ 1− c
lnn

n
(2)

for some constant c. Thus our approach cannot be used for all formulas, but only
for formulas where the monochromatic clauses are not too heavy, as indicated
by Equation 2 and Lemma 1.

4 Extension to MAX k-WSAT

To generate MAX k-WSAT instances , k ≥ 3, we follow the same approach as
for the 2-WSAT case. We start again with 2n variables, n green and n blue.
The only difference now is that clauses consist of exactly k variables. We call
our model Fk

n,p,δ, where k indicates that we working with k-WSAT formulas
(Figure 2).
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As in the 2-WSAT case, the super-clauses are satisfied only when clause
variables have different truth values. To pass to ordinary k-SAT formulas observe
that c(x1, x2, . . . , xk) = (x1 + x2 + · · ·+ xk)(x̄1 + x̄2 + · · ·+ x̄k). We then have
to modify the model by assigning the weight w(x1, x2, . . . , xk) to each of the
sub-clauses of the super-clause. A lemma similar in spirit to Lemma 2 shows
that again we have to concentrate our search for split assignments by setting
β = n2.

5 Experimental Results; The Case for p = 1
2

In this section we present experimental results showing that random instances
can be generated by our model in such a way that easy and hard instances
can be predictable in advance. Our motivation is to provide developers of local
search SAT heuristics with a challenging set of k-SAT instances in which the
optimal solution is known beforehand. For ease of exposition we decided to work
with formulas satisfying p = 1

2 . Thus monochromatic clauses get weight β + 1
with probability a half while non-monochromatic clauses get that weight with
probability 1

2 + δ. Although we leave a more detailed experimentation for a final
version of this paper we will see that even in this case the formulas generated
exhibit some very important properties.

5.1 Locating the Hard Instances

The local search procedure we used for our tests is a modified version of WalkSat[13]
which we describe below. The main reason for choosing WalkSat is because it is
one of the best performing SAT procedures and because we believe that these
results on hard instances will be applicable to other SAT heuristics as well. In
subsequent work we plan to perform a more thorough analysis using a more
represenative collection of search methods. To apply WalkSat to formulas with
weights on clauses (even if the weights degenerate to the two values β and β +1)
we need the intuitive modification of the algorithm shown on Table 1. Basi-
cally what this table says is replace “number of satisfied clauses” with “weight
of satisfied clauses”. The rest of the algorithm remains the same. Also observe
how the weighted version reduces to the classic WalkSat when all weights are
set to one. The reason for this modification is to avoid the extra overhead in
running time caused by having multiple copies of the same clause. Since each
clause would have to appear at least β = n2 times, this would greatly slow down
the execution time of any SAT heuristic.

In the experiments that follow we chose to work with MAX 2-WSAT formulas
to illustrate the fact that these formulas become extremely difficult to optimize in
direct contrast to ordinary 2-SAT formulas, which are solvable in linear time[3].
Although we leave a more detailed analysis of k-WSAT formulas, k ≥ 3, for
the final version of this paper, preliminary work shows that they exhibit similar
properties to the 2-WSAT case. In all the figures that follow each sample point
was computed after generating 1000 random instances of MAX 2-WSAT.
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Table 1. Changes to the basic WalkSat algorithm.

WalkSat Weighted version of WalkSat

Goal Maximize number of satisfied
clauses

Maximize weight of satisfied clauses

Strategy

Pick a random unsatisfied clause
and flip the variable that results in
the smallest decrease in the number
of satisfied clauses

Pick a random unsatisfied clause
and flip the variable that results in
the smallest decrease in the weight
of satisfied clauses
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Fig. 3. Median number of total variable flips for random 2-WSAT formulas as a func-
tion of the parameter δ.

Figure 3 shows the median of the total number of variable flips required
by WalkSat to locate an assignment that achieves the maximum total weight
(as is implied by the hidden assignment) for formulas of size n = 32, 34, 36, 38
and 40. As can be seen, an easy-hard-easy pattern emerges which results in
an exponential increase in computational cost in the hardest region similar to
the behavior of ordinary 3-SAT formulas [11,5]. This figure also suggests the
existence of a critical region although we cannot link this behavior with the
length of the formulas as all of them have the same number of clauses. We
were able, however, to relate this behavior with a phase transition in structural
properties of the WSAT instances. It is perhaps worthwhile to comment a little
on the shape of the curves in Figure 3. Although the computational cost follows
an easy-hard-easy pattern, the second “easy” region where δ is large is no longer
very easy compared to the first region where δ is small. This is reminiscent of
the behavior of 3-SAT(B), the bounded decision versions of 3-SAT defined by
Zhang[15], where one is looking for an assignment that violates no more than B
constraints. When B = 0, one has 3-SAT; when B is the optimal solution cost,
one has MAX 3-SAT. Thus, such distributions lie in some sense between the
decision problem and its optimization counterpart and like the WSAT instances
exhibit easy-hard-“less easy” patterns.
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In general, as was shown in [6,16,14,15] and other works, the phase transi-
tions of some NP-complete decision problems follow easy-hard-easy patterns and
the phase transitions of some NP-hard optimization problems follow easy-hard
patterns. Thus one may ask, where is the easy-hard behavior of the WSAT for-
mulas? We performed some initial experiments and found that actually WSAT
formulas exhibit the behavior of optimization problems, but only when p grows
larger than 1/2. Thus the value of p = 1/2 is middle ground and by increasing
the value of p one gets a wealth of distributions with higher computational costs
and easy-hard patterns.

5.2 Phase Transition

An important characteristic of Figure 3 is that the transition region becomes
narrower (occurs for a smaller range of δ) for larger values of n when at the
same time the peak shifts to the left as n is increased. Our goal now is to
demonstrate a relationship between the hard region and a phase transition in
the structural properties of the WSAT formulas.

It is clear that we cannot have a SAT/UNSAT transition as all instances
are unsatisfiable. A more profound concept related to phase transitions is the
backbone ratio of a problem which is the ratio of its variables that take the
same values in all solutions, i.e. they are fully constrained. A phase transition in
such a case has the the backbone ratio raise from nearly 0 to nearly 1, with the
hardest instances lying around the 50% point. In the case of WSAT formulas,
however, we chose not to work with backbones because now solutions are planted
and, provided that δ is sufficiently large, solutions are also unique. Thus there
is no point in trying to relate the hardness peak with the backbone as there
is essentially only one solution and most of the variables have a fixed value.
(Furthermore, such results were examined by Zhang[15] on MAX-3SAT formu-
las.) We were able, however, to relate WSAT’s behavior with the probability of
uniqueness of the hidden assignment, which is the crucial structural property of
WSAT formulas.

In Figure 4(a) we show how the probability that there exist good assignments
other than the planted one changes as a function of the parameter δ for n =
32, 36, 40. In the same figure we also included the normalized cost of WalkSat
for locating the hidden assignment (bell shaped curves). Observe now the clear
movement to the left and the remarkable correspondence between the hardness
peak and the point where the uniqueness probability of the optimal solution
is about 65%. The main empirical observation we can draw from this picture
is that the hardest 2-WSAT formulas for WalkSat lie at the point where about
65% of the formulas have the planted solution as the optimal one. We named the
WalkSat algorithm in this conclusion since we expect the location of the peak to
depend on the particular heuristic used. Other heuristics may peak at different
values but in any case we expect their behavior to be similar to WalkSat’s.

In Figure 4(a) there is a clear shift in computational cost as the value of
n increases. In Figure 4(b) we observe a similar behavior for the uniqueness
probability of the optimal solution for a larger range of values. Observe how
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Fig. 4. (a) Normalized cost and phase transition. The bell shaped curves correspond
to median number of flips normalized to 1 while the sigma shaped curves show the
uniqueness probability of the hidden assignment. (b) Phase transition for various values
of n.

the threshold function sharpens up for larger values of n, like the satisfiability
threshold function for random k-SAT formulas[11]. One difference however is
that curves do not cross. Instead the curves are moving to the left, something
that is to be expected since the hidden solution is with high probability unique
for values of δ larger than c

√
lnn/n, for some constant c (set p = 1/2 in Theorem

1).
All this discussion leads naturally to the question of how one can generate

the hardest 2-WSAT formulas. Given some arbitrary value of n how can we
determine the value of δ that results in the most difficult to solve instances? The
answer is given by finite-size scaling[8], in which the horizontal axis is rescaled
by a quantity that is a function of n. This has the effect of slowing down the
transition for larger values of n and mapping the different curves into a single
“universal” curve from which one can derive by working backwards the point
where the hardest instances lie.

Figure 5(a) shows the result of rescaling the curves of Figure 4(b). The
uniqueness probability is plotted against δ′, a rescaled version of δ equal to
δ′ = δnε/2√1− ε, where ε = 0.56. It is perhaps instructive to describe how we
derived the rescaling factor nε/2√1− ε. Theorem 1 (with p = 1/2) tells us that
the planted solution is unique when δ = Ω(

√
lnn/n). This led us to believe

that the threshold point will also be a function of this quantity, something like
δ0 = c

√
lnn/n, for some (unknown) constant c. If n is to be rescaled and become

n1−ε, for some ε, then the translated point must become δ′
0 = c

√
ln n1−ε

n1−ε . By some

algebraic manipulation, δ0 and δ′
0 are related by the equation δ′

0 = δ0n
ε/2√1− ε

which, when applied to all values of δ, gives us the universal match shown in
Figure 5(a). Finally, Figure 5(b) demonstrates how the computational cost for
various values of n collapses into a universal curve. To obtain this, we first nor-
malized the curves Figure 3 and then applied the rescaling described previously.
We see clearly that the critical point is when the rescaled δ is equal to 0.60 which
corresponds to the 65% uniqueness probability in Figure 5(a).
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Fig. 5. (a) Phase transition for various values of n after rescaling. (b) Computational
cost for various values of n after rescaling.

6 Conclusions and Future Research

In this work we presented a generator for instances of MAX k-WSAT in which
every clause has a weight or multiplicity associated with it and the goal is to
maximize the total number of satisfied clauses. We showed that our generator
produces formulas whose hardness can be finely tuned by a parameter δ that
controls the weights of the clauses. Under the right choice of this parameter
an easy-hard-easy pattern in the search complexity emerges which is similar
to the patterns observed for traditional SAT formulas and complete methods.
Furthermore, the distributions examined here seem to lie in the middle ground
between decision and optimization problems. When p, the other parameter of our
generator, is set to 1/2, the computational cost of finding the optimal solution
exhibits an easy-hard-“less easy” pattern which is not typical of optimization
problems as should be the case for MAX-WSAT formulas. However, as we hinted
in Section 5.1, when the value of p increases, instances should behave more like
traditional optimization problems and easy-hard patterns should emerge.

We were able to relate this behavior of WSAT formulas with a new type
of phase transition in the structural properties of the generated instances. In
particular, we showed how the hardness peak corresponds to a point where there
is a transition from formulas which have many optimal assignments to formulas
where the optimal assignment is unique. And this is perhaps the most important
characteristic of our generator; under the right choice of the parameter δ, not
only we know that the optimal solution is unique but we also know that it
must assign (a predefined) half of the variables to TRUE and half to FALSE.
In conclusion, we believe that our generator will be useful in the analysis and
development of future SAT heuristics since by knowing what to expect algorithm
designers will better test the effectiveness of their search procedures.

Our work leaves open some ground for further improvements and research.
One direction would be to eliminate the weights from the clauses and produce
a generator for [MAX] k-SAT instances directly. It seems that the weights are
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only used to limit the search for split assignments so one may ask if there is
a way to do this using no weights. Unfortunately, at this point we don’t know
how this can be done without losing the structure of the hidden assignment
and the a priori knowledge of optimality. Another important question is if the
quadratic number of clauses in the case for 2-WSAT (and the O(nk) number for
the general case) can be reduced to linear. Is it possible to generate formulas,
even with weights, in which the number of clauses is linear and the hidden
assignment is preserved? This would speedup the execution time of algorithms
and would further strengthen the hardness results of the generated instances.

Finally, our model is reminiscent of graph theoretic models in which a solution
is planted in advance (such as in the clique or coloring problem). The purpose
of planting solutions to such problems is to come up with algorithms that are
able to recover the planted structure, hoping that these algorithms will behave
equally well in real life instances. Our findings for WalkSat do not imply that
such an algorithm is unlikely to exist for the WSAT model we propose here. In
fact Theorem 1 suggests that such a specialized algorithm may exist. Coming
up with such an algorithm may pinpoint the important characteristics of the
WSAT formulas and may further help in the simplification of them as well as in
the evaluation of other SAT search methods.
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Abstract. The Quasigroup Completion Problem (QCP) is a very chal-
lenging benchmark among combinatorial problems, and the focus of
much recent interest in the area of constraint programming. [5] reports
that QCPs of order 40 could not be solved by pure constraint pro-
gramming approaches, but could sometimes be solved by hybrid ap-
proaches combining constraint programming with mixed integer pro-
gramming techniques from operations research. In this paper, we show
that the pure constraint satisfaction approach can solve many problems
of order 45 in the transition phase, which corresponds to the peak of
difficulty. Our solution combines a number of known ideas –the use of
redundant modeling [3] with primal and dual models of the problem con-
nected by channeling constraints [13] – with some novel aspects, as well
as a new and very effective value ordering heuristic.

1 Introduction

The Quasigroup Completion Problem (QCP) is a very challenging benchmark
among combinatorial problems, which has been the focus of much recent inter-
est in the area of constraint programming. It has a broad range of practical
applications [5]; it has been put forward as a benchmark which can bridge the
gap between purely random instances and highly structured problems [6]; and
its structure as a multiple permutation problem [13] is common to many other
important problems in constraint satisfaction. Thus, solutions that prove effec-
tive on QCPs have a good chance of being useful in other problems with similar
structure.

In this paper, we present several techniques that together allow us to solve
significantly larger QCPs than previously reported in the literature. Specifically,
[5] reports that QCPs of order 40 could not be solved by pure constraint pro-
gramming approaches, but could sometimes be solved by hybrid approaches
combining constraint programming with mixed integer programming techniques
from operations research. We show that the pure constraint satisfaction approach
can solve many problems of order 45 in the transition phase, which corresponds
to the peak of difficulty. Our solution builds upon some known ideas, such as
the use of redundant modeling [3] with primal and dual models of the problem
connected by channeling constraints [13], with some new twists. For example,
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we will consider models consisting of only channeling constraints, without any
primal or dual constraints, and we demonstrate empirically for the first time the
usefulness of channeling constraints linking several pairs of models of a problem,
an idea that was considered, but only theoretically, in [15] and [14]. In addi-
tion, we present a new value ordering heuristic which proves extremely effective,
and that could prove useful for many other problems with multiple models. The
idea underlying this heuristic, which originates in the work of [15,11] for single
permutation problems, is that selecting a value for (say) a primal variable is
in practice in the presence of channeling constraints also a choice of the dual
variables corresponding to that value; therefore we can use variable selection
heuristics on the dual variables to choose the value to assign to the previously
chosen primal variable. Finally, we show how redundant constraints can be used
to “compile arc consistency into forward checking”, that is, to ensure that the
latter has as much pruning power as the former but at a much lesser cost in
constraint checks.

It is interesting to note that our approach involves only binary constraints,
which seems to go against common wisdom about their limitations —when con-
trasted with the use of non-binary constraints such as alldiff [8]— in solving
quasigroup completion problems [9]. It is certainly an interesting issue, which
we plan to address in the future, whether the use of alldiff could yield even better
results than our approach when coupled with other ideas in this paper1.

The idea of redundant modeling was first introduced by [3]. The benefits of
adding redundant constraints to some given model to improve pruning power
were well-known in the literature, but [3] went a step further by considering the
redundant combination of full models of a problem, where the models may in-
volve different sets of variables. This combination is achieved by specifying how
the various models relate to each other through channeling constraints, which
provide a mapping among assignments for the different models. The combined
model contains the original but redundant models as submodels. The channel-
ing constraints allow the sub-models to cooperate during constraint-solving by
propagating constraints among the problems, providing an extra level of pruning
and propagation which results in a significant improvement in performance.

Another important modeling idea that we use is that of permutation prob-
lems (see e.g. [11,13]). A constraint satisfaction problem (CSP) is a permutation
problem if it has the same number of variables as values, all variables have the
same domain and each value can be assigned to a unique variable. Thus, any
solution can be seen as assigning a permutation of the values to the variables.
In the same manner, a multiple permutation problem has some (possibly over-
lapping) sets of variables, each of which is a permutation problem. QCP is a
paradigmatic example of a multiple permutation problem.

The structure of this paper is as follows. We introduce in Section 2 the quasi-
group completion problem (QCP) and present a number of alternative models

1 Besides the obvious computational limitations in running large experimental suites
of hard QCP problems, we were limited in this aspect by the unavailability of open
source alldiff code.
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that can be used to represent it; we then consider in Section 3 various ways of
combining these models. Section 4 presents some experimental data to compare
the relative merits of the various models, which will lead us to choose one par-
ticular model as the best one among those tested. Sections 5 and 6 are the core
of the paper, where we apply the new value ordering heuristic to QCPs and then
further tune our solution by adding some redundant constraints that allow us to
replace the relatively expensive arc consistency with forward checking. Section
7 concludes the paper with some ideas for further research.

2 Models of Quasigroups

A quasigroup is an ordered pair (Q, ·), where Q is a set and · is a binary oper-
ation on Q such that the equations a · x = b and y · a = b are uniquely solvable
for every pair of elements a, b in Q [5]. The order n of the quasigroup is the
cardinality of the set Q. A quasigroup can be seen as an n × n multiplication
table which defines a Latin Square, i.e. a matrix which must be filled with “col-
ors” (the elements of the set Q) so that the colors of each row are all distinct,
and similarly for columns. Early work on quasigroups focused on quasigroup
existence problems, namely the question whether there exist quasigroups with
certain properties, solving several significant open mathematical problems [10].
We focus instead on the quasigroup completion problem (QCP), which is the
(NP-complete [4]) problem of coloring a partially filled Latin square. QCP share
with many real world problems a significant degree of structure, while at the same
time allowing the systematic generation of difficult problems by randomly filling
the quasigroup with preassigned colors. It is thus ideally suited as a testbed for
constraint satisfaction algorithms [6]. Experimental studies of the problem have
confirmed its interest for research, by for example helping to discover important
patterns in problem difficulty such as heavy-tailed behavior [7].

Among the kind of structure that has been identified in many constraint
satisfaction problems, and which is shared by QCPs, is that of permutation
problems. These are constraint satisfaction (sub)problems with the same number
of variables as values, where a solution is a permutation of the values [13]. Each
row and column of a Latin Square defines a permutation problem, thus the QCP
is a multiple permutation problem with 2n intersecting permutation constraints
(n row permutation constraints and n column permutation constraints).

QCPs appear in a number of real world applications such as conflict-free
wavelength routing in wide band optical networks, statistical design, and error
correcting codes [5].

2.1 Models

Let P be a problem. To model P as a CSP we need to fix a set of variables X,
a function F that maps each variable xi ∈ X to a domain of possible values,
and a set of constraints C defined over the variables in X, so that the set of
solutions in the traditional CSP sense corresponds in some exact mathematical
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sense to the solutions of P , if any. The triple (X,F,C) is then a model of P .
There is usually more than one model for any given problem, but whichever we
choose, we need to ensure that it fully characterizes the problem. Cheng et al.
[3] define two models M1 = (X1, F1, C1) and M2 = (X2, F2, C2) of a problem P
to be redundant when the following conditions hold:

1. M1and M2 are models of P respectively, i.e. each of them fully characterizes
the set of solutions to P .

2. X1 ∩X2 = ∅.

Redundancy is a double-edged sword: it can help propagation by allowing
more values to be pruned at any given point in the search, but it can also hinder
it by forcing it to process a larger set of constraints. Fortunately, more fine
grained distinctions are possible, as we might choose to combine only parts of
various models. We could not speak of combining models if we don’t use their
respective sets of variables, but it will often be advantageous (as we will see) to
drop some of the constraints from one or more models that become redundant
when making the combination. If we do this, however, we must be careful to
ensure the correctness and completeness of the combined model.

Several models can be defined for QCPs, as described next. While all models
have the same logical status, it is common to distinguish between primal and dual
models. The distinction is only a matter of perspective, specially in permutation
problems, where variables and values are completely interchangeable.

2.2 Primal Model

The primal model for QCP, as usually defined, takes variables to represent the
cells of the Latin Square for a QuasiGroup, and the domains of possible values
consist of the colors to be assigned. Thus, the primal variables are the set X =
{xij | 1 ≤ i ≤ n, 1 ≤ j ≤ n} where xij is the the cell in the i − th row and
j − th column, and n is the order of the quasigroup, i.e. the number of rows
and columns. All variables share a common initial domain, namely D = {k |
1 ≤ k ≤ n}, where each k represents a color. The primal constraints in turn
can be divided into row constraints and column constraints. If we choose a
binary representation, there are n2 row constraints of the form xij �= xil where
xij , xil ∈ X and j �= l, which means that two cells in the same row must not
have the same color; and n2 column constraints of the form xij �= xlj where
xij , xlj ∈ X and i �= l, which means that two cells in the same column must not
have the same color. Equivalently, we could use just 2n alldiff constraints [8],
one for each row and column. Semantically this makes no difference.

The primal model (or pr model for short) provides a complete characteriza-
tion of the problem.

2.3 Row Dual Model

There are different ways to formulate dual models for a multiple permutation
problem. Here we consider dual models for each of the permutation subproblems
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(as opposed to a single dual model of the primal problem), and group them
by row and column, to obtain two complete models of QCPs. In the row dual
model, the problem is reformulated as the question of which position (column)
in a given row has a given color. The row dual variables are the set R = {rik |
1 ≤ i ≤ n, 1 ≤ k ≤ n} where rik is the kth color in the ith row. The domain of
each variable is again the set D = {j | 1 ≤ j ≤ n}, but now the values represent
columns, i.e. the positions in row i where color k can be placed. The row dual
constraints are similar to the primal constraints. There are n2 constraints of the
form rik �= ril, where rik, ril ∈ R and l �= k, which means that two colors in the
same row must not be assigned to the same column; and n2 constraints of the
form rik �= rjk where rik, rjk ∈ R and i �= j, which means that the same color in
different rows must not be assigned to the same column. Alternatively, we could
have alldiff(ri1, . . . , rin) for every row i, and alldiff(r1k, . . . , rnk) for every color
k.

A simple symmetry argument shows that this model also fully characterizes
the problem.

2.4 Column Dual Model

The second dual model is composed of the set of dual models for each column
permutation constraint, representing the colors in each column. The column dual
variables are the set C = {cjk | 1 ≤ j ≤ n, 0 ≤ k ≤ n} where cjk is the kth
color in the jth column. All variables have domain D = {i | 1 ≤ k ≤ n}, where
i represents the rows where color k can be placed in the jth column. Similar to
the row dual model, we have column dual constraints of the form cjk �= cjl where
cjk, cjl ∈ C and k �= l, which means that two colors in the same column must
not be assigned to the same row; and of the form cjk �= clk where cjk, clk ∈ C
and j �= l, which means that the same color in different columns must not be
assigned to the same row.

This model also fully characterizes the problem. We refer to the combination
of both dual models as the dl model.

3 Combining the Models

A channeling constraint for two models M1 =(X1, F1, C1) and M2 =(X2, F2, C2)
is a constraint relating variables of X1 and X2 [3]. We will consider the following
kinds of channeling constraint:

– Row Channeling Constraints: Constraints for the n row permutation con-
straints, linking the primal model with the row dual model:

xij = k ⇔ rik = j.

– Column Channeling Constraints: Corresponding to the n column permuta-
tion constraints, they link the primal and the dual column models:

xij = k ⇔ cjk = i.
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– Triangular Channeling Constraints: These constraints link both dual models,
closing a “triangle” among the three models:

cjk = i⇔ rik = j.

Given two or more redundant, complete models, we can obtain a combined
model by simply implementing all the models and linking them by channel-
ing constraints. Thus the full combined model or pr-dl-ch2-model resulting
from the above models is the model consisting of primal and dual variables and
constraints, linked together by row and column channeling constraints2. More
generally, as long as a combined model includes a complete model of the prob-
lem as a submodel, we are free to add any set of variables or constraints from
other models, with the only requirement that in order to add a constraint all
its variables must belong to the combined model. Thus, for example, given the
primal variables and constraints, we may choose to add any number of dual and
channeling constraints as long as the corresponding variables are also added. For
example, we may decide to use only the row dual variables together with the
row dual constraints and/or row channeling constraints. Nothing is lost by not
including parts of the dual models, since all the necessary information is present
in the primal model.

In fact we can take this as far as removing all primal and dual constraints!
Walsh [13] shows that arc consistency on the channeling constraints for a permu-
tation problem dominates in pruning power over arc consistency over the binary
not-equal constraints. Intuitively, this means that nothing is gained by adding
the not-equal constraints once we have the channeling constraints. Note that
this doesn’t prove the superiority of a model with only channeling constraints
over, say, the primal model, as the former also has many more variables and
constraints; this issue is empirically examined later. It is important however to
show that the model consisting of primal and dual variables, with only row and
column channeling constraints, but without the primal or dual constraints (i.e.
alldiff or not-equal) is also a complete model of the problem. We refer to this
model as the bichanneling model or ch2:

Proposition 1. The bichanneling model is equivalent to the primal model, hence
it provides a full characterization of QCPs.

Proof. If the two models had the same set of variables and associated domains,
we could define equivalence just as having the same set of solutions. Since that’s
not the case here, we need to provide instead a one-to-one mapping between
solutions of either model.

Let us say that a primal assignment, or P-assignment for short, is an assign-
ment of values to all the primal variables, and a PD-assignment an assignment
to all primal and dual variables.

The proposition can then be phrased more exactly in terms of the following
two claims.
2 We don’t consider adding the triangular constraints until later.
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Claim 1: Any P-assignment A which satisfies the (primal) alldiff constraints
can be extended to a PD-assignment B which satisfies the channeling constraints.
To extend A to B, we just pick each label xij = k from A and set rik = j and
cjk = i in B. To see that B is well-defined, note that every rik gets assigned,
since A must use all available colors in order to fill row i in accordance with
the primal constraints; and that any given rik is assigned at most once, since
otherwise we would have xij = xih for distinct columns j and h, in contradiction
with the fact that A satisfies the primal constraints. Similarly for any cjk. Hence
B is well-defined, and it satisfies the channeling constraints by construction.

Claim 2: Any PD-assignment B satisfying the row and column channeling
constraints, is such that its primal subset A satisfies the primal constraints.
Suppose not. Then B assigns the same value k to two primal variables xij and
xih for j �= h (or the completely symmetric case where it is row indexes that
vary). But since B satisfies the row channeling constraints, B should satisfy
rik = j and rik = h, which is impossible. ��

Yet another combined model we will consider later is the trichanneling model,
or ch3 for short, which adds the triangular channeling constraints to ch2, but still
keeps away from the primal and dual constraints. Given the above proposition,
ch3 is also a complete model, and redundantly so.

4 Comparing Models

Our initial results on the various models were in fact quite favorable to the
bichanneling model. In order to present them, we need to say a few words about
the experiments in this paper. First, in order to make our results comparable
with others appearing in the literature, all instances were generated using the
lsencode generator of QCPs, kindly provided to us by Carla Gomes. This gen-
erator begins by randomly coloring an empty quasigroup using a local search
algorithm, and then randomly decoloring some cells. Hence all problems in our
suites have a solution. All instances are of the “balanced” kind, which are known
to be the hardest [5]; and most instances correspond to problems with 60% cells
preassigned, which is close to the transition phase and corresponds to a peak
in problem hardness. Second, all experiments are run with a slightly optimized
variant of van Beek’s GAC library, which comes as part of the CSP planning
system CPLAN [12], and which implements generalized arc consistency (though
in our case we only need its binary version, i.e. MAC [1]). As discussed below,
neither CBJ nor nogood learning seem to help in QCP, contrary to the expe-
rience in many other domains, hence they are disabled in our tests. Also, all
experiments use the min-domain variable selection heuristic, which we found to
be uniformly the best among the ones we tried (see also [3,11] and the discussion
in Section 5).

In our initial tests, we found that the bichanneling model ch2 could solve
many problems that were out of reach for the other models, including many
order 35 and some order 40 quasigroups with 60% preassigned cells. Table 1
shows mean time for solved instances and median time for the whole sample,
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Table 1. Experimental results for the bichanneling model, MAC, no value ordering.

% preassign → 20% 42% 80%
order % solved mean median mean median mean median
30 100% 0.94 0.93 0.43 0.25 0.03 0.02
35 100% 1.99 1.99 0.71 0.53 0.05 0.05
40 100% 4.98 4.98 2.51 1.09 0.08 0.08

60% preassigned
order % solved timeout mean (solved) median (all)
30 18% 100 48.74 100
35 22% 3600 903.07 3600
40 10% 3600 1751.90 3600

Table 2. Comparison of various models using MAC and no value ordering.

pr pr-dl pr-dl-ch2 ch2
time checks time checks time checks time checks
1.45 1.30 1.93 1.69 1.90 1.69 1 1

both in seconds, and percent of solved instances within the given timeout (also
in seconds) for sets of 50 instances of orders 30, 35 and 40, and 20, 42, 60 and
80% preassignment. (These results are also plotted in Figure 1 later.)

Our data confirm the existence of a peak of difficulty around 60% preassign-
ment [5], whereas problems were trivially solvable with all other percentages we
tried. Even though the results were promising, specially when compared with
other models, they were also disappointing, in that the number of problems that
we could solve in the transition phase was rather limited for various dimensions.
(Note that in these cases, median time is the same as timeout because less than
50% of instances were solved.) Nevertheless, we decided to pursue further the
bichanneling model based on the somewhat anecdotal evidence of its clear supe-
riority over other models. As the following sections show, we succeeded in this
goal.

For the sake of a more systematic comparison, we present here a simple
comparison of the various models. Due to limited available time, we chose the 29
easiest problems (as measured with the approaches developed later) for order 30
quasigroups with 60% preassignment. These are still relatively difficult problems
in the phase transition: the ch2-model took a total of 6624 seconds on the 19
problems (66%) in the sample that were solved with all tested models in less
than 1800 seconds, yielding an average of 348.6 seconds per solved problem,
and a mean (over the whole sample) of 574.16s. Table 2 shows the result of a
comparison between various models on this sample. The table provides the ratios
in the accumulated data in time and constraint checks over the solved problems,
relative to the performance of ch2. Note that all models tried exactly the same
number of assignments in all problems, empirically confirming the fact that arc
consistency has identical pruning power in all four models.
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We conjecture that these ratios will increase with problem difficulty. But
there is little point on belaboring these data, as much better solutions are avail-
able, as discussed in the following sections.

5 Variable and Value Ordering

It is well know that the order in which we make our choices as to which variable
to instantiate, and with which value, can have a major impact in the efficiency
of search. As already pointed out, all the results reported in this paper use the
min-domain variable ordering heuristic (often denoted dom), which at each search
node chooses a variable with the smallest domain to instantiate. The reason for
this is simply that we obtained better results with it than with other alternatives
we tried. These included more fine-grained heuristics such as dom+degree and
dom/degree, yielding further confirmation to previous results by [3] and [11]
on simple permutation problems. These other heuristics would often make no
difference with respect to dom3, but when they did it was most often to the worse.
(We did not perform a systematic comparison, though.) We also considered a
number of variants of the above which took into account the (primal or dual)
model to which variables belong, e.g. selecting only among primal variables, or
only among primal variables unless some dual variable had a singleton domain,
etc. These variants would often significantly underperform the previous ones, so
we didn’t pursue them further.

[15] introduced a min-domain value ordering heuristic for use when dual
variables are available during the search. The idea is to choose the value such that
the corresponding dual variable has the smallest current domain. To generalize
this idea to multiple permutation problems, we need a way to take into account
the two dual models. The one that worked best is what we might call the min-
domain-sum value selection heuristic (or more briefly vdom+, the ’v’ standing
for value). Once a primal or dual variable is selected, we need to choose a value
for it. Since any such value corresponds to one specific variable from each of
the two other models, we select the value whose corresponding two variables
have a minimal “combined” domain. Specifically, say we have chosen xij . Then
we choose a color k from its currently active domain for which the sum of the
current domain sizes of rik and cjk is minimal among the currently available
colors for xij . Similarly, if the chosen variable is a dual one, say rik, we choose
a column j for this variable as a function of the current domain sizes of the
corresponding variables xij and cjk.

The results when the first combined model was used with the min-domain-
sum value ordering heuristic were quite surprising, as it outperformed previous
tests in three orders of magnitude in some cases. For example, for the instance
3 This is not much of a surprise, since the degree of a variable (number of constraints

in which it is initially involved) cannot discriminate much among variables in a
QCP; though this could also depend on details of implementation such as whether
constraints are generated for variables that are explicitly or implicitly assigned by
the initial coloring.
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Fig. 1. Mean solution time on QCPs of order 30, 35 and 40 with (vo1) and without
(vo0) value ordering.

Table 3. The min-domain value ordering heuristics at the phase transition, using
MAC.

order mean median % solved timeout
30 148.84 174.11 68% 1000
35 533.43 163.48 84% 3600
40 732.94 1010.82 68% 5000
45 1170.81 2971.40 56% 6000

bqwh-35-405-5.pls (balanced instance of order 35 and 60% preassigned cells) it
took 2905 secs without value ordering and only 0.40 secs with it. For a more gen-
eral picture, Figure 1 plots the data of Table 1, obtained with lexicographic value
ordering, against the results over the same sample with dom+ value ordering.

Encouraged by this performance, we generated a set of 100 balanced instances
of orders 30, 35, 40 and 45, with 60% preassignment. Table 3 shows median and
mean time in seconds (the latter taken only over solved instances), percent of
solved instances and timeouts, in solving these instances with the new variable
ordering heuristic.

These results are significantly better than those previously found in the lit-
erature, as we can solve over 50% of balanced QCPs of order 45 at the phase
transition. Recall that, as pointed out in the introduction, [5], reports that pure
constraint programming approaches, even when using specialized forms of arc
consistency for non-binary alldiff constraints and a commercial solver, could not
solve any problem of order 40 in the phase transition.

We considered other ways of combining domain sizes such as minimizing the
product of the corresponding domain sizes (min-domain-product or vdom*), and
their corresponding maximizing versions, without success. Perhaps there is no
deep reason why vdom+ was so clearly superior to vdom*. Maximizing versions
were clear underperformers, and there is a reasonable explanation for it. For
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concreteness, consider choosing a value with the maximal combined domain of
the corresponding variables, e.g. a value k for a primal variable xij such that
domain-size(rik)+ domain-size(cjk) is maximal (over the colors available for xij

at the current stage of search). While large domain sizes are usually indication of
less tightness, and thus could be conjectured to capture the idea, often cited in
connection with value ordering, of selecting a value which is “more likely to lead
to a solution”, in this case they have exactly the opposite effect. When xij = k
is the maximal labeling according to this criteria, the domains of rik and cjk are
immediately pruned into singletons. Hence a maximizing choice produces maxi-
mal pruning, which is the opposite of what is desired. And conversely, heuristics
such as vdom+ choose values that produce the least pruning.

6 Compiling AC to FC with Redundant Constraints

Our next and last step in improving our solution derived from an examination of
the pruning behavior of the bichanneling model with arc consistency. Suppose xij

is assigned k at some point during the search. The GAC implementation of CPlan
begins by checking arc consistency for constraints with a single uninstantiated
variable, i.e. doing forward checking, which forces the domains of rik and cjk to
become the singletons {j} and {i} respectively, and also prunes, for each h �= k,
j from rih, and i from cjh. Arc consistency will further discover (if not already
known at this stage of the search):

– xih �= k for any column h �= j, since otherwise rik = h �= j;
– hence also chk �= i for any column h �= j, since otherwise xih = k;
– similarly, xhj �= k for any row h �= i, since otherwise rik = h �= j;
– hence also rhk �= j for any row h �= i, since otherwise xhj = k;

It is not difficult to show that GAC cannot prune any more values as a result
of an assignment to a primal variable, unless one of the listed prunings reduces a
domain to a singleton. All these are useful prunings, but GAC does much more
work than needed to obtain them. Each one of the pruned values – one for each
xih, xhj , chk, rhk, potentially 4(n− 1) pruned values and variables from a single
assignment – requires GAC to check all the constraints in which the correspond-
ing variables are involved, namely 2(n−1) or (n−1) constraints for, respectively,
the primal and dual pruned variables (further, in the CPlan implementation all
affected variables have all their values tested, even if at most one will be pruned).
This is wasted effort, as no additional pruning is achieved. One can however ob-
serve that most of the pruning power can be derived simply by assigning the
variables whose domain became singletons (either directly through channeling
constraints or indirectly when pruning a single value results in a singleton) and
doing forward checking on them. To see that the remaining values pruned by
GAC (namely the second and fourth items above) are also pruned by FC with
the trichanneling model, observe that chk �= i since otherwise rik = h �= j using
the corresponding triangular channeling constraint, and similarly rhk �= j since
otherwise cjk = h �= i.
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Table 4. The ch3 and ch2 models compared, with value ordering.

ch3-fc ch2-ac ratios
order acc. time median solved acc. time median solved acc. time median
30 6445.44 153.04 78% 9557.83 174.11 68% 1.48 1.14
35 29691.18 152.16 86% 45341.22 163.48 85% 1.53 1.07
40 33015.14 637.18 73% 48682.04 1010.82 68% 1.47 1.59
45 38569.95 1650.52 59% 61469.78 2971.40 56% 1.59 1.80

checks visits
order ch3-fc ch2-ac ratio ch3-fc ch2-ac ratio
30 29886 80206 2.68 431 658 0.15
35 114572 279003 2.44 1617 218 0.13
40 205247 445790 2.17 2769 331 0.12
45 108276 321632 2.97 1489 236 0.16

We remark that the same effect can be achieved in different ways, e.g. the
bichanneling model supplemented with the dual not-equal constraints also allows
forward checking to derive the same consequences.

Table 4 compares the bichanneling model ch2, using only row and column
channeling constraints with GAC, versus the trichanneling model ch3 with the
three kinds of channeling constraints using only FC, in both cases with the min-
domain-sum value ordering. Each sample consists again of 100 balanced instances
with 60% preassignment;the accumulated values are over the problems solved by
both approaches within the given timeout. The median times are on the other
hand over the whole sample. Accumulated times are in seconds while the other
accumulated values are in millions of checks and tried assignments respectively.

These tables show that there is a significant improvement in time with the
ch3 model using only FC, and this can be traced to the large savings in number
of checks. On the other hand, ch3 with FC tries almost one order of magnitude
more assignments, which arise from the fact that it must instantiate the variables
associated to a given assignment made in the search tree in order to extract
the same consequences as AC with ch2; these added tried assignments do not
however translate into any more checks or more true backtracking.

The results in this table are not however as straightforward to obtain as the
formal result on the equivalent pruning power may suggest. Indeed, our first
attempt at implementing ch3 resulted in a slight but noticeable slowdown! On
further examination, we realized that this was due to the implementation of the
min-domain variable ordering heuristic, which could select many other variables
with a singleton domain before the variables associated with the last assign-
ment; as a result, obtaining the same conclusions as AC could be significantly
delayed. We solved the problem by keeping a stack of uninstantiated variables
with singleton domain, and modifying the min-domain heuristic to pop the most
recent variable from that stack whenever it was not empty. This ensures that
FC considers those variables that have just become singletons immediately. The
solution has nevertheless an ad-hoc flavor, and suggests that for domains such
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as QCPs, where propagation often forces a value for variables as opposed to
merely pruning part of their domain, a more SAT-like propagation may be more
indicated; in other words, it is not always sufficient to rely on the min-domain
heuristic to propagate in a timely fashion forced values.

Finally, the following figures display a more detailed picture of how ch2 and
ch3 compare, showing the time taken to solve all 100 problems in each set, sorted
by difficulty, for order 40 and 45 quasigroups at the phase transition. As it can
be seen, the ch3 model is almost always superior, but there are some anomalies
that are worth investigating further.
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7 Conclusions and Future Work

In summary, we have shown in this paper that a pure CSP approach can handle
quasi-group completion problems significantly larger than was thought possible,
using appropriate models, value ordering heuristics, and algorithms, even in the
absence of global alldiff constraints. Our solution is arguably much simpler than
the hybrid CSP/OR approach developed in [5] yet it seems to clearly outperform
it, saving distances for different machines, implementations and execution envi-
ronments. It would be interesting to see whether the combination of the ideas
of this paper with either alldiff constraints or OR techniques could yield further
improvements in our ability to solve larger QCPs. For example, we mentioned
that the same effect achieved by introducing triangular channeling constraints
would be achieved by reintroducing instead the dual not-equal constraints, which
in turn could be replaced by dual alldiff constraints.

We have introduced two novel aspects within redundant modeling in multiple
permutation problems:

– A novel value ordering heuristic which takes into account the primal and
both dual models, and which generalizes for multiple permutation problems
ideas introduced in ([15,11] for simple permutation problems. The speedup
produced by this heuristic is quite remarkable, up to three orders of magni-
tude in some cases.

– The use of channeling constraints linking more than a single pair of models
to provide forward checking with the same pruning power as arc consistency
at a much smaller cost in constraint checks, and thus in performance, pro-
vided that ordering effects are taken into account in the min-domain variable
selection heuristic.

Many issues remain to be explored. While we did try a number of alternatives
to the presented value ordering heuristics without success, others may be more
successful. There are some anomalies in the behavior of the ch3-fc approach vs
ch2-ac which could be symptoms of more subtle effects than the ordering effects
reported above, and which need to be explored. There is finally the issue of
why CBJ and nogood learning did not help in this problem, which may in part
suggest that in a sense randomness dominates over structure in QCPs, but which
should at any rate be an incentive to develop more effective implementations of
these techniques so that at least they do not hurt when they do not help.
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Abstract. Constraint satisfaction has been applied with great success
in closed-world scenarios, where all options and constraints are known
from the beginning and fixed. With the internet, many of the traditional
CSP applications in resource allocation, scheduling and planning pose
themselves in open-world settings, where options and constraints must
be gathered from different agents in a network. We define open constraint
optimization as a model of such tasks.
Under the assumption that options are discovered in decreasing order of
preference, it becomes possible to guarantee optimality even when do-
mains and constraints are not completely known. We propose several
algorithms for solving open constraint optimization problems by incre-
mentally gathering options through the network. We report empirical
results on their performance on random problems, and analyze how to
achieve optimality with a minimal number of queries to the information
sources.

1 Constraint Optimization in Distributed Systems

Constraint satisfaction and optimization has been applied with great success to
resource allocation, scheduling, planning and configuration. Traditionally, these
problems are solved in a closed-world setting: all variable domains and constraints
are assumed to be completely known, then the problem is solved by a search
algorithm.

With increasing use of the internet, many of the problems that constraint pro-
gramming techniques are good at now pose themselves in a distributed setting.
For example, in personnel allocation, it is possible to obtain staff from part-
ner companies. In configuration, it is possible to locate part suppliers through
the internet. Furthermore, problems may also involve agents with different and
possibly conflicting interests, for example when allocating production resources
among different factories.

Figure 1 illustrates the context we assume: a set of m agents wish to find an
assignment to a set of variables that is optimal with respect to their preferences.
A central CSP solver is tasked to find this solution, and queries the agents for
their options and preferences using queries more(xi,di). Agents will return their
options starting with the one they would most prefer as a solution, and then in

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 303–317, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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CSP
Solver

more(xi,di)

option(xi,vj,r(vj))

x1 x2

x3 x4

x5

Agent 1

Agent 2

Agent m

Fig. 1. Context of an open constraint optimization problem. The problem solver uses
more messages to ask agents for additional values for a variable xi that extend its
current domain di. Agents reply with option messages that indicate new values vj and
their cost r(vj).

non-decreasing order of preference using option(xi,vj,r(vj)) messages, where
vj is a new value and r(vj) is its cost, a numerical value that reflects the degree
of undesirability.

Such a scenario would arise for example when optimizing scheduling and re-
source allocation in a consortium of enterprises, planning travel using options
for transportation and lodging found through search on the internet, or when
configuring a product from parts found through electronic catalogs in the inter-
net.

A straightforward way of solving such problems is to ask agents to first report
all their values, and then use standard techniques such as branch-and-bound to
compute the optimal solution. However, for reasons of privacy, computation or
communication effort, agents may not wish to reveal more of their options and
preferences than necessary to compute a solution. In this case, it will be better
to query for values only as they are required to prove optimality of the solution.
In this paper, we propose the framework of open constraint optimization as a
model of such problems along with general algorithms for solving it.

In comparison with classical constraint optimization, open constraint opti-
mization poses three challenges:

– since the domains and constraints are not completely known, many standard
CSP and optimization methods such as consistency or branch-and-bound
cannot be directly applied to such a problem. Also, in general it is not clear
how to give any optimality guarantee, since the best options may not have
been discovered yet.

– besides minimizing computation time, the primary objective is now to mini-
mize the number of values and costs that the agents have to provide. This is
important because communication through a network is orders of magnitude
slower than computation, because there may be a significant cost involved
in getting the extra options, and because agents would prefer to keep this
information private.
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– when agents are self-interested, there needs to be a mechanism to ensure
that agents will report values and costs truthfully, since otherwise the opti-
mization can not produce the correct result.

The first obstacle is that in an open environment, it is in general not possible
to prove optimality of any solution, since options that are yet to be discovered
may lead to a better solution. However, following an idea of Conen and Sand-
holm [9] for preference elicitation in auctions, optimality can be ensured if we
assume that options are reported in decreasing order of preference. This is a key
assumption that we will enforce as part of the definition of open constraint opti-
mization problems. It is also very realistic in real-world settings: usually, agents
will want to give their most preferred options first.

We present a model of open constraint optimization problems, show several
sound and complete algorithms for solving them, and compare their performance.
Provided that agents report information truthfully, our algorithms are sound
and complete. We also show that they allow computing the required taxes for a
Vickrey-Clark-Grove (VCG) tax mechanism that makes it in each agent’s best
interest to report information truthfully.

2 Related Work

The most closely related work is that on interactive constraint satisfaction ([1])
and open constraint satisfaction ([2]) which has addressed the issue of efficiently
solving constraint satisfaction problems in open, distributed settings. In this
paper, we are interested in constraint optimization problems, where the goal is
not just to find a solution but also to prove that this solution has the minimal
cost. This requires considerably different algorithms.

Open constraint optimization is related to dynamic constraint satisfaction,
which allows constraints to be dynamically added and removed. Bessiere ([3])
has shown methods for dynamically adapting consistency computations to such
changes. However, dynamic CSP methods require that the set of all possible
domain values is known beforehand, and thus do not apply to an open setting.
Another major difference is that in open constraint optimization changes are
restricted to a monotonic ordering of domains and values, while DCSP allow
adding and removing variables in any order.

Another related area is distributed CSP(DisCSP), investigated in particular
by Yokoo ([4]) and more recently also other researchers. DisCSP does not re-
quire agents to announce the complete variable domains beforehand, so by its
formulation it would also allow them to be open. The DisCSP formalism has also
been extended to constraint optimization problems, with the most recent result
being the ADOPT algorithm [5]. However, search algorithms for solving DisCSP
rely on closed-world assumptions over variable domains for initiating backtracks
and thus cannot be applied in an open-world context.
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3 Assumptions and Notation

3.1 Constraint Optimization Problems

There exists a large variety of formalisms for modeling constraint optimization
problems with soft constraints. In this paper, we assume that the problems are
formulated as discrete weighted constraint optimization problems (WCOP). In a
weighted constraint optimization problem, constraints assign each combination
of assignments to its variables a cost, and the goal of the optimization is to
find an assignment to all variables that minimizes the sum of the costs of all
constraints:

Definition 1. A discrete weighted constraint optimization problem (WCOP)
is a tuple < X,D,C,R > where:

– X = {x1, .., xn} is a set of n variables.
– D = {d1, .., dn} is a set of domains of the variables, each given as a finite

set of possible values.
– C = {c1, .., cm} is a set of constraints, where a constraint ci is given as the

list (xi1, .., xik) of variables it involves.
– R = {r1, .., rm} is a set of relations, where a relation ri is a function di1 ×

..× dik → ++ giving the cost of choosing each combination of values.

A solution is a combination of values v1 ∈ d1, .., vn ∈ dn such that the sum of
the cost of the relations is minimal.

Note than in a WCOP, any value combination is allowed, but might lead to a
very high cost.

As an example, consider the scenario illustrated in Figure 2. A consortium
of companies has to decide on three features x1, x2 and x3 of a new product. It
considers the options x1 ∈ {A,B,C}, x2 ∈ {A,C} and x3 ∈ {B,C} (but this
space may be extended later). The value chosen for each feature carries a certain
cost to the consortium such that A has a cost of 0, B a cost of 1 and C a cost
of 2. The features have interaction with parts provided by three members S1, S2
and S3, where S1 influences features x1 and x2, S2 influences x1 and x3, and
S3 all three variables. The members make their proposals one variant at a time
in strictly non-decreasing order of cost (as would be normal in a negotiation
situation). In this example, we assume that they would eventually report the
following costs:

S1 ⇒ r4 ⇒ x′
4: S2 ⇒ r5 ⇒ x′

5: S3 ⇒ r6 ⇒ x′
6:

(x1, x2) cost
(B,C) 0
(C,C) 0
(A,C) 1
(B,A) 3
(C,A) 3
(A,A) 5

(x1, x3) cost
(A,C) 0
(C,C) 0
(A,B) 1
(C,B) 3
(B,C) 3
(B,B) 5

(x1, x2, x3) cost (x1, x2, x3) cost
(A,A,B) 0 (C,A,B) 2
(B,A,B) 0 (A,C,C) 4
(A,A,C) 2 (B,C,C) 4
(A,C,B) 2 (C,A,C) 4
(B,A,C) 2 (C,C,B) 4
(B,C,B) 2 (C,C,C) 6
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x1 x2

x3

d1=A,B,C d2=A,C

d3=B,C

x2x1

x3

x4

x5

x6

d4 = (A,A),(A,C),(B,A),(B,C),(C,A),(C,C)

d5 = (A,B),(A,C),(B,B),(B,C),(C,B),(C,C)

d6 = 
(A,A,B),(A,A,C),(A,C,B),(A,C,C),
(B,A,B),(B,A,C),(B,C,B),(B,C,C),
(C,A,B),(C,A,C),(C,C,B),(C,C,C)

c2 c3

c1

c1

c1

c2

c2

S1’s constraint (−> x4)
S2’s constraint (−> x5)
S3’s constraint (−> x6)

d1=A,B,C d2=A,C

d3=B,C

Fig. 2. Constraint optimization problem (top) and its hidden variable encoding (bot-
tom).

The entire problem can thus be modelled as a WCOP as follows:

X = {x1, x2, x3}
D = {(A,B,C), (A,C), (B,C)}
C = {(x1), (x2), (x3), (x1, x2), (x1, x3), (x1, x2, x3)}
R = {r1, .., r6} with the valuations given in the text and tables above.

3.2 Hidden Variable Encoding

The WCOP formulation is inconvenient for open settings since we need to dis-
tinguish relations and variable domains which may both be discovered incre-
mentally, which considerably encumbers the algorithms. We therefore transform
the problem into an equivalent dual one where the constraints are encoded as
tuple-valued, “hidden” variables and all constraints are binary relations ensuring
that compatible instantiations are chosen for these tuples. As shown in ([6]), this
transformation is possible for any constraint satisfaction problem. When we add
to this representation the original variables and also link them to the tuples, we
obtain the hidden variable encoding ([7]) of the problem.

As observed in [8], the hidden variable encoding generalizes in a straightfor-
ward way to weighted constraint optimization problems:

Definition 2. A hidden-variable weighted constraint optimization problem
(HWCOP) is a tuple < X,D,C,R > obtained from a WCOP < X ′, D′, C ′, R′ >
in the following way:

– X = {x1, ..., xm} corresponds to the constraints C ′. We assume that for each
variable, there is a unary constraint for each variable giving the costs of its
values so that this set also includes all variables of the original problem.
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– D = {d1, ..., dm} are the domains of the variables in X. They correspond to
the domains of the relations of the original WCOP, where we assume that
each domain is ordered so that the options with lowest cost come first.

– C = {(xi, xj , t)|xi ∈ xj} is a set of hard constraints where xi is a single
variable, xj is a tuple-valued variable containing xi, and the type t indicates
that the constraint is a cl, l ∈ 1..k that enforces equality between the individual
variable and the l-th element of the tuple.

– R = R′ are the cost functions as in the original WCOP.

Figure 2 shows how the example WCOP is transformed into an HWCOP by
introducing new variables, x4, x5 and x6, to model the constraints of the three
agents. These are linked to the original variables by constraints of type c1, c2
and c3, enforcing equality between the variable and the corresponding element
of the tuple. The solutions to the transformed HWCOP are identical to those of
the original WCOP as far as the shared variables x1 to x3 are concerned.

We further define:

Definition 3. An assignment of an HWCOP is an assignment of a value to each
variable and represented as a vector A = (i1, .., in) giving the position of each
value in the respective domain. To simplify notation, we denote by c(v(xi)) =
ri(v(xi)) the cost of the assignment xi = v. The cost of the assignment is the
sum of the costs for each variable, i.e. cost(A) =

∑n
j=1 c(dj(ij(A))).

Definition 4. An assignment of a HWCOP is optimal if and only if it is con-
sistent with the constraints and there is no other assignment that has a lower
cost. An optimal assignment is a solution to the HWCOP.

We denote by v∗
x1,..,xk

(xi) the value assigned to xi in the solution that is
optimal for the subproblem x1, ..., xk (of which xi is part); when there are several
solutions we choose the lexicographically smallest one.

3.3 Open HWCOP
As stated earlier, we are interested in optimization problems where options are
obtained from agents dispersed through a network. We model this as an open
HWCOP (OHWCOP), where each variable is contributed by an agent and mod-
els either a set of options that that agent contributes, or a constraint/preference
that the agent wants to impose. Each agent applies the hidden variable encoding
locally to the constraints/preferences it has on the joint problem, and commu-
nicates to the central solver its variables as well as the constraints that need to
be enforced between them and other variables of the combined problem. The
constraint solver then solves the problem and finally communicates the solution
for each variable to the agents.

We require agents to follow the following rules of the protocol, where violators
will be excluded from the optimization:

– agents always return their best values first.
– for each variable, costs are normalized so that the cost of the best tuple is

always 0.

and formalize the problem posed to the central solver as:
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Definition 5. An open hidden-variable weighted constraint optimization prob-
lem (OHWCOP) is a possibly unbounded, partially ordered set {P 0, P 1, ...} of
HWCOP, where P i is defined by a tuple < X,Di, C,Ri >. The set is ordered
by the relation ≺ where P i ≺ P j if and only if (∀k ∈ [1..m])di

k ⊆ dj
k, and

(∃k ∈ [1..m])di
k ⊂ dj

k, i.e. all domains of P j are at least as large as for P i and
at least one is larger.

Costs are assumed to be stable, i.e. if for some value v ∈ di
k, ri

k(v) = c then
rj
k(v) = c for all j such that P i ≺ P j.

As agents return their best options first, domains are ordered in non-
increasing order of cost, i.e. ri

k(di
k(l − 1)) ≤ ri

k(di
k(l)) for all l ≤ |di

k|.
A solution to an OHWCOP is an assignment that is a solution to some

instance HWCOP i and optimal for all higher instances, i.e. P j such that P i ≺
P j.

The assumption of non-increasing cost is necessary for any form of open
constraint optimization:

Proposition 1. When the assumption that domains are returned in order of
non-decreasing cost does not hold, there is no general algorithm for solving OHW-
COP that is guaranteed to terminate with the optimal solution without querying
the entire domains of all variables.

Proof. Consider a problem that has a consistent solution with cost 0 involving
the values returned last and other consistent assignments with cost > 0 involving
other values. Here the optimal solution can only be found after querying all
values. Since a general algorithm cannot know whether such a case is present,
for any problem that does not have a solution with cost=0 it will have to check
all domains completely to guarantee optimality.

4 Solving Open Constraint Optimization Problems

A first approach to solving OHWCOP would be to use standard branch-and-
bound search algorithms coupled with a test for whether sufficient values are
known to guarantee optimality also with larger domains.

The following proposition shows how far domains have to be known in order
to guarantee optimality of the solution. We call an instance that satisfies this
proposition subset domain-sufficient:

Proposition 2. The optimal solution to an instance HWCOP (i) of an
OHWCOP is guaranteed to be optimal for the OHWCOP itself if for any
subset of variables S = xs1, .., xsk, we have:∑

xsi∈S

maxv∈dsic(v) ≥
∑

xi∈X

c(v∗
X(xi))−

∑
xi∈X−S

c(v∗
X−S(xi))

and v∗
X−S is optimal for the subproblem HWCOP involving only variables in

X − S.
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Proof. Let there be a better solution in an instance COP (j), and let S be the set
of variables that have values not in COP (i). Then all the variables xsi ∈ S must
have a cost greater than maxv∈dsi(c(v)) for otherwise they would have been in
COP (i). But then the cost of this solution would have to be at least:∑

xsi∈S

maxv∈dsi
c(v) +

∑
xi∈X−S

c(v∗
X−S(xi)) ≥

∑
xi∈X

c(v∗
X(xi))

so it could not be optimal. Thus, the algorithm achieves optimality in COP (i).

This condition can be used to prove optimality of a solution without knowing the
complete domains of all variables by recursively applying it to show optimality
of v∗

X−S for the remaining sets X − S until this set becomes empty. However,
it does not provide an operational criterion for constructing an algorithm that
makes a minimal number of queries, since the sequence of sets S that would
allow a proof with a minimal number of values cannot be computed without
knowing the domains completely. In fact, we can show:

Proposition 3. There is no general algorithm for solving OHWCOP that is
guaranteed to solve all instances with a minimal number of queries.

Proof. Consider a problem with 3 variables x1, x2, x3 with identical domains
{a, b} and constraints that require all variables to have equal values. Assume
further that x1 has costs a/0, b/2, x2: a/1, b/0 and x3: a/0, b/1. Then the optimal
solution a can be found by with querying only the first value for x3 when variables
are taken in the order x1, x2, x3, but requires querying all values when variables
are taken in order x3, x2, x1. Since an algorithm cannot distinguish x1 and x3
before querying the second value, it could not always choose the optimal order.

It is however possible to show the following, more operational condition,
which we call singleton domain-sufficiency:

Proposition 4. The optimal solution to an instance HWCOP (i) of an
OHWCOP is guaranteed to be optimal for the OHWCOP itself if the domain
of each variable xk is known up to at least one value whose cost is not smaller
than ck, where ck is given as:

ck = maxX′⊆X,xk∈X′

⎛⎝ ∑
xi∈X′

c(v∗
X′(xi))−

∑
xi∈X′\xk

c(v∗
X′\xk

(xi))

⎞⎠
Proof. Omitted for lack of space.

This condition, slightly stronger than subset domain-sufficiency, can be used to
build an algorithm that incrementally queries values only for variables that are
not singleton domain-sufficient. However, as the condition has to be checked for
each subset of variables, such an algorithm is very inefficient, and for lack of
space we don’t give it in detail in this paper. We did however implement it and
use it as a benchmark later in the paper.
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4.1 Basic Incremental Search Algorithm

Another approach is to use best-first algorithms based on A∗ that incrementally
generate all possible assignments. While this approach can use a lot of memory,
it provides a good basis for addressing the problems posed by open domains.

Function o-opt(OHWCOP)
Forall xi, di ← more(di)
OPEN ← {(1, .., 1)}
loop
M ← {a ∈ OPEN |cost(a) = mind∈OPENcost(d)}
a ← lexicographically smallest element of M
OPEN ← OPEN − {a}
if consistent(a) then

return a
else

for j = 1..n do
b ← (a(1), .., a(j) + 1, .., a(n))
if b �∈ OPEN then

OPEN ← OPEN ∪ {b}
if |dj | < b(j) then

dj ← append(dj , more(dj))

Algorithm 1: o-opt: an incremental algorithm for solving OHWCOP.

Algorithm 1 is inspired by the preference elicitation algorithm of Conen and
Sandholm ([9]) for combinatorial auctions and systematically enumerates all
possible assignments in the order of increasing weight. Whenever necessary, it
moves to a higher HWCOP by extending the domains of one or more variables.
The first assignment that is consistent with all constraints is an optimal solution,
since all assignments of lower weights have already been searched and found
inconsistent, as in the A∗ algorithm. We can show the following:

Theorem 1. Algorithm 1 is sound and complete.

Proof. Soundness is guaranteed by the fact that the algorithm only returns con-
sistent assignments and systematically explores all assignments in strictly non-
decreasing order of cost, so that the one returned is also the one with the lowest
cost. Completeness is guaranteed by the fact that the algorithm systematically
enumerates all assignments.

4.2 Failure-Driven Search

The solution found by Algorithm 1 on our example is the assignment:

x1 = A, x2 = A, x3 = B

with a total cost of 7. It is interesting to consider what values are queried by the
algorithm in order to reach this conclusion. In fact, to establish optimality of this
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solution, the algorithm will query all values for all variables! And the problem
can get much worse: consider a problem with 100 variables where the optimal
solution is one where each variable has a cost of 1. The algorithm would, however,
query for values up to a cost of 100 for each variable, since a combination of one
assignment with a cost of 100 with 99 assignments of cost 0 would have optimal
cost. The problem here is that the algorithm generates numerous candidates
where the cost of subproblems is far lower than in the optimal solution.

Function f-o-opt(OHWCOP)
Forall xi, di ← more(di)
OPEN ← {(1, .., 1)}
loop
M ← {a ∈ OPEN |cost(a) = mind∈OPENcost(d)}
a ← lexicographically smallest element of M
OPEN ← OPEN − {a}
if consistent(a) then

return a
else

c ← first violated constraint in a, i.e. the violated constraint involving an xk with
the smallest k.
for j ∈ vars(c) do

b ← (a(1), .., a(j) + 1, .., a(n))
if b �∈ OPEN then

if |dj | < b(j) then
dj ← append(dj , more(dj))

OPEN ← OPEN ∪ {b}
end loop

Algorithm 2: f-o-opt: an failure-driven algorithm for solving OHWCOP.

Algorithm 2 significantly improves on this based on the observation that it
is not necessary to generate all successors to an assignment a:

Proposition 5. Let a = (a(1), ..., a(n)) be an inconsistent assignment and let
the pair of variables xi and xj such that di(a(i)) and dj(a(j)) are not con-
sistent with a constraint c between them. Now consider the direct successors
bk = (a(1), ..., a(k) + 1, ..., a(n). All direct successors except bi and bj are redun-
dant and can be pruned in Algorithm 1 without affecting its sound- and com-
pleteness.

Proof. When k �= i, j we have that:

– bk is inconsistent, as it contains the same conflict with c as a.
– all direct or indirect successors to bk that do not change the values for xi or

xj are inconsistent, as they still contain the same conflict with c as bk.
– all direct (indirect) successors to bk that change the value for xi or xj are

also a direct (indirect) successor of either bi or bj .
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where we use the term indirect successor for sequences of direct successor rela-
tionships. Thus, all bk, k �= i, j cannot be themselves solutions or lead to solutions
that would not be generated from bi and bj already.

Theorem 2. Algorithm 2 is sound and complete.

Proof. Follows from Theorem 1 and Proposition 5.

On the example, Algorithm 2 finds the same solution as Algorithm 1, but
queries significantly less values. For example, for variable x6 it only queries three
rather than all 12 values.

Thus, in Algorithm 2, instead of generating all successors to an assignment,
we only generate those successors that are involved in the first conflicting con-
straint. This turns out to have the effect that the algorithm only explores as-
signments to x1, .., xk+1 once it has found a consistent assignment to x1, .., xk.
This behavior is very similar to that of Russian Doll Search (RDS) ([10]), an al-
gorithm that generates optimal solutions to increasingly large subproblems and
uses their costs as bounds for solving larger problems.

A potential problem with Algorithm 2 is that it keeps a complete list OPEN
of all currently best nodes, so that memory consumption can become a problem.
If necessary, the OPEN list can be incrementally regenerated by a depth-first
search process such as IDA∗ ([11]), limiting memory consumption at the expense
of additional computation time. It is straightforward to obtain the same behavior
by querying additional values for the variables involved in the first conflict of
the candidate tightest to the current cost limit.

Below we consider what guarantees can be given for Algorithm 2 regarding
the number of values queried.

4.3 Optimality of the Number of Value Queries

Proposition 2 shows that any algorithm that guarantees optimality of the solu-
tion to an OHWCOP must query at least a certain number of values. This bound
can be compared to the queries that Algorithm 2 actually makes. For this, we
have the following propositions:

Proposition 6. Algorithm 2 queries at most one value for xk with cost ≥
c until it has examined all assignments to x1..xn with total cost < c +∑k−1

j=1 c(v∗
x1..xk−1

(xj)).

Proof. Queries for xk can only result from generating a successor to an assign-
ment a that is consistent up to xk−1, for otherwise, there would be an earlier
violated constraint. Now assume that the algorithm had already queried a value
for xk with cost ≥ c, then since assignment a must have xk assigned to the high-
est cost value so far, the cost of assignment a must thus be at least the optimum
for x1..xk−1 plus c. For this assignment to reach the head of the OPEN queue,
all assignments with lower cost must have already been examined.
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Proposition 6 gives us the following bound on the queries per variable:

Proposition 7. For variable xk, Algorithm 2 queries values up to a cost thresh-
old that differs from the optimum ck by at most:

∑
xi∈X\xk

c(v∗
X\xk

(xi))−
i−1∑
j=1

c(v∗
x1..xi−1

(xj))

Thus, in particular, for xn it queries the minimally possible number of values.

Proof. When the algorithm terminates, it has examined all assignments with a
cost less than that of the solution, i.e.

∑n
j=1 c(v∗

X(xj)). By Proposition 6, it will
thus have queried at most one value for xk that is beyond the limit:

maxk =
n∑

j=1

c(v∗
X(xj))−

k−1∑
j=1

c(v∗
x1..xk−1

(xj))

Subtracting the limit given in Proposition 2 for S = {xk} results in the given
relation. Its instantiation for the last variable xn gives a difference of 0.

In practice, the empirical results in Figure 3 show that Algorithm 2 is actually
very close to optimal.

4.4 Achieving Incentive-Compatibility

Optimization is useless unless the costs are reported truthfully. As already pro-
posed in [12], using the Vickrey-Clark-Groves (VCG) tax mechanism we can
make the mechanism incentive-compatible, i.e. make it optimal for all agents to
tell the truth. In the VCG tax mechanism, each agent pays a tax equal to the
difference between the cost of the solution to the optimization problem when it
is present and the cost when it is not. More formally, let agent A have imposed
the constraints modelled by the set of variables XA, then the tax, called the
Clark tax, is:

payment(A) =
∑

xk∈X−XA

c(v∗
X(xk))− c(v∗

X−XA
(xk))

In the example of Figure 2, the optimal solution is (x1, x2, x3) = (A,A,B) with
a cost of 6. Without the constraint x4, it is still (A,A,B), without x5, (B,A,B)
and without x6, (A,C,B). Using the notation CX(.) to denote the cost of a
solution to agent X, the tax paid by the agents would be:

Payment Value
A cB(AAB) + cC(AAB)− cB(AAB)− cC(AAB) 1-1 = 0
B cA(AAB) + cC(AAB)− cA(BAB)− cC(BAB) 5-3 = 2
C cA(AAB) + cB(AAB)− cA(ACB)− cB(ACB) 6-2 = 4
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Note that these taxes reflect the cost of reaching agreement on the variable
values; the agents would usually receive other payments for their contributions
to the consortium elsewhere.

The following argument shows why this tax makes it optimal for an agent to
tell the truth:

– suppose that an agent overstates its costs. In all cases where this influences
the solution, this will result in a tax that outweighs the benefit of the ma-
nipulated solution.

– suppose that an agent understates its costs. In all cases where this influences
the solution, the loss incurred by not having its optimal solution outweighs
the savings in tax.

It is important to note that the domains and costs required to compute
these payments are the same as those required by Proposition 2. In fact, any
algorithm for open constraint optimization that can guarantee optimality is also
guaranteed to query all required values and costs for computing the VCG tax
payments.
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Fig. 3. Comparison of Algorithms 1 (A*) and 2 (foopt) with respect to the average
number of values queried in relation to average domain size. Also shown for comparison
is a minimal algorithm based on Proposition 4.

5 Empirical Results

Figure 3 compares the number of values queried for the two algorithms on ran-
dom OHWCOP problems, where the constraint graph was generated randomly
and constraints were assigned a random valuation from a uniform distribution
between 0 and 1. We can see that both Algorithms 1 and 2 come close to the
benchmark performance, with Algorithm 2 being somewhat better. In order to
get an idea of what the minimal number of queries is, we also implemented a
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method that incrementally finds optimal solutions to larger and larger subprob-
lems. It maintains the property of singleton domain-sufficiency as in Proposi-
tion 4 and can be shown to query a minimal number of values to maintain this
property. It can be seen that Algorithm 2 is almost optimal with respect to that
method as well.

In comparison to this performance, the classical method of gathering all
values and then solving the problem would query all domain values and can
become arbitrarily worse than these algorithms, depending on the looseness of
the problem.

Figure 4 compares the number of constraint checks and shows that only Al-
gorithm 2 can be applied to problems of realistic size; in practice it can handle
problems of up to 25 variables before constraint checkes start to become exces-
sive.
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Fig. 4. Comparison of Algorithms 1 (A*) and 2 (foopt) with respect to the number
of constraint checks in relation to the number of problem variables. Also shown for
comparison is a minimal algorithm based on Proposition 4.

6 Conclusions

Many new and exciting applications in open information systems, in particular
the WWW, address problems which CSP techniques are very good at solving.
Such applications will appear increasingly with the emergence of web services
and the semantic web.

We have presented an extension of the constraint optimization framework
that allows solving such systems in an open framework while still guaranteeing
optimality of the overall solution. This shows that it is possible to solve opti-
mization problems even without the closed-world assumption, and opens up new
possibilites for intelligent systems in open environments.

However, it turns out to be difficult to adapt the depth-first branch-and-
bound methods commonly used for constraint optimization to this open frame-
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work, as the conditions that are needed to guarantee that they find the optimal
solutions are very complex to evaluate. We have shown instead how it is possi-
ble to obtain good results by adapting a framework based on best-first search
algorithms. By exploiting the local nature of failure in constraint satisfaction
problems, we have shown how it is possible to greatly improve the behavior of
such an algorithm. However, the size of problems that can be solved efficiently
is still far from what can be handled when the closed-world assumption can be
made, and we hope to stimulate further research for better algorithms that work
in open settings.
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Abstract. Constraint programs containing a matrix of two (or more)
dimensions of decision variables often have row and column symmetries:
in any assignment to the variables the rows can be swapped and the
columns can be swapped without affecting whether or not the assignment
is a solution. This introduces an enormous amount of redundancy when
searching a space of partial assignments. It has been shown previously
that one can remove consistently some of these symmetries by extending
such a program with constraints that require the rows and columns to be
lexicographically ordered. This paper identifies and studies the properties
of a new additional constraint—the first row is less than or equal to all
permutations of all other rows—that can be added consistently to break
even more symmetries. Two alternative implementations of this stronger
symmetry-breaking method are investigated, one of which employs a
new algorithm that in time linear in the size of the matrix enforces the
constraint that the first row is less than or equal to all permutations of
all other rows. It is demonstrated experimentally that our method for
breaking more symmetries substantially reduces search effort.

1 Introduction

A common pattern arising in finite domain constraint programs is the matrix of
decision variables with two or more dimensions [6]. In two-dimensional matrices
it is often the case that some or all of the rows are interchangeable and some or
all of the columns are interchangeable. That is, an assignment to the variables
in the matrix is a solution if and only if it is still a solution after two of the
interchangeable rows are swapped or two of the interchangeable columns are
swapped. In a two dimensional matrix this is called row and column symmetry.
Since this property can also arise in each of many dimensions, more generally it
is called index symmetry. To simplify our presentation, we assume throughout
that we are dealing only with two dimensional matrices in which all rows are
interchangeable and all columns are interchangeable.

Symmetry in constraint programs can cause problems for an algorithm that
searches a space of partial assignments due to redundancy in the search space.
One of the most popular methods for reducing symmetry is to add to the model
extra constraints, so-called symmetry breaking constraints.
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Flener et al [5] studied index symmetry and showed that one can consistently
add the symmetry-breaking constraint, called lex2, that both the rows and the
columns are lexicographically ordered1. This means that for every assignment
to the variables that does not satisfy the symmetry-breaking constraint, there is
a symmetric assignment that does. They also showed that for certain problems
imposing lex2 can make the difference between solving and failing to solve the
problem. Frisch et al [7] introduced an efficient algorithm for maintaining gen-
eralised arc-consistency on the constraint that one vector (a row or column of a
matrix) is lexicographically less than or equal to another.

Independently, Flener et al [5] and Shlyakhter [14] also showed that lex2 does
not break all row and column symmetries. That is, lex2 is incomplete in that
it can be satisfied by two symmetrical assignments. Consider the following two
matrices. Both satisfy lex2, but the second can be obtained from the first by
swapping the rows and rotating the columns to the right.

(
2 2 3
2 3 1

) (
1 2 3
3 2 2

)

It is therefore natural to wonder if more symmetry can be broken effectively
by imposing a symmetry-breaking constraint stronger than lex2. That is, can
we add extra constraints to lex2 that both break a significant number of the
symmetries left by lex2 and can be propagated efficiently? This paper addresses
this question and answers it in the affirmative. In particular, we introduce a new
constraint, called allperm, that is satisfied by a matrix if and only if the first row
is lexicographically less than or equal to all permutations of all other rows. Only
the second matrix above satisfies both lex2 and allperm. Section 3 shows that one
can consistently impose both lex2 and allperm on a matrix that has symmetric
rows and symmetric columns. This is shown to break more symmetries than lex2

on its own but not to break all symmetries.
The allperm constraint can be decomposed into individual lexicographic or-

dering constraints by adding a constraint for each of the permutations of each
row, of which there are a number factorial in the length of the row. This is not
an effective way to break symmetry. Instead, we examine other decompositions,
leading in Section 6 to an algorithm which implements allperm in time linear
in the size of the matrix. This algorithm is then tested in Section 8, where it
is demonstrated that some problems can be solved much more effectively when
symmetries are broken by lex2 and allperm together than by lex2 on its own.

2 Terminology

We are concerned with finite domain constraint satisfaction problems so every
variable is associated with a finite domain of values. An assignment maps every
variable to a member of its domain. We write vars(C) to denote the variables
1 Though working in a different context, Shlyakhter [14] independently showed the

consistency.
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constrained by constraint C. We say that a constraint C is generalised arc con-
sistent (GAC), written GAC(C), if for every variable x ∈ vars(C) and every
value v in the domain of x, there is an assignment that maps x to v and satisfies
C. A finite set of constraints, {C1, . . . , Cn}, is said to be GAC if and only if
C1 ∧ · · · ∧ Cn is GAC.

A set of constraints S logically implies another set of constraints S′ if every
assignment that satisfies every member of S also satisfies every member of S′. If
S and S′ logically imply each other, then they are said to be logically equivalent.

An n×m matrix has n columns and m rows. The columns are numbered
1, . . . , n from left to right and the rows are numbered 1, . . . ,m from top to
bottom. A row of an n×m matrix can be treated as a vector, x = 〈x1, . . . , xn〉, by
reading it left to right and a column can be treated as a vector, y = 〈y1, . . . , ym〉,
by reading it top to bottom.

This paper focuses on ordering non-empty vectors of equal size, so we shall
simplify the presentation by assuming this throughout the paper. One vector,
x, is defined to be lexicographically less than or equal to another, y, (written
x ≤lex y) if x = y or xi < yi, where i is the smallest index such that xi �= yi.

This paper introduces two new orderings on vectors. The first, the anti-
multiset ordering, has a definition that mirrors the multiset ordering definition.
We write �x|v to denote the number of occurrences of v in x. We define x to be
anti-multiset less than or equal to y, written x ≤m y, if x = y or �x|v > �y|v,
where v is the smallest value such that �x|v �= �y|v. The second ordering is the
allperm ordering. We write x ≤ap y if x ≤lex y′ for every permutation y′ of y.
It should be noted that this is an abuse of notation as ≤ap is not reflexive (but
it is anti-symmetric and transitive).

Using these orderings on vectors, we define some predicates on matrices.
Let M be a matrix of values. We write lex2(M) to mean that the rows of M
are lexicographically non-decreasing from top to bottom and the columns are
lexicographically non-decreasing from left to right. We write ams(M) to mean
that the first row of M is less than or equal to all other rows in the anti-multiset
order and, similarly, we write allperm(M) to mean that the first row of M is
less than or equal to all other rows in the allperm order.

We also use the symbols ≤lex, ≤m, ≤ap , lex2, ams and allperm to denote
constraints that are imposed on vectors or matrices of variables.

3 Basic Properties

In Section 1 we saw an example demonstrating that allperm and lex2 break more
symmetries than lex2 alone. This section shows that imposing both allperm and
lex2 on a matrix with row and column symmetry is consistent and is incomplete.
We show consistency by examining a complete and consistent set of symmetry-
breaking constraints known as the row-wise lex-leader constraints, and incom-
pleteness by example.

One way to break all the index symmetries in a matrix is to impose the
row-wise lex-leader constraints, which are a specific case of the more general lex-
leader constraints introduced by Crawford et al. [4]. The row-wise lex-leader



Constraints for Breaking More Row and Column Symmetries 321

constraints are derived by considering a matrix of distinct variables and all
matrices symmetric to it. Each matrix is converted to a string of variables by
scanning the matrix row-wise, left-to-right, top-to-bottom. For example, the 3×2
matrix of variables (

A B C
D E F

)

yields the string ABCDEF . From these strings we produce a set of constraints
asserting that the string from the original matrix—called the lex-leader—is lex-
icographically less than or equal to each of the other strings. Thus, continuing
our example, there are 11 other matrices that can be produced by permuting the
rows and columns of the above matrix. Each of these yields a string of variables
that is constrained to be lexicographically less than or equal to ABCDEF ; thus
11 constraints, called the row-wise lex-leader constraints, are generated:

(1) ABCDEF ≤lex ACBDFE (2) ABCDEF ≤lex BACEDF
(3) ABCDEF ≤lex BCAEFD (4) ABCDEF ≤lex CBAFED
(5) ABCDEF ≤lex CABFDE (6) ABCDEF ≤lex DEFABC
(7) ABCDEF ≤lex DFEACB (8) ABCDEF ≤lex EDFBAC
(9) ABCDEF ≤lex EFDBCA (10) ABCDEF ≤lex FEDCBA
(11) ABCDEF ≤lex FDECAB

Since the row-wise lex-leader constraints are generated by the method pro-
posed by Crawford et al. [4], we know that they are consistent and complete.
However, this does not generally provide an effective way to break row and
column symmetries since for an n×m matrix it yields n! ·m!− 1 constraints.

It has been shown that the lex2 constraint is logically implied by the row-wise
lex-leader constraints, from which it follows that lex2 is a consistent symmetry-
breaking constraint [14]. We now show a new result—that allperm is logically
implied by the row-wise lex-leader constraints—from which it follows that the
combination of lex2 and allperm is consistent.

We first show by example that the row-wise lex-leader constraints logically
imply that the first row is lexicographically less than or equal to a permutation
of another row. In particular, using the example matrix above, we show that
the row-wise lex-leader constraints imply ABC ≤lex FED. First observe that
there is a matrix that is symmetric to the above and whose first row is FED
(obtained by swapping the two rows and swapping the first and third columns):(

F E D
C B A

)

This matrix yields the string FEDCBA. Hence, ABCDEF ≤lex FEDCBA is
one of the row-wise lex-leader constraints, namely constraint (10) above. And
this constraint logically implies ABC ≤lex FED.

One can easily generalise this example to a proof that the row-wise lex-
leader constraints logically imply every constraint of the form that the first row
is lexicographically less than or equal to every permutation of every other row.
Hence, we have the following theorem:

Theorem 1. The row-wise lex-leader constraints for a matrix M of variables
logically imply both lex2(M) and allperm(M). Hence the conjunction of lex2(M)
and allperm(M) is a consistent symmetry-breaking constraint.
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The conjunction of lex2 and allperm is a consistent symmetry-breaking con-
straint, but it is not complete. To see this observe that the following two matrices
can be obtained from each other by permuting rows and columns, yet both satisfy
the lex2 and allperm constraints.

(
1 2 3
3 1 2

) (
1 2 3
2 3 1

)

4 An Alternative Characterisation

This section gives an alternative characterisation of the constraint lex2(M) ∧
allperm(M).

We start by relating the lexicographic and allperm orderings to the anti-
multiset ordering. Let x↑ denote the vector of values that results from sorting
the elements of x from smallest to largest. Notice that x ≤ap y implies x↑≤ap y,
which implies x ≤m y. This chain of implications does not hold in the opposite
direction, unless x = x↑.

We now extend these two observations to matrices. From the first observation
it follows that that allperm(M) implies ams(M). From the second observation
it follows that if the first row of M is non-decreasing, then ams(M) implies
allperm(M). Now notice that if the columns of matrix M are lexicographically
ordered, then the first row of M is nondecreasing. From this our alternative
characterisation follows.

Theorem 2 (Characterisation Theorem). Let M be a matrix of values.
Then (1) allperm(M) implies ams(M), (2) lex2(M)∧ams(M) implies lex2(M)
∧ allperm(M) and, thus, (3) lex2(M) ∧ allperm(M) if and only if lex2(M) ∧
ams(M).

5 Decomposing the Constraints

There is no known algorithm for maintaining GAC on the conjunction of lex2

and allperm (or, equivalently, the conjunction of lex2 and ams). Furthermore,
the complexity of this conjunction suggests that the development of such an
algorithm is probably beyond the reach of current capability. Therefore, the
best approach is to decompose the constraint into constituents, for each of which
a GAC algorithm is known or could be developed. This section examines and
compares some decompositions. But first we present a general theorem about
decomposition that is particularly useful for our purposes.

5.1 The Decomposition Theorem

The Decomposition Theorem identifies a simple condition under which a con-
junction is GAC if each of its conjuncts is GAC.

Let C be a constraint and x be a variable in vars(C). We say that C is up-
wardly monotonic in x if given any assignment that satisfies C, then replacing the
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value assigned to x with any larger value also satisfies C. We define downwardly
monotonic in a similar fashion. A set S of constraints agree monotonically if for
any two constraints C1, C2 ∈ S and every variable x in vars(C1) ∩ vars(C2) ei-
ther C1 and C2 are upwardly monotonic in x or both are downwardly monotonic
in x.

Theorem 3 (Decomposition Theorem). Given a finite set, S, of constraints
that agree monotonically, GAC(S) if and only if GAC(C) for every C ∈ S.

Proof. Clearly the “only-if” part holds, so we turn our attention to the “if” part.
Consider an arbitrary value v in domain of a variable x. We know that we

can find support for v assigned to x in all constraints it appears in as GAC(C)
holds for all C ∈ S. For any constraint which does not refer to x we can choose
any variable in the constraint and any value in that variables domain and find
support for it.

Without loss of generality we will assume all the monotonic variables are
upwardly monotonic. Given a valid assignment for a constraint C which contains
the upwardly monotonic variable v then we can increase the value of v and
still have a valid assignment for C. Therefore we can take all of the upwardly
monotonic variables (except x) in the assignments of all the constraints and
increase the values they take to the maximum value in their domain. Now the
assignments we have for all the constraints agree on all the variables that appear
in more than one constraint. Therefore we have shown GAC(C) for all C ∈ S
implies GAC(S) ��

5.2 First Decomposition

The first, and most obvious, decomposition is to break the conjunctions and
maintain GAC on the conjuncts. Doing so reduces pruning: GAC(lex2(M) ∧
allperm(M)) is not implied by GAC(lex2(M)) ∧ GAC(allperm(M)). This is
demonstrated by considering the 4×2 matrix M of distinct variables where the
domains of the eight variables are:

{1, 2} {1, 2} {4} {4}
{3} {3} {2} {2}

Observe that GAC(lex2(M)) ∧ GAC(allperm(M)) but not GAC(lex2(M) ∧
allperm(M)), as no solution assigns 2 to the first variable of the first row. This
same example demonstrates that decomposing GAC(lex2(M)∧ams(M)) reduces
pruning: we have GAC(lex2(M)) and GAC(ams(M)) but not GAC(lex2(M)∧
ams(M)).

Since both decompositions reduce pruning, we would like to know which
suffers the greater reduction. From part (1) of the Characterisation Theorem it
follows that GAC(allperm(M)) implies GAC(ams(M)). So GAC(lex2(M)) ∧
GAC(allperm(M)) is at least as strong as GAC(lex2(M)) ∧ GAC(ams(M)).
We now give an example to show that it is strictly stronger. Consider M ′, a 4×2
matrix of distinct variables where the domains of the eight variables are:
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{1} {2} {3, 4} {3, 4}
{2} {1} {3} {4}

Both lex2(M ′) and ams(M ′) are GAC. However allperm(M ′) is not; no solution
assigns 4 to the third variable of the first row.

5.3 Further Decomposition

We now turn our attention to the allperm(M) and ams(M) constraints and
show that each can be decomposed without any loss of pruning.

For two vectors of variables x and y that share no variables, the constraints
x ≤lex y, x ≤ap y and x ≤m y are each downwardly monotonic in the variables
of x and upwardly monotonic in the variables of y.

Let X be a matrix of distinct variables whose rows are x1, . . . ,xn. Then
we have GAC(allperm(X)) if and only if (by the definition of allperm)
GAC(

∧
2≤j≤n x1 ≤ap xj) if and only if (by the Decomposition Theorem)∧

2≤j≤n GAC(x1 ≤ap xj). Similarly, GAC(ams(X)) if and only if (by the def-
inition of ams) GAC(

∧
2≤j≤n x1 ≤m xj) if and only if (by the Decomposition

Theorem)
∧

2≤j≤n GAC(x1 ≤m xj).
Thus, without losing any pruning, an algorithm for maintaining GAC on ams

can be implemented by n− 1 instances of an algorithm that maintains GAC on
≤m. We have obtained an efficient algorithm for maintaining GAC on ≤m by
implementing a slight modification to an existing algorithm for maintaining GAC
on ≤m [8]. The run time of the algorithm is O(m + d) where m is the length
of the vectors and d is the domain size of the variables in the vector. Similarly,
without losing any pruning, an algorithm for maintaining GAC on allperm can
be implemented by n−1 instances of an algorithm that maintains GAC on ≤ap .
There is no existing algorithm for maintaining GAC on ≤ap , except the factorial
decomposition described in Section 1, so we turn our attention to that task.

6 A GAC Algorithm for Allperm

We now prove correct a method of constructing an algorithm that enforces GAC
on allperm. We refer throughout to vectors x and y of distinct variables (with
no variables in common). max(xi) and max(x) denote the largest element in the
domain of xi and the vector of values obtained by replacing each variable in x
with the maximum value in its domain. Similarly for min(xi) and min(x). A
element xi of x is bound if there is only one value in its domain. A permutation
of the variables of y is usually denoted by p. We refer to the elements of p either
by their position in p, or by their position in y. y↑ is y sorted using the upper
bound of each element. We define y−yi to be the vector y, with the ith element
removed. If y is a vector of variables and v is a variable, then v · y denotes the
vector that is obtained by placing v at the head of y.

Lemma 1. GAC(x ≤ap y) implies that for all yi ∈ y, GAC(x1 ≤ yi)

Proof. Since the first constraint implies the second, GAC of the first constraint
implies GAC of the second. ��
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Theorem 4. If x1 is bound to v, some yi ∈ y is also bound to v, and for all
yj ∈ y, min(yj) ≥ v, then GAC(x ≤ap y) if and only if GAC(x−x1 ≤ap y−yi).

Proof. Since for all yj , min(yj) ≥ yi then yi can be taken as the most significant
value of the minimum permutation of any assignment to y. Consider some as-
signment to x and y. Now, x ≤ap y if and only if x ≤lex y↑. Since x1 = yi, this
lexicographic order is unaffected by the presence or otherwise of x1 and yi ��

We can now perform the first stage of a GAC-enforcing algorithm. First
prune x1 and the yi by Lemma 1. If the preconditions of Theorem 4 are satisfied,
remove one element from each of x and y as shown in the theorem and repeat
the process. When GAC(x1 ≤ yi) for all i and either x1 is not a singleton or there
is no singleton in y equal to x1, x and y are defined to be “Stage 1 complete”.

Theorem 5. Given “Stage 1 complete” vectors of variables x and y, for each
permutation p of y, x1 := max(x1) and p1 := min(p1) are the only possible
values which can lack support with respect to x ≤lex p.

Proof. From Theorem 4, x1 and p1 are not bound and equal and satisfy
GAC(x1 ≤ p1) and hence x1 and p1 can be assigned such that x1 < p1. ��
Lemma 2. If x ≤ap y is Stage 1 Complete and any element is pruned that
lacks support, Stage 1 Completeness is maintained.

Proof. Enforcing Stage 1 completeness consists of enforcing for all yi ∈ y,
GAC(x1 ≤ yi) (Lemma 1) and discarding equal bound pairs (Theorem 4). From
Theorem 5 only max(x1) and min(yi) are candidates for pruning. Pruning in ei-
ther case cannot produce equal bound pairs nor violate the bounds consistency
condition unless an empty domain is produced - in which case we fail. ��

From Theorems 3 and 5, to establish support for the domains of x1 and each
variable yi in y, it is sufficient to consider only the permutations of y of the
form 〈y1, . . .〉. We can consider all these permutations simultaneously, as given
y′ = y − yi, if x ≤lex yi · (y′↑) is satisfiable, then so are all similar expressions
containing other permutations of y′,

Given vectors x and y of variables and p = y↑ then the pair (x,y) is tail-
inconsistenti if x′ = x − x1 and p′ = p − yi then x′ ≤lex p′ is unsatisfiable.
If (x,y) is tail-inconsistenti, the inconsistency offset ηx,y,i = j is the smallest
j such that min(x′

j) > max(p′
j), otherwise ηx,y,i = ∞. If ηx,y,i < ∞ there

is no valid assignment of (x) ≤ap y with x1 = yi so we have to prune the
domains of x1 and yi to forbid such assignments. After this we will have achieved
GAC(x ≤ap y) by Theorem 5.

Theorem 6. Consider two equal length vectors of variables x and y. If ηx,y,i =
j (j �= ∞), and p = (y − yi)↑ then for all yk ∈ y (max(yk) ≥ max(pj+1) or
max(yk) > max(pj)) implies ηx,y,k ≤ j

Proof. Form (y−{yi, yk})↑. Ignoring alternative orderings of variables with equal
upper bounds, this permutation is equal to p in at least the first j positions.
Now form (y − yk)↑. For the first j positions, (y − yk)↑≤lex p, since either
max(yi) > max(pj), or yi has displaced elements whose upper bound are greater
than max(yi) which can only lexicographically reduce the first j elements. ��
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Theorem 7. Consider vectors of variables x, y and constant i s.t. for all yk ∈
y,max(yi) ≥ max(yk). If ηx,y,i = j (j �= ∞) and p = (y − yi)↑ then for all
yk ∈ y, max(yk) < max(pj) implies ηx,y,k =∞

Proof. (sketch). Form q = (y−yk)↑. Without loss of generality assume yk is the
last element of q with upper bound = max(yk). Since max(yk) < max(pj) we
know yk lies in the first j−1 elements of q. As max(yi) >max(yk), q agrees with
p until the position ph where yk occurs, where it will be replaced by a variable
with larger upper bound. However as ηx,y,i = j, at this position max(ph) =
min(xh). As max(qh) > min(ph) a consistent instantiation exists. ��

Note that max(yi) <max(yj) implies ηx,y,i < ηx,y,j so if any k has ηx,y,k <∞
the yk with highest upper bound will have. And once we have ζ = ηx,y,k we can
use theorems 6 and 7 tell us the if every other element is tail inconsistent or
not except possibly those with the same upper bound as pζ in the minimal
permutation which must be tested separately.

6.1 Algorithm Details

The theorems above are embodied in the GACAP algorithm below. First, some
notes on the structures used. Buckets are objects into which we can place and
remove CSP variables. Variables are allocated to buckets according to the largest
element in the domain of the variable. When asked to remove an element, a
bucket will remove only one, even if it has multiple copies. The function GSNEB
returns the smallest non-empty bucket. We iterate through a collection of buckets
in ascending order.

As described in Section 5.3, an algorithm, GACAllPerm, for maintaining
GAC on allperm on an n×m matrix can be constructed via n− 1 instances of
GACAP.

6.2 A Worked Example

Consider applying GACAP to the pair: x = 〈{2, 3}, {3, 4}, {4, 5}, {6}〉 and y =
〈{4, 5}, {1, 2, 3}, {1, 2}, {4, 5}〉 (where the domains of constituent variables are
written as sets). A bucket sort of y is performed first according to the upper
bound of each variable. This permutation, denoted p, is used hereafter for clarity.
Stage1 traverses the vectors, using the pointer α to remove from consideration
bound equal pairs. Initially, α = 1. MaxPrune, incrementally set to the maximum
of its current value and min(xα) − 1, records the maximum extent to which
domain elements can be removed from members of y. This pruning is done in
post-processing by CleanUp for efficiency reasons (see below). Line 11 sets
max(x1) to the smallest non-empty bucket, as justified by Lemma 1:

α
x = 〈{2, �3}, {3, 4}, {4, 5}, {6}〉
p = 〈{1, 2}, {1, 2, 3}, {4, 5}, {4, 5}〉

MaxPrune := 1
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1 Procedure GACAP(vector x, vector y)
2 GLOBAL: B := newBucketsort(), α := 1, MaxPrune := min(x1) − 1, n := length(x)
3 FOR (yi ∈ y) B.add(yi)
4 Stage1()
5 ηPruning()
6 CleanUp()
7 Procedure Stage1()
8 WHILE (α ≤ n)
9 MaxPrune := max(MaxPrune, min(xα) − 1)

10 IF (B.GSNEB() ≤ MaxPrune) FAIL
11 xα.setMax(B.GSNEB())
12 IF ¬(xα.isBound() AND B.GSNEB() = xα) RETURN
13 B.remove(B.GSNEB()), α + +
14 Procedure GetNextNonEqual(iterator,η)
15 WHILE (max(Iterator.current()) = min(xη))
16 IF(η = n) RETURN true
17 η + +, iterator + +
18 RETURN false
19 Procedure ηPruning()
20 η := α + 1, iterator := MakeIterator(B)
21 IF (GetNextNonEqual(iterator, η)) RETURN
22 checker := max(iterator.current())
23 IF(min(xη) ≤ checker) RETURN
24 FOR (yi ∈ y s.t. max(yi) > checker) yi.setMin(min(xα) + 1)
25 iterator + +
26 IF (GetNextNonEqual(iterator, η)) RETURN
27 IF(min(xη) ≤ max(iterator.current())) RETURN
28 FOR (yi ∈ y s.t. max(yi) = checker) xα.setMax(max(yi) − 1), yi.setMin(min(xα) + 1)
29 Procedure CleanUp()
30 FOR (yi ∈ y)
31 IF (max(yi) ≤ MaxPrune) yi := max(yi) ELSE yi.setMin(MaxPrune + 1)

x1 and p1 form a bound equal pair (ignoring elements of p1 that are removed by
CleanUp) which is discarded by incrementing α. The same process is repeated:

α
x = 〈{2, �3}, {3, �4}, {4, 5}, {6}〉
p = 〈{1, 2}, {1, 2, 3}, {4, 5}, {4, 5}〉

MaxPrune := 2

x2 and p2 form another bound equal pair. Since no pruning of x3 is possible and
x3 is not bound, x and p are Stage 1 Complete. ηPruning now prunes max(x1)
and min(pi) for i ≥ α, as necessary. The pointer η is used to traverse the tail of
x and p to test if they can be made consistent.

α η
x = 〈{2, �3}, {3, �4}, {4, 5}, {6}〉
p = 〈{1, 2}, {1, 2, 3}, {4, 5}, {4, 5}〉

MaxPrune := 3

If the tail is inconsistent (as here because max(pη−1) < min(xη)) we know
how to prune all elements except pη−1. To check this last variable we remove
pη−1 from p and continue checking for consistency. Finally CleanUp traverses
p and performs pruning with the value of MaxPrune.

α η
x = 〈{2, �3}, {3, �4}, {4, �5}, {6}〉
p = 〈{�1, 2}, {�1, �2, 3}, {�4, 5}, {�4, 5}〉

MaxPrune := 3
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6.3 Properties

Theorem 8. The GACAP algorithm on two vectors of variables x and y of
length n runs in time O(n + d) where d is the maximum size of the domain of
the variables in x and y.

Proof. (sketch). Sorting y into buckets takes O(n). We traverse x and y exam-
ining and/or pruning each element of x and y at most once and also examining
(at worst) each of the d buckets, which takes time O(n + d). During CleanUp
we may prune each element of y once, which is O(n). ��

If d' n then we use an O(n log n) algorithm. Instead of sorting y into buck-
ets we sort y from smallest to largest using the upper bound of each domain (in
O(n log n)). This alternative algorithm is identical to GACAP except instead
of iterating through buckets it iterates through this sorted vector.

7 Extensions

The methods used to generate allperm from the row-wise lex-leader constraints
can also be used to generate useful symmetry-breaking constraints for other
symmetry groups. In Molnar’s problem (see Section 8.1) we use the result that
when a matrix has transpose as well as row and column symmetry then as well
as the lex2 and allperm constraints we can also impose consistently ∀i : row 1
≤ap col i. In a similar example, given an n×n square matrix with rotation as
well as row and column symmetry we can impose the extra symmetry breaking
constraints row 1 ≤ap col 1 and row 1 ≤ap col n as well as the usual lex2 and
allperm.

Index symmetries in matrices of more than two dimensions can be broken by a
generalisation of lex2 and allperm, the latter of which can be implemented by us-
ing the GACAllPerm algorithm. The allperm constraint also can be extended
and adapted to the case where only some rows/columns are interchangeable.
Finally we note that the GACAllPerm algorithm can be extended straightfor-
wardly to cope with vectors of different length.

8 Experimental Results

We tested allperm on two benchmark problems in number theory and coding
theory. Lack of space prevents the consideration of more domains, but further
applications, such as Howell designs [1], difference matrices [13], and balanced
generalised weighing matrices [12] can readily be found.

We used ILOG Solver 5.3 with the GAC lexicographic algorithm in [7], an
anti-multiset algorithm adapted from the GAC multiset algorithm in [8] (see
Section 5.3), and the GACAllPerm algorithm from Section 6. lex2 is approx-
imated using lexicographic ordering constraints on adjacent rows and columns.
Recently, it has become possible to enforce GAC on a chain of lexicographic
ordering constraints [2]. Currently, the effectiveness of this new constraint is
unknown. If proven effective it could be used to improve all models tested here.
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8.1 Molnar’s Problem

Molnar [11] posed the following problem. Given k, construct two k×k matrices,
M1 and M2, of integers such that the determinant of M1 is one, the determinant
of M2 is ±1, no entry in M1 or M2 is ±1, and each entry in M2 is the square of
the corresponding entry in M1.

The solutions to this problem are significant in classifying certain types of
topological spaces. Guy [9, Section F28] discusses a variant where 0 entries are
also disallowed and both determinants must be 1. Guy’s variant is studied here
as follows. Given k and an upper bound, u, all solutions are sought (since all
solutions are interesting mathematically) where each variable in M1 is assigned
a value between 2 and u. Seeking solutions with positive entries only simplifies
what is a difficult problem.

Exchanging two rows or columns of a matrix negates the determinant. Hence,
this problem does not have row or column symmetry. However, by relaxing the
problem such that the absolute value of the determinant is 1, we can apply
row and column symmetry breaking. If a solution has a determinant of -1, we
exchange a pair of rows/columns. The problem also has transpose symmetry
which we will exploit.

We modelled this problem with matrices M1 and M2 of decision variables,
where each entry of M2 is constrained to be equal to the square of the corre-
sponding entry of M1. The determinant of each matrix is expressed as a single,
large-arity constraint and bound to a variable detVar with domain {−1, 1}. We
considered three models of symmetry breaking:

Model A lex2(M1). Since the variables in the bottom row appear most
frequently in the definition of the determinant, lex2 is applied such that this
row is least in the lexicographic ordering to agree with the variable ordering
described below, ensuring that the column lex constraints are consistent with
this choice. Given the transpose symmetry, we also constrain the bottom row to
be lexicographically less than or equal to all columns, as discussed in Section 7.

Model B lex2(M1) ∧ ams(M1). In addition, ≤m is used to break the trans-
pose symmetry.

Model C lex2(M1) ∧ GACAllPerm(M1). GACAP is used to break the
transpose symmetry.

Experiments are on order 3 and 4 matrices. The variable ordering is by row
on M1, starting at the bottom (most constrained) row. Table 1 summarises the
results, which show a clear benefit to using allperm to break more symmetry
even on the relatively small matrices experimented with here. Furthermore, the
improvement increases both with the size of the matrix and the size of the
domains. Using GACAllPerm provides a ten percent reduction in search effort
over anti-multiset on these problems. Since both are linear-time algorithms, there
is no reason not to use GACAllPerm.

8.2 Error-Correcting Codes

Given an alphabet F , a fixed-length code of a length n is a set C of strings from
Fn. Given a code C and a distance function d(x, y) where x and y are elements
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Table 1. 256Mb PentiumIII 750MHz. Times in seconds given to 3 significant figures.

Problem Model A Model B Model C
order, u Choices Time Solutions Choices Time Solutions Choices Time Solutions

3, 3 14 0 - 12 0 - 12 0 -
3, 4 138 0.13 - 114 0.13 - 109 0.13 -
3, 5 742 1.9 - 591 1.6 - 558 1.6 -
3, 6 2,872 18.9 - 2,210 13.8 - 2,067 13.3 -
3, 7 8,695 134 - 6,559 88.4 - 6,172 83.8 -
3, 8 22,948 756 - 17,016 466 - 16,068 440 -
3, 9 53,103 3, 470 5 38,979 2, 050 3 36,851 1, 921 3

3, 10 113,138 13, 600 6 82,302 7, 800 4 77,793 7, 310 4
3, 11 219,383 47, 300 7 158,762 26, 200 5 150,445 24, 800 5
4, 3 139 0.4 - 101 0.4 - 101 0.4 -
4, 4 14,783 155 - 9,267 102 - 8,885 102 -
4, 5 499,836 23, 400 19 28,3521 12, 500 13 269,373 12, 000 13

Table 2. 128Mb PIII 1Ghz. Times given in seconds to 3 significant figures.

Length Size Min. Model A Model B Model C
Dist. choices time choices time choices time

5 6 6 14,931 1.0 12,687 1.0 13,043 1.0
5 7 5 96,942 9.0 34,605 3.5 40,066 4.1
5 8 5 118,712 12.6 51,287 6.0 57,219 6.6
5 9 5 11,311,563 1, 230 3,027,982 329 3,040,390 341
6 4 8 1,225 0.1 1,080 0.1 1,081 0.1
6 5 6 1,227,456 80.8 237,005 17.7 276,525 20.2
6 6 6 1,374,943 105 286,010 26.8 338,689 30.6
6 7 6 1,626,743 143 418,624 46.5 484,923 51.8
6 8 6 2,007,190 204 687,130 88.4 763,918 94.9
6 9 6 2,754,911 320 1,322,412 189 1,409,570 196
6 10 6 3,578,967 489 2,033,355 329 2,130,763 338
6 10 6 4,718,395 738 3,058,971 531 3,166,724 561

of C we define the minimum distance of C as the minimum of the distances
between all distinct pairs of elements of C.

If F = {0, 1, 2, 3} then a commonly used distance function is the Lee distance,
which is useful in various areas of coding [10] and also indirectly in other areas,
such as packing [3]. For two elements, x, y in a code C of length n the Lee
distance is defined as d(x, y) =

∑n
i=1 min{|xi − yi|, 4 − |xi − yi|}. This is what

we shall use in our experiments.
Following standard practice we represent the code as an n×|C|matrix, where

each row contains one element of the code. The difference constraint is enforced
between pairs of rows. This matrix has row and column symmetry: swapping
rows simply changes the order in which the elements of the code are represented
in the matrix, and the Lee distance is unaffected by swapping columns.

Codes defined over the Lee distance also have value symmetry. Given a code
represented by a matrix as defined above, if we take any column and change each
value in it by the mapping (0→1, 1→2, 2→3, 3→0) then the resulting code has
the same Lee distance between each pair of rows. Some of this symmetry can
be broken by assuming any code has an element consisting of just zeroes. We
do this in the experiments below and not not include this element in the matrix
of variables we use to solve the problem. In conjunction with this basic model
three models of symmetry breaking were tried.
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Model A lex2(M) is enforced using lexicographic ordering constraints on
adjacent rows and columns.

Model B lex2(M) ∧ ams(M).
Model C lex2(M) ∧ GACAllPerm(M).
The top-most row and left-first column were constrained to be the smallest

under the lexicographic order and the ams and allperm constraints were placed
on the rows. The variables were instantiated in row-wise order starting from the
top-most row and the variable ordering used was (0, 1, 2, 3).

The experiment performed was to try to find the code with the largest min-
imum Lee distance given the length and size of the code.

Table 2 summarises the results. Like Molnar’s problem these show that ap-
plying extra symmetry breaking constraints to lex2 can result an improvement
of over a 50% reduction in both time and number of fails and the magnitude of
these improvements increases with the size of the search. There is a small but
measurable difference between models B and C.

9 Future Directions

The question now is whether further constraints can be added to break more
symmetry effectively than lex2 plus allperm. There are some obvious possibilities,
such as attempting to create an allperm2. However, we have explored and rejected
as inconsistent all of the possibilities that seemed straightforward to us. It may
be possible to look more deeply at the row-wise lex leader constraints to obtain
further symmetry breaking constraints or to consider a different lex-leader from
which a stronger set of symmetry breaking constraints might be derived.

Another item of future work is to consider the combination of other types
of symmetry with row and column symmetry, such as the transpose symmetry
seen in our model for Molnar’s problem. The interaction of allperm with differ-
ent variable/value ordering heuristics should also be explored. Our preliminary
experimentation suggests that choosing a variable/value ordering that does not
conflict with allperm is not as straightforward as for lex2 alone.

10 Conclusion

We have identified an extension to the highly successful lex2 method of breaking
row and column symmetries. In some cases, substantial reductions in search effort
are achieved. Furthermore, the efficient implementations here incur negligible
overhead. This suggests that when a problem is being modelled using lex2, where
applicable it is always worthwhile adding allperm.
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Abstract. We introduce a novel approach for symmetry breaking by
dominance detection (SBDD). The essence of SBDD is to perform ‘dom-
inance checks’ at each node in a search tree to ensure that no sym-
metrically equivalent node has been visited before. While a highly effec-
tive technique for dealing with symmetry in constraint programs, SBDD
forces a major overhead on the programmer, of writing a dominance
checker for each new problem to be solved. Our novelty here is an entirely
generic dominance checker. This in itself is new, as are the algorithms to
implement it. It can be used for any symmetry group arising in a con-
straint program. A constraint programmer using our system merely has
to define a small number (typically 2–6) of generating symmetries, and
our system detects and breaks all resulting symmetries. Our dominance
checker also performs some propagation, again generically, so that val-
ues are removed from variables if setting them would lead to a successful
dominance check. We have implemented this generic SBDD and report
results on its use. Our implementation easily handles problems involv-
ing 1036 symmetries, with only four permutations needed to direct the
dominance checks during search.

1 Introduction

Dealing with symmetries in constraint satisfaction problems has become a pop-
ular topic for research in recent years. Main areas of recent study include

1. the modification of backtracking search procedures so that they only return
unique solutions, and

2. the use of computational group theory (henceforth CGT) methods to effec-
tively utilise the algebraic structure of symmetries.

The modified search techniques currently broadly fall into two main cate-
gories. The first involves adding constraints whenever backtracking occurs, so
that symmetric versions of the failed part of the search tree will not be consid-
ered in future [1,11]; these techniques are collectively known as SBDS (Symme-
try Breaking During Search). The second category involves performing checks
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c© Springer-Verlag Berlin Heidelberg 2003



334 Ian P. Gent et al.

at nodes in the search tree to see whether they are dominated by the symmetric
equivalent of some state already considered [5,7]; we will collectively refer to
these techniques as SBDD (Symmetry Breaking by Dominance Detection). A
comparison of SBDS and SBDD, together with a dominance check for a highly
symmetric problem, is given in [12].

The SBDD approach as implemented to date (with one exception)1 involves
the coding of a dominance checker. This dominance checker is special purpose,
as it must be written for each new problem, or at best for a class of problems
such as instances of the “golfers’ problem”. This checker, as part of the con-
straint system, has to be written by the constraint programmer, who therefore
must use the structure of the problem under consideration to detect dominating
search nodes. Yet dominance detection is an algebraic operation, and in partic-
ular answers a question in group theory: is this node symmetrically equivalent
to a previously visited one? Inevitably, if unconsciously, constraint programmers
are being required to act as CGT programmers in order to implement SBDD.
The contribution we make is to eliminate this necessity by providing all the
algebraic equipment to perform dominance checks automatically given the mini-
mum possible information about the symmetries of the particular problem. These
dominance checks either succeed (resulting in a backtrack), or fail supplying a
set of assignments, any of which, if added to the current partial assignment of
values to variables, would result in the dominance check succeeding – this set is
used to reduce the size of domains, thus improving search efficiency, as described
in [5,7].

The explicit use of CGT methods is motivated by the fact that the symmetries
of a problem form a group: a tuple 〈S, ◦〉 where S is a set and ◦ is a closed binary
operation over S such that:

1. ◦ acts associatively: (a ◦ b) ◦ c = a ◦ (b ◦ c) for every a, b, c ∈ S;
2. there is a neutral element, e, such that a ◦ e = e ◦ a = a for every a ∈ S;
3. each element has an inverse: a ◦ a−1 = a−1 ◦ a = e.

Modern CGT systems are designed to exploit this algebraic structure, and are
very efficient: they allow rapid calculations to be done on large groups without
the need to iterate over or explicitly represent more than a tiny fraction of the
group elements. As well as offering a clear benefit in both time and space, using
a CGT approach can make the expression of the symmetries by the programmer
much easier: typically only a handful of example symmetries are required to gen-
erate the full symmetry group, even for very large groups; we provide examples
of this in Section 5.

The main contributions of this paper are twofold. First, we show how to
combine a constraint programming system with a CGT system to provide an
entirely generic implementation of SBDD. Second, we introduce a novel algo-
rithm for performing the dominance check in a generic manner using techniques
from CGT.
1 Although not set in constraint satisfaction terms, Backtrack Searching in the Pres-

ence of Symmetry [2,3] contains many SBDD ideas, incidentally predating SBDD
itself by a number of years. This work influenced our approach here.
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It is instructive to compare this paper with our first application to symmetry
breaking using the combination of a CGT system and a constraint programming
system, namely our implementation of SBDS reported at CP-02 [9]. The im-
plementation of SBDD using CGT methods raises very different problems from
that of SBDS. For SBDS, the task is to compute a set of symmetry breaking
constraints. For SBDD, the task is to implement a search algorithm, i.e. the
dominance checker. Since the tasks are so different, the implementations them-
selves are very different. Indeed, a major contribution here is the algorithm for
a generic dominance checker, and the resulting CGT program shares no code
with the CGT program used for SBDS. Our work here is therefore very novel
compared to [9]. The advantage of the current work is that there is no significant
space requirement to store the set of constraints, as happens in SBDS. The limit-
ing factor for SBDD is the time taken to search for dominance rather than space.
We show that we can deal, in an entirely generic manner, with groups with as
many as 1036 elements, compared to only a few billion in our implementation of
SBDS.

We describe some necessary background on constraint systems and permuta-
tion groups in Section 2. We outline SBDD in Section 3, and provide a detailed
exposition of the novel algorithm used in our generic implementation in Sec-
tion 4. Section 5 consists of some experimental results. We discuss our results
and highlight future avenues of research in Section 6.

2 Background

We first provide some background material. While we assume familiarity with
the basic concepts of constraint satisfaction, we first sketch the problems that
arise when a constraint problem contains symmetry. Then, we briefly describe
permutation groups and how they can be used in the CGT system GAP, and
finally the interface we previously constructed between GAP and ECLiPSe.

To provide a concrete implementation, we use the constraint logic program-
ming system ECLiPSe [20] to model the constraint satisfaction problem and to
search, while the dominance checks needed for SBDD are performed in a child
process, using the world-leading computational group theory system GAP [8].
There is nothing essential about this choice. Barring unforseen technical prob-
lems, we could equally well have used other CGT systems such as Magma, or
other constraint systems such as Ilog Solver. GAP and ECLiPSe are large, ma-
ture and widely-used systems. Both systems incorporate libraries and packages
for computation in specific areas, together with tools and resources for software
development. For our purposes, the GAP permutation group libraries and the
ECLiPSe finite domain libraries are of interest.

ECLiPSe uses standard finite domain constraints, and, during search, applies
constraint propagation techniques developed by the AI community [14]. The
standard search method is depth-first, and assigns values to variables at choice
points. A complete assignment that satisfies the constraints is a solution.
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If no symmetry breaking constraints have been posted before search, then
ECLiPSe will search for and return all solutions, irrespective of any symme-
tries involved. For example, consider the illustrative problem of finding a list
[A,B,C,D,E, F,G] of distinct numbers in 1 . . . 50 such that A3+B3+C3+D3 =
E3+F 3+G3. A solution is [1, 2, 3, 39, 18, 22, 35], but this is symmetrically equiv-
alent to those lists with 1, 2, 3, and 39 permuted in any way, and/or 18, 22 and
35 permuted. Our aim is to restrict search to choices which do not lead to one
of these other lists. Restricting search to avoid symmetrically equivalent solu-
tions has a larger benefit than avoiding duplicate solutions. Symmetry breaking
methods such as SBDD or SBDS also avoid duplicating search from failed nodes.
This can have a dramatic effect on time taken, as the same failed search state
can reoccur in many symmetric guises, only one of which need be explored.

A permutation is a rearrangement of elements in an ordered list S into a
one-to-one correspondence with S itself. The number of permutations on a set
of n elements is n!. Two permutations can be composed by composing their
respective correspondences with S; since all such correspondences are bijective,
the composition has an inverse. For example, to construct the resulting compo-
sition, one can trace the action of successive permutations. If 1 corresponded to
8 in the first, and 8 corresponded to 3 in the second, then 1 would correspond
to 3 in the composition. If we take the identity mapping on S as the required
neutral element, composition of permutations forms a group. GAP contains li-
braries for defining, composing, and manipulating individual permutations, and
for computation within permutation groups.

Taking S to be a position indexing of the list [A,B,C,D,E, F,G] described
in the previous section, we have S = [1, 2, 3, 4, 5, 6, 7]. Permutations in GAP are
usually entered and displayed in cycle notation, such as (1, 2, 3)(5, 7) which de-
notes the correspondence which has as image the list [2, 3, 1, 4, 7, 6, 5]. (A human
might describe this permutation as ‘1 goes to 2, 2 goes to 3, 3 goes to 1, 5 and
7 are swapped, 4 and 6 are unchanged.’.)

Given that there are 7! possible permutations on S, which are the permuta-
tions which preserve solutions to the A3+B3+C3+D3 = E3+F 3+G3 problem?
This is straightforward in GAP – we simply supply some example permutations,
and let GAP compute the resulting permutation group. Swapping A and D and
cycling A, B, C and D are solution preserving symmetries, represented by the
permutations (1, 4) and (1, 2, 3, 4) respectively. Similarly (5, 7) and (5, 6, 7) de-
note the swapping of E and G and a cycling of E, F and G. Supplying these 4
permutations to GAP results in permutation group containing 144 elements (3!
permutations of E, F and G for each of the 4! permutations of A, B, C and
D). In group theoretic terminology this is known as the direct product of the
symmetric group on 4 points and the symmetric group on 3 points. In order to
use GAP–ECLiPSe with either the SBDS version given in [9] or the SBDD im-
plementation described in Section 3 of this paper, these 4 permutations are the
only information that the constraint logic programmer has to provide to GAP
for this problem. GAP can now answer questions such as
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– What is the composition of (1, 4) with (1, 3)(5, 7, 6), i.e. the permutation
corresponding to performing first (1, 4) and then (1, 3)(5, 7, 6)?
• (1, 4, 3)(5, 7, 6)

– Which of our 144 permutations do not move A, C or E?
• (), (6, 7), (2, 4), (2, 4)(6, 7) – this is the point stabiliser of A, C and E.

– To which points is G mapped to by our group elements?
• 7, 6, 5 (i.e. G is mapped to E, F and itself) – this is the orbit of G.

Many of the questions passed to GAP by ECLiPSe during search are answered
by (rather more complicated) calculations similar to those given above. It should
be noted that, for computational purposes, a symmetry group consists of a gener-
ating set of permutations. This set can usually consist of only two elements, but,
for our purposes, contains a few examples of known symmetries. The problem
of enabling CSP practitioners to express problem symmetries easily is addressed
in [13,15]. No sensible CGT system computes every element of the group; algo-
rithms construct new elements (or subgroups, or coset representatives, etc.) as
required.

In [9] we reported on a simple interface between GAP and ECLiPSe . In GAP–
ECLiPSe all constraint satisfaction modeling and constraint handling is done in
ECLiPSe, as is the choosing of value to variable assignments during search,
and any resulting elimination of values from domains by propagation. GAP runs
as a sub-process, and is called as and when symmetry breaking information is
needed. In effect, ECLiPSe is the master, and GAP the slave. The key concept
that motivates the interface is that the symmetries of a constraint satisfaction
problem are permutations on a suitable initial segment of the natural numbers.
Since sets of permutations have a well known algebraic structure, and since GAP
uses the algebraic structure to enhance and extend computational capability, we
use GAP to provide symmetry information to ECLiPSe during search. We report
further details of the interface in [9].

3 Symmetry Breaking by Dominance Detection

In order to deal with symmetry-related questions arising at nodes in the search
tree, we define an M × N array where N is the number of variables in our
constraint satisfaction problem, and M is the number of values that the variables
can take. The i,j-th element in the array denotes assigning the value i to the
variable j, and each element is associated with a unique number (point) from 1
to MN . We then define symmetries in terms of permutations on these M ×N
points. It should be noted that

– this allows us to define symmetries on both variables (as in the example
above) and values (as in, for example, a graph colouring problem where
values representing colours can be interchanged); and

– the algebraic structure is preserved: for the above example we have 144
permutations on 50 × 7 points, with each permutation corresponding to a
unique member of the original group acting on 7 points.



338 Ian P. Gent et al.

This structure allows us to ask GAP questions regarding the image of (sets of)
variable–value assignments under permutations. We write this as pg, where p is
an assignment point and g is an element of a permutation group. We have, for
example, 17(2,5,17,9,8) = 9.

Suppose that we have identified a symmetry group, G, and that we maintain
a record in a list S of fail sets: sets corresponding to the roots of completed
subtrees. Each fail set contains the points from the M ×N array corresponding
to the positive decisions made during the search to reach the root of the subtree.
Note that we consider decisions, as opposed to domains, as suggested in [12,18].
As long as we try a positive decision (Var = Val) before its negative (Var �= Val)
we are free to ignore the negative decisions [7,12,18]. E.g. looking at the Y = b
subtree in Figure 1, Y = b has already been fully explored regardless of whether
or not X �= a, since the X = a case was covered by the X = a subtree.

Suppose also that Pointset denotes the set of points corresponding to vari-
ables which have been set to a fixed value in the current search node (either
through direct assignment or through propagation). This situation is shown in-
formally in Figure 1, where the circle indicates the current search node and the
shaded triangles denote completed subtrees: S contains three single-element sets
containing the points corresponding to the assignments X = a, Y = b and Z = c,
and if any variables have been given fixed values as a result of propagating the
decisions X �= a, Y �= b and Z �= c, the corresponding points will appear in
Pointset.

X = a

Y = b

Z = c

X a

Y b

Z c

Fig. 1. A partial search tree

We say that our current node is dominated by a completed subtree if there
exists a g in G and an s in S such that

sg ⊆ Pointset .

If dominance is detected, then it is safe to backtrack, since the current search
state is symmetrically equivalent to one considered previously.

In practice, we pass to the dominance checker more information about the
current state than just the fixed variables, in order to facilitate domain reduction
when dominance is not detected (see Section 4).
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generic sbdd(Failset , depth) : −
choose(Var , Val)
assert(Var = Val)
depth := depth + 1
pt := Point(Var = Val)
NewFailset := [pt , Failset ]
Doms := [current domains]
if consistent(CSP)and askGAP(Doms) = [false, Q] then

reduce domains(Q)
solution check
generic sbdd(NewFailset , depth)

else
tellGAP(NewFailset , depth)
retract(Var = Val)
assert( not (Var = val))
Doms := [current domains]
if consistent(CSP)and askGap(Doms) = [false, Q] then

reduce domains(Q)
solution check
generic sbdd(Failset , depth)

else
backtrack(newdepth)
generic sbdd(Failset , newdepth)

end if
end if

Fig. 2. Pseudo-code for generic SBDD

4 Generic SBDD

Pseudo-code for our generic SBDD implementation is given in Figure 2. The
procedure assumes that the search state is at a node at a given depth in the
search tree, and that we have a record of the fail set accumulated on the current
branch of the search. We first choose a variable–value pair, try the assignment
Var = Val, and increment the depth counter. The Var = Val choice represents a
point, pt, of our value–variable array; we add this to our fail set, as it represents
the latest root node of a subtree. We next obtain Doms, a list of the domains
of all the variables at the current search node (after propagating the Var = Val
assignment). Note that Doms implicitly contains Pointset, as well as informa-
tion about which values cannot be assigned to particular variables (either from
propagation or from explicit Var �= Val assertions made on the current branch).

Provided that the CSP is still consistent, we are now ready to ask GAP for a
dominance check, details of which are given in Section 4.1. If this check succeeds
(i.e. a dominating state was found), we can backtrack in ECLiPSe as we have
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already explored an equivalent state. If this check fails (i.e. if no dominating
state is found) then we can still benefit by domain reduction. Our dominance
checker supplies a set of points that, if any one of the corresponding assignments
is made, would result in a successful dominance check. Clearly we should not
allow a search which makes any of these assignments, so we remove them from
the domains of the variables involved. This not only reduces the sizes of the
value domains, but also allows further propagation based on the removals. This
is a significant benefit over obtaining a mere yes/no answer to the dominance
check.

In this situation, since there was no dominance, we carry on searching by
choosing the next variable–value pair, using the updated fail set and depth value.
A small, but important, point arises in this situation. The domain reduction after
a failed dominance check can lead through propagation to setting all variables
and obtaining a complete solution. This solution might turn out to be equivalent
to a previously obtained solution. Therefore in this situation we perform a final
dominance check to guarantee that all solutions returned are distinct.

When the dominance check succeeds, we retract Var = Val and assert Var �=
Val. We tell GAP that our current fail set is the most up to date, and remove
pt from it. Now that we are at a different node in the search tree, we can ob-
tain Doms again perform another dominance check. If this check fails, then, as
before, we reduce value domain sizes by removing from variable domains any
elements we know would have led to dominance if they had been assigned to the
variable, check that any solution is not dominated by a previous one, and carry
on searching below the Var �= Val branch.

If, however, the Var �= Val dominance check succeeds, then we backtrack to
the nearest ancestor node where we have yet to consider the negative branch.
This point becomes the root of a completed subtree, we update the fail set
accordingly, and carry on searching.

4.1 Dominance Check Using Computational Group Theory

We maintain in GAP a record of fail sets, and the depth of their roots. The
symmetry group is computed from generators supplied from the ECLiPSe model
of the problem. In fact, the whole group is not usually computed explicitly – a
permutation group on n points can have n! elements, leading to a large space
overhead unless techniques are used for computing group elements as and when
required.

The dominance check is implemented using a tree-like data structure which
encodes all of the fail sets currently applicable, while taking maximum advantage
of their overlaps. Every possible Var = Val assignment is identified by a point
in a symmetry matrix; the symmetry group for a given problem permutes these
points, so that every symmetry is defined by a unique permutation.

We can identify disjoint sets of points A1, . . . , Ak and B0, . . . , Bk such that
the fail sets are A1 ∪ · · · ∪ Ai ∪ Bi for each i. The right-pointing edges of the
tree are labelled with elements of an Ai, the left-pointing ones with elements of
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a Bi. Each node of the tree can be associated with the sequence of labels on the
path to it from the root.

For example, if the current failsets are [52, 79, 72, 51, 64, 57, 50, 53] and
[61, 88, 74, 60, 52, 79, 72, 51, 64, 57, 50, 76] and we are asked to check [98,
48, 90, 42, 35, 77, 27, 96, 82, 14, 70, 13, 69, 40, 26, 19, 61, 46, 88, 32, 74,
18, 60, 7, 6, 5, 4, 87, 94, 31, 24, 17, 10, 52, 37, 44, 79, 72, 16, 9, 51, 22, 29,
36, 43, 64, 57, 50], for dominance (this situation arises in the BIBD(7,7,3,3,1)
problem described in Section 5.3), then we have A1 = {52, 79, 72, 51, 64, 57, 50},
B1 = {53}, A2 = {61, 88, 74, 60}, B2 = {76}.

We perform the dominance check using a recursive search, which descends
this tree, entering each node once for every way of mapping the associated se-
quence of points into the current point list. If we reach a left-pointing leaf,
then we have discovered dominance. The implementation of the search uses the
standard group theoretic machinery of stabilizer chains, Schreier vectors and
transversals, described, for instance in [19].

We can detect relatively easily cases where all but the final element of a fail
set can be mapped into Pointset, and report them, eventually, back to ECLiPSe,
so that domain deletion can occur. A few other cases can also be detected quickly.
It is possible to enhance the search to detect all cases where all but one elements
of a fail set can be mapped, but the benefit of the extra propagation never seems
to outweigh the cost of the extra search.

Full details and the GAP code used will appear in a forthcoming Technical
Report.

Since fail sets and point lists are not, in general, the same size, the more
powerful machinery of partition backtrack searching also described in [19] does
not appear to be helpful.

A useful optimisation is possible in cases where the points fall into more than
one orbit under the action of the symmetry group. This arises, for instance, if
the symmetries permute the variables and not the values. In this case it may
happen that all the points appearing in failsets lie in a subset of the orbits. For
instance if all the variables are Boolean, then for some labelling strategies, we
will only ever see points corresponding to assignments V ar = true appearing in
the failsets. In this case, points in other orbits are irrelevant in the sense that
no symmetry can ever map any point of any failset to them. These points can
be ignored in the search, and, more importantly, if no new relevant points have
been added to the pointlist since a previous dominance check, the entire check
can be omitted.

This implementation produces good performance on moderate-sized exam-
ples (up to about 1036 symmetries), but the internal search can become bogged
down when a subset of some F has a large stabilizer, so that we can find ele-
ments of G mapping f1, . . . , fk to p1, . . . , pk in any order, but none of these allow
us to map fk+1 to anything in Pointset. Actually computing the set stabilizers
of initial segments of F , while possible, seems to be prohibitively expensive in
many cases, but such situations usually arise when the group G preserves a sys-
tem of imprimitivity (for example the rows and columns of a matrix-structured
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problem) and this condition can be recognized cheaply. Exploiting this informa-
tion will be an important part of future work. Further implementation details
(including source code) are available in [10].

5 Examples

In this section we provide some results of computations using our implemenenta-
tion of generic SBDD in GAP–ECLiPSe. All the examples were run on a 2.6 GHz
Pentium IV processor with 512 megabytes of memory, and times are reported in
seconds. Where possible we compare the performance of our SBDD implemen-
tation with that of our GAP–ECLiPSe SBDS implementation given in [9], which
provided full symmetry breaking in a few seconds for problems having up to 109

symmetries. A major cost in dealing with larger symmetry groups in SBDS is
the communication of information between GAP and ECLiPSe – the constraints
posted during search are based on large algebraic structures which have to be
returned to ECLiPSe from GAP. In SBDD, however, we expect to be able to
deal with much larger groups, since inter-process communication consists of the
word true, the word false, or lists of points of length at most M ×N .

5.1 Example: A3 + B3 + C3 + D3 = E3 + F 3 + G3

We first consider the illustrative problem given in Section 2. Clearly, breaking
symmetry in this problem is achievable by adding the constraints

A ≤ B ≤ C ≤ D and E ≤ F ≤ G .

We include this example to demonstrate that out implementation breaks all 144
symmetries, with performance comparable to that of SBDS in GAP–ECLiPSe.
The results for all solutions with domains 1 . . . 20 are given in Table 1.

Table 1. Seven cubes problem – comparative results

SBDD SBDS ECLiPSe

Solutions 265 265 38,160
Backtracks [BT] 38,703 38,483 1.5 ×106

GAP cpu [Gcpu] 1,040 973 n/a
ECLiPSe cpu [Ecpu] 272 482 4,037
Σ cpu 1,312 1,455 4,037

We see that SBDD and SBDS both eliminate all the symmetries in roughly the
same time, whereas a search which ignores symmetry returns 144×265 solutions.

5.2 Example: Colouring the Vertices of a Dodecahedron

We consider the problem of colouring the vertices of a dodecahedron, the reg-
ular polyhedron having 12 pentagonal faces and 20 vertices. This problem has
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two useful illustrative features: it involves symmetries in both the variables and
values, and obtaining the correct symmetry group is easier than writing a dom-
inance detector for use in SBDD without computational group theory.

The variables x1, . . . , x20 represent the 20 vertices. The values c1, . . . , cm are
the m colours in question. It can be shown that the symmetry group of the
dodecahedron is isomorphic to the group of even permutations of five objects,
known to group theorists as A5, which has 60 elements. Since any permutation
of a colouring is allowed, the symmetry group of the values is Sm. The total
number of symmetries is then 60 ×m!, acting on 20 ×m points. We construct
this group in GAP from just four generators:

– the image of the vertices after one rotation of 72◦ about a face;
– the image of the vertices after one rotation of 120◦ about a vertex;
– the index of the colours with the first two swapped;
– the index of the colours cycled by one place mod m.

The constraints of the CSP are of the form xi �= xj whenever vertex i is joined
by an edge to vertex j. We seek the number of colourings for a given m, such
that no colouring is a symmetric equivalent of another.

Table 2. Colouring dodecahedrons – SBDD

GAP–ECLiPSe (SBDD) Dominance checks
Colours Symms. Sols. BT Gcpu Ecpu Σcpu Success Fail Delete

3 360 31 50 0.44 0.07 0.51 71 19 31
4 1440 117902 109502 770.62 109.08 879.70 116396 351720 1176

From Table 2 we see that, for the 3 colour case, 121 dominance checks were
made. Of these, 71 stopped further search in a symmetric sub-branch, 19 failed
without providing any near misses, and 31 failed and supplied points which could
be deleted from current domains as not leading to any new solutions. All 360
symmetries were broken, with the 31 non-isomorphic colourings returned in less
than one second.

5.3 Example: Balanced Incomplete Block Designs

We now present results for examples with much larger symmetry groups. Con-
sider the problem of finding v×b binary matrices such that each row has exactly
r ones, each column has exactly k ones, and the scalar product of each pair
of distinct rows is λ. This is a computational version of the (v, b, r, k, λ) BIBD
problem [4]. We label the v×b matrix in column order, since v ≤ b for all suitable
parameters. We assign zeros before ones whenever k ≥ b/2, otherwise we assign
ones before zeros; the heuristic is to use the minimum domain value whenever
there are more ones than zeros in each column.

Solutions do not exist for all parameters, and results are useful in areas such
as cryptography and coding theory. A solution has v!×b! symmetric equivalents:
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one for each permutation of the rows and/or columns of the matrix. Gent et
al. [9] reported results with the largest symmetry group having 6!×10! ≈ 3×109

elements. The results for our generic SBDD implementation are given in Table 3.

Table 3. Balanced incomplete block designs – SBDD

Parameters GAP–ECLiPSe (SBDD) Dominance checks
v b r k λ Symms. Sols. BT Gcpu Ecpu Σcpu Success Fail Delete
7 7 3 3 1 107 1 2 0.18 0.04 0.22 6 15 10
6 10 5 3 2 109 1 2 0.43 0.13 0.56 20 40 31
7 14 6 3 2 1014 4 33 4.63 0.34 4.97 64 146 124
9 12 4 3 1 1014 1 3 1.79 0.10 1.89 9 29 26

11 11 5 5 2 1015 1 65 18.36 0.75 19.11 103 272 177
8 14 7 4 3 1015 4 327 63.04 3.20 66.24 720 1344 727

13 13 4 4 1 1019 1 2 41.92 0.26 42.18 11 38 29
6 20 10 3 4 1021 4 171 53.40 2.19 55.59 381 665 648
7 21 6 2 1 1023 1 2 10.42 0.15 10.57 12 36 31

16 20 5 4 1 1031 1 10 6077.19 0.43 6077.62 22 64 65
13 26 6 3 1 1036 2 425 59338.23 5.81 59344.04 576 1487 968

The first point to note is that, as expected, we can deal with much larger
groups than our GAP–ECLiPSe implementation of SBDS [9]. SBDS was able
to deal only with BIBDs in the first two lines of the table. It was up to about
four times slower, while an interesting difference was that most cpu time was in
ECLiPSe with GAP dominating time here.

We can see from these results that the absolute number of symmetries of
a problem is not necessarily a guide to the difficulty in eliminating them from
solutions. The (8, 14, 7, 3, 4) BIBD problem has “only” ≈ 3.5× 1015 symmetries,
but is harder to solve than ones with O(1021) and O(1023) symmetries. As well
as the inherent difficulty of the original constraint problem, much depends on
the size and nature of structures within the algebraic structure of each symmetry
group, which is another reason for utilising a specialised CGT system such as
GAP, which is designed to find and exploit these sub-structures. As a general
rule, though, it is harder to eliminate solution symmetries from a larger matrix
model.

It is also worth noting that the entire symmetry group for any BIBD can
be generated from just four permutations: cycling the rows and columns, and
swapping the first and last row and the first and last column. These permutations
are trivially implemented, and comprise the only information needed by GAP–
ECLiPSe to break all the symmetries of the problem.

The timings obtained are comparable with those presented for the same prob-
lems in [6], where lexicographic ordering constraints were use to break the row
and column symmetries. The advantage of using SBDD is that all symmetries are
broken, whereas a lexicographic solution for the (6, 20, 10, 3, 4) BIBD problem
returns 21 solutions. Moreover, while SBDD can work with any variable or value
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ordering heuristics, a heuristic can interact badly with lexicographic ordering
constraints [9].

6 Conclusions

We have presented an implementation of SBDD which

– uses specialist CGT techniques to detect dominance.
– guarantees to return only symmetrically distinct solutions.
– does not require a new dominance checker to be implemented for each new

problem – the user only has to supply a small sample of symmetries.
– allows value domains to be reduced at search nodes where no dominance

occurs. We do this by removing values of variables which, if set, we know
would lead to a successful dominance check.

– eliminates all symmetries in large scale combinatoric problems.

We believe that the use of CGT techniques in SBDD solvers is an important
contribution. While there is scope for further optimisation of our techniques,
we already have significant advantages over related work. Compared to other
implementations of SBDD, we have the key advantage of avoiding the need for a
separate dominance check to be implemented, either directly [5] or as a separate
constraint satisfaction problem [17]. This is an extremely important step forward
in the application of SBDD. Compared to the use of GAP for SBDS [9], we avoid
the large space overhead, meaning that – as we reported here – we are able to
solve completely problems with groups many orders of magnitude larger. Some
techniques, such as [6], do not guarantee to eliminate all symmetries, while we
do.

Our implementation is robust: both the ECLiPSe and GAP searches are de-
terministic, and will break all the supplied symmetries, since a dominance check
is performed at each node visited during search. This robustness may have a neg-
ative effect on efficiency. There is evidence that performance can be improved
by making full dominance checks at a subset of the visited nodes [5,17], or by
using a subset of the full symmetry group of the problem [16]. Both of these
approaches depend on the size and structure of the problem being addressed,
and we will investigate their applicability to our implementation in the future.

Our work raises a number of questions for further research. First, having
implemented both SBDS and SBDD using generic methods, we are in a position
to ask whether or not they can be combined in interesting ways to gain the
advantages of both. In näıve terms, one can see SBDS as best suited where
groups are small, with SBDD effective on larger groups. Yet the symmetries in
a constraint problem usually become small as search continues, and it may be
possible to implement combined techniques which act like SBDD in some parts
of the search tree and like SBDS in other parts. A second question is how far
we can integrate SBDS and SBDD with what is perhaps the most commonly
used symmetry breaking technique, the use of hand-written symmetry breaking
constraints. As these can be very effective, it would be desirable to gain their
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advantages in terms of simplicity and efficiency, while still having the correctness
and uniqueness guarantees of SBDS and SBDD without users having to be expert
group theorists.
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Abstract. We present a novel approach to solving Quantified Boolean Formulae
(QBFs), exploiting the power of stochastic local search methods for SAT. This
makes the search process different in some interesting ways from conventional
QBF solvers. First, the resulting solver is incomplete, as it can terminate without
a definite result. Second, we can take advantage of the high level of optimisations
in a conventional stochastic SAT algorithm. Our new solver, WalkQSAT, is struc-
tured as two components, one of which controls the QBF search while the other is
a slightly adapted version of the classic SAT local search procedure WalkSAT. The
WalkSAT component has no knowledge of QBF, and simply solves a sequence of
SAT instances passed to it by the QBF component. We compare WalkQSAT with
the state-of-the-art QBF solver QuBE-BJ. We show that WalkQSAT can outper-
form QuBE-BJ on some instances, and is able to solve two instances that QuBE-BJ
could not. WalkQSAT often outperforms our own direct QBF solver, suggesting
that with more efficient implementation it would be a very competitive solver.
WalkQSAT is an inherently incomplete QBF solver, but still solves many unsat-
isfiable instances as well as satisfiable ones. We also study run-time distributions
of WalkQSAT, and investigate the possibility of tuning WalkSAT’s heuristics for
use in QBFs.

1 Introduction

Stochastic local search (SLS) methods are an area of continuing interest in the satisfi-
ability (SAT) community. While not guaranteed to return a solution (nor to determine
unsatisfiability), they can often be more effective than complete methods, as they are
not restricted by the need to cover the entire search space systematically. It is natu-
ral to wonder if SLS methods can be applied to Quantified Boolean Formulae (QBF)
problems. QBF is a generalisation of SAT with applications in areas such as hardware
verification, planning, and games. Variables in a QBF instance can be either existentially
or universally quantified. Put simply, with details to follow below, a QBF problem is
satisfiable if the existential variables can be set to satisfy the instance, in SAT terms, for
all possible instantiations of the universal variables.

Unfortunately, the application of SLS methods to QBF is problematic. The most
pressing problem is that individual search states are not simply assignments of variables
to the two truth values. Instead, the most natural representation of a search state is as a
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strategy, defining the values of the existential variables for each possible instantiation of
the universals. However this is an infeasibly large object except when there are a very
small number of universal variables. Despite the difficulties in applying SLS techniques
to QBF solving, there are compelling reasons for doing so. Search in a QBF is a search
for many satisfying assignments for a variety of very closely related SAT instances. Not
only can SLS methods often perform these searches very fast, they can naturally take
advantage of solutions to previous instances as starting points for the current search.

Our incomplete QBF solver, called WalkQSAT, is structured as a collaboration be-
tween two components. The first component, the QBF engine, performs a backjumping
search based on a successful method from the literature called Conflict and Solution
Directed Backjumping (CSBJ) [1]. The second component, the SAT engine, is used as
an auxiliary search procedure to find satisfying assignments quickly (details of these
components, and how they interact are given later in the paper). We use WalkSAT [2]
as the SAT engine for WalkQSAT, although a whole family of QBF algorithms can be
designed by using other algorithms for the SAT engine. WalkQSAT has the following
properties. If it returns True (T ) or False (F ) given an instance, that instance is guaran-
teed to be true or false respectively. If it returns Unknown (U ), then the truth or falsity of
the instance could not be verified within the given constraints. WalkQSAT is naturally
more likely to successfully solve true instances, given that false instances are more likely
to contain more states in which WalkSAT will not be able to find a solution, but some
false instances can be solved nevertheless. As we will see, WalkQSAT can outperform
state-of-the-art solvers on some instances.

This paper introduces for the first time the study of SLS methods for solving QBF
instances. Even so, we are in some instances able to outperform the state-of-the-art solver
QuBE-BJ. While typically our performance is not as good as QuBE-BJ, we have shown
the potential of stochastic local search methods for QBF.

2 Background

A QBF is presented as a Boolean formula in conjunctive normal form (CNF) with
a prefix of quantifiers. More formally, a QBF is of the form Q = QB where the
prefix Q = q1x1q2x2 . . . qnxn is a sequence of pairs of quantifiers qi ∈ {∀,∃} and
propositional variables xi, and B is a propositional formula in CNF. A CNF formula
is a conjunction of clauses; each clause is a disjunction of literals, and each literal is a
propositional variable in negated or unnegated form. Within the prefix Q every variable
in B is quantified exactly once by either an existential or universal quantifier. These
variables are then known as existentials and universals respectively.

The satisfiability of the CNF part B of a QBF is defined just as in SAT, i.e. B is
satisfied if every clause contains a true literal. However, the QBF is only satisfied if
appropriate values can be given to the existentials to allow B to be satisfied for any
instantiation of the universals. For this, the order of variables in the prefix is critical. We
can define the truth of a QBF recursively. A QBF Q with an empty prefix is true iff its
CNF part B is satisfied. If Q has a non empty prefix, there are two cases. A QBF ∃x1Q1
is true iff either Q1[x1 := T ] or Q1[x1 := F ] is true; while a QBF ∀x1Q1 is true iff both
Q1[x1 := T ] and Q1[x1 := F ] are true. For example, a QBF ∀x1∃x2∀x3∃x4B is true
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if and only if for both True (T ) and False (F ) assignments to x1, there is an assignment
(T or F ) to x2, where for both assignments to x3 there is an assignment to x4 for which
B is satisfied.

Solving a QBF can be seen as finding a winning strategy in a two player game between
universal and existential quantifiers. The variables are the pieces and the assignments
the moves. Existential wins if the assignments to the variables leaves a satisfied literal
in every clause (i.e. B is satisfiable) and universal if the assignments leave a clause
containing all negative literals. The order of the moves are dictated by the order in which
the variables appear in the prefix of the QBF. The QBF is satisfiable if the existential
player can find a strategy in which she can win no matter what moves the universal
player makes; it is unsatisfiable if this is not the case.

2.1 Stochastic Local Search for SAT

Stochastic Local Search (SLS) algorithms for satisfiability (SAT) attempt to solve a given
CNF formula B by iteratively changing, or flipping, the value assigned to variables in B
such that the number of clauses that remain unsatisfied by the assignment is minimised.
The selection of the variable to be flipped in each search step is typically performed
using a randomised greedy mechanism. The WalkSAT family [2, 3] comprises some of
the most widely studied and best-performing SLS algorithms for SAT; it is based on a
randomised greedy local search procedure that flips a variable from an unsatisfied clause
in each search step.

SLS-based solvers for SAT are typically incomplete, i.e., they cannot determine the
unsatisfiability of a given formula, but may find a satisfying assignment, if it exists, rather
efficiently. Thus, applied to an unsatisfiable formula, they will eventually terminate and
return Unknown. For satisfiable formulae, True is returned (along with the respective
assignment) if a satisfying assignment is found within the given resource limits and
Unknown is returned otherwise. The latter particularly happens if the algorithm gets
stuck in a local minimum of the underlying evaluation function.

2.2 Backtrack Search for QBFs

Backtrack search attempts to determine the truth of a QBF by assigning truth values to
variables and simplifying the formula until it is vacuously true or vacuously false. Then,
if false is found, all variables up to and including the last existential variable assigned
are unassigned, and the last existential is assigned to the opposite value and the process
is repeated. Similarly if true is found, all variables up to and including the last universal
are unassigned and the last universal is assigned to the opposite value and the process
is repeated. Once a variable has been assigned both True and False, the combination of
the results of these two assignments is returned dependant on the quantification of the
variable. These can be seen in Figure 1. The point at which the decision is made to assign
a variable True or False is known as a branch point.

A QBF is vacuously true if it consists of an empty set of clauses. It is vacuously
false if the set of clauses contains either a clause with no literals (empty clause) or a
clause with only universal literals (all universal clause). An all universal clause cannot
be satisfied since the clause must be true for all assignments to the universals and so
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Fig. 1. The possible branching and return values for CSBJ. In the first column the second assign-
ment is not tried since the first assignment yields enough information.

it will be unsatisfied if all the literals are assigned false. (The exception is tautologous
clauses, but we remove these during preprocessing.)

If a variable is assigned True, any clause containing the literal of the variable with
the positive sign can be removed, and the variable can be removed from any clause
containing the literal of the variable with the negative sign. Additionally, the variable
can be removed from its quantifier and empty quantifiers can be removed. In a backtrack
search, variables are assigned in turn until the QBF is vacuously true or vacuously false. If
true (respectively false), the variables are then unassigned until a universal (respectively
existential) assignment is undone. This assignment is then reversed and the variables are
again assigned until true or false is found and the process is repeated.

A unit clause is a clause that contains only one literal. This literal must be assigned
true to eventually get a vacuously true state, otherwise the clause will be empty. A
single existential clause is a clause that contains only one existential literal and in which
all universal literals are quantified further right in the prefix than the existential. The
existential literal must be assigned true because if it is assigned false the clause will
become all universal and thus unsatisfied. A pure literal is found when every occurrence
of a literal within the set of clauses has the same sign. An existential pure literal can be
assigned true. If we reach the vacuously false state then we can be sure that we could
have done no better in assigning the literal false, and so backtracking is unnecessary on
the variable. A universal pure literal can be assigned false. If we reach the vacuously
true state then we can be sure that we would have done no worse in assigning the pure
literal true, and so again, no backtracking is required.

Conflict and Solution Directed Backjumping (CSBJ) for QBFs [1] reduces the num-
ber of backtracks performed. This is done by calculating either a conflict set or a solution
set. A conflict set is a set of existential variables that caused the conflict, i.e. the empty
or all universal clause. A solution set is a set of universal variables such that all clauses
not satisfied by the current existential assignment are satisfied by at least one of the uni-
versal variables. On returning to an existential branch point (in the case of a conflict), or
a universal branch point (in the case of a solution), a backtrack need only be performed
if the variable assigned at the branch point is in the set. This technique has been shown
to be useful in the solving of QBFs [4], in particular on random instances with three or
more quantifiers, and on ‘real world’ instances. The cover set used in solution directed
backjumping is not unique [5]. It is important that a small cover set is chosen, to reduce
the number of universal backtrack points.
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Fig. 2. The additional branching and return values for WalkQSAT. Note how the solver recovers
in the last column.

Finally, we mention the Trivial Truth method [6]. This is a method for using a SAT
algorithm within a QBF solver. With this technique a counterpart E to the QBF Q is
kept where E is the same as Q, but with the universals removed. If a solution to E can be
found, this is also a solution to Q. however, if no solution to E can be found, nothing has
been gained, since Q could still be true. If no solution is found, the results are discarded.
This SAT search is potentially wasteful since the results of useful search are discarded
if the result is false.

3 WalkQSAT

WalkQSAT is in essence an implementation of conflict- and solution-directed backjump-
ing (CSBJ) in QBF. However, it uses an auxiliary stochastic SAT solver, WalkSAT, to
guide its search. WalkSAT is used to solve the current reduced QBF instance viewed
purely as a SAT problem, i.e. treating each universal variable as an existential (unlike
trivial truth where the universal variables are removed). This solution is used to set the
values of variables in the CSBJ search; when a variable is heuristically chosen in the
QBF solver, the value assigned to the variable is the value assigned by WalkSAT in
this returned solution. This has two consequences. First, it is possible for WalkSAT to
fail to find a solution, either because there is none or because WalkSAT times out. This
leads to the inherent incompleteness of WalkQSAT. The second consequence is more
positive. Where WalkSAT finds a satisfying assignment, this guarantees that if the same
assignments are given to the variables in the QBF search, the vacuously true state will
be reached. Thus WalkSAT is being used for more than purely heuristic guidance. From
a vacuously true QBF found this way, we continue as CSBJ normally would. That is, we
backjump to the most recent universal variable in the solution set. After backjumping,
WalkSAT is called to determine the next set of assignments to guarantee a vacuously
true state.

It is straightforward to deal with the case that WalkSAT fails to solve an instance.
When WalkSAT times out, it returns the value U for unknown. No further attempt is
made to solve the corresponding node in the CSBJ search, but Figure 2 shows the
additional possibilities and the associated return states allowing for Unknown values at
branch points in the QBF search procedure. If an U is returned for the first assignment,
WalkQSAT always tries the second assignment, sometimes being able to determine the
result. If not, U is passed back.
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It might seem that it is impossible for WalkQSAT ever to determine the falsity of
a QBF instance, as WalkSAT cannot determine unsatisfiability of SAT instances. How-
ever, as any CSBJ algorithm does, WalkQSAT implements single-existential propaga-
tion, which can lead to a contradiction. From this a conflict set can be calculated for
backjumping, and if the first variable assigned is ever backjumped over, the problem has
been proved false. Thus, with QBFs, we encounter a different kind of incompleteness
than that of WalkSAT. Specifically: if False is returned, the problem is definitely false; if
True is returned, the problem is definitely true; but the solver can still return Unknown
if no proof is found. In practice, we found that WalkQSAT was often able to determine
falsity of QBF instances. For this, the use of conflict-directed backjumping is a help, as
an unknown value returned at a node not in the conflict set does not prevent falsity being
proved.

The key issue in design and implementation was to keep WalkSAT and WalkQSAT
in step. At any node in its search tree, WalkQSAT needs to get a satisfying assignment to
B that is consistent with the values of variables that have been set by branching or propa-
gation at higher levels of the search tree. So we cannot let WalkSAT continue solving the
original instance of the QBF viewed as a SAT problem. Instead, we notify WalkSAT each
time a variable is assigned, via an interface call Fix(literal). We implemented a variant
of WalkSAT in which fixed variables could not be changed. After each variable is set
either by branching or propagation, Fix is called. This means that whenever WalkQSAT
calls WalkSAT, the SAT search is only on variables free at this node in the search tree.
When WalkQSAT backtracks over a fixed variable, a corresponding Release(literal) call
is made. This results in two data structures being maintained to keep the current search
state, one of which is a data structure optimised for efficient complete search, while the
other is optimised for efficient local search.

One aspect of WalkSAT we found to affect performance was the starting position of
its second and later searches. Instead of a random position each time, we found it much
more effective to start the search from the last assignment visited during the previous
search, except for changes forced by Fix calls. This is natural, as often there will be
relatively few Fix calls between calls to WalkSAT, so a solution at the last node is likely
to be a near-solution at the next node. However, since in normal use WalkSAT (for
sufficiently high noise settings) is insensitive to whether it is restarted or simply left to
run [7, 8], it may be surprising that this use of starting position seemed to be necessary.
However, this insensitivity to restarts does not hold for very short runs, particularly if
these are started very close to a solution.

Figure 3 shows pseudocode for WalkQSAT. This is similar to the pseudocode for
QuBE-BJ [1] since WalkQSAT is also a backjumping algorithm. A call to ChooseLiteral
additionally passes the assignments returned by WalkSAT, and these are used to deter-
mine the sign of the literal to be used in the next assignment. The actual literal chosen
can be independent of the results of WalkSAT. InitWr calculates the conflict or solution
set, given the false (F ) or true (T ) result respectively. If InitWr is called with the un-
known (U ) result, it should return the empty set, since backtracking must be performed
instead. The function BackJump correctly deals with the case where unknown has been
returned, as shown in Figure 2, by immediately backtracking on the last literal assigned,
or if the literal has already been backtracked upon, passing back the unknown result.
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The variable last is used to determine the last action performed by the algorithm. This
way, WalkSAT is only called after backjumping has been performed. Other functions
have the same meaning as was described in [1], repeated here for completeness:

– Q is a global variable storing the QBF in the current state, initially set to the input
QBF.

– Stack is a global variable storing the search states so far, initially empty.
– T, F, U, UnDef, Single∃, Pure, L-Split, R-Split, Choose and Back are constants.
– Extend(l) removes l from all clauses in which it appears, removes all clauses

containing l and pushes l and Q onto the stack.
– Retract() gets l and Q from the top of the stack and undoes all work done by

Extend(l).

Note that WalkSAT is only one example of a solver that could be used: any SAT solver
can be used as long as it implements the interface defined here, and that it never returns
an incorrect value. While in this paper we restrict ourselves to the use of WalkSAT, it
will be interesting to see if other SAT solvers can perform well in this framework1.

The method described here could easily be mistaken for trivial truth, in that a truth
assignment is found by WalkSAT. This is not the case however, since trivial truth finds
a truth assignment only involving the existentials. WalkSAT finds a truth assignments
assuming the universals are existentials. It is this key difference that allows WalkQSAT
to get more information from the SAT solver than trivial truth. If trivial truth finds a
satisfying assignment, search can be cut off on the current branch. However, if trivial
truth fails to find such an assignment, the results of the SAT search are disregarded and
search continues. When WalkQSAT finds a satisfying assignment, the results are used
to guide search, and are not just discarded. This is clearly different to trivial truth and
less wasteful of resources. Another difference with trivial truth is that, if WalkSAT fails
to find a satisfying assignment, we stop searching and backtrack, returning Unknown.

4 Experimental Methodology

We explored the performance of WalkQSAT, both in its own terms and against an existing
state-of-the-art solver for QBF. To test WalkQSAT experimentally, we need both a good
set of benchmark instances, and a good methodology which gives a fair understanding
of WalkQSAT with respect to the state of the art. This is particularly important given
that there are a number of parameters which can affect WalkQSAT’s performance, and
that as a randomised procedure it gives different performance on each run. To compare
against the state of the art, we compare results with the complete solver QuBE-BJ
[1], an implementation of CSBJ. We chose QuBE-BJ because, like WalkQSAT, it is a
backjumping algorithm and so makes for a good comparison. We do not know of a solver
which is known to be better than QuBE-BJ, so our comparison is with the state of the
art. We undertook benchmark tests on both random and structured problems. The latter
came from QBFLib (http://www.mrg.dist.unige.it/QBFLIB/), and we used all instances

1 This is why we deal correctly with the possibility of WalkSAT returning F in our pseudocode:
while WalkSAT can never return F , other SAT solvers can.
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Fig. 3. The WalkQSAT algorithm. This is similar to the pseudocode for QuBE-BJ [1], but with
modifications made to account for SAT solver calls, and dealing with Unknown (U ) return values.
Q and Stack are global variables.

function WalkQSAT(QBF Q̂)
Q:= Q̂;
Stack := Empty stack;
last := Choose;
(res, assignments) := WalkSAT ();
if (res �= T) return res;
do

res := Simplify();
if (last = Back and res = UnDef)

(res, assignments) := WalkSAT ();
if (res = T) res := UnDef;

if (res = UnDef)
l := ChooseLiteral(assignments); last := Choose;

else
l := Backjump(res); last := Back;

if (l �= UnDef)
Extend(l);Fix(l);

while (l �= UnDef);
return res;

function BackJump(res)
wr := InitWr(res)
while (Stack is not empty)

l := Retract();Release(l);
if (l ∈ wr or res = U)

if (res = F and |l|.type = ∃) or
(res = T and |l|.type = ∀) or
(res = U)
if (|l|.mode = Single∃) or (|l|.mode = R-Split)

wr := (wr ∪ |l|.reason)/{l, l}
if (|l|.result = U) res := |l|.result;

if (|l|.mode = L-Split)
|l|.result = res;
|l|.mode = R-Split;
|l|.reason := wr;
return l;

else wr := wr/l;
return UnDef

function Simplify()
do

Q’ = Q;
if (Q is vacuously false) return F
if (Q is vacuously true) return T
if (Q contains a single existential literal l)
|l|.mode := Single∃;Extend(l);Fix(l);

if (Q contains a pure existential literal l)
|l|.mode := Pure;Extend(l);Fix(l);

if (Q contains a pure universal literal l)
|l|.mode := Pure;Extend(l);Fix(l);

while (Q’ �= Q)
return UnDef
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except the robot problems. For randomised instances, we used Gent and Walsh’s Model
A [9], because it has been commonly used in previous literature and is well understood.
The parameters used were 20 variables per quantifier, 4 quantifier alternations with the
universal outermost, 5 variables per clause and a number of clauses from 25 to 450 in
steps of 25.

WalkQSAT has a number of parameters that must be set for each run. These affect
how the search performed by WalkSAT is carried out. In particular, there is the MaxFlips
parameter, which is the number of flips WalkSAT will perform before returning U , and
the noise parameter p which affects the level of randomisation vs. hill-climbing. In SAT,
MaxFlips is not an important parameter because when using close-to-optimal noise
settings, very large MaxFlips settings generally work well [8]. The setting of MaxFlips
affects performance in QBF because there is a tradeoff between allowing WalkSAT
enough time to solve each instance and spending too much time in wasted searches.
Many of the tested subinstances will be unsatisfiable, and extra flips are entirely wasted.
The noise parameter is often critical for applications of WalkSAT, and the default value
of 0.5 sometimes gives very poor performance. To set these parameters to poor values
could give an unduly bad impression of how WalkQSAT performs. On the other hand, to
optimise performance on all instances would give an unduly good impression: in practice
we cannot optimise parameters when presented with an instance that needs to be solved
just once.

To resolve this dilemma, we follow a practice suggested by Hoos [7], of performing
a coarse optimisation on a small subset of the instances. To this end, we varied MaxFlips
from 1 × n to 50 × n, where n is the number of variables in the instance, and noise
from 0 to 0.75 on a random instance and an individual structured instance. In neither
case did performance seem particularly sensitive to the settings of these parameters. We
observed that settings of 10 × n and 0.5 gave good performance in both cases, and we
use these values in all experiments we report for WalkQSAT in this paper.

Since WalkQSAT is a randomised procedure, through its use of WalkSAT, data from
an individual run could be misleading. Instead we are interested in the entire distribution
of data from a number of runs. Throughout this paper we report results on 100 runs of
WalkQSAT on each instance we test. The only exceptions are those that QuBE-BJ failed
to solve in 20 minutes on a 1GHz PC: for these we tested WalkQSAT in only 25 tries of
20 minutes.

The purpose of this work is to introduce a method for implementing an incomplete
solver for QSAT, which has never been done before. We have therefore not investigated
different variants of WalkSAT and it is unknown how these will work for QBF solving. It
is hypothesised that the variant will not be too important, since the work done by Walk-
SAT after the first run appears minimal. For all the experiments, we used the Novelty+

variant of WalkSAT [7]. This variant has been shown to perform very well on many SAT
problems, and it is left as further work to examine the performance of other variants
in WalkQSAT [7, 8]. All experiments were performed on a cluster of 1 Ghz computers
with 512MB RAM running Linux kernel 2.4.7-10 and GNU gcc version 2.96. We used
QuBE-BJ version 1.0 (http://www.mrg.dist.unige.it/˜qube/Download/download.html).
The timeout was 20 minutes (1200 seconds) for all runs.
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Fig. 4. Phase transition for various algorithms on random problems from Model A (n=20 per
quantifier,h=5,outermost quantifier universal,4 quantifier alternations,l=25..450 in steps of 25.

5 Experimental Results

WalkQSAT was compared to QuBE-BJ and QuBE-BJ with trivial truth. Figure 4 shows
the phase transition commonly observed for random problems.WalkQSAT performs well
here compared to QuBE-BJ but does not often outperform QuBE-BJ with trivial truth,
although it often gives the same performance at the 10-percentile range. We conjecture
that where WalkQSAT achieves the same performance as QuBE-BJ with trivial truth, it
finds the same assignments that trivial truth makes, and so solves the QBF without the
use of universals.

This last point can be seen even more clearly in Figure 5 where the 10-percentile
errorbar extends to the same run time as QuBE-BJ with trivial truth on some instances.
This figure also shows that WalkQSAT can outperform QuBE-BJ without trivial truth,
even on false instances, which is a rather surprising result.

Figure 6 shows performance results of WalkQSAT on structured instances. Here,
WalkQSAT only performs better than QuBE-BJ near the 10-percentile and only on a
few problems. There are some sets of structured instances on which WalkQSAT shows
very little variation in run time; this can be seen in the diagonal lines of data points for
WalkQSAT for which errorbars are not visible, with corresponding crosses for QuBE-
BJ with trivial truth. (these correspond to the CHAIN instances). WalkQSAT can per-
form better than QuBE-BJ with trivial truth, which illustrates the differences between
WalkQSAT and backjumping with trivial truth. WalkQSAT outperforms QuBE-BJ with
trivial truth on 168 runs on 13 different instances (i.e. 168 runs out of 1300 runs of
WalkQSAT in total), and QuBE-BJ on 340 runs on 20 different instances, out of the 257
structured instances we tested.

As was said previously, where QuBE-BJ and QuBE-BJ with trivial truth did not solve
a structured instance before the timeout, WalkQSAT was run on this instance to see if it
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Fig. 5. Run-times for QuBE-BJ vs. WalkQSAT and QuBE-BJ+TT on random model A instances
with 125 clauses. The error bars for the WalkQSAT run times indicate the range between the 10
and 90 percentiles of the underlying run-time distributions obtained for the respective instances.
The diagonal line indicates equal run-time for QuBE-BJ and the other algorithm; points below
(above) this line represent instances on which WalkQSAT or QuBE-BJ+TT, respectively, are faster
(slower) than QuBE-BJ.

could solve it. On one problem, TOILET10.1.iv.20 (true), WalkQSAT was able to solve it
in 27.37 seconds only once out of 100 runs. On the other 99 runs, WalkQSAT timed-out.
On one other problem, szymanski-16-s, QuBE-BJ both with and without trivial truth
could not solve the problem due to insufficient memory. On this problem WalkQSAT
solved the instance 12 out of 100 times with a median run time of 16.595 seconds.

In order to understand the run-time behaviour of WalkQSAT in more detail, we
studied run-time distributions (RTDs) for individual problem instances following the
methodology by Hoos and Stützle [8]. Since WalkQSAT, like WalkSAT, is a stochastic
algorithm, when applied to the same instance, its run-time will vary stochastically. It is
known that for WalkSAT, if sufficiently high noise parameter settings are used, the RTDs
are well approximated by exponential distributions [7]. As can be seen in Figures 7 and
8, this is not the case for WalkQSAT. Although considerable variability in run-time can
typically be observed, the right tail of the RTDs tends to be much skinnier, indicating that
the probability of very long runs (compared to the average or median run-time) is very
small. Interestingly, this appears to hold for satisfiable and unsatisfiable, random and
structured instances. It implies that, different from several state-of-the art randomised
systematic search algorithms for SAT, simple restarting strategies will not improve the
performance of the algorithm.

We also note that when measuring only the total number of WalkSAT steps, we
obtain run-length distributions that have substantially higher variability. But as can be
seen from our RTD results, this large amount of variability present in the WalkSAT runs
is reduced, rather than amplified when WalkSAT is used within the CSBJ framework.
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Fig. 6. Performance of WalkQSAT vs. QuBE-BJ and QuBE-BJ+TT on structured QBFLIB in-
stances. See Figure 5 for more details. Where a circle appears without error bars, there is little or
no variation in run time over 100 runs.

6 A WalkSAT Heuristic for QBF

The evaluation function of WalkSAT is usually the number of unsatisfied clauses, u. To
help reduce the number of universal variables assigned, and so help solution directed
backjumping, we alter the evaluation function of WalkSAT to be αu+βe, where e is the
number of satisfied clauses not satisfied by an existential. This gives us two parameters
to tune, α and β. Since the important factor is α/β, α is set at 10, and β is varied.

It is found that on Rintanen’s impl set of problems from QBFLIB, a value of β > 0
provides some significant improvements in run time. For example, on impl14, the median
run time was 18.1 seconds with β = 0 and 2.07 seconds with β = 1. With increasing
values of β, the median run time does not vary greatly, e.g. with β = 1000, the median
run time is 2.13 seconds.

Further analysis shows that QuBE-BJ with trivial truth is more effective on these
instances than without trivial truth. This is observed in Figure 6 as a set of points that
appear below the diagonal representing the impl problems. The reasoning for the effec-
tiveness of β on these problems is therefore likely to be that β > 0 makes WalkSAT
behave more like trivial truth. Whilst this is the case, it has also been observed that β > 0
on other problems has no detrimental effect; this suggests that it is safe to use a high
value of β just in case trivial truth helps on the problem. This is done with the risk that
with increasing values of β, the time spent by WalkSAT in optimising the solutions may
be better spent elsewhere and may result in WalkSAT not finding a solution at all. Of
course, we still do not throw away valuable search as is done in the trivial truth method,
but more unknown results may be returned.
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from the phase transition.

7 Related Work

There has been an increase in interest in solving QBFs in recent years, starting with
the introduction of a backtracking algorithm [6], followed by its application to planning
problems translated to QBF [10]. The next big step was the introduction of backjump-
ing for QBF [1], in particular solution directed backjumping which led to significant
improvements in runtime. This gave rise to the next logical step of learning in QBF
solvers [11, 5, 12], which provided improvements on some problems, whilst making
others worse.

The WalkSAT algorithm family [2,3,8] comprises some of the most widely studied
and best-performing SLS algorithms for SAT. Novelty+, the WalkSAT variant used in
WalkQSAT, was proposed in [7] and is based on the Novelty algorithm from [3].

Some interest in QBF has been on translation of QBF into SAT [13, 14]. This is
naturally exponential in space, but the resultant SAT problem can be given to any SAT
solver, including WalkSAT and other SLS solvers. To our best knowledge, WalkQSAT
is the first QBF solver using SLS, except in this trivial sense.

8 Conclusions and Future Work

In this paper, we have shown the potential of using stochastic local search methods in
QBFs. We introduced WalkQSAT, a new QBF solver that combines Conflict and Solution
Directed Backjumping (CSBJ) with a Stochastic Local Search procedure. We presented
empirical evidence indicating that WalkQSAT, although an inherently incomplete algo-
rithm, in most cases is able to correctly determine the satisfiability of a given QBF, and
in many cases correctly determines unsatisfiability. (Like incomplete SLS algorithms
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for SAT and other problems, by design, WalkQSAT never gives an incorrect result, but
may return “Unknown”.) Although our implementation of WalkQSAT is not optimised
for efficiency, it can solve several of the tested benchmark instances faster than QuBE-
BJ, a state-of-the-art QBF solver based on CSBJ, and can even solve two instances that
QuBE-BJ cannot. Our implementation of WalkQSAT is based on a CSBJ library that is
known to be less efficient than QuBE-BJ. Improving this library should help to provide
even better results.

A key issue in solution-directed backjumping is obtaining solutions which use only
a small number of universal variables, minimizing the size of the solution sets. We
have started to facilitate this by providing a modification of the evaluation function of
WalkSAT, which improves WalkQSAT’s performance on some instances. Furthermore,
whenWalkQSAT finds a solution quickly, it may be worth continuing the search to see if a
better solution can be found, involving fewer universals. This could be seen as a solution-
directed version of Schiex’s ‘stubbornness’ for conflict-directed backjumping [15].
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Abstract. For the last ten years, a significant amount of work in the
constraint community has been devoted to the improvement of complete
methods for solving soft constraints networks. We wanted to see how
recent progress in the weighted CSP (WCSP) field could compete with
other approaches in related fields. One of these fields is propositional
logic and the well-known Max-SAT problem. In this paper, we show
how Max-SAT can be encoded as a weighted constraint network, either
directly or using a dual encoding. We then solve Max-SAT instances using
state-of-the-art algorithms for weighted Max-CSP, dedicated Max-SAT
solvers and the state-of-the-art MIP solver CPLEX. The results show
that, despite a limited adaptation to CNF structure, WCSP-solver based
methods are competitive with existing methods and can even outperform
them, especially on the hardest, most over-constrained problems.

1 Introduction

Since the eighties, both constraint satisfaction and boolean satisfiability have
been the topic of intense algorithmic research. In both areas, the main problem
is to assign values to variables in such a way that no forbidden combination of
values appears in the solution.

Using closely related techniques such as backtrack search, local consistency
enforcing (aka constraint propagation), and constraint learning, both areas have
produced generic complete solvers which have been applied to a large range of
problems. In the SAT domain, one major area of application is electronic design
automation (EDA) with problems that range from formal validation to routing.

Quite early in the history of constraint satisfaction, the issue of infeasible
problems has been addressed [18,4,7]. Most of the recent algorithmic work has
focused on the so-called WCSP (weighted constraint satisfaction problem) where
the aim is to find an assignment that minimizes the sum of weights associated
with the constraints violated by the assignment. Complete algorithms that ad-
dress these problems rely on variants of depth-first branch and bound search
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using dedicated lower bounds. Since the early algorithms of [6], huge improve-
ments have been obtained using increasingly sophisticated lower bounds. Re-
cently [20,13,15], it has been possible to simplify and strengthen the definition
of these lower bounds by expressing them as a result of the enforcing of a local
consistency property.

In the SAT area, the similar issue of infeasible problems has been considered
more recently, leading to increasing interest in the (weighted) Max-SAT problem.
In Max-SAT, the problem is to assign values to boolean variables in order to
maximize the number of satisfied clauses in a CNF formula. Max-SAT has
applications in routing problems [26] and is also closely related to the Max-
CUT problem (other applications are described in [10]). When turned into a
“yes-no” problem by adding a goal k representing the number of clauses to be
satisfied, Max-SAT and even Max-2SAT (where clauses only involve 2 variables)
are NP-complete and more precisely MAX-SNP-complete. Both problems have
been intensively studied on the theoretical side.

The problem hardness has also been studied empirically in [27]. This phase
transition analysis of random Max-3SAT problems shows that using the usual
fixed length random SAT model, the Max-3SAT problem does not show an
easy/hard/easy pattern as the clauses/variables ratio increases but an easy/hard
pattern: the empirical complexity of Max-3SAT increases as this ratio increases.

As usual for solving NP-complete problems, either complete or incomplete
algorithms can be used to tackle the problem. There is a long list of incomplete
algorithms for Max-SAT. In this paper, we only deal with complete algorithms,
that identify provenly optimal solutions in finite time. Two main classes of com-
plete algorithms have been proposed based either on variations on the Davis-
Putnam-Logemann-Loveland (DPLL) approach for satisfiability or on 0/1 linear
programming models. Along the DPLL line, current solvers use pseudo-boolean
formulae to model Max-SAT [2,25,5,1]. A pseudo-boolean (PB) formula is a
linear inequality on boolean variables which can model clauses but also more
complex constraints such as cardinality constraints [24]. One of the first algo-
rithm in this line is OPBDP [2]. More recently, PBS (Pseudo Boolean Solver) [1]
was designed based on the Chaff SAT solver [16].

Also based on the DPLL algorithm, a more theoretical line of research has
tried to define complete algorithms that would provide non naive guaranteed
worst-case upper bounds on time complexity based on the overall length L of
the input formula or the number K of its clauses. While most of this work is
essentially theoretical and never reaches the level of actually implementing the
algorithms presented, one exception is [9] which implemented a Max-2SAT solver
that achieves worst case upper bounds of O(1.0970L) and O(1.2035K) 1.

Another natural approach to solve the Max-SAT problem is to model it as
a mixed integer linear program (MIP). This linear program can then be solved
directly by a dedicated MIP solver such as ILOG CPLEX. Note that dedicated
branch and cut algorithms above MINTO have also been defined [3].

1 These theoretical results have been very slightly improved since in [8], but no corre-
sponding implementation is available.
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In this paper, we model the Max-SAT problem as a weighted CSP. Because
most of the existing work on WCSP has been done on binary WCSP, we consider
two possible approaches: i) a direct conversion of clauses into constraints, which
produces non-binary problems and requires the solver to be adapted to deal with
them, and ii) a dual (binary) formulation as proposed in [14].

To solve converted Max-SAT instances, we use adapted versions of the WCSP
solvers defined in [15] which are depth-first branch and bound algorithms that
maintain some level of local consistency during search.

For comparison purposes, we also solve the original Max-SAT problems using
two dedicated solvers (OPBDP and PBS), a pure Max-2SAT dedicated solver
(max2sat by J. Gramm) and a general MIP solver (CPLEX). The results of
our experiments show that despite the fact that our generic WCSP code ignores
most clauses properties, uses classical CSP data-structures instead of specialized
clauses data-structures and relies on simple variable ordering, it can outperform
existing pseudo-boolean solvers, commercial MIP solvers and is even competitive
with a code restricted to Max-2SAT. The good performances of our algorithm are
especially obvious on problems with high clauses/variables ratio which is proba-
bly related to the strength of the lower bound induced by (full directional) soft
arc consistency. The results we get are consistent with what has been observed
in classical CSP when comparing arc consistency maintenance to eg. forward-
checking: the overhead for enforcing higher level of consistencies may slow down
the algorithm on relatively simple problems but provides both highly increased
performances and limited variability in the cpu-times on hard problems.

2 Notation and Definitions

2.1 Sat and (Weighted) Max-SAT

In propositional logic a variable vi may take values 0 (for false) or 1 (for true).
A literal �i is a variable vi or its negation v̄i. A clause Cj is a disjunction of
literals. A logical formula in conjunctive normal form (CNF) is a conjunction of
clauses. Given a logical formula in CNF, the SAT problem considers finding an
assignment of the variables that satisfies the formula, or getting a proof that no
such assignment exists.

When a logical formula is unsatisfiable, the Max-SAT problem tries to find
the assignment that satisfies as many clauses as possible. In the rest of the paper,
we assume that each clause Cj is associated with a positive weight wj . In this
case, the weighted Max-SAT problem looks for the assignment that maximizes
the sum of weights of satisfied clauses.

2.2 Weighted CSP

A constraint satisfaction problem (CSP) is a triple (X ,D, C), where X is a set
of variables {x1, . . . , xn}, D is a collection of domains {D1, . . . , Dn} and C is a
set of constraints {c1, . . . , ce}. Each variable xi ∈ X takes values in the finite
domain Di. A constraint ci is defined over a subset of variables var(ci), and
rel(ci) ⊂

∏
j∈var(ci) Dj specifies the value tuples permitted by ci. var(ci) is
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called the scope of the constraint and |var(ci)| is its arity. A tuple t is an ordered
set of values assigned to the ordered set of variables Xt ⊆ X . For a subset B of
Xt, the projection of t over B is noted t ↓B . A solution is a tuple involving all
variables that satisfies every constraint.

Following [13], we define Weighted CSP (WCSP) as a specific subclass of val-
ued CSP [21], where constraint costs can take their values in the set {0, 1, . . . , k}
and k represents a maximum acceptable cost, k ∈ {1, . . . ,∞}. The combina-
tion of two costs is done using bounded addition denoted ⊕ and defined as
a⊕ b = min{k, a + b}.

A WCSP is then a tuple (k,X ,D, C). X and D are variables and domains,
as in standard CSP. C is the set of constraints as cost functions. A constraint ci

assigns costs to assignments to variables var(ci) (namely, ci :
∏

j∈var(ci) Dj →
{0, . . . , k}). In the rest of the paper, we assume the existence of a unary constraint
for every variable and also a zero-arity constraint c∅ (if no such constraint is
defined, we can always define dummy ones ci(a) = 0,∀a ∈ Di and c∅ = 0).

When a constraint c assigns cost k or above to a tuple t, it means that c
forbids t, otherwise t is permitted by c with the corresponding cost. The cost of
a tuple t, noted V(t), is the bounded sum over all applicable costs,

V(t) =
⊕

ci∈C, var(ci)⊆Xt

ci(t ↓var(ci))

Tuple t is consistent if V(t) < k. The usual task of interest is to find a complete
consistent assignment with minimum cost, which is NP-hard.

3 Modeling and Solving the Max-SAT Problem

3.1 As a Pseudo-Boolean Problem

A pseudo-boolean (PB) problem is a special case of CSP where all variables
share a bi-valued domain D = {0, 1} and constraints are linear inequalities. A
PB constraint takes the form,

n∑
i=1

aijvi

≤
≥
=

bj , aij , bj ∈ Z

A Max-SAT instance with r clauses and n variables can be translated into a
PB problem as follows. We first introduce r extra variables yj (one per clause)
and replace clause Cj by the relaxed formula ¬Cj → yj which forces yj to 1
when Cj is violated. This formula can directly be represented by a clause and
translated to a pseudo-boolean formula denoted RPB(Cj) by replacing each
occurrence of v̄i by (1− vi) and the ∨ operator by +.

There is an extra constraint
∑r

j=1 wjyj ≤ K, where K ∈ [W, . . . , 0] and
W =

∑r
j=1,j �=m wj such that wm = maxj{wj}, j = 1, . . . , r. This constraint

bounds the maximum violation cost.
As example, the set of clauses {v̄1, v̄2, v1∨v2} (all with the same unit weight)

generates a PB problem with five variables and four constraints,
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(1−v1)+y1 ≥ 1 (1−v2)+y2 ≥ 1 v1+v2+y3 ≥ 1 y1+y2+y3 ≤ 2

This translation is the most compact encoding we could think of. In their
papers, the authors of PBS [1] use a less compact encoding where a stronger
formulation ¬Cj ↔ yj is used instead of ¬Cj → yj . This encoding was also
tested with PBS but provided similar results and it is therefore ignored in the
rest of this paper.

The PB problem is solved combining DPLL and constraint propagation.
branching. DPLL is used on the r constraints RPB(Cj) which have a clausal
structure. unsatisfied. When a y variable becomes instantiated by DPLL, this is
propagated through remaining constraints as follows. Assuming that {y1, . . . , yp}
is the subset of y variables instantiated, if

∑p
j=1 wjyj > K then this constraint

is violated. Otherwise, all unassigned yi such that wi > K−
∑p

j=1 wjyj must be
fixed to 0 (otherwise the constraint would be violated). This propagation may
generate new unary clauses, which are again propagated by DPLL, etc. In this
way, for a given K the problem is solved or is detected as unsolvable.

To find the minimum weight of unsatisfied clauses K should be minimized.
Initially, K takes value W . Then, either a depth-first branch and bound approach
(OPBDP) or an iterative approach (PBS) can be used. With iterative resolving,
clause learning can naturally speedup the solving process.

3.2 As a Mixed ILP

An integer linear problem (ILP) considers the minimization of a linear function
of integer variables under linear constraints. Mixed ILP involve continuous and
integer variables.

Given a Max-SAT instance with n variables and r clauses, it is translated
into a Mixed ILP as follows. We use r extra continuous variables yj , one per
clause. Each clause Cj is encoded as the linear constraint RPB(Cj) as in the
previous case. Note that integrality constraints on yi are useless since they only
appear in one constraint, where all other variables are integer. The function to
minimize is the weighted sum,

min
r∑

j=1

wjyj (1)

As example, the set of clauses {v̄1, v̄2, v1 ∨ v2} generates the following ILP,

min y1 + y2 + y3

1− v1 + y1 ≥ 1
1− v2 + y2 ≥ 1

v1 + v2 + y3 ≥ 1

where vi ∈ {0, 1}, i = 1, 2, yj ∈ [0, 1], j = 1, 2, 3.
The MIP is solved by computing its linear relaxation, obtained by replacing

the integrality requirements by simple bounds, 0 ≤ vi ≤ 1, i = 1, . . . , n. If
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the solution of the linear relaxation has integer v variables, it is compared with
the best solution found so far. If the solution has fractional v variables, one
vi is chosen for branching, generating two subproblems (one with vi = 0, the
other with vi = 1), which are solved by the same method. A number of other
sophisticated techniques can be involved in this process [3].

3.3 As a WCSP

Primal Encoding. A weighted Max-SAT instance is directly expressed as a
WCSP as follows. WCSP variables are the logical variables of the Max-SAT
instance, with the domain {0, 1}. Each clause Cj with weight wj generates a
cost function, which assigns cost 0 to those tuples satisfying Cj , and assigns cost
wj to the only tuple violating Cj . When two cost functions involve the same
variables, they can be added together. The WCSP solution, the total assignment
with minimum cost, corresponds to the solution of Max-SAT.

The algorithms used to solve the WCSP are specific depth-first branch and
bound algorithms. Such algorithms rely on an upper bound ub on the cost of the
optimal solution and a lower bound lb on the cost of the optimal extension of
the current assignment. The cost of the currently best known solution provides
ub. An ad-hoc mechanism provides lb. The current branch is pruned as soon as
lb ≥ ub.

Given the current assignment, we have an associated WCSP subproblem
where S(ub) is the valuation structure, c∅ is the current lower bound, and cur-
rent constraints are the constraints inherited from the parent node projected
according with the last assigned variable. To process this subproblem, a given
soft local consistency property is enforced at each node. As in the classical CSP
case, local consistency enforcing performs local computations that preserve the
semantics of the problem, prune infeasible values (whose use would provenly lead
to cost greater than or equal to ub) and may increase c∅ (see [19,13,15]).

The different levels of local consistencies we have considered are node con-
sistency (NC*), arc consistency (AC*), directional arc consistency (DAC*) and
full DAC (FDAC*), for binary problems as defined in [15]. These local consis-
tencies can be enforced in time O(nd) (NC*), O(n2d3) (AC*), O(ed2) (DAC*)
and O(end3) (FDAC*), where e is the number of constraints, n the number of
variables and d the maximum domain size.

Among these local consistencies, NC* is the weakest and FDAC* is the
strongest. DAC* and AC* are incomparable between them, both are stronger
than NC* but weaker than FDAC* [15].

Each form of local consistency defines a solver which maintains the corre-
sponding property. For instance, MFDAC is the branch and bound algorithm
that maintains FDAC* during search. Since the Max-SAT translation produces
non-binary constraints, we straightforwardly extend the previous local consis-
tencies to the non-binary case as follows: a problem is considered as locally
consistent iff it is locally consistent with respect to unary and binary constraints
(other constraints are delayed until their arity is reduced by further assignments).



Solving Max-SAT as Weighted CSP 369

Dual Encoding. An alternative modeling is the dual formulation [14]. There
is a variable xi for each clause Ci. The domain of xi is the set of possible
assignments to the logical variables in Ci. When xi takes one of its domain
values, it represents the fact that the logical variables of Ci have been assigned
accordingly. There is a unary constraint on each variable xi. This constraint
assigns cost 0 to each domain value satisfying clause Ci, and assigns cost wi to
the only domain value violating Ci (namely, the assignment which dissatisfies
every literal in Ci). There is a binary constraint between every two variables
xi and xj corresponding to clauses Ci and Cj sharing logical variables. This
constraint gives infinite cost to pairs formed by domain values which assign
different logical values to the shared logical variables, and cost 0 to every other
pair. The solution of the dual problem corresponds to the solution of the primal
problem, which produces a solution for Max-SAT. This formulation produces
a binary encoding, so that existing WCSP algorithm implementations can be
directly applied.

Heuristics. Each time a new variable has to be assigned, the algorithm looks
for variables with one feasible value and selects one of them first. If all variables
have two values, a variable selection heuristic must be used. Since all domains
have the same cardinality, a smallest-domain criterion may not be used.

We denote Tj =
∏

i∈var(cj) Di the set of tuples valuated by constraint cj .
Wj is the average cost given by cj , defined as Wj = 1

|Tj |
∑

t∈Tj
cj(t). We define

Zi =
∑

j∈C,i∈var(cj) Wj . It measures the average cost in which variable xi is
involved.

A natural heuristic would be to select the variable with the highest Zi, since
the assignment of such a variable is likely to produce high costs and, conse-
quently, anticipate pruning. The problem of this heuristic is its computational
cost. Unless we can exploit the semantics of the constraints to compute Wj effi-
ciently, its cost is O(e×dr) where e is the number of constraints, d is the largest
domain size (2 in MaxSAT) and r is the problem arity. We found this heuristic
very informative but it was not cost effective. Thus, we made an approximation.

Let Zk
i be the contribution of k-arity constraints to Zi. The approximate

heuristic selects the variable with highest Z1
i +Z2

i , which has cost O(e1d+ e2d
2)

with e1 and e2 being the number of unary and binary constraints. Only when
all variables have Z1

i + Z2
i equal to zero, we discriminate using Z3

i , which has
cost O(e3d

3) (this is rarely needed, typically at nodes near to the root). The
heuristics is used dynamically, all values are computed at each node according
to the current subproblem. Once the variable has been selected, the value with
the lowest unary cost is assigned first.

4 Empirical Results

Here we report the results of an empirical evaluation of WCSP techniques com-
pared to state-of-the-art pseudo-boolean and ILP solvers on a set of benchmarks.



370 Simon de Givry et al.

4.1 Benchmarks

The benchmarks are composed of:

– unsatisfiable instances of the 2nd DIMACS Implementation Challenge [12]:
random 3-SAT instances (aim and dubois), pigeon hole problem (hole), 2-
coloring problems (pret) and random SAT instances (jnh) with variable
length clauses (2-14 literals per clause).

– extended jnh instances weighted using uniformly distributed integer weights
between 1 and 1,000 [17].

– random 2-SAT and 3-SAT instances created by Allen van Gelder mkcnf
generator [23]. The generation parameters are the clause length l, the number
of variables n and the number of clauses r. We generated a set of instances
with (l, n, r) ∈ {2, 3}×{40, 80}×{100, 200, · · · , 3000} 2. For each parameter
configuration, 10 instances were generated. Note that this generator prevents
duplicate or opposite literals in clauses but not duplicate clauses.

We assume unit clause weights for all instances, except for the extended jnh
instances.

We experimented with the 4 types of local consistency (NC*, AC*, DAC* and
FDAC*) and 2 problem encodings (primal and dual). Among the 8 alternatives,
maintaining FDAC* with the primal encoding was the obvious best choice (it was
typically much better than any of the others, and never much worse). For clarity
in the analysis, we essentially report results on MFDAC. Our implementation of
MFDAC [15] (C code) is compared to four solvers:

– Pseudo-boolean optimization solver OPBDP v1.1 [2] (C++ code).
– Pseudo-boolean solver PBS v0.2 [1] (Sun binary).
– Max-2SAT solver max2sat [9] (Java code), only for 2-SAT problems.
– Commercial ILP solver CPLEX v8.1.0 [11] (Sun binary).

We used default configuration parameters for all the solvers, except for PBS
which used VSIDS decision heuristic (as advised by the authors) and for CPLEX
whose stopping criterion was set to gub− glb ≤ 0.999 to ensure completeness.

In order to reduce the search effort for all algorithms and put ourselves in
a realistic situation, we used walksat [22] with default parameters (10 runs of
100000 flips) to compute a first upper bound. This upper bound was injected in
all algorithms using either available configuration parameters or by modifying
the max2sat code to access an internal parameter. In the case of the DIMACS
instances, walksat always found the optimum, so the complete solvers had just
to prove optimality. In the case of extended jnh instances, we used the optimum
values from [17]. Because of this preprocessing step, CPLEX focused on opti-
mality proof rather than improving integer solutions (set mip emphasis 2). Note
that in general, only few Gomory fractional cuts were added by CPLEX. All the
experiments, except for CPLEX, ran on a Sun Enterprise 250 (UltraSPARC-
II 400MHz, 640 Megabytes at 100 MHz). CPLEX ran on a Sun Blade 1000
(UltraSPARC-III 750MHz, 1 Gigabytes) and a ratio (370/198 from SPEC CPU
2000 results) was applied for time measurements.
2 Only 2000 for 80 variables instances.
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Table 1. DIMACS unsatisfiable instances. Time in seconds. A “-” means the problem
was not solved in less than 600 seconds.

Name |V | |C| Opt M
F
D

A
C

O
P

B
D

P

P
B

S

C
P

L
E

X

aim-100-1 6-no-1 100 160 1 - 595 0 71
aim-100-1 6-no-2 100 160 1 - 92 0 23
aim-100-1 6-no-3 100 160 1 - - 0 11
aim-100-1 6-no-4 100 160 1 - - 0 2
aim-100-2 0-no-1 100 200 1 - 0 0 -
aim-100-2 0-no-2 100 200 1 - 54 0 -
aim-100-2 0-no-3 100 200 1 - 60 0 -
aim-100-2 0-no-4 100 200 1 - 33 0 -
aim-50-1 6-no-1 50 80 1 5 0 0 0
aim-50-1 6-no-2 50 80 1 0 0 0 0
aim-50-1 6-no-3 50 80 1 3 0 0 0
aim-50-1 6-no-4 50 80 1 0 0 0 0
aim-50-2 0-no-1 50 100 1 1 0 0 0
aim-50-2 0-no-2 50 100 1 0 0 0 4
aim-50-2 0-no-3 50 100 1 0 0 0 3
aim-50-2 0-no-4 50 100 1 1 0 0 0
dubois20 60 160 1 407 70 0 -
dubois21 63 168 1 - 145 0 -
dubois22 66 176 1 - 298 0 -
dubois23 69 184 1 - 596 0 -
dubois24 72 192 1 - - 0 -
dubois25 75 200 1 - - 0 -
dubois26 78 208 1 - - 0 -
dubois27 81 216 1 - - 0 -
dubois28 84 224 1 - - 0 -
dubois29 87 232 1 - - 0 -
dubois30 90 240 1 - - 0 -
hole06 42 133 1 0 1 0 0
hole07 56 204 1 7 27 1 0
hole08 72 297 1 123 - 10 0
hole09 90 415 1 - - 69 0
pret60 25 60 160 1 532 77 0 -
pret60 40 60 160 1 530 76 0 -
pret60 60 60 160 1 531 77 0 -
pret60 75 60 160 1 530 77 0 -
|solved| 35 35 35 16 24 35 16
Average 72.1 172.8 1.0 402.0 253.9 2.4 329.2

4.2 Results

The results for DIMACS benchmarks are shown in Table 1 and 2. For each
instance, the table lists the instance name, the number of variables (|V |), the
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Table 2. JNH instances with unit clause weights first and with random clause weights
next. Time in seconds. A “-” means the problem was not solved in less than 600 seconds.

Name |V | |C| Opt M
F
D

A
C

O
P

B
D

P

P
B

S

C
P

L
E

X

Opt M
F
D

A
C

O
P

B
D

P

P
B

S

C
P

L
E

X

jnh04 100 850 1 0 0 0 38 95 2 0 0 112
jnh05 100 850 1 0 0 0 3 183 3 0 0 60
jnh06 100 850 1 0 0 0 39 99 3 0 0 84
jnh08 100 850 2 11 1 13 33 462 11 1 0 157
jnh09 100 850 2 5 1 18 274 333 89 0 2 -
jnh10 100 850 1 0 0 0 5 85 4 1 0 16
jnh11 100 850 1 0 0 0 32 172 26 0 0 439
jnh13 100 850 2 12 1 16 28 109 4 0 0 20
jnh14 100 850 2 10 1 19 170 101 11 0 0 79
jnh15 100 850 2 12 2 20 86 206 9 1 0 89
jnh16 100 850 1 4 8 0 490 6 23 8 0 190
jnh18 100 850 1 0 1 0 31 130 15 2 0 184
jnh19 100 850 2 14 1 40 162 166 12 0 0 97
jnh202 100 800 1 0 0 0 2 68 0 0 0 8
jnh203 100 800 1 0 0 0 13 39 8 0 0 21
jnh208 100 800 1 0 0 0 8 79 7 0 0 35
jnh211 100 800 2 14 0 14 34 259 13 0 0 31
jnh214 100 800 1 0 0 0 7 75 3 0 0 34
jnh215 100 800 1 0 0 0 18 88 15 0 0 46
jnh216 100 800 1 0 1 0 8 12 1 1 0 32
jnh219 100 800 1 0 1 0 34 82 12 1 0 46
jnh302 100 900 4 241 76 - - 395 17 0 1 114
jnh303 100 900 3 247 37 - - 351 35 2 1 326
jnh304 100 900 3 31 7 207 150 321 3 0 0 92
jnh305 100 900 3 59 14 - 183 742 65 16 148 -
jnh306 100 900 1 0 2 0 144 16 7 2 0 96
jnh307 100 900 3 25 11 121 130 540 34 1 3 278
jnh308 100 900 2 124 1 17 82 130 3 0 0 60
jnh309 100 900 2 3 0 15 26 276 3 0 0 75
jnh310 100 900 3 69 7 295 173 463 18 3 14 426
|solved| 30 30 30 30 30 27 28 30 30 30 30 28
Average 100.0 851.7 1.7 29.4 6.3 86.8 120.6 202.8 15.2 1.9 5.9 148.7

number of clauses (|C|), the optimum (minimization of the clause violation), and
the total cpu time in seconds (rounded downwards) for the various solvers. In the
case of Table 2, there are two parts corresponding to the original jnh instances
and the extended jnh. In both tables, the last two lines give the number of
instances completely solved in less than 600 seconds and the average time for all
the instances (if unsolved, 600 is counted). Note that all these problems have an
extremely low optimum value, which means that they are near the satisfiability
complexity peak. As observed by [27], these instances are hard as SAT instances
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but easy as Max-SAT instances (the hardest instances have higher clauses to
variables ratio which causes high optimum values)

In Table 1, MFDAC was able to solve almost half of the instances while
PBS solved them all. We do not report larger instances (|V | > 100) where PBS
was the only successful algorithm (except for CPLEX on hole10). PBS contains
several SAT-solver sophistications like conflict diagnosis and clause recording
which make it efficient on instances near the transition phase. In comparison,
OPBDP is much simpler. But its specific design for SAT (dedicated SAT rules
and data structures) makes the difference with MFDAC: OPBDP can visit up to
3 times more nodes per seconds than MFDAC. CPLEX solved the same number
of problems than MFDAC and is the best choice for the structured (highly
symmetric) pigeon-hole problems3.

The original unsatisfiable jnh instances are best solved using OPBDP and
MFDAC (see table 2, first part) which solved all the instances. MFDAC was 4.6
times slower than OPBDP and explored 6-7 times more nodes than OPBDP.
We conjecture that our naive approach for tackling non-binary constraints is
responsible of this poor pruning behavior (recall that mean clause length in jnh
is equal to 5). PBS is 3 (resp. 14) times slower than MFDAC (resp. OPBDP),
mainly due to its bad performances on unsatisfiable instances with 3 or more
violated clauses at the optimum. CPLEX was slower than PBS but seems more
robust. Adding clause weights boosted all the solvers, except surprisingly for
CPLEX ([17] observed exactly the opposite but they were not using an initial
bound nor the same configuration parameters as us). OPBDP is still the best
choice, but PBS (with equivalences) is now second best and 4.6 times faster than
MFDAC.

With randomly-generated Max-kSAT instances and large clauses/variables
ratios, MFDAC was by far the best as it is shown in Figure 1. PBS and OPBDP
were unable to solve problems with more than 400 clauses. CPLEX exceeded
the time limit for Max-2SAT (resp. Max-3SAT) with 40 variables when there
are more than 800 (resp. 600) clauses. Considering Max-2SAT (40-variables),
MFDAC solved all the 300 instances in less than 156 seconds each. max2sat
was second best and solved 220 instances in less than 600 seconds each. At a
clauses/variables ratio of only 5 (200/40), we got the following numerical results
(mean time in seconds and in parenthesis, mean number of nodes and number
of problems completely solved): MFDAC 0s(429nd,10), CPLEX 0.7s(89nd,10),
max2sat 1.1s(257nd,10), OPBDP 47.7s(691887nd,10), PBS 582s(1139115nd,1).
At a clauses/variables ratio of 10 (400/40), results were: MFDAC 0.1s(4013nd,10),
max2sat 15.1s(6002nd,10), CPLEX 24.8s(4839nd,10), OPBDP > 600s(-,0) and
PBS > 600s(-,0). For Max-3SAT (40-variables), instances become more diffi-
cult, the gap between MFDAC and the other solvers was reduced (CPLEX is
8-9 times slower than MFDAC for a c/v ratio of 10) but the efficiency order be-
tween solvers remained the same. With more variables (Max-2SAT 80-variables),
CPLEX was faster than MFDAC if there are less than 400 clauses. And with

3 Pigeon-hole problems have very efficient encoding as pseudo-boolean formulae and
CPLEX may possibly detect this even if a clausal formulation is used.
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Fig. 1. Randomly-generated Max-2SAT and Max-3SAT instances with 40 variables.

Max-3SAT 80 variables, OPBPD was the winner, and MFDAC second best,
for less than 400 clauses. When clauses/variables ratio decreases and when the
clause length increases, instances are closer to the satisfiability threshold which
is beneficial to SAT-based solvers such as OPDPB. In summary, MFDAC proved
its superiority on large clauses/variables ratios. The speed-up obtained was even
more important on problems with small length clauses.
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5 Conclusion

On the Max-SAT problem, and despite a very limited adaptation of WCSP
code to CNF propositional logic formula, we observe that the use of recent local
consistency maintenance algorithms defined in [15] allows to reach a level of
performance competitive with recent Max-SAT complete solvers and state-of-
the art MIP solvers. This is especially true on the hardest problems, with a high
clause/variable ratio.

The current MFDAC code used is far from being finely optimized code and is
not specifically tuned to Max-SAT problems. For example, it does not specifically
exploit the fundamental properties of CNF in propositional logic: the fact that
domains are always binary and that dedicated data-structures can be used for
CNF representation. The extension of the local consistency to non-binary con-
straints could also be improved by studying subproblems involving more than 2
variables.

These results show that there is a clear opportunity to study if recent lo-
cal consistency notions like full directional arc consistency could be adapted
to propositional logic and injected in existing Max-SAT solvers. More work is
needed to see if these algorithms could be applied to other central combinatorial
optimization problems such as Max-CUT or the Maximum Probable Explana-
tion (MPE) problem in Bayesian networks.
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19. Schiex, T. Arc cohérence pour contraintes molles. In Actes de JNPC’00 (Mar-
seille, June 2000).

20. Schiex, T. Arc consistency for soft constraints. In Principles and Practice of
Constraint Programming - CP 2000 (Singapore, Sept. 2000), vol. 1894 of LNCS,
pp. 411–424.

21. Schiex, T., Fargier, H., and Verfaillie, G. Valued constraint satisfaction
problems: hard and easy problems. In Proc. of the 14th IJCAI (Montréal, Canada,
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Abstract. This paper discusses an approach to representing and reasoning about
constraints over strings. We discuss how string domains can often be concisely
represented using regular languages, and how constraints over strings, and do-
main operations on sets of strings, can be carried out using this representation.

1 Introduction

Constraint satisfaction problems (CSPs) involve finding values for variables subject to
constraints that permit or exclude certain combinations of values. Since many tasks
in computer science [13, 5, 22] and many real-world problems [23, 14, 16, 20] can be
formulated as CSPs, they have been attracting widespread research and commercial
interests for the last two decades. Whereas much work has been done on constraints over
finite discrete domains and numerical intervals, there has been little work on constraint
reasoning over strings.

Strings appear everywhere, from databases to DNA, and the relationships between
the strings and the real-world objects they represent can be formalized as constraints.
For example, we are applying constraint-based planning to provide automation in soft-
ware domains [9, 8], domains in which the actions are operations in a software envi-
ronment, such as moving files, searching for information on the Internet or image pro-
cessing. One characteristic of nearly all software domains is the ubiquity of strings and
constraints. File path names, URLs and the contents of text files and web pages are all
represented as text, which often obey specific constraints. For instance, many programs
have inputs or outputs in the form of files, whose names follow some canonical form:

– A Java compiler expects the pathname for the source code of
“my.package.MyClass” to be “my/package/MyClass.java,” and it produces a file
“my/package/MyClass.class.”

– The pathname of data down-linked from a spacecraft or planetary rover is often in
a form like “phase2/sol29/my instrument/seq0002.jpg,” where each component of
the pathname refers to some meaningful aspect of the data.

A distinguishing characteristic of software domains and other domains involving strings
is that the set of possible strings corresponding to a given name, input or file is either
infinite or so large that listing them all would require unacceptable amounts of time
and storage. The challenge of effectively representing and reasoning about constraints
on strings is to represent infinite string sets without actually requiring infinite space
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and to enforce constraints over infinite string sets without exhaustively listing the con-
sistent values. In this paper, we provide such a string representation, based on regular
languages, we discuss how common string constraints are defined and handled using
this representation, and we show how string constraint problems can be solved.

The remainder of the paper is organized as follows. In Section 2, we review no-
tations of constraint satisfaction problems. In Section 3, we discuss our string domain
representation, namely, regular languages. In Section 4, we provide definitions of useful
string constraints and describe how they are enforced using this domain representation.
In Section 5, we discuss how standard domain operations, such as intersection and
equality testing, are handled. In Section 6, we show how the string constraints can be
applied to solving some interesting problems. And finally, in Section 7 we conclude by
summarizing our contribution.

2 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a representation and reasoning frame-
work consisting of variables, domains, and constraints. Formally, it can be defined
as a triple < X ,D,C > where X = {x1,x2, . . . ,xn} is a finite set of variables, D =
{d(x1),d(x2), . . . ,d(xn)} is a set of domains containing values the variables may take,
and C = {C1,C2, . . . ,Cm} is a set of constraints. Each constraint Ci is defined as a rela-
tion R on a subset of variables V = {xi,x j, . . . ,xk}, called the constraint scope. R may
be represented extensionally as a subset of the Cartesian product d(xi)× d(x j)× . . .×
d(xk). A constraint Ci = (Vi,Ri) limits the values the variables in V can take simultane-
ously to those assignments that satisfy R. Let VK = {xk1 , . . . ,xkl} be a subset of X . An
l-tuple (xk1 , . . . ,xkl ) from d(xk1)× . . .×d(xkl ) is called an instantiation of variables in
VK . An instantiation is said to be consistent if it satisfies all the constraints restricted in
VK . A consistent instantiation of all variables in X is a solution. The central reasoning
task (or the task of solving a CSP) is to find one or more solutions.

A CSP can be solved by search using, e.g., standard backtracking algorithms [3, 10].
However, for CSPs with infinite domains such as those of interest in this paper, it is not
guaranteed that a solution can be found by search alone, because it is infeasible to enu-
merate all values of infinite variable domains. Instead, the CSPs with infinite domains
need to be relaxed by consistency enforcement before or during the search. Enforcing
local consistency eliminates inconsistent values from variable domains [15, 2]. In the-
ory, if a given CSP has only one solution, enforcing a certain level of consistency will
eventually make every variable domain a singleton domain; if the CSP has more than
one solution, or infinitely many solutions, every remaining value in the domain after
consistency enforcement will be part of a solution. In practice, an effective constraint
solving strategy enforces a certain level of consistency such as generalized arc consis-
tency [17, 18] at each node of the search tree. A key issue is the trade-off between time
spent on propagation and the reduction in the search space needed to allow feasible
and efficient search. Based on our experience dealing with constraint-based planning
in software environments, much depends on how the variable domains are represented
and how the constraints are evaluated or executed to enforce consistency. In the next
three sections, we focus on our string domain representation and a definition of con-
straints over string domains. These string constraints are in the constraint library of the
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constraint reasoning system we implemented and, together with other numerical and
boolean constraints, are used to model planning problems.

3 String Domains

We use the same CSP representation both to represent the constraint problem and to
search for a solution; the domain d(x) of variable x, representing the set of values that x
can take, will, in general, change during the course of search and constraint propagation.
Typically, a variable’s domain is represented as a list of values. For numeric domains,
we can instead represent a domain as an interval, yielding substantial decreases in space
and time requirements and making it possible to represent an infinite set of values [11].

In the domains of interest, we frequently want to represent infinite, or very large, sets
of strings, such as all possible pathnames matching a given pattern. Representing this
set as a list is clearly infeasible, since it is infinite. Intervals are equally inappropriate.
While it is possible to represent some sets of strings as intervals, such as all names
between “Jones” and “Smith” in the phone book, such intervals are far less useful in
practice than are numeric intervals.

However, there is an alternative representation of sets of strings that is far more
useful, as evidenced by its ubiquity: regular languages. Regular languages are sets of
strings that are accepted by regular expressions or finite automata, which are widely
used in string matching, lexical analysis and many other applications. Although there
are many languages that are not regular, such as palindromes, regular languages provide
a nice tradeoff between expressiveness and tractability. As we will discuss, not only can
we enforce generalized arc consistency (GAC) [2] for a wide range of useful string
constraints when the domains are represented as regular languages, but we can perform
the domain operations necessary for constraint propagation and search.

Regular languages are a much more flexible representation than intervals, in that
the set of regular languages is closed under intersection, union and negation, whereas
the set of intervals is only closed under intersection. Note that moving to an even more
expressive representation would not be an improvement. Neither context-free languages
(CFLs) nor deterministic CFLs are closed under intersection, and determining whether
a context-sensitive (or more expressive) language is empty is undecidable [12, p 281].

We use two different representations of regular languages: regular expressions and
finite automata (FAs). Regular expressions are used as input and are converted to FAs,
which are used computationally. A regular expression represents a regular language
over an alphabet Σ. In our implementation, Σ is the set of Unicode characters. We use
the notation described in Table 1 to describe regular expressions.

The purpose of the notation \c is to “quote” a symbol c that would otherwise be
interpreted as a syntax character. For example, \[ can be use to refer to the character “[”
and \\ refers to the character “\”.

We represent regular languages internally using FAs, since they are easier to com-
pute with than regular expressions. An FA is a pair < S ,T >, where S is a set of states
and T is a set of labeled transitions between the states. Each transition in T is a triple

< s1, l,s2 >, which we will write < s1
l→ s2 >, where s1 is the starting state of the

transition, s2 is the ending state and l ∈ Σ is the transition label. The input to the FA is
a sequence of symbols from Σ. Whenever there are symbols left to read, the FA reads
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Table 1. Regular expression syntax

Expression Accept
[abc] one of the characters a,b,c
[a−c] one of the characters in the range a−c
˜[abc] any character in Σ except a,b,c

. any character in Σ
\c the literal character c

re1re2 re1followed by re2

re1|re2 either re1or re2

re∗ zero or more repetition of re
re+ one or more repetitions of re
re? zero or one occurrences of re
(re) re (used to override precedence)

the next symbol, c, and follows a transition from the current state whose label is c. If
there are multiple transitions labeled c, one is chosen nondeterministically. If there are
no transitions labeled c, the FA halts and returns failure. For efficiency, we allow transi-
tions to have sets of labels, represented using the same notation as shown in the first five
rows of Table 1 (i.e., one-character regular expressions). For example, we could have a

transition < s1
[a−zA−Z]→ s2 >, meaning the transition will be taken if the symbol is any

character from the English alphabet. This is logically equivalent to having a separate
transition for each symbol. For notational convenience, we also refer to transitions la-
beled with ε. An ε-transition is always applicable and is followed without reading any
characters. An FA has a single start state, which is always the first state, S [0], and zero
or more accept states. To determine whether a string s is in the language accepted by an
FA < S ,T >, we start the FA in S [0] and have it read s until there are no characters left
to read. If, at that time, the FA is in an accept state, then s is in the language. Otherwise,
it is not. In our visual depiction of FAs, we represent states, transitions, start states and
accept states as follows:

A deterministic finite automaton (DFA) is an FA with no epsilon transitions and in
which there is exactly one transition out of every state for each label l ∈ Σ. An FA that
does not satisfy these conditions is a nondeterministic FA (NFA). The minimal DFA
representation of a language is a unique, subject to renaming the states [12, p 57]. In the
remainder of the paper, we will assume an FA is an NFA unless stated otherwise. NFAs
and DFAs have equivalent expressive power, in that both accept the family of regular
languages, but NFAs may be exponentially smaller. We call a domain represented using
a regular expression or FA a regular domain.

Regular expressions and FAs have been used in many application domains involv-
ing strings, such as data mining from databases or the Web. For example, in [6], the
authors addressed the issue of mining frequent sequences from a database of sequences
in the presence of regular expression constraints (see [1] for a detailed discussion on the
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issue of mining sequential patterns). Regular expression constraints are user-defined se-
quence patterns that are used to match strings in the database or web during query or
search. Our work differs from past work in that we do not simply use regular lan-
guages to match fixed strings. Rather, we use them to propagate constraints among
string variables, whose domains may be infinite. For example, match is indeed a com-
mon constraint in our library. However, the domain of the string to be matched need not
be singleton. In addition to match, many other types of string constraints appearing in
real-world problems need to be represented. We discuss some common ones in the next
section.

There has been some work applying constraint reasoning to strings, but relying on
less expressive representations of string domains. [4] reports on a language capable of
specifying constraints for searching patterns in bio-sequences, such as the length of a
string, the distance between two strings, and the position of a string where a character
matches. The sequences (strings of symbols) are represented as lists, and the constraints
and the constraint solver are implemented using CLP(FD). [19] discusses CLP(S), CLP
extended to deal with strings, and its applications to natural language, images and ge-
netic code processing. In contrast to the work presented here, strings are represented
as concatenations of variables and constants, which are strictly less expressive than the
regular language representation presented here.

4 Constraints

Constraints are usually defined as mathematical formulations of relationships to be held
among objects. For example, x+y = z is a constraint describing an equality relation that
holds among three numeric variables x, y, and z. Similarly, for the string variables x, y,
and z, we can define a string constraint as x + y = z which represents a concatenation
relation; that is, string z is the concatenation of strings x and y. We have implemented
a number of string constraints in our constraint reasoning framework, which supports
generalized arc consistency (GAC), even on infinite sets of strings. In the following, we
give definitions of these constraints, illustrated by how they are enforced using FAs.

4.1 Matches

One of the constraints in the library tests whether a string matches a given regular
expression:

matches(string x, regexp re)

Although matches takes two arguments, it is essentially a unary constraint, because it
is not enforced unless the domain of re is a singleton, in which case it computes the
FA corresponding to the regular expression represented by re and intersects it with the
domain of x. Matches subsumes all possible unary constraints over strings expressible
in our formalism, so other unary constraints, such as allUpperCase and isAlphaNumeric
need not be implemented. Matches is used in type constraints to define the initial do-
mains of variables of given subtypes of string. For example, we can define a Unix
filename as any string of non-zero length that does not contain the character ’/’:
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matches( f ilename, “˜[/]+”)

and we can define a time as a string of the form HH:MM:SS:

matches(time, “(([0−1][0−9]) |(2[0−3])) : [0−5][0−9] : [0−5][0−9]”)
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Fig. 1. Concatenation

4.2 Concatenation

One of the most obvious operations on strings is concatenation. The concatenation of
two strings, x and y, yields another string, z, which consists of all the characters of x
followed by all the characters of y:

concat(z,x,y)

This can be generalized to concatenation of three or more strings in the obvious way.
If the domains of x and y are regular, the domain of z will simply be the result of
concatenating the FA representations of x and y — that is, adding ε-transitions from the
accept states of the FA for x to the start state of the FA for y, as shown in Figure 1,
obviously a linear-time operation.

Less obviously, if the domains of x and z are regular, the domain of y is also regular.
To construct an FA for y given FAs for x and z, we in effect traverse the FAs for z and x
in parallel, exploring the cross-product of the nodes from the two FAs, starting with the

pair of initial states and adding a transition {sn,tm} lab→{sp, tq} from every node {sn, tm}
and every label lab such that the transitions sn

lab→ sp and tm
lab→ tq appear in the original

FAs (see Figure 2). This is simply the operation that is performed when intersecting two
FAs (Section 5.1). Whenever we reach a state {s,t}, such that s is an accept state in the
FA for x, we mark state t. After the traversal is complete, the marked states in the FA
for z represent all of the states that can be reached by reading a string accepted by x.

A new nondeterministic FA (NFA) for y is constructed by copying the FA for z,
making the start node a non-start node and making all the marked nodes new start
nodes. The complexity of the whole operation is dominated by generating the cross-
product FA, so is the same as domain intersection (Section 5.1). A similar procedure
can be used to construct an NFA for x, given FAs for y and z.
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Fig. 2. Given FAs for x (left box) and z (right box), find an FA for y such that z is concatenation
of x and y. First, traverse FAs for z and x in parallel, constructing cross-product FA (lower left).
Then, identify states that are accept states for x and mark the corresponding states in the FA for z
(shaded circles). Construct a new NFA (right) for y by copying the FA for z and making marked
nodes start nodes

4.3 Containment

The relation

contains(String a, String b)

means that string b is a substring of a. If the domain of b is a regular language r, then
the domain of a is given simply by the regular expression “.*r.*”. Given an FA for r,
we can create an FA for “.*r.*” in linear time by concatenating the FAs for “.*”, r and
“.*”. If we have some other FA representing the domain of a, we simply intersect that
domain with the domain for “.*r.*”.

Less obviously, if the domain of a is regular, then so is the domain of b. Given an FA
for a, we can construct an NFA for b in linear time by eliminating any dead-end nodes
from a (that is, nodes from which it is impossible to reach an accept node), adding a
new start state, with ε-transitions to all states, and then making all states in a accept
states (Figure 3). Again, we simply intersect this domain with the original domain for b
to enforce the constraint.
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Fig. 3. Given an FA for a regular language r, construct a new FA for all substrings of strings in r
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4.4 Length

Constraints on the length of a string can also be represented using FAs:
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length = 5 length <= 5

length >= 5 3 <= length <= 5

As these examples show, intervals over the length are simple to represent; if we have a
constraint of the form length(s,n), and the domain of n is represented as a finite interval,
we can enforce the constraint without waiting until n becomes singleton. We simply
construct a linear FA whose size is one plus the upper bound of n, and label all of the
states whose position exceeds the lower bound as accept states. Similarly, if d(n) =
[x,∞), we construct a linear FA of size x+1 and make the last state an accept state with
a self-transition. The time to construct the FA is proportional to either the upper bound
of n, or to the lower bound if there is no upper bound.

Conversely, if we have a regular domain representation of s, we can obtain lower
and upper bounds for n by determining the shortest and longest paths from the start
state to an accept state, a linear-time operation. If there is no upper limit on the size,
there will be a loop along a path to an accept state.

4.5 Other Constraints

Many other string constraints are straightforward to represent. To reverse all strings in
a regular domain, we simply reverse the direction of all the transitions and reverse the
status of start and accept states in the FA, a linear time operation. If doing so would
result in multiple start states, we create a new, unique start state and add ε-transitions
to all would-be start states. To substitute one character for another, we can perform the
substitution on the labels of the transitions, also linear time. Subsequences of strings
can be obtained using a combination of concat and length. For example, to specify the
5-character prefix p of string s, we can write length(p,5)∧concat(s, p,r), where r is an
unconstrained string.

Another common operation on strings is to specify the character at a given location
of the string: characterAt(s,n,c), where c is the character at position n of string s. We
will assume than n is a constant (The case where n is a variable can be handled in a
similar fashion, but is more complex). We apply the same general idea as the length
constraint. In fact, for the character at position n in a string to have any value at all,
the string must be at least n characters long, so the characterAt constraint looks like the
constraint length ≥ n, with the addition that the label of the transition leading to the
accept state is restricted to the domain of c. Given the domain of s, we could similarly
determine the domain of c in O(n(|S |+ |T |)) time, by finding all states reachable in
n− 1 transitions from the start state, then taking the union of the labels of transitions
from which it is possible reach an accept state.
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Of the constraints we discussed, matches, concat, contains and reverse are imple-
mented in our constraint library. Implementation of the others is left as future work.

5 Domain Operations

In order to effectively eliminate inconsistent values from regular domains during con-
straint propagation, we need to be able to perform set operations on the domains, in-
cluding intersecting two domains, determining whether one is a subset of another and
determining whether a domain is empty or singleton. We can perform these operations
easily using FAs. It is well known that regular languages are closed under intersection,
union and negation [12, p 58-60], and the algorithms for performing these operations
on FAs are straightforward.

5.1 Intersection

Since intersection is such an important domain operation, we show the algorithm for
intersection below.
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let init ←{S1[0],S2[0]}
push init
let S ′ ← {init}, T ′ ← {}
while(stack not empty)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{s1,s2}← pop;
isAccept({s1,s2}) ← isAccept(s1) and isAccept(s2)

foreach lab ∈ Σ such that < s1
lab→ sx >∈ T1and < s2

lab→ sy >∈ T2⎡⎢⎢⎢⎣
add < {s1,s2} lab→ {sx,sy} > to T ′
if({sx,sy} /∈ S ′)[

add {sx,sy} to S ′
push {sx,sy}

return < S ′,T ′ >

The graph is built by exploring reachable states in S1 ×S2, starting from the pair of ini-
tial states. Because of the test in the innermost loop, no state in S1 ×S2 will be visited
more than once. In the idealized case of a DFA in which each transition is represented
explicitly, the size of the new FA, and the time to build it, is thus O(|Σ| |S1| |S2|), inde-
pendent of the number of transitions in the input FAs. In reality, transitions have sets
of labels, and the intersections of these sets can result in additional transitions. For ex-
ample, given transitions in one FA on [a-g] and [h-z], and a transition in the other FA
on [d-k], we may end up with transitions in the new FA on [a-c], [d-g], [h-k] and [l-z].
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Additionally, an NFA may contain multiple transitions on the same label, so at worst
we need to consider all pairs of transitions from the input FAs, giving a space and time
complexity of O(|T1| |T2|+ |S1| |S2|).

5.2 Negation
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Complementing the accept states of a DFA results in a DFA accepting the complement
of the language [12, p 59]. Although complementing the accept states is clearly a linear
time operation, converting an NFA to a DFA potentially generates the power set of the
NFA, an exponential blowup. Although neither intersection nor negation result in NFAs,
some of the constraints defined in Section 4 do.

Given intersection and negation, we can apply the following definitions to compute
subset and equality relations between two domains:

( f a1 ⊆ f a2) ≡ (¬ f a2 ∩ f a1 = /0)
( f a1 = f a2) ≡ ( f a2 ⊆ f a1)∧ ( f a1 ⊆ f a2)
( f a1 − f a2) ≡ ( f a1 ∩¬ f a2)

5.3 Splitting Domains

Using regular sets as a domain representation, we can propagate constraints very ef-
fectively, even when some of the variable domains are infinite. Searching over infinite
domains, in contrast, runs the risk of infinite regress, but it can be done by successively
splitting the domain into disjoint subsets. Any regular set r can be used to split a domain
d, provided neither r nor its complement has an empty intersection with d. The new do-
mains are d∩r and d∩¬r. In some applications, a natural choice for sets to split on may
present itself. Otherwise, we can easily derive a set r from d by removing transitions
from the FA for d. As long as |d| > 1, there will be at least one transition leading to an
accept state that can be removed without making the language empty (although doing
so may require partially unrolling a cycle). r is guaranteed to be a proper subset of d.

5.4 Domain Size

It is important be be able to determine the size of a domain. For example, if the size
is 0 (empty), then the constraint network is inconsistent. If the size is 1, then a value
for the corresponding variable is determined. Domain size is also useful for variable-
ordering heuristics, and knowing whether a domain is finite or infinite is important to
avoid searching over infinite domains. Determining the size of a regular domain is less
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straightforward than determining the size of a set or interval domain, but it can still be
done fairly efficiently.

Given a DFA, we can determine the number of strings in the language as follows.
We begin by removing all dead-end states from the FA, a linear-time operation. A dead-
end state is a state from which it is impossible to reach an accept state. If the initial state
is dead-end, then the domain is empty. Once the dead-end states are removed, if the
FA contains any loops, then there are infinitely many solutions, because we can follow
a loop any number of times and then follow a path to an accept state. We perform a
topological sort of the FA, which is linear in the number of arcs. If the sort fails, then
there is a loop and thus infinitely many solutions. Otherwise, we traverse the graph in
the order dictated by the topological sort, keeping track of the number of paths there are
from the initial state to the current state:

size(< S ,T >)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S ← topologicalSort(S)
pathsFromInit[0] = 1
for i = 0 to —S—⎡⎣ if isAccept(si) thennumSolutions += pathsFromInit[i]

foreach transition < S [i] l→ S [d] >∈ T
[ pathsFromInit[d] += pathsFromInit[i]

return numSolutions

Let Wi ⊂ Σ∗ be the words that, when read from the initial state, lead to S [i]. To show
that the algorithm produces the correct result, we first show that, for all k, before the kth
iteration of the for loop, pathsFromInit[k] =

∣∣Wk
∣∣. The proof will be by induction on k.

Base case: Because S is topologically sorted, S [0] is the initial state. Before the for
loop is executed, pathsFromInit[0] = 1 = |ε| = |W0| . Now assume, for all j < k, that
pathsFromInit[j] =

∣∣W j
∣∣. Let Sk be the set of states with transitions to S [k]. Because S

is sorted topologically, ∀S [i] ∈ Sk, i < k, so all transitions to S [k] are visited (foreach
loop) before the kth iteration of the for loop. Because the FA is deterministic, no word

can be reached by multiple paths, so |Wk| = ∑S [i]∈Sk

∣∣Wi
∣∣ ∣∣∣{c| < S [i] c→ S [k] >∈ T

}∣∣∣.
By assumption,

∣∣Wi
∣∣= pathsFromInit[i], so this is precisely the value stored in paths-

FromInit[k] by the kth iteration.
Finally, it suffices to observe that numSolutions=∑{i |isAccept(S [i])}pathsFromInit[i]

= ∑{i |isAccept(S [i])}
∣∣Wi
∣∣, i.e., the number of words accepted by the FA.

6 Examples

6.1 Pathname

In Unix, sets of files are often represented using regular expressions on their pathnames.
Correspondingly, regular domains are very useful for representing sets of files in a
constraint-based planning problem. In addition to the ability to represent large sets con-
cisely, we can also handle constraints that relate the file’s pathname to other attributes
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of the file. For example, satellite images and other automatically generated data are typ-
ically stored in ordinary filesystems, with pathnames based on details of the data, such
as the time, subject, source, file format, etc. Suppose we have a remote archive in which
satellite images have pathnames of the form:

/downlink/< year > /< dayOfYear > /< sensor >< gridx >< gridy > . < format >

We can represent this knowledge using a concatenation constraint:

rpn= concat(“/downlink/”, y, “/”, d, “/”, s, gx, gy, “.”, f mt).

Given only this knowledge, all we know about the remote path names, rpn, is they
are characterized by the regular expression “/downlink/.*/.*/.*/.*\..*”. However, we
may know quite a bit about the other variables, such as how many years the satellite
has been in operation, how many days are in a year, the sensors aboard the satellite,
the grid coordinate system used to indicate the regions covered by the images, and
the available formats. Assuming we are interested in just a subset of the data, we can
impose additional constraints on these variables to specify just the files we are interested
in. For example, if we want MOD17 data from January 27, 2002 in either HDF or binary
format, then the domain of rpn is
“/downlink/2002/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)”

String constraints are not just useful for specifying sets of files, but also specifying
the effects of file operations. Since the files are on a remote server, we can’t access them
directly, but we can copy them to a local disk. Suppose we executed the command scp
-r server:/downlink/2002 local02 to copy the contents of the directory 2002 to
the directory local02. We can describe the effect on the local pathnames, l pn, of the
resulting files using the pair of constraints:

1. concat(rpn, “/downlink/2002/”, ldir)
2. concat(l pn, “local02/”, ldir)

Since the concat constraint can be used to derive the domain of any variable given the
domains of the other two variables, and since we know that the domain of rpn (limited
to the files we care about) is

/downlink/2002/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)
we can enforce the first constraint to obtain the domain of ldir:

27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)
We can then apply the second constraint to obtain the domain of l pn:

local02/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)
If, after copying the files, we discovered that there are only HDF files, we could apply
the same constraints in the other direction to conclude that there were no binary files on
the server.

6.2 Crossword Puzzle

Another application of string constraints is the crossword puzzle problem. Solving
crossword puzzles is a popular pastime and also a well-studied problem in computer
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science. The full problem of solving crossword puzzles, given only the puzzle layout
and a list of clues, is a hard problem that involves many aspects of AI [21]. A more
commonly addressed problem is generating crossword puzzles, given a fixed board and
a list of possible words [7]. This problem becomes a classic constraint satisfaction prob-
lem, where the variables of the constraint problem are word slots on the puzzle board
in which words can be written, the domains of variables are available words, and the
binary constraints on variables enforce the agreement of letters at intersections between
slots. Solving the problem reduces to finding a solution to the constraint problem: an
assignment of values to the variables such that each variable is assigned a value in its
domain and no constraint is violated.

We can use string constraints to formalize the crossword puzzle problem. There is
a variable for each slot, each intersection point and each contiguous segment of text
within a slot that does not cross an intersection. The variables for word slots take val-
ues from all available words, the variables for intersection points take values of letters
from the alphabet, and the variables for segments take values of unknown strings of
fixed length. Each word slot is constrained to be the concatenation of the segments and
intersection points that it contains.

For example, suppose that we have the following crossword puzzle that is taken
from http://yoda.cis.temple.edu:8080/UGAIWWW/lectures95/search/puzzle.html:

The list of words: 

AFT
ALE
EEL
HEEL
HIKE
HOSES
KEEL
KNOT

LASER
LEE
LINE
SAILS
SHEET
STEER
TIE

x1 x2 x3

x4 x5

x6 x7

x8

c1 c2

c3 c4 c5

c6 c7 c8

c9 c10 c11 c12

b1 b2

b3 b4

b5

b6

b7

b8

b9

To formalize this puzzle as a CSP with string constraints, we have

– 8 variables for the word slots as marked from x1 to x8

– 12 variables for those intersection points marked as ci

– 9 variables for these segments marked as bi

We have 8 constraints as follows:

1. concat(x1,b1,c1,b2,c2)
2. concat(x2,c1,b3,c3,c6,c10)
3. concat(x3,c2,b4,c5,c8,c12)
4. concat(x4,b5,c3,c4,c5)
5. concat(x5,c4,c7,c1,b6)
6. concat(x6,b7,c9,b8)
7. concat(x7,c6,c7,c8)
8. concat(x8,c9,b9,c10,c11,c12)
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It is worth noting that, although we may have more variables than the traditional CSP
formalization, only the xi variables, that is, those variables representing word slots,
need to be searched during the CSP solving. Other variables will be assigned values by
propagation. In fact, with the constraint system we implemented to support a constraint-
based planner, we can solve the above crossword puzzle example without backtracking.

7 Conclusions

We have discussed an approach to constraint reasoning over strings in which regular
languages are used to represent and reason about infinite sets of strings. Regular lan-
guages have a number of qualities to recommend them as a domain representation:

– They are closed under intersection, union and negation.
– They can concisely represent infinite sets of strings.
– Many natural string constraints, such as concatenation, containment and length, can

be represented in terms of operations on regular languages.
– They are widely used and well understood.

These advantages do come at a price; it can be substantially more costly to represent
and reason about regular languages than, say intervals. All of the set operations and
string constraints we have discussed are either linear or quadratic in the size of the
FAs representing the string domains. However, as noted, converting an NFA to a DFA
may result in an exponential blowup in the size of the FA. Furthermore, even when
every operation on the FA results in a polynomially larger FA, the FA can still grow
exponentially with the number of operations, i.e., the number of constraints that contain
the variable whose domain is represented by the FA. Ultimately, how the FA grows will
depend on the nature of the problem at hand. The FA representation can be viewed as a
compression of the full sets of strings. It will tend to do well at compressing sets with
a lot of symmetry and simple structure, but will not do so well at compressing arbitrary
lists of strings, where there is little or no structure to exploit. In the latter cases, the
representation will blow up, converging toward an explicit list of the members. The
exponential blowup in the representation can be viewed as a failure in the exponential
reduction that FAs are capable of providing.

We have implemented a constraint-based planner that uses many of the string con-
straints discussed here and demonstrated it in software planning domains. Our imple-
mentation is complete, but inefficient. Although there are many highly optimized FA
packages freely available, they are tailored to string matching, not domain representa-
tion, so we wrote our own, with little regard for efficiency. For example, our algorithm
for DFA minimization is O(|T | |S |2), even though much faster algorithms are available.
Improving the efficiency, and exploring other domains, such as bioinformatics, is the
subject of future work.
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Tractability by Approximating
Constraint Languages
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Abstract. A constraint satisfaction problem instance consists of a col-
lection of variables that need to have values assigned to them. The assign-
ments are limited by constraints that force the values taken by certain
collections of variables (the constraint scopes) to satisfy specified prop-
erties (the constraint relations).
As the general CSP problem is NP-hard there has been significant effort
devoted to discovering tractable subproblems of the CSP.
The structure of a CSP instance is defined to be the hypergraph formed
by the constraint scopes. Restricting the possible structure of the CSP
instances has been a successful way of identifying tractable subproblems.
The language of a CSP instance is defined to be the set of constraint rela-
tions of the instance. Restricting the language allowed for CSP instances
has also yielded many interesting tractable subproblems.
Almost all known tractable subproblems are either structural or rela-
tional. In this paper we construct tractable subproblems of the general
CSP that are neither defined by structural nor relational properties.
These new tractable classes are related to tractable languages in much
the same way that general decompositions (cutset, tree-clustering, etc.)
are related to acyclic decompositions. It may well be that our results will
begin to make language based tractability of more practical interest.
We show that our theory allows us to properly extend the binary max-
closed language based tractable class, which is maximal as a tractable
binary constraint language. Our theory also explains the tractability of
the constraint representation of the Stable Marriage Problem which has
not been amenable to existing explanations of tractability. In fact we
provide a uniform explanation for the tractability of the class of max-
closed CSPs and the SMP.
There has been much work done on so called renamable HORN theories
which are a tractable subproblem of SAT. It has been shown that renam-
able HORN theories are tractably identifiable and solvable. It has also
been shown that finding the largest sub-theory that is renamable HORN
is NP-hard. These results also follow immediately from our theory.

1 Introduction

The Constraint Satisfaction paradigm involves modelling a real-world problem
as a set of variables to which we can assign values from some domain [24]. The
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values that can be assigned are limited by constraints. A constraint consists of a
list of variables (its scope), and a set of tuples which are the allowed assignments
to this list of variables (its relation). A solution is the assignment of a value from
the domain to every variable so that all of the constraints are satisfied.

The decision problem for general constraint satisfaction is NP-hard [23]. This
motivates the search for subproblems which are tractable. Given some general
problem instance we would like to determine if it lies in one of these tractable
problem classes and therefore apply a specialised solution technique.

We define the structure of a constraint satisfaction problem instance (CSP)
to be the hypergraph whose hyperedges are the scopes of the constraints. The
class of CSPs whose structure is acyclic form a tractable subproblem [3]. This
structural tractability result has been extended by identifying hypergraphs which
are “nearly” acyclic (cycle-cutset [9], hinges [12,19], tree-clustering [10], hyper-
trees [17], etc.). The class of instances with such a structure can be tractably
reduced to the acyclic case. It is these widely applicable approximations to acyclic
structure that make structural tractability so useful.

The language of a CSP is defined to be the set of constraint relations of the
instance. If we restrict the language of a CSP appropriately we can also obtain
a tractable subclass — a so called relational subproblem [20]. Languages that
lead to tractable relational subproblems are called tractable languages.

This paper introduces a new study: approximations to tractable language
classes. It is hoped that, by generalising these classes, we make them easier to
apply to practical problems.

The approximation technique that we apply to CSPs is to identify those that
can be reduced to tractable relational subproblems by (independently) permut-
ing the domain values for each variable. We will show that a generic method for
determining whether a domain permutation approximation exists for a particular
instance corresponds exactly to solving an associated “lifted” problem instance.
When the class of lifted problems for a tractable language is itself tractable then
we obtain a new large tractable class. The tractable classes of instances that we
generate cannot in general be specified by any structural or relational restriction.

Even though identifying domain permutation approximations may be NP-
hard this does not reduce its practical applicability. In fact (optimal) structural
decompositions are also NP-hard to discover and we have to accept a limitation1.
However, the extensions of acyclic structure to structural approximations has
still been of immense practical value.

Using this new approximation technique we have extended the well-known
binary max-closed class of tractable CSPs, which is a maximal binary relational
subclass [21].

Our theory also explains the tractability of the constraint representation of
the Stable Marriage Problem (SMP) [15].

1 Structural approximations are ranked by a so called width parameter. Smaller widths
are better, acyclicity corresponds to width 1. For any fixed k, determining whether a
width k or better structural approximation exists is usually the best we can achieve.
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We have also explained the tractability of renamable HORN theories [22,2].
What is more we can explain directly why it is NP-hard to find the largest
renamable HORN theory which is a subset of a given set of clauses [11].

1.1 Outline of the Paper

In Section 3 we define the new concept of approximating a tractable language.
In Section 4.3 we use the theory to construct novel examples of tractable sub-
problems of the constraint satisfaction problem. In Section 4.4 we use the new
theory to provide an explanation of why arc-consistency is a decision procedure
for the constraint representation of the Stable Marriage Problem. In Section 5
we show that the main results from renamable HORN theory may be obtained
directly from the theory of approximating tractable languages.

2 Definitions

Definition 1. A Constraint Satisfaction Problem instance (CSP), P , is
a triple, 〈V,D,C〉 where:

– V is a set of variables.
– D is any set, called the domain of the instance.
– C is a set of constraints.

Each constraint c ∈ C is a pair 〈σ, ρ〉 where σ is a list of distinct variables
of V and ρ is a |σ|-ary relation over D.

A solution to P is a mapping φ : V → D such that, for each 〈σ, ρ〉 ∈ C,
φ(σ) ∈ ρ.

Informally we may describe V as a set of questions that need to be answered.
The domain D is the set of all possible answers that can be given to any of these
questions. A constraint is a rationality condition that limits the answers that
may be simultaneously assigned to some groups of questions. A solution is then
a satisfactory set of answers to all of the questions.

Example 1. The Stable Marriage Problem [13].
We have a set of n men, and a set of n women, and we have to arrange n

stable marriages. A pair of marriages can only be stable if no pair of people would
prefer to be married to each other than to their spouses. A set of n marriages is
called stable if each pair of marriages is stable.

For every man we have his preference ordering which ranks all of the women.
Similarly, for each woman we have her preference ordering which ranks the men.

We can express this as a CSP whose variables are the men and whose domain
is the set of women. That is we have to choose a woman for each man.

For every pair of men we have a binary constraint. This constraint prevents
them from marrying the same woman, and furthermore only allows a successful
(stable) marriage.
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Since constraints are between every pair of men, it is clear that any solution
to this formulation will be a stable marriage. Also, every stable marriage can be
found by this formulation since there are no additional constraints imposed. So
the solutions are exactly the sets of stable marriages as required.

We will give a formal definition of this class of CSPs, and a straightforward
explanation of why this class is easy to solve, in Section 4.4.

2.1 Complexity of Constraint Satisfaction

The decision problem for the general constraint satisfaction problem is:

Definition 2. Given a CSP, P , does P have a solution?

It is clear that graph-3 colouring, or indeed 3-SAT, can be reduced to the
constraint satisfaction problem. So the decision problem for general CSPs is
NP-complete [23].

However there are restrictions to the set of allowed instances that make the
constraint satisfaction problem tractable.

In this paper we extend the notion of a tractable subclass of the constraint
satisfaction problem by requiring that membership of this class should also be
polynomially determined. This is a reasonable restriction, and is in fact one usu-
ally adopted by researchers on general satisfiability [11], if we want tractability
to correspond to the existence of a good solution method. We are given a CSP
and we have first to determine which (tractable) class it belongs to, then to
apply the appropriate algorithm.

If we do not make this restriction then we end up with absurd notion that
all unsolvable CSPs form a tractable class! The algorithm for solving instances
of this class would be easy (just say no), but determining whether an instance
is a member of the class is obviously intractable.

Definition 3. A set S of CSPs is tractable if:

1. there exists a uniform polynomial algorithm for determining whether any
given CSP is in S;

2. there exists a uniform polynomial algorithm for finding a solution to any
CSP from S.

It turns out that there are many tractable subproblems of the constraint
satisfaction problem.

Definition 4. A hypergraph H is a pair 〈V,E〉 where V is a set of vertices
and E is a collection of subsets of V , called the edges of H.

The structure of a CSP, P , is the hypergraph whose vertexes are the vari-
ables of P and whose hyperedges are the scopes of the constraints of P .

A constraint language over a domain D is a set of relations over D.
The language of a CSP, P , is the constraint language defined by the set of

relations of the constraints of P . The language of a set of instances is the union
of the languages of the instances. For any constraint language Γ we will refer to
the set of instances with language contained in Γ as CSP(Γ ).
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A subproblem S of the general constraint satisfaction problem is called struc-
tural if it is defined by limiting the structure of the instances of S. A subproblem
S is called relational if it is defined by limiting the language of the instances
of S.

A basic tractable structural subproblem of the constraint satisfaction prob-
lem is those instances whose structure is acyclic [3]. However, this class has been
extended by considering instances whose structure is “approximately acyclic” in
the sense that there is a tractable reduction to an acyclic instance [16]. Such
classes have been well-studied and have made the use of tractable structural
CSPs applicable to real world examples.

A constraint language is called tractable if the set of instances defined over
this language is tractable. There are many known tractable constraint lan-
guages [20]. In this paper we derive the first approximation result for tractable
languages. This natural extension to the theory of tractability yields large new
tractable subproblems. These new subproblems are not in general describable
either by limiting the structure, or by restricting the language, of the instances.

Example 2. A propositional literal is either a propositional variable (positive)
or a negated propositional variable (negative). A clause is a disjunct of literals.

Let V + and V − be two infinite disjoint sets of propositional variables. We
say that a clause c defined over the variables V + ∪ V − is split-HORN if the
number of disjuncts which are positive variables from V − plus the number of
disjuncts which are negative variables from V + is at most 1. Conjuncts of split-
HORN clauses may be naturally represented as CSPs over the Boolean domain
{T, F}. For given V + and V − the set of such CSPs is called a split-HORN
problem.

It is clear that every hypergraph occurs as the structure of a split-HORN
instance, so no split-HORN problem is tractable for structural reasons.

There is a well-known dichotomy result for Boolean constraint languages [25].
The language of the instances of any split-HORN problem is NP-hard.

However, we will show the tractability of the split-HORN problem in Sec-
tion 5 using the theory of approximating constraint languages.

3 Approximating Language: Permuting the Domain

Suppose that we have a tractable constraint language Γ and that P is a CSP
not in CSP(Γ ). If we can find permutations of the domain (independently) for
each variable, that make P into an instance of CSP(Γ ), then we can solve the
instance P using the algorithm for Γ . We first permute the domains, then apply
the algorithm for Γ , then permute the domains back again for any discovered
solution.

It is this approximation technique for (tractable) constraint languages that
we discuss in this paper.

Definition 5. A permutation of a set D is a bijection from D to D.
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Let π = 〈π1, . . . , πn〉 be an n-tuple of permutations of D. We apply π to
n-tuples of values from D in the natural way by applying πi, i = 1, . . . , n to the
ith component. We apply π to n-ary relations over D by applying it to each of
the allowed tuples.

Let P = 〈V,D,C〉 be a CSP, and G be a set of permutations of D. A domain
permutation for P over G is a mapping Π assigning to each variable v ∈ V a
permutation from G.

We define the result, Π(P ), of applying the domain permutation Π to be the
CSP 〈V,D,C ′〉 where

C ′ = {〈σ,Π(σ)(ρ)〉|〈σ, ρ〉 ∈ C}

The term Π(σ)(ρ) is the result of applying the |σ|-tuple of permutations, Π(σ),
to the |σ|-ary relation ρ.

We now define a subproblem of the constraint satisfaction problem.

Definition 6. Let Γ be a constraint language, P = 〈V,D,C〉 a CSP and G a
set of permutations of D.

If there exists a domain permutation Π for P over G such that Π(P ) ∈
CSP(Γ ) then we say that P is G-approximately over Γ .

For a given Γ and G the problem of determining whether an instance is
G-approximately over Γ is called the approximation problem for Γ and G.

The results of this paper are all applications of the following theorem whose
proof is obvious.

Theorem 1. Let Γ be a tractable language over a domain D, G be a set of
permutations of D, and R be a set of instances with a tractable approximation
problem for Γ and G. The set of instances of R which are G-approximately over
Γ is tractable.

3.1 The Tractability of Approximation

Suppose that Γ is a constraint language over domain D and that G is a set of
permutations of the domain of D. For any given constraint language R over D
we may ask whether the approximation problem for Γ and G is tractable for the
instances of CSP(R). It turns out that this reduces to finding the tractability of
another constraint language dependant on G, R and Γ .

Definition 7. Let Γ be a constraint language, ρ be an n-ary relation over D,
and G be a set of permutations of D. We define the G-lifted relation of ρ for Γ ,
ρG

Γ , to be the following n-ary relation over G:

ρG
Γ = {〈π1, . . . , πn〉|〈π1, . . . , πn〉(ρ) ∈ Γ}

Furthermore, for any language R we define the G-lifted relations of R for Γ
to be RG

Γ = {ρG
Γ |ρ ∈ R}.
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In other words, for any n-ary relation ρ over D there are some n-tuples of
permutations from G which make ρ into a relation of Γ . We call this set of
n-tuples over G the G-lifted n-ary relation of ρ for Γ .

We then have the following result.

Proposition 1. The approximation problem for Γ and G for instances of
CSP(R) is tractable iff RG

Γ is a tractable language.

Proof. The problem P = 〈V,D,C〉 of CSP(R) is G-approximately over Γ if and
only if there exists some domain permutation Π which, when applied to P results
in an instance of CSP(Γ ).

Now consider some constraint 〈σ, ρ〉 of P . By definition the constraint,
〈σ,Π(σ)(ρ)〉, has constraint relation in Γ exactly when Π(σ) is in the relation
ρG

Γ .
In other words, P is G-approximately over Γ exactly when the CSP PG

Γ with
the same variables as P , domain G and constraints {〈σ, ρG

Γ 〉|〈σ, ρ〉 ∈ C} has a
solution.

The result follows immediately.

Example 3. Dechter and van Beek [26] have defined the class of binary row-
convex relations. They proved that any path-consistent CSP whose relations
are row-convex is globally consistent. Furthermore they showed that the approx-
imation problem for row-convex binary relations is tractable, using a result from
graph theory. However, since the lifted relations for the row-convex language are
all unary the tractability of this approximation problem is trivial.

4 Tractability Results

The general theory has now been presented. This section is concerned with
tractability results obtained from this new theory.

It might be hoped that the approximation problem for any tractable language
is tractable. This is not the case. We show, in Section 4.1 that the approximation
problem is not always tractable, even for binary relations. Following on from
this we identify several important cases for which the approximation problem is
tractable.

4.1 Lifted Tractable Languages Are Not Always Tractable

We first consider the case where Γ is tractable, G is the set of all permutations
of the domain D and R is the entire set of relations over D.

We will show that in this case, RG
Γ is not always tractable, by demonstrating

that, for a particular tractable language the lifted binary three valued relations
are intractable.

Definition 8. An n-ary relation, ρ, over {1, . . . , n} is said to be max-closed if,
whenever 〈d1, . . . , dn〉, 〈e1, . . . , en〉 are in ρ, then so is their pointwise maximum:

〈max(d1, e1), . . . ,max(dn, en)〉.
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The class of max-closed relations is tractable [21]. In particular, a polynomial
solution technique is to make the entire problem (generalised) arc-consistent [4],
and then to choose the largest remaining domain value for each variable.

Definition 9. A configuration of domain values is a pair of 2-sets of domain
values.

Let ρ be a binary relation over {1, . . . , n}. An impossible cross for ρ is a
configuration 〈{a, b}, {c, d}〉, where a > b and c > d such that:

– 〈a, d〉, 〈b, c〉 ∈ ρ;
– 〈a, c〉 �∈ ρ.

We will need the following property of max-closed relations (this is proved
as Lemma 6.2 of Jeavons and Cooper [21] ).

Proposition 2. A binary relation ρ is max-closed if and only if it has no im-
possible crosses.

4.2 Lifted Binary Relations for Max-closure

We provide here an explanation of a simple process for determining the lifted
relations for max-closure for binary three valued relations. We will show in this
section that this process can be carried out by solving a six variable two valued
CSP for each relation, the so called permutation CSP. We generated and
solved all such CSPs. We then used a public domain program, Polyanna [14], to
determine the complexity of each individual lifted relation, and also every pair
of lifted relations. We found that every individual lifted relation is tractable but
that there exist intractable pairs.

Consider a binary three valued relation ρ. A pair of permutations Π is a
tuple of the lifted relation for ρ exactly when Π(ρ) is max-closed. That is, by
Proposition 2, when Π(ρ) has no impossible crosses. So, to determine whether
Π is acceptable we have only to consider its actions on all configurations of ρ.
The action of Π on 〈{a, b}, {c, d}〉 is determined by whether the order of a and
b or the order of c and d are reversed, or not.

There are 16 different possible configurations (of which at most 9 occur in
any given relation ρ). Figure 1 shows2, for four of these configurations, which
possible permutations of the domain are allowed. By building a lookup table for
all 16 configurations we are able quickly to determine the possible actions on the
configurations of any given relation ρ.

A permutation is determined by the list of pairs of domain values whose
order is to be swapped.

Definition 10. We will denote a permutation of the domain {1, 2, 3} by a
Boolean triple 〈p1,2, p1,3, p2,3〉 where p1,2 is T when the order of 1,2 are swapped,
p1,3 indicates whether 1 and 3 are swapped, and p2,3 indicates whether 2 and 3
are swapped.
2 We represent binary relations diagrammatically by connecting pairs of domain values

when the corresponding tuple is in the relation.
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β0

β1

������������

no constraint

Fig. 1. There are 16 possible configurations between any two arbitrary pairs of domain
values, α0 < α1 and β0 < β1. These are used to generate constraints between domain
permutations. Four such configurations and the associated constraints are shown here.

However, not all swaps are compatible. If we swap, for example, 1 & 2 and 2 &
3 then we must also swap the order of 1 & 3. So, for example, 〈T, F, T 〉 does not
represent a permutation.

Definition 11. Let ρ be a binary three valued relation. We construct the per-
mutation CSP for ρ as follows.

There are six variables, A1,2, A1,3, A2,3, B1,2, B1,3, and B2,3.
The domain is the set {T, F}. Variable Ac,d is assigned T exactly when c and

d are to be swapped in the first column’s permutation. Similarly variable Bc,d is
assigned T exactly when c and d are swapped in the second column’s.

There are binary constraints between each of Ac,d and Be,f (six constraints)
which only allow pairs of permutations that make the {c, d}×{e, f} configuration
of ρ max-closed.

There are ternary constraints over 〈A1,2, A1,3, A2,3〉 and 〈B1,2, B1,3, B2,3〉
whose relation only disallows the non-permutations 〈F, T, F 〉 and 〈T, F, T 〉.

In every case a solution to the permutation CSP represents a pair of permu-
tations of the three element domain. The following result follows immediately
from the previous discussion.

Lemma 1. The solutions to the permutation CSP for ρ precisely represent the
tuples (pairs of allowed permutations) of the lifted relation.

Example 4. An example relation together with its corresponding permutation
CSP and the solutions to the permutation CSP are shown in Figure 2.

One possible solution to the permutation CSP is the six-tuple 〈F, T, T, F, F, T 〉.
This corresponds to the pair of permutations 〈F, T, T 〉 (move domain element
3 above 1 and 2) and 〈F, F, T 〉 (move domain element 3 above domain element
2). Another solution is the six-tuple 〈T, T, T, F, F, F 〉, corresponding to the per-
mutations 〈T, T, T 〉 (which inverts the domain) and 〈F, F, F 〉 (which leaves the
domain unchanged). The results of applying these pairs of permutations are also
shown in Figure 2. It is easy to check that the resulting relations are indeed
max-closed.
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Fig. 2. A binary three valued relation together with its associated permutation CSP.
All solutions to the permutation CSP are shown. The results of applying two of the
solutions are also shown to demonstrate that the permuted relation is indeed max-
closed.

We wrote a dedicated program to generate and solve the permutation CSPs for
each of the 512 binary three valued relation. The output of this program was
458 distinct lifted relations.

The tractability of a (finite) constraint language only depends on its so called
polymorphisms [20]. Gault has written a program, Polyanna [14], which deter-
mines the polymorphisms of an input constraint language. In addition to listing
the polymorphisms, Polyanna can classify a constraint language into one of sev-
eral tractability classes.

We ran each lifted relation through Polyanna. It turned out that the lifted
relation for each of the binary three valued relations is tractable.

Polyanna also showed that the entire set of lifted relations forms an NP-
complete language3.

3 Polyanna usually fails to characterise binary NP-complete languages over domains
with as many as six elements. In this case we were lucky.
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4.3 Novel Classes of Tractable CSPs

In this section we will show that when the set of allowed permutations, G, has
size 2, the G-approximation problem for any Γ is tractable for the entire set of
binary relations.

We will use this technique to show the tractability of certain classes of CSPs
that are not tractable for any relational or structural reason.

Theorem 2. Let Γ be a constraint language over D, G be a set of two permu-
tations of D, and R be the set of all binary relations, then the G-approximation
problem for Γ is tractable.

Proof. It is enough to note that any lifted relation is binary two valued. It follows
that the approximation problem for R may be reduced to the tractable 2-SAT
problem.

Example 5. Let D be the ordered domain {1, . . . , k}. Let G = {ω, ι} where
ω(r) = k − r + 1, and ι(r) = r.

Recall the binary max-closed language defined in Section 4.1. By Theorem 2
we have that the G-approximation problem for binary max-closed relations is
tractable.

The class of tractable instances defined by this approximation certainly in-
cludes all CSPs whose language is binary max-closed. In this case the approxi-
mation is to apply the permutation ι to each variable.

The class also naturally includes the analogous tractable class of min-closed
relations. We approximate these by applying ω to each variable.

In fact there are instances which are neither max-closed nor min-closed. We
may obtain such instances from a max-closed instance by arbitrarily applying ω
to some subset of the variables.

Since the max-closed binary relations form a maximal class of tractable bi-
nary relations (see Theorem 6.5 of Jeavons and Cooper [21] ) it is clear that
the tractable class of this example is not tractable for any relational reason.
Furthermore it includes instances with arbitrary (binary) structure so it is not
a structural tractable class.

Example 5 serves as a proof of the following result which shows that this new
approximation technique identifies truly novel tractable classes.

Theorem 3. The set of tractable instances of the constraint satisfaction problem
defined by approximating a tractable language is, in general, not definable as
either a relational or a structural subproblem.

4.4 Stable Marriage Problem Instances
Are Approximately Max-closed

An instance of the Stable Marriage Problem (recall Example 1) (SMP) consists
of n men and n women who are to be married. Each man has a preference list
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that ranks the women according to which he would prefer to marry. He would
prefer to marry those higher in the list than those lower in the list. Similarly
each woman has a preference list for the men. The problem is to form a Marriage
between the men and the women so that each man is married to a woman and
every person is in just one marriage. A Stable Marriage has no man, m, and
woman, w, such that m prefers w to his wife, and w prefers m to her husband.

It is known that the Stable Marriage Problem is tractably solvable. In partic-
ular, arc consistency is a decision procedure for the Stable Marriage Problem [15].
Arc-consistency will remove some women from the set of allowed partners for
each man. A solution is then for each man to marry his most preferred remaining
partner.

4.5 Stable Marriage Problem Instances

An instance of the Stable Marriage Problem is a Constraint Satisfaction Problem
instance, P = 〈V,D,C〉, where:

– V = {1, . . . , n}.
– D = {1, . . . , n}.
– For each m ∈ V , πm is a permutation of D, and for each w ∈ D, τw is a

permutation of V .
C = {cs,t | s, t ∈ V, s < t}, where
cs,t = 〈〈s, t〉, ρs,t〉, and

〈p, q〉 ∈ ρs,t ⇐⇒ p �= q ∧
τp(t) > τp(s)⇒ πt(q) > πt(p) ∧
τq(s) > τq(t)⇒ πs(p) > πs(q)

We interpret V as a set of men, and D as a set of women. We interpret πm(w)
to be the level of preference (n is the most preferred and 1 the least preferred)
that man m has for woman w. Similarly, τw(m) defines the level of preference
given to man m by woman w.

We will show that every SMP instance is approximately max-closed. What is
more, the required permutations order the domain for each man according to his
preferences amongst the women. This completely explains the known solution
algorithm. What is more, since the preference orderings are known, we will have
shown that the set of SMP instances is an example of the tractability described
in this paper.

Definition 12. Let P be an SMP instance. Consider any pair of marriages and
let p be one of the four people involved. We say p is happy with respect to this
pair of marriages if they prefer their partner to the person (of the same gender)
in the other marriage.

A pair of marriages is stable if there is no unmarried unhappy man and
woman.
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Theorem 4. Let P be an SMP instance and define, for each m ∈ V , Π(m) =
πm. Then Π(P ) is max-closed.

This straightforward proof has been omitted for brevity. It is included in a
technical report [18].

5 Renamable HORN

There have been many papers published describing the renamable HORN class
of problems [22,1,2,6,7]. It has been shown that recognising, and hence solving,
instances of renamable HORN is tractable. Indeed, del Val [11] gives an algorithm
which solves both 2-SAT and renamable HORN which he calls “the paradigmic
examples of tractable problems in propositional satisfiability”.

It has also been shown [5] that identifying a maximal subset of variables for
which all clauses are renamable HORN is NP-hard.

Definition 13. A HORN-clause is a clause with at most one positive literal.
A set of clauses is renamable HORN if there is a replacement of some literals
uniformly in all clauses with their negated versions which makes all clauses into
HORN clauses.

We will show in this section that renamable HORN is another simple applica-
tion of approximate language tractability. In fact we show that for the class of all
Boolean relations the lifted relations for HORN is a tractable language. What
is more we show that recognising maximal subproblems which are renamable
HORN [5] is NP-hard as a simple consequence of our theory.

Proposition 3. Let c be a clause. Let Sc be the set of variables which must be
set to T (all others being set to F ) which makes the clause evaluate to F . Then
the lifted relation for HORN consists of all those tuples which invert a set of
variables κ where the symmetric difference between κ and Sc has size at most 1.

Proof. Follows directly from the definition of a HORN clause.

We can observe directly from the dichotomy result for the tractability of
Boolean constraint languages [25,20] that the set of lifted relations for all clauses
forms a tractable language4.

Example 6. We can now see that the split-HORN defined in Example 2 is trac-
table. The instances are all renamable HORN.

Identifying maximum subsets of variables which are renamable HORN now
corresponds to solving instances of MAX-SAT for the lifted language. Since the
complexity of all Boolean MAX-SAT languages is known [8], we can readily
determine that this problem is NP-complete.
4 They are a Majority closed language. The relations are all decomposable into binary

clauses, so the tractability arises from the tractability of 2-SAT.
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6 Conclusion

In this paper we have identified a new class of tractable subproblems of the
general constraint satisfaction problem. We have shown that these subproblems
are not explained as either structural or language based.

Furthermore we have demonstrated that this theory serves to explain the
tractability of the constraint approach to the SMP, since all instances are ap-
proximately max-closed. In this sense it unifies two previous classes of CSPs for
which arc-consistency is a solution technique.

Lastly, this theory has provided a simple explanation of the tractability of
recognising instances of renamable HORN. It even serves to explain why finding
maximum subsets of variables which are renamable HORN is NP-hard.

This approximation of relational tractability is both theoretically interesting
and may well be practical value.
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Abstract. This work presents a hybrid approach to solve the maximum
stable set problem, using constraint and semidefinite programming. The
approach consists of two steps: subproblem generation and subproblem
solution. First we rank the variable domain values, based on the so-
lution of a semidefinite relaxation. Using this ranking, we generate the
most promising subproblems first, by exploring a search tree using a lim-
ited discrepancy strategy. Then the subproblems are being solved using
a constraint programming solver. To strengthen the semidefinite relax-
ation, we propose to infer additional constraints from the discrepancy
structure. Computational results show that the semidefinite relaxation
is very informative, since solutions of good quality are found in the first
subproblems, or optimality is proven immediately.

1 Introduction

This paper describes a hybrid method to solve a classical combinatorial optimiza-
tion problem, the maximum weighted stable set problem, or stable set problem1

in short. Given a graph with weighted vertices, the stable set problem is to find
a subset of vertices of maximum weight, such that no two vertices in this subset
are joined by an edge of the graph. In the unweighted case (when all weights are
equal to 1), this problem amounts to the maximum cardinality stable set prob-
lem, which has been shown to be already NP-hard [24]. Practical applications
of the stable set problem are plentiful, they appear in coding theory, computer
vision, pattern recognition, and many other areas [4].

We propose a two-phase approach to solve the stable set problem, either
with or without proving optimality. The first phase generates subproblems based
upon a semidefinite relaxation, the second phase solves the subproblems using
constraint programming. Concerning the first phase, given a model for the stable
set problem, we solve its semidefinite relaxation. The solution provides us frac-
tional values for the variables of the model. These fractional values are a good
� An earlier version of this paper appeared as [18].
1 Alternative names for the stable set problem are vertex packing, coclique or inde-

pendent set problem.
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indication for the optimal (discrete) values of the variables. Hence we divide se-
lected variable domains in two parts: a ‘good’ subdomain and a ‘bad’ subdomain.
By branching on these subdomains using a limited discrepancy strategy [15], we
obtain first a very promising subproblem, and subsequently less promising sub-
problems.

The second phase consists of the solution of the subproblems. Since they
are much smaller than the original problem, we can easily solve them using a
constraint programming solver.

As computational results will show, the semidefinite relaxation is quite in-
formative. In several cases we can simply round the solution of the relaxation
and obtain a provable optimal solution already. Otherwise, we are likely to find a
good solution in one of the first subproblems. Using a limited number of subprob-
lems to investigate, we yield an incomplete method producing good solutions.
In order to obtain a complete search strategy, we need, in principle, to generate
and solve all possible subproblems. A good upper bound is necessary to prove
optimality earlier. For this reason we investigated the use of ‘discrepancy cuts’
that can be added to the semidefinite program to strengthen the relaxation and
thus prune large parts of the search tree. However, computational results will
show that they can not be applied efficiently on the instances we considered.

The outline of the paper is as follows. The next section gives a motivation
for the approach proposed in this work. Then, in Section 3 some preliminaries
on semidefinite programming are given. In Section 4 we introduce the stable
set problem, integer optimization formulations and a semidefinite relaxation. A
description of our solution framework is given in Section 5. Section 6 presents
the computational results. This is followed by an overview of related literature
in Section 7. Finally, in Section 8 we conclude and discuss future directions.

2 Motivation

Combinatorial optimization problems that are NP-hard are often solved with
the use of a polynomially solvable relaxation. Let us first motivate why in this
paper a semidefinite relaxation is used rather than a (more common) linear
relaxation. Indeed, one could argue that linear programs are being solved much
faster in general. However, for the stable set problem, linear relaxations are not
very tight. Therefore one has to identify and add inequalities that strengthen
the relaxation. But it is time-consuming to identify such inequalities, and by
enlarging the model the solution process may slow down.

Several papers on approximation theory following [11] have shown the tight-
ness of semidefinite relaxations. However, being tighter, semidefinite programs
are more time-consuming to solve than linear programs in practice. Hence one
has to trade strength for computation time. For large scale applications, semidef-
inite relaxations can often be preferred as the relaxation of choice to be used
in a branch and bound framework. Moreover, our intention is not to solve a
relaxation at every node of the search tree. Instead, we propose to only solve
a relaxation at the root node of the first phase (its solution is used to identify
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the subdomains), and optionally at the root node of a subproblem (in order to
strengthen the upper bound). Therefore, we are willing to make the trade-off in
favour of the semidefinite relaxation.

Another point of view is the following. Although semidefinite programming
has been developing for many years now in the operations research community,
no efforts of integration or cooperation with constraint programming have been
made to our knowledge. Application of semidefinite programming to problems
typical to constraint programming, as was done in the papers on approximation
algorithms mentioned in Section 7, is not yet hybrid problem solving. In this
paper, however, a first step is being made. The solution of the semidefinite
relaxation is used to identify promising subdomains, and also produces a tight
upper bound for the constraint programming solver. On the other hand, the
solutions found by the constraint programming solver serve as a lower bound
inside the semidefinite programming solver.

3 Preliminaries on Semidefinite Programming

In this section we introduce semidefinite programming [28] as an extension of
the more common linear programming. Both paradigms can be used to model
polynomially solvable relaxations of NP-hard optimization problems.

In linear programming, combinatorial optimization problems are modeled in
the following way:

max cTx
s.t. aT

j x ≤ bj (j = 1, . . . ,m)
x ≥ 0.

(1)

Here x ∈ Rn is an n-dimensional vector of decision variables and c ∈ Rn a
cost vector of dimension n. The m vectors aj ∈ Rn (j = 1, . . . ,m) and the m-
dimensional vector b ∈ Rm define m linear constraints on x. In other words, this
approach models problems using nonnegative vectors of variables.

Semidefinite programming makes use of positive semidefinite matrices of vari-
ables instead of nonnegative vectors. A matrix X ∈ Rn×n is said to be positive
semidefinite (denoted by X 1 0) when yTXy ≥ 0 for all vectors y ∈ Rn. Semidef-
inite programs have the form

max tr(CX)
s.t. tr(AjX) ≤ bj (j = 1, . . . ,m)

X 1 0.
(2)

Here tr(X) denotes the trace of X, which is the sum of its diagonal elements,
i.e. tr(X) =

∑n
i=1 Xii. The cost matrix C ∈ Rn×n and the constraint matrices

Aj ∈ Rn×n are supposed to be symmetric. The m reals bj and the m matrices
Aj define again m constraints.

We can view semidefinite programming as an extension of linear program-
ming. Namely, when the matrices C and Aj (j = 1, . . . ,m) are all supposed to be
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diagonal matrices2, the resulting semidefinite program is equal to a linear pro-
gram. In particular, then a semidefinite programming constraint tr(AjX) ≤ bj

corresponds to the linear programming constraint aT
j x ≤ bj , where aj represents

the diagonal of Aj .
Applied as a continuous relaxation (i.e. the integrality constraint on the vari-

ables is relaxed), semidefinite programming in general produces solutions that
are much closer to the integral optimum than linear programming. Intuitively,
this can be explained as follows. Demanding positive semidefiniteness of a matrix
automatically implies nonnegativity of its diagonal. If this diagonal corresponds
(as in the general case described above) to the nonnegative vector of the lin-
ear relaxation, the semidefinite relaxation is stronger than a linear relaxation.
Unfortunately, it is not a trivial task to otain a good (i.e. efficient) semidefinite
program for a given problem.

Theoretically, semidefinite programs have been proved to be polynomially
solvable using the so-called ellipsoid method (see for instance [12]). In practice,
nowadays fast ‘interior point’ methods are being used for this purpose (see [3]
for an overview). Being a special case of semidefinite programming, linear pro-
grams are also polynomially solvable using an ellipsoid or interior point method.
However, they are often solved with a special linear programming solver, the
simplex method. Although this method can have an exponential running time
in theory, in practice it is often faster than an interior point algorithm.

4 The Stable Set Problem

In this section, the stable set problem is formally defined, and formulated in
two different ways as an integer optimization problem. From this, a semidefinite
programming relaxation is inferred.

4.1 Definition

Consider an undirected weighted graph G = (V,E), where V = {1, . . . , n} is the
set of vertices and E a subset of edges {(i, j)|i, j ∈ V, i �= j} of G, with |E| = m.
To each vertex i ∈ V a weight wi ∈ R is assigned (without loss of generality,
we can assume all weights to be nonnegative in this case). A stable set is a set
S ⊆ V such that no two vertices in S are joined by an edge in E. The stable
set problem is the problem of finding a stable set of maximum total weight in
G. This value is called the stable set number of G and is denoted by α(G) 3.
The maximum cardinality (or unweighted) stable set problem can be obtained
by taking all weights equal to 1.

2 A diagonal matrix is a matrix with nonnegative values on its diagonal entries only.
3 In the literature α(G) usually denotes the unweighted stable set number. The

weighted stable set number is then denoted as αw(G). In this work, it is not necessary
to make this distinction.
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4.2 Integer Optimization Formulation

Let us first consider an integer linear programming formulation. We introduce
binary variables to indicate whether or not a vertex belongs to the stable set
S. So, for n vertices, we have n integer variables xi indexed by i ∈ V , with
initial domains {0, 1}. In this way, xi = 1 if vertex i is in the stable set S, and
xi = 0 otherwise. We can now state the objective function, being the sum of
the weights of vertices that are in the stable set S, as

∑n
i=1 wixi. Finally, we

define the constraints that restrict two adjacent vertices to be both inside S as
xi +xj ≤ 1, for all edges (i, j) ∈ E. Hence the integer linear programming model
becomes:

α(G) = max
∑n

i=1 wixi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i ∈ V.

(3)

Another way of describing the same solution set is presented by the following
integer quadratic program

α(G) = max
∑n

i=1 wixi

s.t. xixj = 0 ∀(i, j) ∈ E
x2

i = xi ∀i ∈ V.
(4)

Note that here the constraint xi ∈ {0, 1} is replaced by x2
i = xi. This quadratic

formulation will be used below to infer a semidefinite programming relaxation
of the stable set problem.

In fact, both model (3) and model (4) can be used as a constraint program-
ming model. We have chosen the first model, since the quadratic constraints
take more time to propagate than the linear constraints, while having the same
pruning power.

4.3 Semidefinite Programming Relaxation

The integer quadratic program (4) gives rise to a semidefinite relaxation intro-
duced by Lovász [22] (see Grötschel et al. [12] for a comprehensive treatment).
The value of the objective function of this relaxation has been named the theta
number of a graph G, indicated by ϑ(G). Let us start again from model (4). As
was indicated in Section 3, we want to transform the current model that uses
a nonzero vector into a model that uses a positive semidefinite matrix to rep-
resent our variables. In the current case, we can construct a matrix X ∈ Rn×n

by defining Xij = xixj . Let us also construct a n × n cost matrix W with
Wii = wi for i ∈ V and Wij = 0 for all i �= j. Since Xii = x2

i = xi, the objec-
tive function becomes tr(WX). The edge constraints are easily transformed as
xixj = 0⇔ Xij = 0. The first step in the transformation of model (4) can now
be made:

max tr(WX)
s.t. Xij = 0 ∀(i, j) ∈ E

Xij = xixj ∀i, j ∈ V
x2

i = xi ∀i ∈ V.

(5)
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This model is still a quadratic program, although reformulated. The problem
remains how to model the last, very important, constraint. We need a mapping
of the diagonal entries Xii = x2

i to the vector entries xi. For this reason, we
extend X with another row and column (both indexed by 0) that contain vector
x, and define the (n + 1)× (n + 1) matrix Y as

Y =

⎛⎜⎜⎜⎝
1 x1 · · · xn

x1
... X

xn

⎞⎟⎟⎟⎠
where the 1 in the leftmost corner of Y is needed to obtain positive semidefi-
niteness. In this case we can express the required mapping as Yii = 1

2Yi0 + 1
2Y0i

(note that X and Y are symmetric), since then x2
i = Yii = 1

2Yi0 + 1
2Y0i = xi.

The final step in the transformation consists of replacing the constraints on X
by constraints on Y . In particular, instead of demanding X to be a product of
nonnegative vectors, we restrict Y to be a positive semidefinite matrix. Namely,
if the vector x represents a stable set, then the matrix Y is positive semidefi-
nite. However, not all positive semidefinite Y matrices represent a stable set, in
particular its values can take fractional values.

In order to maintain equal dimension to Y , a row and a column (both indexed
by 0) should be added to W , all entries of which containing value 0. Denote the
resulting matrix by W̃ . The theta number of a graph G can now be described as

ϑ(G) = max tr(W̃Y)
s.t. Yii = 1

2Yi0 + 1
2Y0i ∀i ∈ V

Yij = 0 ∀(i, j) ∈ E
Y 1 0.

(6)

By construction, the diagonal value Yii serves as an indication for the value of
variable xi (i ∈ V ) in a maximum stable set. In particular, this program is a
relaxation for the stable set problem, i.e. ϑ(G) ≥ α(G). Note that program (6)
can easily be rewritten into the general form of program (2). Namely, Yii =
1
2Yi0 + 1

2Y0i is equal to tr(AY ) where the (n + 1) × (n + 1) matrix A consists
of all zeroes, except for Aii = 1, Ai0 = − 1

2 and A0i = − 1
2 , which makes the

corresponding b entry equal to 0. Similarly for the edge constraints.
The theta number also arises from other formulations, different from the

above, see [12]. In our implementation we have used the formulation that has
been shown to be computationally most efficient among those alternatives [13].
Let us introduce that particular formulation (called ϑ3 in [12]). Again, let x ∈
{0, 1}n be a vector of binary variables representing a stable set. Define the n×n

matrix X = ξξT where ξi =
√

wi√∑n
j=1 wjxj

xi. Furthermore, let the n×n cost matrix

U be defined as Uij = √wiwj for i, j ∈ V . Observe that in these definitions we
exploit the fact that wi ≥ 0 for all i ∈ V . The following semidefinite program
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ϑ(G) = max tr(UX)
s.t. tr(X) = 1

Xij = 0 ∀(i, j) ∈ E
X 1 0

(7)

gives exactly the theta number of G. When (7) is solved to optimality, the
scaled diagonal element ϑ(G)Xii (a fractional value between 0 and 1) serves as
an indication for the value of xi (i ∈ V ) in a maximum stable set (see for instance
[13]). Again, it is not difficult to rewrite program (7) into the general form of
program (2).

Program (7) uses matrices of dimension n and m + 1 constraints, while pro-
gram (6) uses matrices of dimension n + 1 and m + n constraints. This gives an
indication why program (7) is computationally more efficient.

5 Solution Framework

5.1 Overview

The two-phase solution approach proposed here is similar to the one described
in [23]. In the first phase subproblems are generated, which are being solved in
the second phase. A subproblem consists of a constraint programming model
(program (3)) on restricted variable domains. The restricted domain values are
selected by a heuristic, in our case the solution to the semidefinite programming
relaxation. Each subproblem is solved to optimality using a constraint program-
ming solver. A general overview of the method is presented in Algorithm 1 and
explained hereafter.

Let us first explain how we use the solution of the semidefinite program (7)
to partition the domain Di of a variable xi into Dgood

i and Dbad
i (for i ∈ V ). As

was stated before, the solution of program (7) assigns fractional values between 0
and 1 to its variables. Naturally, if for a variable xi the corresponding fractional
value ϑ(G)Xii is close to 1, we regard 1 to be a good value for variable xi. More
specifically, we select the variable xi with the highest corresponding fractional
value ϑ(G)Xii, set Dgood

i = {1} and Dbad
i = {0}, and mark it as handled. Then

we mark all its neighbours j (with (i, j) ∈ E) as being handled, keeping their
original domain Dj = {0, 1}. This procedure is repeated until all variables are
handled. For later convenience, we partition V into two distinct sets V0 = {i ∈
V |Dgood

i = {1}} and V1 = V \ V0. Here V1 represents the set of neighbours j of
V0, with Dj = {0, 1}.

In a similar way, we can use the solution of the semidefinite relaxation to
compute a first feasible integer solution. Namely, follow the same procedure, but
now instantiate the selected variable xi = 1 and set its neighbours xj = 0. The
objective value of this feasible integer solution is in many cases already equal to
the (in case of integer weights downward rounded) solution of the semidefinite
relaxation. In that case, we have found an optimal solution and finish. In other
cases, we can still use this first solution as a lower bound to be applied during
the solution of the subproblem.
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Algorithm 1 Solution framework
read problem
set maximum discrepancy
solve semidefinite program (7) → upper bound
round solution of (7) → lower bound
for i ∈ V0 do

define Dgood
i and Dbad

i using solution of (7)
end for
set discrepancy = 0
while lower bound < upper bound and discrepancy ≤ maximum discrepancy do

generate subproblem using LDS branching strategy on Dgood
i and Dbad

i

solve subproblem → lower bound
discrepancy = discrepancy + 1

end while

Next, we explain how to generate subproblems using these subdomains. The
generation of subproblems makes use of a tree structure of depth |V0| in which
we branch on Dgood

i versus Dbad
i . The tree is traversed using a limited discrep-

ancy strategy (LDS) [15]. LDS visits the nodes of a search tree differently from
depth-first search. It tries to follow a given suggestion as good as it can. Branches
opposite to the suggestion are regarded as discrepancies and are gradually al-
lowed to be traversed. The first ‘run’ of LDS doesn’t allow any discrepancies,
the second allows only one, and so on. This means that for a particular discrep-
ancy k, a path from the root to a leaf is allowed to consist of maximally k right
branches. Typically this method is applied until a limited number of discrepan-
cies is reached (say 2 or 3), which yields an incomplete search strategy. In order
to be complete, one has to visit all nodes, up to discrepancy d for a binary tree
of depth d.

In our case, the suggestion that should be followed are branches of the kind
Dgood

i , while branches Dbad
i are regarded as discrepancies. Hence, our first sub-

problem is the subproblem defined by program (3), with xi ∈ Dgood
i for all

i ∈ V0. The next |V0| subproblems have all xi ∈ Dgood
i , except for one xk ∈ Dbad

k

(i, k ∈ V0). The next discrepancy generates 1
2 (|V0|2 + |V0|) subproblems, each of

which contains two variables xk1 ∈ Dbad
k1

and xk2 ∈ Dbad
k2

(k1, k2 ∈ V0), and so
on. Since we expect to obtain a very good solution already in the first subprob-
lems, we will only generate subproblems up to a certain maximum discrepancy.
In our experiments the maximum discrepancy is chosen 2 and 4 respectively.
Finally, we solve all subproblems to optimality using a constraint programming
solver.

Note that the first subproblem, corresponding to discrepancy 0, only contains
one solution, namely the one that we obtain in our rounding procedure. By
propagation of the edge constraints, all variables xj ∈ Dj = {0, 1} (j ∈ V1)
are instantiated automatically to 0. Hence, the subproblem corresponding to
discrepancy 0 is obsolete in our current implementation.
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5.2 Adding Discrepancy Cuts

In the case one needs to generate and solve subproblems up to a large discrep-
ancy, it is preferable to prove possible suboptimality of a subproblem before
entering it, especially when the subproblems are still relatively large. This can
be done in several ways.

First, before entering a subproblem, we can identify variables which have a
subdomain of size 1, namely those with i ∈ V0. For those variables, one can add
an additional constraint to the semidefinite program (7), enforcing either xi = 1
or xi = 0. Then the semidefinite program can be solved again, and will in general
provide a tighter bound, hopefully lower than the current lowerbound, in which
case we have proven suboptimality. However, solving the semidefinite program
each time before entering a subproblem is very time-consuming and this method
will not be very practical.

A better alternative would be to add a specific constraint, a discrepancy cut,
that is valid for all subproblems of a given discrepancy. Recall that V0 = {i ∈
V |Dgood

i = {1}}. Hence, all subproblems of discrepancy k consist of k variables
xi with xi = 0, and |V0| − k variables xi with xi = 1 (i ∈ V0). This gives rise to
two discrepancy cuts, given discrepancy k:∑

i∈V0

xi = |V0| − k (8)

∑
i∈V0

1− xi = k (9)

We implemented both of them, and cut (9) gives the best results. Stated in terms
of semidefinite program (6), the discrepancy cut looks like tr(AY ) = |V0| − k,
with Aii = 1 if i ∈ V0 and Aij = 0 otherwise (i, j ∈ {0, . . . , n}). As mentioned
before, solving a semidefinite relaxation is relatively expensive, and one should
make a tradeoff between its computation time and the gain in time of not solving
the subproblems. For the instances we considered, the time needed to solve a
semidefinite program is always larger than the time needed to solve all subprob-
lems we would like to proof suboptimal. However, these cuts might be helpful
for larger instances.

6 Computational Results

Our experiments are being done on a Pentium 1GHz processor, with 256 Mb
RAM. As constraint programming solver we use the ILOG solver library, version
5.1 [19]. As semidefinite programming solver, we use CSDP version 4.1 [5]. The
reason for our choices is that both solvers are among the fastest in their field,
and because ILOG solver is written in C++, and CSDP is written in C, they
can be easily hooked together.

The first instances we consider are randomly generated weighted graphs with
n vertices and m edges. The vertex weights are randomly chosen integers from
a range of 1 up to n. The edge density is chosen such that the constraint pro-
gramming solver has difficulties solving them. Namely, the more edge constraints
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we have, the more propagation can be performed, and the easier the instance
is solved by constraint programming. On the other hand, more edge constraints
will slow down the semidefinite programming solver, because it is highly sensitive
to the size of the semidefinite program to solve.

The name of the instances represent the number of vertices and the edge
density, i.e. g75d015 is a graph on 75 vertices with an approximate edge density
of 0.15. For these graphs, we have chosen to generate subproblems up to a
maximum discrepancy of 4, based upon earlier experience.

We also considered structured instances (1tc.64 up to 1et.256), obtained
from problems arising in coding theory [27]. These are unweighted graphs, there-
fore we have set all weights equal to 1. For these graphs, we generate subproblems
up to a discrepancy of 2.

The results of our experiments are given in Table 1. It consists of three
parts: the first part describes the instances, the next part gives the results of
our approach (sdp and cp), the last part concerns the results of a sole constraint
programming approach (cp alone) applied to program (3).

The columns in this table represent the following. An instance name has n
vertices and m edges. For the part on our approach, the value of the semidefinite
relaxation is ϑ, the rounded solution of the semidefinite relaxation has value
round, and best is the value of the best solution found. This best solution is
found in a subproblem generated during discrepancy best discr. Note that we
generate subproblems up to discrepancy 4 in all cases, as was mentioned in
Section 5. The time spent on solving the semidefinite relaxation is denoted by
time sdp. The time spent on solving all generated subproblems is denoted by
time subp. These values together form the total time. All times are measured in
seconds. The number of all backtracking steps made during the search in our
approach is collected in backtracks. Concerning the sole constraint programming
approach, we report the best solution found (best), the total time spent during
search, and the total number of backtracks. Note that we have set time limits
for the constraint programming solver, to create a fair comparison with our
approach. They are 100 seconds for g50d005 up to g150d010, 190 seconds for
g150d015 and 324 seconds for the structured instances. Best found solutions
that are proven to be optimal are indicated by an asterisk (*).

For the instances in Table 1 we only solved one semidefinite relaxation per
problem, namely at the root node. The reason for this is that the time spent
during the subproblem search is less than the time spent on computing another
relaxation, as reported in the table. Therefore, we cannot gain time by adding
discrepancy cuts and computing another semidefinite relaxation.

In general, our method produces better solutions than the constraint pro-
gramming approach alone. In many cases, the rounded solution of the semidefini-
nite relaxation is already optimal. However, note that there are two instances
for which the constraint programming approach gives better solutions. Note also
that the structured instances are handled quite well by our approach, while the
constraint programming approach produces very low quality solutions for the
larger instances.
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Table 1. Computational results on randomly generated weighted graphs and struc-
tured unweighted graphs. Best found solutions that are proven optimal are marked
with an asterisk (*).
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A final remark concerns instance 1et.256. In [27], the maximum value of
this instance is 48, while we find a solution with value 50. After notification, the
author of [27] agreed with our solution.
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7 Related Literature

Since the stable set problem is NP-hard, no complete (or exact) algorithm is
known that solves the stable set problem in polynomial time. Many other tech-
niques have been proposed, including approximation algorithms, heuristics, or
branch and bound structured methods. A survey of different formulations, com-
plete methods and heuristics for the maximum clique problem4 is given by Parda-
los and Xue [25] and, more recently, by Bomze et al. [4]. The maximum clique
problem has also been succesfully attacked using constraint programming, by
Fahle [7] and Régin [26]. Both papers make use of specialized propagation algo-
rithms for the maximum clique problem.

Although semidefinite programs can be solved in polynomial time theoret-
ically, it lasted until a few years ago until fast solvers for this purpose were
implemented. Until then, application inside a branch and bound framework was
unrealistic. Still, solving a semidefinite program takes relatively much time, com-
pared to solving a linear program. However, since semidefinite programming
solvers are getting faster, semidefinite relaxations become a serious candidate to
be used within a branch and bound framework, see for instance the paper by
Karisch et al. [20].

A large number of references to papers concerning semidefinite programming
are on the web pages of Helmberg [16] and Alizadeh [2]. A general introduction
on semidefinite programming applied to combinatorial optimization is given by
Goemans and Rendl [10].

Another area that made semidefinite programming useful in practice is that
of approximation algorithms. In this field one tries to give a performance guar-
antee for an algorithm on a particular problem. In particular, the paper [11] by
Goemans and Williamson uses a semidefinite relaxation and randomized round-
ing to prove such a performance guarantee for the maximum cut problem of
a graph and satisfiability problems. Following this result numerous papers ap-
peared, also concerning the approximation of satisfiability problems, including
[14] and [21].

The solution structure of the current work, namely problem decomposition by
branching on promising subdomains, is similar to the method described in [23],
which is also present in [8]. In [23] a linear relaxation is used to identify promis-
ing values. Moreover, by exploiting the discrepancy structure of the method
combined with reduced costs, suboptimality of subproblems can be proved very
fast.

Another hybrid approach, using linear programming and constraint program-
ming, has been investigated by Ajili et al. [1] and El Sakkout et al. [6]. A subset
of constraints is relaxed as a linear program in such a way that its solution is al-
ways integral. The solution to the relaxation serves as a suggestion (a ‘probe’) for
solving the complete program using a constraint programming solver. A probe
is used to detect infeasibility, to remove inconsistent domain values and to guide

4 The maximum weighted stable set problem of a graph is equivalent to the maximum
weighted clique problem of its complement graph.
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the search. During search, many probing steps are being made. This results in a
tight cooperation of the linear programming and constraint programming solver.

8 Conclusions and Further Research

We introduced a method that combines semidefinite programming and constraint
programming to solve the stable set problem. Our experiments show that con-
straint programming can indeed benefit greatly from semidefinite programming.
On instances that were very difficult to handle for a constraint programming
solver, our hybrid method obtained very good results.

The discrepancy cuts we proposed to strengthen the semidefinite relaxation
could not be applied efficiently to the instances we considered. However, for
larger instances they could be helpful.

Further research in this direction would for instance be to obtain a filtering
mechanism similar to the cost-based domain filtering for linear relaxations [9].
In [17], Helmberg describes such a procedure, called variable fixing, for semidef-
inite relaxations. It would be interesting to see how his method can be applied
in a constraint programming framework.

Also, one could consider a different way of selecting promising values from the
solution of the semidefinite relaxation. A strategy that incorporates randomized
rounding possibly yields better results. This thought is motivated by the use of
randomized rounding of semidefinite relaxations in approximation algorithms,
as discussed in Section 7.

Finally, this work has much in common with our previous work [23]. The un-
derlying general principle of decomposing a problem into promising subproblems
according to a certain heuristic is currently under research.
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Abstract. Engineering conceptual design can be defined as that phase of the
product development process during which the designer takes a specification for
a product to be designed and generates many broad solutions for it. It is well
recognized that few computational tools exist that are capable of supporting the
designer work through the conceptual phase of design. However, significant recent
developments have been made in solid modeling and 3D computer-aided design.
The use of such tools has become a critical element in the more sophisticated
product development processes to be found in modern industry. This paper presents
a prototype constraint-based computer-aided design (CAD) technology that can
be used to support designers working in the early stages of design. The technology
has been developed as an add-in application for Autodesk Inventor, a 3D solid-
modeling environment. The add-in has, at its core, a constraint filtering system
based on generalised arc-consistency processing and backtrack search. We present
our current prototype and a detailed demonstration of its functionality. Finally, we
describe our current work on a number of additional features for the next prototype,
which will be deployed in an industrial context.

1 Introduction

Engineering conceptual design can be regarded as that phase of the engineering design
process during which the designer takes a specification for a product to be designed and
generates many broad solutions for it. Each of these broad solutions is generally referred
to as a scheme [7]. It is generally accepted that conceptual design is one of the most
critical phases of the product development process. It has been reported that more than
75% of a product’s total cost is dictated by decisions made during the conceptual phase
of design and that poor conceptual design can never be compensated for at the detailed
design stage [10].

To support interactive conceptual design a number of issues must be considered.
Firstly, the conceptual design process is initiated by a statement describing the desired
properties of the required product. This statement may not be complete and may be
modified during design. Secondly, conceptual design is a process in which synthesis of
a scheme is a fundamental activity. However, the designer should have the freedom to
� This research is funded by Enterprise Ireland, through their Research Innovation Fund (Grant

Number RIF-2001-317). The software used for the project, Autodesk Inventor, has been spon-
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approach the process in anyway he wishes. Thirdly, in so far as it is possible, designers
should be alerted to any inconsistencies that exist in their designs. Designers may seek
explanations for such inconsistencies, or justifications for why certain options are not
available to them. Alternatively, designers may wish to be given an explanation detailing
how a particular scheme has come about. Fourthly, automated evaluation and comparison
of multiple schemes, throughout the design process, is necessary to focus the designer
on promising alternatives. Finally, designers prefer to use tools which are familiar to
them and, therefore, any additional tools that a designer is expected to use must have a
“look-and-feel” similar to those they already use. It was these considerations that set the
agenda for the work reported here.

This paper presents a prototype constraint-based computer-aided design (CAD) tech-
nology that can be used to support designers working in the early stages of design. We
present the current status of our prototype and a detailed demonstration of its func-
tionality. We report on some industrial experiences and describe our current work on
a number of additional features for the next prototype, which will be deployed in an
industrial context. The CAD technology has, at its core, a constraint filtering system
based on generalised arc-consistency processing [3] and backtrack search. Using the
technology, the designer can be assisted in developing and evaluating a set of schemes
which satisfy the various constraints that are imposed on the design. Explanations and
justifications can be generated to aid the designer’s understanding of the state of the
design problem. Arbitrary constraints can be asserted or retracted by the designer which
permits the incorporation of new requirements into the design specification and give the
designer freedom to approach the process as he wishes.

The remainder of the paper is organized as follows. Section 2 presents an overview of
the relevant literature. Section 3 presents an overview of the theory of conceptual design
upon which the work presented in this paper is based. Section 4 presents an overview of
the current prototype of our CAD technology for supporting conceptual design. Section 5
outlines our plans for future development and deployment. In Section 6 a number of
concluding remarks are made.

2 Related Research

In the design literature three phases of design are generally identified: conceptual design,
embodiment design and detailed design [16]. During conceptual design the designer
searches for a set of broad solutions to a design problem, each of which satisfies the
fundamental requirements of the desired product. The embodiment phase of design is
traditionally regarded as the phase during which an initial physical design is developed.
This initial physical design involves the determination of component arrangements,
initial forms and other part characteristics. The detailed phase of design is traditionally
regarded as the phase during which the final physical design is developed.

Constraint-based applications for design have been more commonly applied to the
post-conceptual phases of design [11,12,21]. The use of constraint processing tech-
niques for supporting configuration design has also been widely reported in the litera-
ture [13,19].

Modern approaches to product development, such as Concurrent Engineering [4],
attempt to maximize the degree to which design activities are performed in parallel.
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Researchers in the constraint processing community have developed constraint-based
technologies that support integrated approaches to product development [5]. Constraint-
based approaches to managing conflict in collaborative design systems have also been
reported [2,9,11]. Using constraints to co-ordinate distributed agents in engineering
design has also been reported [17].

Constraint-based approaches to supporting conceptual design have been reported in
the literature for quite a number of years [8,18,20]. However, most of this research does
not address the synthesis problem; the vast majority has focused on constraint propa-
gation and consistency management relating to more numerical design decisions. For
example, “Concept Modeler” is based on a set of graph processing algorithms that use
bipartite matching and strong component identification for solving systems of equa-
tions [20]. The Concept Modeler system allows the designer to construct models of a
product using iconic abstractions of machine elements.

Based on the earlier work on Concept Modeler, a system called “Design Sheet” has
been developed [18]. This system is essentially an environment for facilitating flexible
trade-off studies during conceptual design. It integrates constraint management tech-
niques, symbolic mathematics and robust equation solving capabilities with a flexible
environment for developing models and specifying tradeoff studies. The Design Sheet
system permits a designer to build a model of a design by entering a set of algebraic
constraints. The designer can then use Design Sheet to change the set of independent
variables in the algebraic model and perform trade-off studies, optimization and sensi-
tivity analysis.

While not a constraint-based system, the Conceptual Understanding and Prototyping
Environment (CUP) is an approach to supporting conceptual design that unites ideas from
traditional mechanical design with 3D layouts and knowledge engineering [1]. Of all of
the systems reviewed here, CUP is most similar to the approach that we have adopted.
However, our technology is entirely constraint-based which gives us the opportunity to
exploit the semantics of constraints and use inference as a core technique for navigating
the design search space, providing explanations and an immediate declarative approach
to modeling the evolving schemes that the designer wishes to explore.

3 The Approach

In this section we will give an overview of the approach to conceptual design that has
motivated the design of the CAD system which we will present in Section 4. The model
of conceptual design adopted here is based on the well accepted observation that during
this phase of design a designer works from an informal set of requirements that the
product must satisfy and generates alternative schemes which satisfy them.

Central to the process of scheme generation is an understanding of function and how
it can be provided. The process involves the development of a functional decomposition
which provides the basis for a realization of physical elements that form a scheme.
In addition to determining which physical elements comprise a scheme, the relations
between them must also be specified to a sufficient extent to permit the evaluation and
comparison of alternative schemes.

In the remainder of this section a brief overview of some of the most important
aspects of our approach to conceptual design will be presented. For a more complete
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discussion of the theory the reader is encouraged to refer to the more detailed literature
available [14,15].

3.1 The Design Specification

The conceptual design process is initiated by the recognition of a need or customer
requirement. This need is analyzed and translated into a statement which defines the
functionality that the product should provide (referred to as functional requirements)
and the physical requirements that the product must satisfy. This statement is known as
a design specification.

A design specification will contain both abstract functional requirements as well
as concrete physical requirements. The functional requirements define the “purpose”
of the desired product at as high a level of abstraction as possible. In addition, two
classes of physical requirement can be identified: product requirements and life-cycle
requirements. These requirements can be either categorical requirements that define
constraints between attributes of the product or its life-cycle, or they can be preferences
related to subsets of these attributes.

Essentially, the design specification comprises a set of constraints which must be
satisfied and a set of objective functions with respect to which the desired product must
be Pareto optimal [14].

3.2 Conceptual Design Knowledge

In order to successfully synthesize alternative schemes that meet the requirements de-
fined in the design specification, the designer needs considerable knowledge of how
function can be provided by physical means. This knowledge exists in a variety of forms;
a designer may not only know of particular components, sub-assemblies and technolo-
gies that can provide particular functionality, but may be aware of abstract concepts
which could also be used. For example, a designer may know that an electric light-bulb
can generate heat or, alternatively, that heat can be generated by rubbing two surfaces
together. The latter concept is more abstract that the former. In order to effectively sup-
port the designer during conceptual design, these alternative types of design knowledge
need to be modeled in a formal way. However, a CAD system which supports conceptual
design must also be capable of dealing with the designer’s “off-the-cuff” ideas and store
them for future use if they are deemed useful.

Reasoning about Function. We employ a function-means map approach to cataloging
how function can be provided by means [6,14]. In a function-means map two different
types of means can be identified: design principles and design entities.A design principle
is a means which is defined in terms of a set of functions that must be provided in
order to provide some higher-level functionality. Design principles are abstractions of
known approaches to providing function. By utilizing a design principle the designer can
decompose higher-level functions without committing to a physical solution too early
in the design process. The functions that are required by a design principle collectively
replace the function being embodied by that principle. The functions which define a
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design principle will, generally, have a number of context relations defined between
them. These context relations describe how the parts in the scheme, which provide these
functions, should be configured so that the design principle is used in a valid way. For
example, in Figure 1, principle 1 comprises two functions, f1 and f2, between which a
context relation r1 is defined.

Note that a design principle is not just a model of a known physical design solution,
but is an abstraction which can be used to encourage creativity and analogical reasoning
during design.An example of this was presented above when defining an abstract concept
for generating heat by rubbing two surfaces together.

A design entity, on the other hand, is a physical, tangible means for providing function
such as a component or sub-assembly.A design entity is defined by a set of parameters and
the constraints that exist between these parameters. For example, an electronic resistor
would be modeled as a design entity which is defined by three parameters, resistance,
voltage and current, between which Ohm’s Law would hold.

Embodiment of Function. As the designer develops a scheme for a product every
function in the scheme is embodied by a means. Each means that is available to the
designer has an associated set of behaviors. Each behavior is defined as a set of functions
that the means can be used to provide simultaneously. Each behavior associated with
a design principle will contain only one function to reflect the fact that it is used to
decompose a single function. However, a behavior associated with a design entity may
contain many functions to reflect the fact the there are many combinations of functions
that the entity can provide at the same time. For example, the bulb design entity mentioned
earlier may be able to fulfill the functions provide light and generate heat simultaneously.
However, when a design entity is incorporated into a scheme it is not necessary that every
function in this behavior be used in the scheme.

3.3 Scheme Configuration Using Interfaces

Generally, the first means that a designer will select will be a design principle. This
design principle will substitute the required (parent) functionality with a set of child
functions. Ultimately the designer will embody all leaf-node functions in the functional
decomposition with design entities. During this embodiment process, the context rela-
tions from the design principles used in the scheme will be used as a basis for defining
the interfaces (constraints) between the design entities used in the scheme.

For example, in Figure 1 an example scheme structure is illustrated. The top-level
function in this scheme is f0. This function is embodied using a design principle called
principle 1. This design principle introduces two functions, f1 and f2 to replace the
function f0. A context relation, r1, is specified between these functions. The function f1
is embodied by a design principle, principle 2, which introduces two further functions,
f3 and f4 into the scheme. A context relation, r2, is specified between these functions.
The function f3 is embodied with the design entity ent 1, the function f4 is embodied
with the design entity ent 2 and the function f2 is embodied with the design entity ent
3. However, between which design entities should the context relations r1 and r2 be
considered?
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Fig. 1. An example of scheme configuration.

The context relation r2 must exist between the entities that derive from the functions
f3 and f4. The design entities ent 1 and ent 2 are used to embody these functions. Thus, the
context relation r2 must be considered between these entities. Since, the design entities
ent 1 and ent 2 are the means used to provide the functions f3 and f4, these entities can
be regarded as being directly used to provide these functions.

The context relation r1 is a little more complex. This context relation must exist
between the entities that derive from the functions f1 and f2. The design entity ent 3
is used to embody the function f2. Thus this entity can be regarded as being directly
used for the function f2. The function f1 is provided by the design principle principle 2,
whose child functions are in turn embodied by the design entities ent 1 and ent 2. Thus,
these design entities can be regarded as being indirectly used to provide the function
f1. Therefore, the context relation r1 must be considered between the combination of
design entities ent 1 and ent 2 on the one hand, and ent 3 on the other hand.

The precise nature of these interfaces cannot be known with certainty until the de-
signer embodies functions with design entities; this is because the link between functions
and design entities is generally not known with certainty during the development of the
functional decomposition for the scheme. Until the precise nature of a particular inter-
face is known, they are modeled as constraints between design entities which can be
used to reason about the product structure; for example, interfaces may represent simple
spatial relationships which can inform an evaluation related to the relative position of
parts in a product.

The types of interfaces that may be used to synthesize a product structure will be
specific to the engineering domain within which the designer is working. Indeed, these
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interfaces may also be specific to the particular company to which the designer belongs
in order to ensure the configurability of the product.

4 An Overview of the Current Prototype

In this section we present the key features of our current prototype CAD technology
for supporting conceptual design, which we call ConCAD Expert. The technology is
seamlessly integrated with Autodesk Inventor1. This particular CAD system has been
chosen for a number of reasons. In particular, as well as being one of the most popular
3D solid modeling design environments, Inventor has an architecture similar to most
tools of its kind, but has a very rich API through which we can integrate with the host
CAD system.

Our technology has been designed to interface to the Inventor (version 5.3) CAD
system as an add-in application that can be invoked by the designer at any point. At its
core is an interactive constraint filtering system based on generalised arc-consistency [3]
and backtrack search. The system is fully interactive, monitoring the consistency of
designer decisions and providing feedback when an inconsistency has been detected
or the designer has requested justifications or explanations from the system. It was
developed using C#, and uses the Autodesk Inventor 5.3 COM API. An XML database
has been developed to store the parts available to the CAD system. The XML schema
that has been used, represents a part file and the various attributes of each part. We now
present many of the features of our prototype in the form of a “walk-through”.

Once the conceptual design tool has been invoked, the designer can use a Functional
View panel (see left-hand side of Figure 2) to define the functionality and physical
constraints that the desired product must satisfy.

Fig. 2. Beginning a conceptual design session using a design principle.

1 See: http://www.autodesk.com/inventor
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Fig. 3. Viewing recommended means.

Once the ConCAD Expert add-in has been invoked the designer can begin to develop
his concept by developing a functional decomposition and mapping functions onto parts
which will be loaded into Inventor automatically. In Figure 2 the designer begins to design
an engine by incorporating a pre-defined design principle for an internal combustion
engine. The result of this action can be seen in Figure 3, where each of the functional
elements of an engine can be seen in the FunctionalView pane. Note that this is an abstract
description. Each of the elements in the Functional View pane relates to a design element
which is represented as a function. No parts have yet been selected at this point. However,
the designer is free to select parts if desired, or can extend the functional description
of each element further by incorporating additional design principles into the scheme.
Furthermore, the designer can define context relations (constraints) between elements
of the functional description, in addition to those that form part of the definition of the
engine design principle, if desired. These will define how each of the elements must
relate each other in the part model.

At the moment, the designer can select design principles from a predefined database,
or can manually define them on-the-fly. Obviously, we would like the conceptual design
system to store any new descriptions for use in future projects. At the moment, this must
be done by manually including them in the database. However, in the next version of
the system the identification and storage of design principles will be done automatically.
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In this way the CAD system will acquire the design principles for a particular design
domain over time.

At any point in time the designer can view which means in the CAD database are
recommended for use in the designer’s scheme. Recommended means must not only
satisfy the functional requirements defined in the functional decomposition, but must
also be consistent with the physical constraints defined explicitly by the designer and
implicitly by any other means used in the scheme.

In Figure 3 the designer has asked the CAD system to recommend means for the
carburettor element in the functional decomposition. As can be seen on the middle-
left side of the figure, five alternative means have been found for this element from
which the designer is free to choose. In this example, all means that can provide the
required functionality for this element are recommended; otherwise they would have
been displayed in the Other Means box. A means is no longer recommended if it satisfies
the functional constraints, but violates one or more physical constraints.

However, for the purposes of explanation lets assume that before the designer selects
one of these means he defines an additional constraint in the CAD system. An interface
used to do this is shown in Figure 4. The designer is free to define constraints on any
characteristic of the scheme. In this figure, the designer has defined the constraint that
ensures that the mass of the means that will be used to provide the functionality of the
carburettor will have a mass that is no more than a given maximum value.

Fig. 4. Specifying additional constraints.

The consequence of this constraint is that some of the means which could have been
used as a carburettor have been removed and placed in a list of Other Means, which
contains those means that are no longer recommended for this situation. This scenario
is depicted in the lower left of Figure 5.
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Fig. 5. The effect of the designer’s constraint.

Also presented in this figure is a window showing the attributes of a particular means
selected by the designer. In this figure the designer has clicked on the recommended
part, Carb2.1.iam. Note in the attributes window that the mass of the part satisfies the
constraint that the maximum mass of the carburettor be no more than 150g.

As the designer makes decisions and interacts with the CAD system, a CSP model
describing the characteristics of the desired product is being developed. Part of the
constraint model that the designer has developed at this point in our example is presented
in Figure 6.

In this figure we can, firstly, see at the top the set of constant definitions. Secondly,
we can see the set of variables in our design and their corresponding domains. Finally,
we have the set of constraints defined by the design specification for the product, any
additional constraints defined by the designer or constraints added to the model which
are implied by the designer’s decisions.

To illustrate the consequences of constraint addition and domain filtering in our
prototype, Figure 7 shows the effect of adding an overall cost constraint to the model. This
constraint was entered using the interface presented in Figure 4. We can see from Figure 7
that the list of of recommended means has been reduced further through inference,
which in the prototype is based on generalized consistency processing. In this figure the
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Fig. 6. The CSP can be viewed at any stage during the design process.

designer has asked for an explanation for why the Carb1.0.iam is no longer recommended
by selecting it from the list. An explanation is given in Figure 8 which specifies the
constraints with which the part is inconsistent. Explanations are currently generated
directly from the inference algorithm used in the prototype.

Figure 9 presents the extended CSP model of our scheme which includes the designer-
specified cost constraint (shown last in the figure). Note how the domains of the more
expensive parts were heavily reduced whereas the smaller cheaper parts such as the
mount were unaffected.

As the designer develops the functional decomposition he can also select parts for
providing the necessary functionality. There is no restriction placed on the order that
the designer develops a scheme. Figure 10 shows the CAD system interface after the
designer has begun to select parts. The constraint model that the CAD system contains
at this point not only includes constraints on the functional decomposition and each
part, but also constraints on the way parts can be configured. These interface constraints
derived from the constraints that the designer specified while developing the functional
decomposition for the product, as well as the various design principles that were em-
ployed. As the designer develops the scheme further, inference on these constraints will
assist the designer make consistent decisions on a valid configuration of these parts.

The designer does not need to fully specify the entire design at this point since that
is a detailed design task. All that is required is that the designer specify the scheme to an
extent which permits it to be evaluated against the constraints in the design specification
and compared against any alternative schemes that have been developed.

5 Next Steps

The CAD technology presented here is being developed for industrial deployment. In
anticipation of the release of the tool, we are currently developing the next generation
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Fig. 7. A constraint was added setting the total Cost below a certain threshold. The Carb1.0.iam
assembly violated this constraint because it was too expensive.

Fig. 8. An explanation showing the cost constraint that the the Carb1.0.iam assembly has violated.

of the CAD system which will have a number of additional capabilities. Some of these
are discussed below.

In the current prototype the designer either manually enters the entire functional
specification for an artifact, or uses predefined principles. We are currently working on an
approach which helps capture new design principles and modifications of existing ones,
and store them in the database for future use. In this way, not only will the CAD system
be capable of learning from the designer, but will also alleviate a company from having to
completely specify a design knowledge-base before the CAD technology is useful. The
approach we are adopting is designer-driven. The designer decides what constitutes a
sufficiently detailed abstract description of a principle. The system facilitates the designer
by storing his concepts, whatever they may be. This feature is critical for real-world
deployment; the need to invest heavily in knowledge-base development is a significant
disadvantage of many intelligent CAD tools.

In addition to the above, we wish to extend the functional reasoning capabilities
of the CAD system in a number of ways. In particular, we are developing a set of
standard interface constraints to assist with reasoning about scheme configuration. For
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Fig. 9. The CSP after the overall cost constraint was added.

example, the ability to add spatial constraints is important in order to more accurately
evaluate schemes. There are a number of other interface constraints that also need to be
implemented as primitives, such as mechanical and electrical connections which have
some default semantics. At present the designer does not have access to such default
interfaces and must define them explicitly within the solid modeling environment of the
host CAD system.

At present the functional description of a product is defined textually. We are in-
terested in developing a sketch-based interface for describing the critical functional
elements and their relationships. This interface would allow designers to develop their
ideas as a marked-up sketch. The mark-up on the sketch would indicate critical elements
and the relations between them [22].

Another critical area is explanation generation. We are currently developing novel
explanation generation algorithms suited for interactive constraint satisfaction. Improved
explanation generation capabilities will also provide us with a basis for providing feed-
back on comparisons between different design solutions that the designer wishes to
consider.

Finally, the approach underlying the CAD technology described here has been eval-
uated in a number of industrial contexts. In particular, the approach has been evaluated
through several case-studies performed in conjunction with industry. Evaluations have
been carried out in the fields of discrete electronic design, mechatronics and optical
systems. For further details on how the technology has been used in industry, the reader
is encouraged to refer to the literature available [14,15]. In all cases designs of com-
parable sophistication to those developed by real-world designers and engineers using
traditional methods were produced. Further evaluations will be undertaken using the
prototypes developed as part of the work reported here.
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Fig. 10. Developing the scheme’s part model in the host CAD system, Autodesk Inventor.

6 Concluding Remarks

Engineering conceptual design can be defined as that phase of the product development
process during which the designer takes a specification for a product to be designed and
generates many broad solutions to it. It is well recognized that few computational tools
exists that are capable of supporting the designer work through the conceptual phase of
design. This paper presented a prototype constraint-based computer-aided design (CAD)
technology that can be used to support designers working in the early stages of design.
We presented the current status of our prototype and a detailed demonstration of its
functionality. Finally, we described our current work on a number of additional features
for the next prototype, which will be deployed in an industrial context.
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Abstract. We show an algorithm for bound consistency of global cardi-
nality constraints, which runs in time O(n+n′) plus the time required to
sort the assignment variables by range endpoints, where n is the number
of assignment variables and n′ is the number of values in the union of
their ranges. We thus offer a fast alternative to Régin’s arc consistency
algorithm [6] which runs in time O(n3/2n′) and space O(n · n′). Our al-
gorithm can also narrow the bounds for the number of occurrences of
each value, which has not been done before.

1 Introduction

The Global Cardinality Constraint GCC(x1, · · · , xn, cv1 , · · · , cvn′ ) is specified on
n assignment variables x1, . . . , xn and n′ count variables cv1 , . . . , cvn′ . The idea
is that each assignment variable xj takes a value in D = {v1, · · · , vn′} and
each value vi is used exactly cvi

times. With each assignment variable xj we
associate a domain Dj ⊆ D, and the domain of a count variable cvi

is an interval
Ei = [Li, Ui]. For a tuple t ∈ Dn and v ∈ D denote by occ(v, t) the number of
occurrences of the value v in t. Then the set S containing all solutions of the
constraint is defined as follows:

S = {(w1, . . . , wn; o1, . . . , on′) | ∀jwj ∈ Dj ∧ ∀iocc(vi, (w1, . . . , wn)) = oi ∈ Ei}

Given a constraint with ranges for the variables, the first question is whether
S �= ∅, which means that there is an assignment of values to the variables which
satisfies the constraint. The arc consistency problem for the assignment variables
is to reduce the domains of these variables such that Dj is the projection of S onto
its jth component. In the bound consistency problem we assume v1 < . . . < vn′

and each Dj is a contiguous interval of values, i.e. Dj = [Dj , Dj ]. The problem
is to shrink the intervals of both the assignment and the count variables to the
minimum sizes such that S ⊆ D1×· · ·×Dn×E1×· · ·×En′ . I.e., the domain of
the kth variable is bound consistent iff S contains at least one tuple whose kth
component equals the smallest (largest) value in the respective domain.

Régin [6] has provided an algorithm that achieves arc consistency for the
assignment variables of a GCC, but does not reduce the domains of the count
� Partially supported by DFG grant SA 933/1-1.
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variables. He constructs a bipartite graph and computes a maximum flow in it.
He then defines the residual graph with respect to this flow, finds the strongly
connected components (SCCs) in the residual graph and discards the edges be-
tween SCCs that carry no flow. The algorithm runs in time O(n3/2n′) and space
O(n · n′) and is dominated by the complexity of finding a maximum flow using
Ford and Fulkerson’s algorithm [3].

Mehlhorn and Thiel [5] considered the AllDifferent constraint, which requires
that each variable is assigned a different value and is the special case of GCC in
which [Li, Ui] = [0, 1] for all 1 ≤ i ≤ n′. They show an algorithm for bound con-
sistency of this restricted case. Though phrased in terms of bipartite matchings,
it can also be interpreted as a simplified version of Régin’s flow-based algorithm;
the maximum flow in this case is a maximum matching in the graph. Their
algorithm runs in linear time plus the time required to sort the variables ac-
cording to the endpoints of their ranges. The improved running time compared
to Régin’s algorithm is achieved due to the fact that the algorithm exploits the
simpler structure of the graph: The assumption that the range of each variable
is an interval implies that the bipartite graph is convex, which means that the
neighborhood of each variable node is a contiguous sequence of value nodes.

For GCC, we show an algorithm of the same flavor that achieves bound
consistency for the assignment variables and can also narrow the bounds of the
count variables (but in general not to bound consistency). A significant difference
between the problems is that in an AllDifferent constraint, only variable nodes
must be matched but a value node may or may not be matched. Now, we also
have lower bound requirements on the value nodes. We will show, again using
matching terminology, that it is still possible to find a maximum flow in the
bipartite graph and compute the SCCs in the residual graph in time which
is linear in the number of nodes plus the time required for sorting the range
endpoints of the assignment variables. This algorithm can be used as a fast
and space efficient alternative to Régin’s algorithm where bound consistency
is enough, or as a preprocessing step to speed up Régin’s algorithm where arc
consistency is desired. For the full version of this paper, refer to [4]. Source code
is available by request from the authors.

2 Preliminaries

2.1 Normalization of the x-Ranges

The x-ranges are called normalized if D = {1, · · · , n′}. This has the advantage
that we can use the values as array indices. Normalization can be achieved by
identifying each value vi with its index i in the sorted order v1 ≤ · · · ≤ vn.
To do this we need to compute for every original domain Dj = [vlj , vhj ] the
corresponding normalized domain D′

j = [lj , hj ]. After sorting the endpoints of
D1, · · · , Dn in ascending order, this can be done in time O(n + n′). If the vi’s
are integers drawn from the range [1, nk] for some fixed k, sorting can be done
in time O(n). After achieving bound consistency for the normalized domains
D′

1, . . . , D
′
n, we can easily narrow the original domains to bound consistency.
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2.2 A Generalization of Matching

A matching in a graph is a subset M of its edges such that each node is adjacent
to at most one edge in M . We generalize this notion to capacitated graphs
G = (V,E,C) where C is a function that maps every node ν ∈ V to an interval
C(ν) = [Lν , Uν ]. We call C(ν) the capacity requirement of ν. For a set M of
edges and a node ν we denote by M(ν) the set of all nodes that are adjacent to
ν by an edge in M . A generalized matching in G is a subset M of its edges such
that for each node ν ∈ V we have |M(ν)| ∈ [Lν , Uν ]. We call M(ν) the set of
matching mates of ν.

As in [5], we define the intersection graph of a GCC, which is in this case a
capacitated bipartite graph with n nodes {x1, · · · , xn} representing the variables
on one side and n′ nodes {y1, · · · , yn′} representing the values in the ranges of the
variables on the other side. The capacity ranges of the variable nodes are all [1, 1],
indicating that each variable must be assigned exactly one value. For a value
node, the capacities are according to the count requirements of the value rep-
resented by the node: ∀1≤i≤n′ [Lyi

, Uyi
] = [Li, Ui], and ∀1≤j≤n[Lxj

, Uxj
] = [1, 1].

The edge (xj , yi) exists in the graph if and only if i ∈ [Dj , Dj ].

Running Example: Throughout the paper, we will illustrate the algorithms
with the following example (see Figure 1): GCC(x1, · · · , x6, cv1 , · · · , cv4) where
the assignment variable ranges Dj and the count variable ranges Ei are

E1 E2 E3 E4

[1,3] [1,2] [1,1] [1,1]

D1 D2 D3 D4 D5 D6

[1,1] [1,2] [1,2] [2,2] [3,4] [3,4]

y1 y2 y3 y4

x2x1 x3 x4 x5 x6

Fig. 1. The intersection graph of the example GCC and a generalized matching in it,
marked with bold edges.

Lemma 1. Let T denote the projection of S onto its first n components. Ev-
ery generalized matching M = {{xi, yg(i)}|1 ≤ i ≤ n} corresponds to the tuple
(g(1), · · · , g(n)) in T and vice versa.

Proof. Immediate from the definition of a generalized matching. ��

2.3 The Connection to Régin’s Algorithm

Régin’s algorithm computes a maximum flow in a graph #H which is similar
to our intersection graph with a few differences: It is directed, contains two
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additional nodes s and t, and the capacity requirements are on the edges and
not on the nodes. The edge set of #H is defined as follows1. There is an edge
(xj , yi) with capacity requirement [0, 1] iff i ∈ Dj . For every yi there is an edge
(yi, s) with capacity bounds [Li, Ui], and for every xj we have the edge (t, xj)
with capacity requirement [0, 1]. Régin shows that the constraint has a solution
iff the maximum flow from t to s has value n.

His algorithm searches for a flow F of value n. If none exists, it reports failure.
Otherwise, it constructs the residual graph #RF , which allows to determine for
each variable the arc consistent values in its domain. #RF has the same nodes as #H
(except for t) and the following edges: An edge (xj , yi) iff i ∈ Dj ∧F (xj , yi) = 0,
an edge (yi, xj) iff i ∈ Dj ∧ F (xj , yi) = 1, an edge (yi, s) iff F (yi, s) < Ui, and
finally an edge (s, yi) iff F (yi, s) > Li. In Corollary 2 in [6], Régin proves that a
value i in the domain Dj is consistent for xj iff F (xj , yi) = 1 or xj and yi belong
to the same SCC of #RF .

A generalized matching M in the intersection graph G corresponds to the
flow FM in #H such that for each edge (xj , yi), FM (xj , yi) = 1 if {xj , yi} ∈ M
and FM (xj , yi) = 0 otherwise; FM (yi, s) = |M(yi)| for all i and FM (t, xj) = 1
for all j. Observe that the total flow from t to s has value n.

As in [5], we augment the residual graph #RFM
such that we obtain a graph

#G with the following property: A value i ∈ Dj is arc consistent iff xj and yi are
in the same SCC of #G. If xj is matched with yi in M , #RFM

contains the edge
(yi, xj), and in #G we add the edge (xj , yi) in the opposite direction. So if xj and
yi are matched (equivalently, FM (xj , yi) = 1) then they belong to the same SCC
of #G. We call #G the oriented intersection graph. Lemma 2 follows easily from the
discussion above and Régin’s results cited in it:

Lemma 2. An edge {xj , yi} in G belongs to a generalized matching iff xj and
yi are in the same SCC of #G.

This lemma implies the correctness of the following bound consistency algo-
rithm for the assignment variables:

1. Find a generalized matching in G.
2. Construct #G and compute its SCCs.
3. Narrow the ranges as much as possible such that they still represent all edges

within the SCCs.

We want to point out that our algorithm uses O(n + n′) space and does not
construct any of these graphs explicitely.

3 Finding a Generalized Matching
in the Intersection Graph

The algorithm for finding a generalized matching in a convex graph is given in
Figure 2. It makes three passes over the y nodes. In the first two passes it goes
1 The edges in �H have the opposite direction compared to Régin’s graph. We prefer the

reversed orientation because it is equivalent and simplifies the following presentation.
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from left to right and uses a priority queue P to which x nodes are inserted when
they become candidates for matching and in which they are sorted according to
the upper endpoints of their domains. That is, the node x that is extracted from
P by an ExtractMin operation is the one whose domain ends earliest. So any
node that remains in P can match the same future y-nodes as x (by convexity),
but maybe even more. And hence, it is reasonable to extract x and keep the
others.

In the first pass the algorithm ignores the lower bound capacities and finds
a generalized matching in the graph GL=0 = (V,E,CL=0), where CL=0(yi) =
[0, Ui] for all i and CL=0(xj) = [1, 1] for all j. GL=0 is the same as G except that
the lower bound capacities of all y nodes are zero. This generalized matching is
constructed as follows: The y nodes are traversed from y1, · · · , yn′ . When yi is
reached, all of the x nodes that are connected to yi, but not to any node with a
smaller index, are inserted into the queue; they are now candidates for matching.
Then yi is matched with up to Ui nodes from P (less if P does not contain that
many nodes). If, while processing yi, the algorithm extracts a node from the
queue which is not connected to yi, it reports failure (cf. Lemma 3).

In the second pass, the algorithm makes another traversal of the y nodes
in the same order, but this time it ignores the upper bounds and constructs a
generalized matching in the graph GU=∞ = (V,E,CU=∞), where CU=∞(yi) =
[Li,∞] for all i and CU=∞(xj) = [1, 1] for all j. In this matching, each y node
is matched with the minimal number of x nodes such that its lower capacity
bound is respected and all x nodes which are not connected to y nodes with
higher indices are matched. If the queue becomes empty while the algorithm
tries to fulfil the lower capacity bound Li for node yi, the algorithm reports
failure (see Lemma 6).

The matching found in the first pass is used during the second pass to deter-
mine the order in which nodes are inserted into the queue. We will show that if
a generalized matching exists, then there also exists a generalized matching such
that each yi is matched only with nodes that were matched in the first pass with
nodes from y1, · · · , yi (cf. Lemma 4). Hence, when yi is reached in the second
pass, the nodes that were matched with it in the first pass are inserted into the
queue as candidates for matching with it.

The matching found in the second pass may violate the upper capacity
bounds in G. The third pass corrects this by traversing the y nodes from yn′ to
y1 and shifting these excesses to y nodes with lower indices.

The table below shows the mate of xj in our running example after each pass
of the algorithm.

j 1 2 3 4 5 6
pass 1 1 1 1 2 2 3
pass 2 1 2 2 2 3 4
pass 3 1 1 2 2 3 4

Lemma 3. If the algorithm reports failure in the first pass, then there is no
generalized matching in GL=0. And hence, there is also none in G.
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(* Input: (1) Ranges of assignment variables Dj = [Dj , Dj ] for each xj , 1 ≤ j ≤ n *)
(* (2) A capacity requirement [Li, Ui] for each 1 ≤ i ≤ n′. *)
(* Output: A generalized matching if it exists, failure otherwise. *)

(* 1st pass: find a matching in GL=0 (encoded in m) *)
P ← [] (* priority queue containing x nodes sorted according to D *)
j ← 0; Un′+1 ← ∞
for i = 1 to n′ + 1 do

forall xh with Dh = i do P .Insert xh

u ← 0
while P is not empty and u < Ui do

j ← j + 1; xf(j) ← P.ExtractMin
m[f(j)] ← i; u ← u + 1
if Df(j) < i then report failure
(* No failure implies i ∈ Df(j) *)

end
βi ← j

endfor

(* 2nd pass: find a matching in GU=∞ and ensure feasibility for G *)
j ← 0; α0 ← 0
for i = 1 to n′ do

forall xh with m[h] = i do P .Insert xh

for � = 1 to Li do
if P is empty then report failure
j ← j + 1; xg(j) ← P.ExtractMin
match yi ↔ xg(j) (* m[g(j)] ≤ i *)

endfor
while P is not empty and P.MinPriority < i + 1 do

j ← j + 1; xg(j) ← P.ExtractMin
match yi ↔ xg(j) (* m[g(j)] ≤ i *)

end
αi ← j

endfor

(* 3rd pass: transform the matching from 2nd pass into a matching in G *)
for i = n′ to 1 do

if yi has currently h mates s.th. e := h − Ui > 0 then
for k = 1 to e do

choose a current mate xjk of yi with i′ := m[jk] < i
match yi′ ↔ xjk (* yi looses xjk *)

endfor
endif

endfor

Fig. 2. Algorithm for generalized matching in a convex capacitated bipartite graph.
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Proof. Suppose the algorithm reports failure in iteration i after extracting a
node xj (observe that any extraction in iteration n′ + 1 causes failure.) Then
in iteration i − 1 it only extracts x nodes that are not connected to yi, and P
contains xj afterwards. Let i′ be the maximum iteration before i − 1 such that
an x node connected to yi is extracted or P becomes empty during iteration i′.
If no such iteration exists, choose i′ = 0. Let X denote the x nodes extracted in
iterations i′ +1, · · · , i− 1. Since P never becomes empty during these iterations,
we have |X| =

∑i−1
k=i′+1 Uk, i.e. X exhausts the capacities of the nodes in Y =

{yi′+1, · · · , yi−1}.
The nodes in X are not connected to yi or a y node to its right. We show

that there is also no connection to yi′ or a y node to its left. Suppose otherwise,
i.e. x� ∈ X is connected to yi′′ with i′′ ≤ i′. As x� was inserted to P in iteration
i′ or earlier and is extracted in a later iteration, P was never empty in iteration
i′. By the choice of i′, this implies that a node xj′ connected to yi was extracted
in iteration i′. As xl was removed later, it must also be connected to yi, a
contradiction to the choice of i′. Thus all neighbors of the nodes in X are in Y .
A similar argument proves that the node xj , which caused the failure in iteration
i, is only connected to nodes in Y .

Since a generalized matching in GU=∞ would have to match the nodes in Y
with at least |X|+ 1 nodes, but can only match them with |X| different nodes,
such a matching cannot exist. ��

For any matching M and subset Y ⊆ {y1, · · · , yn′}, let M(Y ) =
⋃

y∈Y M(y),
i.e. M(Y ) is the set of all x nodes that are matched with nodes of Y .

Lemma 4. If there is a generalized matching M ′ in G, then there is also a
generalized matching M with the following property: For all edges {xj , yi} ∈M ,
we have m[j] ≤ i.
M can be chosen such that |M(yi)| = |M ′(yi)| for i = 1, · · · , n′. And hence, it is
impossible to match {y1, · · · , yi} with more than βi nodes2.

Proof. Let M ′ be a generalized matching in G, and suppose it does not have
the desired property. Let i be minimal such that there is an edge {xj , yi} with
k = m[j] > i. Not all nodes x� with m[�] = i can be matched with yi in M ′,
otherwise neither the queue nor the capacity of yi would have been exhausted
after iteration i in the first pass. So there is an edge {xj′ , yi′} ∈ M ′ with i′ �= i
and m[j′] = i. By the choice of i we have i′ > i. When xj′ was extracted in the
first pass, xj was also in the queue. So we conclude that xj is also connected to yi′ .
Thus we can swap the mates of xj and xj′ and obtain a new generalized matching
M ′′. M ′′ does not violate the property for the nodes y1, · · · , yi−1 and the number
of violations at yi is less than in M ′. This shows that we can transform the
matching until we eventually obtain a matching M with the desired property.
The last statement follows from the fact that βi = |{xj |m[j] ≤ i}|. ��

Lemma 5. If the algorithm does not report failure in iteration i of the second
pass, then for any generalized matching M in G we have |M({y1, · · · , yi})| ≥ αi.
2 We will refer to the βi values in Section 5.
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Proof. By induction on i. For i = 0 and i = 1 the claim is easy to verify. So let us
assume that it holds for i′ = 1, · · · , i−1 and prove it for i. If the body of the while-
loop is not executed, we have αi = αi−1+Li, and applying the induction for i′ =
i− 1 immediately proves the claim. So suppose that nodes are extracted in the
while-loop, which implies that no x that is extracted in iteration i is connected
to yi+1. Let i′ be the maximum iteration before i such that a node connected
to yi+1 is removed. If no such iteration exists, choose i′ = 0. Let X denote the
x nodes extracted in the iterations i′ + 1, . . . , i, and let Y = {yi′+1, · · · , yi}. A
similar argument as in the proof of Lemma 3 shows that the neighbors of any
node x ∈ X are contained in Y . Thus |M(Y )| ≥ |X| = αi−αi′ . By the induction
hypothesis for i′, |M({y1, · · · , yi})| ≥ αi′ + |M(Y )| = αi. ��

Lemma 6. If the algorithm reports failure in the second pass, then there is no
generalized matching in G.

Proof. Suppose that the algorithm reports failure in iteration i, although a gen-
eralized matching M exists. By Lemma 4, we can assume that for any edge
{xj , yk} in M we have m[j] ≤ k. So y1, · · · , yi are matched only with nodes that
have been inserted into P so far. From the previous lemma we can conclude that
there must be at least αi−1 + Li such nodes. But since the algorithm reports
failure, this is not the case, a contradiction to the existance of M . ��

Lemma 7. If the algorithm does not report failure, it constructs a generalized
matching in G.

Proof. If the second pass succeeds, we have a generalized matching in GU=∞,
because we fulfil the lower capacity bounds of every y node (cf. the for-loop),
and we match every x node with a neighbor on the y side (see the while-loop).
So the only problem is the upper capacity bounds of the y nodes. The third
pass takes care of these. Observe that this pass sweeps over the y nodes from
right to left and distributes the excess mates of a node yi only to y nodes with
lower indices, so that it cannot increase the number of mates of a y node after
it was processed. Furthermore, if xj is matched with yi at some point in time
then m[j] ≤ i. Since we have equality for at most Ui nodes, we can always select
e excessive mates to distribute, if necessary. Suppose a node xj is removed from
yi and matched with yi′ in the third pass, where i′ = m[j]. From the first pass,
it is easy to see that i′ ∈ Dj , i.e., xj and yi′ are connected. ��

Implementing the Algorithm
in Linear Time (for Normalized Domains)

Now we discuss some implementation details of the algorithm. First we show how
to implement it in time O(n′ + n log n), and then we refine this implementation
to obtain O(n′ + n) time. In the first variant we use a binary heap of size n
to implement the priority queue P . Then the operations Insert and ExtractMin
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take time O(log n) and MinPriority runs in constant time. Before we run the
algorithm we sort the x nodes according to their lower range endpoints, which
takes time O(n + n′) because all domains are in [1, n′]. This sorting allows us to
determine efficiently the nodes that have to be inserted into P in each iteration
of the first pass. Recall that the order by which the x nodes are extracted in the
first pass determines the order by which they are inserted in the second pass. So
the two passes can be implemented in time O(n′ +n log n). The third pass takes
linear time. To see this we notice that every x node changes its mate at most
once. So we maintain for every y node two seperate lists for the mates that it
received in the second and the third pass respectively. Thus we can make sure
that we process every x node only once.

In order to shave off the logarithmic factor in the running time, we have to
find a faster implementation of the priority queue. As in [5] we simulate the
priority queue by creating an instance of the offline-min problem [1, Chapter
4.8], which can be solved in linear time using a special union-find data structure
[2]. (The offline-min algorithm needs a sorting of the x’s according to their upper
interval endpoints, which can be computed in time O(n + n′).)

Except for failure detection, the algorithm does not use the mapping f in the
first pass at all. So the whole sequence σ of Insert and ExtractMin operations
can be computed without knowing the results of the extractions. Checking if P
is empty can be done by counting the number of insertions and comparing it
with the number of extractions (which is equal to j). Failure detection can be
done after the mapping f has been computed.

We give a brief description of the offline-min algorithm. When it is applied
to a sequence σ it determines for every insertion the corresponding extraction.
Let E1, · · · , En be the extract operations in the order in which they occur in σ.
The node xj with minimum priority is the output of the first extraction Ek that
follows its insertion. After deleting Ek from σ we process the x with next higher
priority, and so on. We implement this with a union-find structure that maintains
a partition P of E1, · · · , En. Every set in P has the form {Eh, Eh+1, · · · , Ek},
where all extractions except for Ek have been deleted. Suppose we process xj and
let Es be the first extraction in the original sequence after the insertion of xj .
Observe that Es may have been deleted already. To determine the extraction
Ek for xj , we simply have to find the set S in P containing Es. Deleting Ek

amounts to uniting S with the set of Ek+1.
We cannot use the offline-min algorithm directly for the second pass, because

we need to know the result of the MinPriority operation in the while-loop online.
But a slight enhancement will do the job (see Figure 3). We initialize our data
structures as above but we only create a set for the mandatory extractions that
are made in the for-loop. When we find a tentative extraction Ek for xj , we
verify that Ek occurs in iteration i ≤ Dj . If not, then we know that xj is
extracted by the while-loop in iteration Dj , and we do not delete Ek. We want
to point out that we detect failure if there is a mandatory extraction for which
no corresponding insertion is found. Assuming w.l.o.g. that

∑n′

i=1 Li ≤ n, the
algorithm runs in time O(n′ + n).
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k ← 1 (* Ek will always be the next mandatory extraction *)
for i = 1 to n′ do

forall xj with m[j] = i do s[j] ← k (* x’s inserted in iteration i (before Ek) *)
for � = 1 to Li do

create set {Ek} labelled L(i,�)
k (* for mandatory extraction � in iter. i *)

k ← k + 1
endfor

endfor
create set {Ek} labelled with L(n′+1,0)

k (* dummy extraction *)
forall xj sorted in ascending according to D do

S ← find(Es[j]); let L(i,�)
k be its label

if i ≤ Dj then
xj is removed by extraction � in the for-loop of iteration i
unite S with the set S′ containing Ek+1 and

label the union with the former label of S′

else
xj is extracted by the while-loop in iteration Dj

endif
endfor

Fig. 3. Enhanced offline-min algorithm for the second pass.

4 Finding the SCCs of the Oriented Intersection Graph

As described in Section 1, we construct an oriented graph #G from the intersection
graph and the generalized matching M (see Figure 4). The edges which are not
within a strongly connected component of #G describe inconsistent assignments
of values to variables. Mehlhorn and Thiel [5] gave an algorithm that finds the
SCCs of a simpler oriented intersection graph in O(n+n′) time. Their graph does
not contain the additional node s, which violates the convexity property of the
graph because there is an edge from s to each node in {yi : |M(yi)| > Li}, and
this set is not necessarily consecutive. We first use their algorithm to compute
the SCCs of the graph #G\s. We can do this despite the fact that now a y node
may be matched with more than one x node by merging its neighbors into one
x node (note that the neighbors of this merged x node still form an interval of
the y-nodes). Let Cs denote the SCC of the node s in #G. An SCC of G which is
disjoint from Cs is also an SCC of #G\s. Cs, however, contains the union of zero
or more SCCs of #G\s. We wish to find these SCCs and merge them to obtain Cs.
Each of these SCCs has the property that it can reach s and can be reached from
s. For each SCC C we compute two flags, reached from s[C] and reaches s[C],
and merge all components for which both flags are set to true into Cs.

We will use the following notation. For each SCC C of #G\s, let min y [C] =
min{i|yi ∈ C} and max y [C] = max{i|yi ∈ C} be the lowest and highest in-
dices of y nodes in C. Moreover, let reaches left [C] = min{Dj |xj ∈ C} and
reaches right [C] = max{Dj |xj ∈ C} be the minimum and maximum indices of
y nodes that can be reached from C.
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y1 y2 y4

x1 x2 x3 x5

s

x6x4

y3

Fig. 4. The oriented intersection graph for our running example. It has two SCCs:
{s, x1, x2, x3, x4, y1, y2} and {x5, x6, y3, y4}. The dashed edge is inconsistent.

Lemma 8. C can reach every yi with reaches left [C] ≤ i ≤ reaches right [C] by
one edge from an x node in C.

Proof. The proof appears in [4]. It is simple and relies on the convexity. ��

Now we will explain how to determine whether s can reach a component C.
If this is the case then there is a path Q from s to some node yi in C. And hence,
if we delete the first edge of Q, we obtain a path P from a node yi′ to yi in #G\s.
In the lemma below, we state that this implies the existence of path P ′ from yi′

to yi that traverses the SCCs of #G\s in monotonous manner, either from left to
right (cf. Condition (1)) or from right to left (cf. Condition (2)):

Lemma 9. If there is a path from yi1 to yik
in #G\s then there is a path P =

(yi1 , xj1) ◦ (xj1 , yi2) ◦ · · · ◦ (xjk−1 , yik
) in #G\s such that if we let Cκ denote the

component of yiκ
for each 1 ≤ κ ≤ k, then one of the following holds:

∀1≤κ<k min y [Cκ] ≤ min y [Cκ+1] right-monotony (1)
∀1≤κ<k max y [Cκ] ≥ max y [Cκ+1] left-monotony (2)

Proof. If P visits more than one component, let κ be the smallest index such
that Cκ �= Cκ+1. Assume that Condition (1) holds for κ. If P does not ful-
fil Condition (1), then there are three components C1, C2, C3 which are vis-
ited consecutively by P in that order such that min y [C1] < min y [C2] and
min y [C3] < min y [C2]. We will show that there is a path which skips C2 and
goes directly from C1 to C3.
If min y [C3] < min y [C1] < min y [C2] then by Lemma 8, C2 can reach C1 by
a single edge, which closes a cycle that visits both of them. This means that
C1 = C2, in contradiction to the assumption that they are distinct.
We therefore know that min y [C1] < min y [C3] < min y [C2]. Then by Lemma 8,
C1 can reach C3 by one edge. So we can construct a path from yi1 to yik

which
visits the same components as P except that it goes from C1 directly to C3
without going through C2. Since this decreases the number of transitions be-
tween components along the path, we can obtain a monotonous path by a finite
number of such modifications.

Similarly, if Condition (2) holds for κ then we can find a path that fulfils
Condition (2) for all 1 ≤ κ < k. Assume that neither condition holds. Then
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min y [Cκ+1] < min y [Cκ] and max y [Cκ] < max y [Cκ+1]. By Lemma 8, Cκ+1
reaches back to Cκ, a contradiction. ��

The algorithm in Figure 5 performs a left to right scan and marks all the
components of #G\s that can be reached from s via a right-monotonous path. In
the initialization phase it marks all components that can be reached from s by
a single edge and during the scan it marks each component that can be reached
from a scanned marked component by one edge. The running time is O(n′).

forall SCCs C of �G\s do reached from s[C] ← false
for i = 1 to n′ do if (s, yi) exists then reached from s[C[yi]] ← true
(* Scan from left to right and find the maximum y’s reached from s *)
y reached ← 0 (* Index of the rightmost y node that can be reached from s *)
for i = 1 to n′ do

C ← C[yi]
if y reached ≥ i then reached from s[C] ← true
if reached from s[C] then y reached ← max{y reached , reaches right [C]}

endfor

Fig. 5. Algorithm to mark SCCs that are reached from s via a right-monotonous path.

Lemma 10. The algorithm in Figure 5 sets reached from s[C] to true iff s can
reach C by a right-monotonous path.

Proof. It is easy to see that if a component becomes marked, then it can be
reached from s. For the converse, let P = (s, yi1)◦ · · ·◦(yik−1 , xjk−1)◦(xjk−1 , yik

)
be a path such that P without its first edge is right-monotonous. We will show
by induction on the length of P that after the ik-th iteration, the component Ck

of yik
is marked “reached from s”.

For |P | = 1: P = (s, yi1) and the component of yi1 is marked before the scan.
For |P | > 1: By the induction hypothesis, reached from s[Ck−1] is set to true af-
ter iteration min y [Ck−1] 3. Since xjk−1 is in Ck−1, reaches right [Ck−1] ≥ ik ≥
min y [Ck]. In iteration min y [Ck−1], y reached is set to at least min y [Ck].
By Lemma 9, we know that iteration min y [Ck] does not preceed iteration
min y [Ck−1]. Since the index y reached can only increase, we get that in it-
eration min y [Ck], Ck will be marked as reached from s. ��

A symmetric algorithm can be used to find the components that can be
reached from s by a left-monotonous path. To find the components that can
reach s, we can use the same approach: If we delete the last edge of a path in #G
from a node in C to s, we obtain a path in #G\s. So we can mark all components
that can reach s by two scans in time O(n′).
3 We may assume w.l.o.g. that if P visits a component C then it also visits the node

ymin y[C].
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5 Narrowing the Bounds of the x-Ranges

Let S denote the set of all solutions of the constraint, as defined in the introduc-
tion, and for j = 1, . . . , n let Sj be the projection of S onto the jth component.
We will discuss how to compute the values S1, . . . , Sn in time O(n+n′), a sym-
metric procedure can be used for the lower endpoints of the narrowed ranges.

Consider a node xj and let C be its SCC in #G. By Lemma 2, a value i ∈ Dj

is contained in Sj iff yi ∈ C. Thus Sj is the index of the rightmost y node in C
that is connected to xj . Suppose the y nodes yi1 , . . . , yik

in C are sorted such
that i1 < · · · < ik. Then Sj = iκ where iκ ≤ Dj < iκ+1 (and ik+1 = n′ + 1).
So let us further assume that the x nodes xj1 , . . . , xjl

in C are sorted such that
Dj1 ≤ · · · ≤ Djl

. Then we can determine Sj for every xj in C by merging the
sorted sequences (i1, . . . , ik) and (Dj1 , . . . ,Djl

) in time O(k + l).
We need to say how these sorted sequences are constructed. For the y’s this

can be done with bucketsort. We have a bucket for each component, and for
i = 1, . . . , n′, we append yi to the bucket corresponding to its component. This
takes time O(n′) and constructs the y-sequences for all SCCs of #G. Since we
have a global sorting of the x’s according to their upper range endpoints, we can
use the same approach to sort them in time O(n).

For the first SCC of our example we would merge the y sequence (1, 2) with
the x upper bounds (2x1 , 3x2 , 3x3) and narrow the domains of x2 and x3 from
[1, 3] to [1, 2].

6 Narrowing the Bounds of the Count Variables

This section deals with the projections of S onto its components Sn+1, · · · , Sn+n′ .
We show how to compute lower and upper bounds for the values in Sn+i for each
i = 1, · · · , n′. For the rest of this section we consider a fixed graph G. We assume
that the generalized matching algorithm has computed the αi and βi values for G
and terminated without reporting failure. Now we show that in any generalized
matching, the number of x nodes matched to each yi are in a certain range that
we can compute in linear time.

Lemma 11. Let M be a generalized matching and for i = 1, · · · , n′ let μi =
|M({yi})|. Then for all i

max

⎛⎝Li, n− βi−1 −
n′∑

j=i+1

μj

⎞⎠ ≤ μi ≤ min

⎛⎝Ui, n− αi−1 −
n′∑

j=i+1

μj

⎞⎠ (*)

Proof. By the choice of the μ’s we have |M({y1, · · · , yi−1})| = n−
∑n′

j=i μj . By
Lemmas 4, 5 we know that αi−1 ≤ |M({y1, · · · , yi−1})| ≤ βi−1.
Therefore αi−1 ≤ n−

∑n′

j=i μj ≤ βi−1 or n− βi−1 ≤
∑n′

j=i μj ≤ n− αi−1.

And hence n− βi−1 −
∑n′

j=i+1 μj ≤ μi ≤ n− αi−1 −
∑n′

j=i+1 μj . ��
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This motivates the following definition. We call a sequence (μs, · · · , μn′) a
legal count choice iff inequality (*) is satisfied for all i in [s, n′]. The Lemma
above implies that any generalized matching M in G induces the legal choice
(|M(y1)|, . . . , |M(yn′)|). This allows us to compute for any yi a lower bound li
and an upper bound ui on |M(yi)|. Unfortunately there exist examples where
our bounds are not tight4.

Apart from these bounds the algorithm below determines two count choices.
The algorithm maintains the invariant that in iteration i both (κi, . . . , κn′)
and (λi, . . . , λn′) are legal count choices such that for any legal count choice
(μi, . . . , μn′) we have

∑n′

j=i κj ≤
∑n′

j=i μj ≤
∑n′

j=i λj . As all sums that appear
in the algorithm can be computed incrementally, the running time is O(n′).

for i = n′ to 1 do

li ← max
(
Li, n − βi−1 −∑n′

j=i+1 λj

)
; ui ← min

(
Ui, n − αi−1 −∑n′

j=i+1 κj

)
κi ← max

(
Li, n − βi−1 −∑n′

j=i+1 κj

)
; λi ← min

(
Ui, n − αi−1 −∑n′

j=i+1 λj

)
endfor

We will now prove by induction on i that the algorithm computes the correct
bounds for the count variables and that the invariant holds. For i = n′ Lemma 11
implies that ln′ and un′ are lower and upper bounds. Since all sums are empty,
we have κn′ = ln′ and λn′ = un′ , and hence, the claimed invariant holds.

For the induction step, we assume that our claim holds for i + 1 and deduce
it for i. By the left-hand side of inequality (*), we see that the minimum legal
value for μi is obtained if

∑n′

j=i+1 μj is set to its largest possible value. Applying
the invariant for i + 1 this sum is maximized by the legal choice (λi+1, . . . , λn′).
So by Lemma 11, the algorithm computes a lower bound li. A similar argument
holds for the upper bound ui. By the definition of a legal choice, extending our
two count choices by κi and λi respectively yields two legal choices again.

Fix a legal choice (μi, . . . , μn′). What remains to prove are the two inequali-
ties on the sum of the μ’s.∑n′

j=i μj = μi +
∑n′

j=i+1 μj

L 11
≥ max(Li, n− βi−1 −

∑n′

j=i+1 μj) +
∑n′

j=i+1 μj

= max(Li +
∑n′

j=i+1 μj , n− βi−1)
IH
≥ max(Li +

∑n′

j=i+1 κj , n− βi−1)
= max(Li, n− βi−1 −

∑n′

j=i+1 κj) +
∑n′

j=i+1 κj

= κi +
∑n′

j=i+1 κj =
∑n′

j=i κj

An analogous computation shows
∑n′

j=i μj ≤
∑n′

j=i λj , so we can derive:

Lemma 12. Suppose that S �= ∅ and let �1, · · · , �n′ and u1, · · · , un′ be the values
computed by our algorithm. Then Sn+i ≥ �i and Sn+i ≤ ui holds for i = 1, · · · , n.
4 Choosing D1 = [1, 3], D2 = [2, 2] and E1 = E2 = E3 = [0, 1] is such an example. The

lower endpoint of E2 will not be narrowed to 1 by our algorithm.
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On our running example, the algorithm computes the values listed below:

i li ui κi λi

∑n′

j=i κi

∑n′

j=i λi

4 1 1 1 1 1 1
3 1 1 1 1 2 2
2 1 2 1 2 3 4
1 2 3 3 2 6 6

The c-ranges are therefore narrowed to E1 = [2,2], E2 = [1,1], E3 = [1,2]
and E4 = [0,1], where the narrowed endpoints are typeset in bold.

7 Conclusion

We have designed a propagation algorithm for the Global Cardinality Constraint
that achieves bound consistency for the assignment variables. We wish to point
out that there are two possible implementations for the algorithm. One runs in
time O((n′ + n) log n), uses very simple data structures and performs well in
practice. The other requires more elaborate data structures (for the offline-min
computation) and achieves a running time of O(n + n′) plus the time required
to sort the assignment variables by the endpoints of their ranges. In some cases
the latter is asymptotically better.

In addition, we present an algorithm that narrows the bounds of the count
variables, but it does not always achieve bounds consistency. So the following
question remains open: Is there an efficient algorithm that achieves bound con-
sistency for the count variables?
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Abstract. The paper presents an algorithm to propagate an n-ary constraint 
(with n greater than 2) specifying the relative positions of points in a three-
dimensional rigid group. The variables to restrict are the positions (x, y, and z 
coordinates) of the points, and we assume the variable domains are cuboids, 
with the faces orthogonal to the coordinate axes. This algorithm is part of 
PSICO (Processing Structural Information with Constraint programming and 
Optimisation), a method we are developing to integrate experimental and theo-
retical data to solve protein structures [1,2]. We also present some preliminary 
results, and explain how this algorithm can be used to combine theoretical in-
formation such as secondary structure prediction or homology modelling with 
Nuclear Magnetic Resonance (NMR) data. 

1   Introduction 

Our motivation for developing this algorithm is the study of protein structure. Proteins 
play essential parts in living systems, and protein structure and function are important 
for modern biotechnology and pharmaceutical industries. Constant developments in 
molecular biology are shifting the emphasis of biochemical studies to structure and 
function; over-expression, isolation, and sequencing have become relatively straight-
forward, and there is a large supply of material for structural studies. 

Concurrently, improved understanding of metabolic pathways and determination of 
the complete genomes of some organisms have increased the demand for structural 
data on proteins, an important step towards metabolic engineering. The result is that 
protein structural studies are now a major component of biochemical research. 

The algorithm we present here will help integrate structural information from dif-
ferent sources. As part of PSICO, it will provide an efficient solver for structural 
NMR data, but, more than that, it will allow PSICO to complement experimental data 
with theoretical predictions of secondary structures or homology models. We hope 
that this integration — the ability to use all the available data in a single solver, in-
stead of modelling different parts separately — will be a useful feature for protein 
structure determination.  

A protein consists of one or more chains of amino acids. The amino acids bind to-
gether in a condensation reaction that creates covalent bonds between them. These 
chains are flexible because the atoms can rotate around some covalent bonds, but 
most bonds are rigid, with fixed lengths and angles. We can imagine the protein as 
flexible chains of rigid groups containing a few atoms, as illustrated on Figure 1. 
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Fig. 1. Protein chains are sequences of rigid groups connected by bonds that can rotate. Differ-
ent groups are shown in different shades of gray. The group of atoms inside the circle A is a 
rigid group that can rotate around atom B. At the right side of the picture, light gray shapes 
indicate alternative orientations of another rigid group, which in turn affects all other groups 
attached to it. In a protein, this chain could be many hundreds of atoms in length. 

Although the amino acid sequence, and the structure of each amino acid, gives us a 
lot of information about the protein, it is not sufficient to specify the folding of the 
chain, and thus its three-dimensional structure. 

There are two methods to determine protein structures from experimental data. The 
most used is X-Ray crystallography, in which an X-ray beam diffracts from a protein 
crystal. The resulting diffraction pattern gives the distribution of electron density in 
the protein, and from that, its structure. 

Another important method is Nuclear Magnetic Resonance. This method probes 
the magnetic perturbations caused by the proximity of some atoms, using high inten-
sity magnetic fields and radio waves. Its data can be used to generate a set of distance 
constraints between atoms, by assigning the perturbations measured to the correct 
atom pairs. Though limited to smaller proteins (around a few hundred amino acids), it 
has some advantages over X-Ray crystallography, because it doesn’t require the for-
mation of protein crystals, and it can be used in conditions similar to the physiological 
environment of the protein. 

Constraint programming techniques have been applied to several biochemical 
problems, such as genome mapping [3] and theoretical studies on protein folding [4]. 
On the particular field of protein NMR spectroscopy, we know of attempts to apply 
CP to the problem of extracting the distance constraints from the experimental data 
[5,6], but none of the methods used to solve the actual structure, so far, take advan-
tage of CP, generally relying on optimisation techniques, e.g. [7]. 

There are some algorithms available for propagating constraints on rigid structures, 
such as for qualitative determinations of possible movements [8] or for non-

A 

   BBB   
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overlapping, convex, geometric figures [9]. However, these solutions are not adequate 
to our particular problem. 

PSICO is being developed to apply CP techniques to the constraints generated by 
NMR data, and other structural information sources. The current propagation method 
in PSICO consists of enforcing arc-consistency on the network of all binary distance 
constraints in the group. The propagation algorithm we present here will make use of 
the information on the rigid structures that make up each amino acid to improve 
propagation in PSICO. These structures can range from groups of three atoms form-
ing a fixed angle between two covalent bonds, to groups of dozens of atoms in some 
rigid prosthetic groups. 

A potentially more useful application of the group propagation algorithm is to test 
a theoretical model against experimental data. It is often the case that proteins with 
similar sequences of amino acids also have similar structures. When determining the 
structure of one protein, it is useful to have a known similar structure to help assign 
constraints from the experimental data. The problem is how to know if one has chosen 
the correct homology model. 

This is not a trivial problem, because the experimental constraints are seldom on 
the atoms the homology model restricts. For example, a homologous protein may give 
us an approximate idea of the folding of the backbone, while the experimental data 
gives us distance constraints for atoms in the side chains. 

Finally, this algorithm can be extended to propagate constraints on torsion angles,  
the rotation angles between adjacent rigid groups. NMR data may provide constraints 
on these angles, so this is another potentially useful feature. Though this extension is 
still not developed, we shall elaborate a bit more on it at the end of the article. 

Although our focus is on protein structure, the algorithm we present here is not ex-
clusive for this use. Other possible applications could include antenna placement 
problems, computer-aided design, packing problems, or, in theory, any problem in-
volving the constrained placement of rigid bodies. Some modifications may be neces-
sary if the variable domains differ from the cuboid representations used in PSICO 
[1,2], but the basic principles described here should be applicable in general. 

The paper is organised as follows. In section 2 we describe the group propagation 
method, and in section 3 we compare the group propagation algorithm with the cur-
rent propagation method in PSICO, and show that it is more effective in reducing 
domains, and better at detecting inconsistencies between the domains and the con-
straints. Section 4 summarises the main results and discusses further improvements in 
our current agenda. 

2   The Method 

The algorithm we present here will be integrated into PSICO, and makes use of the 
cuboid domain representations we developed for that system and described in previ-
ous publications [1,2]. Summarising, a cuboid with faces orthogonal to the x, y, and z 
coordinate axes describes each atom domain, defining the region where the atom may 
be placed (the Good region). In addition, a set of non-overlapping cuboids, all in-
cluded in this region, describes regions from where the atom must be excluded (No-
Good regions). PSICO reduces these domains by propagation of distance constraints 
between atom pairs, enumeration, and bactracking until all domains are sufficiently 
small to define a protein structure (less than 2.5Å in length). The starting point for this 
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process is the arbitrary placement of a set of atoms of known configuration, such as a 
small rigid group. This is possible because the position and orientation of the structure 
relative to the coordinate system is arbitrary, and irrelevant for the determination of 
the structure itself. 

The algorithm presented here enables PSICO to propagate group constraints on the 
configuration of an arbitrary number of atoms, in addition to the binary distance con-
straints. The group constraint specifies that a set of atoms forms a rigid group, with 
three rotation and three translation degrees of freedom. By determining the possible 
placements of the group allowed by the domains of all atoms in the group, it is possi-
ble to restrict the domains of these atoms to those regions allowed by the possible 
placements of the group. 

The group propagation algorithm considers only the Good region of each domain, 
because a) in practice, the No-Good regions are only useful to detect failures when 
enumeration has reduced the domains sufficiently to detect atomic overlaps, and b) 
processing an arbitrarily large set of No-Good regions in each domain would jeopard-
ise the efficiency of the algorithm. 

In essence, the group propagation algorithm consists of three nested loops that run 
through all orientations of the rigid group. For each orientation, the algorithm deter-
mines the domain boundaries of each atom from the limits that all domains impose on 
the translational freedom of the group, as shown in section 2.1. Without loss of gener-
ality, we shall consider the three rotation loops to correspond to rotations around the 
x, y, and z axes, from outer to inner loop. We shall designate these rotation angles by 
χ, ϕ, and ψ, respectively. 

Though it is useful to imagine the algorithms as three nested loops of rotations 
around the three coordinate axes, the algorithm actually determines the domain limits 
analytically as a function of one rotation, as section 2.2 describes. Thus, the last rota-
tion, around the z axis, is not an actual loop, but the analytical determination of the 
domain limits for the x and y coordinates. The domain limits in the z coordinate, be-
ing independent of the last rotation around the z axis, are determined analytically in 
the second loop, corresponding to the rotation around the y axis. This procedure is 
explained in section 2.3.  

2.1   Domain Limits for a Fixed Orientation 

Given a fixed orientation, it is simple to determine the limits for the translation of the 
rigid group. Figure 2 shows how this is done for a group of three atoms. 

The range of the translation for the group is simply the intersection of the ranges 
allowed by all atoms. In this example, the horizontal displacement (left panel of Fig-
ure 2) is limited by the domain boundaries of atom B and the vertical displacement 
(right panel) is limited by the domains of atom A. 

Denoting by wc one of the coordinates of the center of the group (x, y or z), by wj 
the same coordinate for atom j, and by wmax and wmin the upper and lower limits, re-
spectively, for that coordinate of a domain (of atom j or of the center c), such limits 
are related by the following equations: 

max 1 max ( )( )n
c j j c jw w w wMin = + −=

 
(1a) 

min 1 min( ( ))n
c j j c jw Max w w w== + −

 
(1b) 
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Fig. 2. The three atoms A, B, and C, form a rigid group (dark gray circles), and each atom is 
restricted to a rectangular domain. The left panel shows the limits for a horizontal translation, 
indicated in light gray circles, and the right panel shows the limits for a vertical translation. The 
dashed boxes on the right panel indicate the accessible regions for each atom with the group in 
this orientation. 

Note that the absolute values of wc and wj are irrelevant; only the coordinate differ-
ence wc-wj is important, and is independent of translation. The center point is simply 
the pivot from which rotation is calculated. It can be the geometric center of the 
group, or any other point. The choice has impact only on some performance details, 
and not on the principles of the algorithm. In this paper, we shall consider it to be the 
geometric center of the group. 

2.2   Domain Limits as a Function of a Single Rotation 

Equations 1 assume a fixed orientation of the group, but we cannot make that assump-
tion, since the group is free to rotate. Without loss of generality, we shall consider the 
case of the limits in the x and y coordinates as a function of a rotation around the z 
axis. Hence, the term (wj-wc) in equation 1 may actually stand for the x-or y-
components of the vector from atom j to the center of the group, or, in other words, 
the position of the center relative to atom j.  

This vector is a function of the orientation of the group. Denoting by ψ the rotation 
around the z axis, by A the amplitude of the projection of the vector onto the xy plane 
(orthogonal to the rotation axis) and by αj the angle of the vector yc-yj at ψ=0, then the 
terms wc –wj for the x and y coordinates are given by 

cos( ) sin( )2c j j j jx x A A πψ α ψ α− = + = + +  
(2a) 

sin( )c j jy y A ψ α− = +  (2b) 

Figure 3 shows the case for the y-coordinate (the x-coordinate is shifted by 90º). 
Though rotation freedom increases the complexity of the computation, it is neces-

sary because our rigid group constraints only give information on the relative posi-
tions of the atoms in the group and not on the orientation or position of the group 
relative to other atoms or groups. 
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Fig. 3. The position of an atom relative to the center of the group as a function of the rotation 
angle ψ can be expressed as a sine function with amplitude A and phase α’. The position of the 
center relative to the atom is a similar curve, but with the phase shifted by 180º (α), giving the 
sine wave curve shown on the right. 

Let us now recall the algorithm as outlined in the beginning of part 2. First, the ori-
entation of the group around the x axis is fixed in an angle we designate χ. Next, the 
rotation around the y axis is fixed at angle ϕ. For each (χ;ϕ) pair, equations 2 can be 
used to describe the x and y coordinates for each atom as a function of the angle ψ, 
corresponding to the rotation around the z axis. An equation similar to equation 2 can 
also be used to describe the z coordinates of atom j (related to the centre of the group) 
as a function of the second rotation, ϕ, around the y axis. 

With no loss of generality, we may replace yc and yj in equations 2 with Lc and Lj to 
denote, respectively, the domain limits of the center and of atom j in an arbitrary x, y, 
or z coordinate and by θ an arbitrary rotation angle (ϕ or ψ), and compute the contri-
bution of each atom to the limits on the translation of the center of the group by 
means of Equation 3 below: 

sin( )c j j jL A Lθ α= + +  (3) 

Figure 4 shows two curves representing the limits on the movement of the center 
imposed by two different atoms. 

The actual limits for the movement of the center for each orientation are the most 
restrictive limits (around gray areas on Figure 4). To calculate these we must calculate 
the intersection of two limits from different atoms: 

sin( ) sin( )

sin( )

i i i j j j

j i

A L A L

A L L

θ α θ α
θ α

+ + = + + ⇔

+ = −
   

(4) 

The values for A and θ can be calculated using the formulae for the superposition 
of two sine waves of the same frequency, noting that the sign change for Aj when 
manipulating equation 4 is equivalent to changing the phase θj by π. Equation 5 calcu-
lates A and θ. 

A 

α’ 
α

A 

sin( )A ψ α+  

ψ 

yc-yj 

x 

y 
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Fig. 4. Each atom constrains the translation of the group as a function of the domain of the 
atom and rotation of the group. This figure shows such constraints for two atoms along one 
coordinate axis for one rotation. The gray areas indicate the angles for which the two atom 
positions are compatible and the corresponding constraints on the translation of the whole 
group in this orientation. 

2 2 2 cos( )

sin( ) sin( )
tan

cos( ) cos( )

i j i j j i

i i j j

i i j j

A A A A A

A A

A A

α α π

α α π
α

α α π

± = + + − +

+ +
=

+ +

 

 

(5) 

 

The intersection angles are thus: 

 arcsin j iL L

A
θ α

−⎛ ⎞
= −⎜ ⎟±⎝ ⎠

 
(6) 

With equations 5 and 6 we can define the segments of the lines limiting the upper 
and lower bounds for the translation of the center. Each segment is the line between 
two interceptions, and is contributed by one atom. For the upper limit we choose the 
lowest segments corresponding to the upper limits of all atoms, and for the lower 
limit, the highest segments corresponding to the lower limits of the atoms. The al-
lowed region for the center is thus the intersection of the regions allowed by the limits 
of each atom, as illustrated in Figure 4. Algorithm 1 shows the pseudo-code for Cen-
terLimits. 

Lu and Ld are lines formed by segments of the form of Equation 3. Functions Up-
perLimit and LowerLimit return the line defined in Equation 3, using respectively the 
upper and lower limit of the domain of the atom. Functions LowLine and HighLine 
intersect two lines and return, respectively, the set of the lowest or highest segments 
between intersections. The PossibleRegion procedure restricts the lines to the ranges 
of rotation angle where the upper line is greater than or equal to the lower line. 

Upper Limit Segments 

Lower Limit Segments 

Rotation 

T
ra
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la

ti
on
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Algorithm 1. CenterLimits. 
 
The CenterLimits algorithm returns two sets of segments; the upper and lower lim-

its for the displacement of the center as a function of rotation. These sets of segments 
include only the possible regions, where the upper limit is equal to or higher than the 
lower limit, as shown in Figure 4. To calculate the limits for the displacement of each 
atom, it is necessary to add the function for the position of the atom relative to the 
center of the group. In other words, between the center and the atom there can be two 
vectors, one oriented from the atom to the center, the other from the center to the 
atom. We use the first to project the limits of each atom onto the displacement of the 
center, and then the second to project the limits of the center back onto the atom. This 
will give us a limited range of possible positions for the atom, which may be smaller 
than its domain, and so allow us to reduce this domain.  

As shown in Figure 3, these vectors define sine wave lines that differ only in a 
phase difference of π. Deriving from equation 3: 

 
( ) sin( ) ( )

( ) sin( ) ( )

c j j j

j j j c

L A L

L A L

θ θ α θ
θ θ α π θ

= + + ⇔

= + + +
 

(7) 

We knew from Equation 3 that Lc would be a function of the rotation parameter. If 
there were only one atom, Lc would be independent of θ, because we would simply 
reverse the operation in Equation 3. However, with several atoms, Lj is the limit of the 
intersection of several possible regions, and can consist of several different segments, 
which can have different A and α parameters. So the term Ajsin(θ+αj+π) must be 
added to each segment of Lc(θ), and Lj(θ) is also a list with the same number of seg-
ments. All these sums are superpositions of sine waves of the same frequency, so we 
can apply equation 5. 

It is not necessary to do this for all atoms; we can ignore any atom that contributed 
to Lc(θ), because this implies the atom reached the limit of its domain, and so its do-
main cannot be reduced. It is just necessary to keep track of which atom contributed 
to which segment. 

This solves the problem for the rotation around a single axis. However, it takes 
three axes to fully describe all possible orientations of the group. If we account for the 
additional rotations, the A and α terms in equation 4 become trigonometric functions 
of the other rotation parameters, which makes the system too complex for an efficient 
analytical solution. 

The alternative is to use a discrete representation of the other rotation parameters, 
and interval algebra to account for the error introduced by this approach. 

Lu=UpperLimit(Atom 1) 
Ld=LowerLimit(Atom 1) 
For n=2 to number of atoms do 
 Lu=LowLine(UpperLimit(Atom n ),Lu) 
 Ll=HighLine(LowerLimit(Atom n ),Ld) 
PossibleRegion(Ld,Lu) 
Return Ld, Lu 
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2.3   Full Rotation Search 

As outlined in the beginning of part 2, the algorithm searches the possible rotations by 
fixing the angle of rotation around the x axis, then for each rotation value it searches 
the rotations around the y axis, and finally the z axis. Dividing the rotations into finite 
intervals, each orientation corresponds to an interval of angles, instead of just a single 
angle, and each coordinate to an interval of values. 

For example, the x coordinate as a function of the rotation ϕ around the y axis is: 

( ) cos( ) sin( )j j jx x zϕ ϕ ϕ= −   

where xj and zj are the x and z coordinates for ϕ = 0. If we consider interval [ϕa ; ϕb], 
then x will be in the interval [xa ; xb], where 

( cos( ), cos( )) ( sin( ), sin( ))

( cos( ), cos( )) ( sin( ), sin( ))

a j a j b j a j b

b j a j b j a j b

x Min x x Max z z

x Max x x Min z z

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

= −

= −
 

One thing to note is that the sine and cosine functions must be monotonous in the 
interval [ϕa; ϕb]. However, this is simple to guarantee; we just have to choose the 
partition of the rotation so that the step size is a sub-multiple of 90º. If xj and zj are 
themselves intervals too, the Min and Max functions will apply to their interval limits, 
following the rules for interval algebra. 

Because of this approach, the equations derived in section 2.2 apply not to single 
coordinate values, but to intervals. Although the coordinates are in three dimensions, 
we need only consider the projection on the plane perpendicular to the rotation axis 
that provides the θ angle (θ corresponds to ϕ for the determination of the z limits as a 
function of the rotation around the y axis, or to ψ for the determination of the x and y 
limits as a function of the rotation around z axis). Let us assume, for example, that the 
rotation is around the z axis, and so the coordinates of one atom are ([xa;xb],[ya;yb]). 
This is a rectangular region, as illustrated in Figure 5, whose corners are labeled A, B, 
C, and D. As figure 5 shows, these corners have different trajectories when the region 
is rotated. 

What we need to find are two lines of the form of equation 3 which, by enclosing 
the trajectories of the corners, enclose the trajectories of all points in the region. Such 
lines are computed by allowing some slack δ to the trajectory of the central point of 
the region. The largest span is half the length of the diagonal of the rectangular re-
gion, hence the value of δ: 

2 2( ) ( )

2
b a b ax x y y

δ
− + −

=  

(8) 

Figure 5 shows these lines, with δ added/subtracted from the upper/lower limit of 
the domain of the atom, thus ensuring that no values of the domain are lost. 

To summarize, the algorithms searches the rotation space starting from the rotation 
around the x axis (χ), for each interval value of this rotation, the rotation around the y 
axis (ϕ), and for each (χ,ϕ) interval pair, the rotation around the z axis (ψ). 
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Fig. 5. The thick lines show the lines obtained by adding δ (top line) and subtracting δ (bottom 
line. The top panels show three orientations of the rectangle defined by the coordinate intervals. 
A, B, C, and D are the extreme points of the rectangle, and thin lines in the lower diagram show 
their trajectories as a function of the ϕ rotation parameter. 

The x and y coordinates of each atom depend on all three rotation parameters, but 
the z coordinate depends only on the first two (χ and ϕ, respectively rotations around 
the x and y axes), being independent of ψ. This suggested Algorithm 2,  Rotation-
Search. The first rotation, χ, ranges from 0º to 180º, whereas ψ ranges from 0º to 
360º. This is enough to represent all possible orientations of the atom group. For each 
step of the χ, RotationSearch calculates the domain of the center in the z direction 
using CenterLimits for rotation ϕ and the z limits of all atoms. This will often prune 
the ϕ rotation, and only those steps that are allowed by the z limits of the center will 
be considered in the calculation of the x and y limits. 

For each (χ, ϕ) step, we have the center limits of x and y as a function of ψ, and 
the z limits as a function of ϕ, of which we only consider the segment referring to the 
current ϕ. All these segments are projected onto the atom domains to determine the 
possible range of each atom in each coordinate. 

3   Results and Discussion 

We compared this group constraint with arc-consistency on all binary distance con-
straints in the group. We generated each test group by placing each atom at random in 
a cube with a volume of 8 volume units times the number of atoms. To generate the 
upper limit of each initial domain we added to each coordinate of each point a uni-
formly distributed random variable ranging from zero to two units. We generated the 
lower limits by subtracting a random variable with the same distribution. 



462      Ludwig Krippahl and Pedro Barahona 

Algorithm 2. RotationSearch. 
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Fig. 6. Propagation times and final domain volumes for arc-consistency in binary distance 
constraints and group propagation for a randomly generated group. Times are in seconds for a 
PII at 300Mz running Windows. Volumes are arbitrary units. 

For the propagation of binary distance constraints, we included the distance con-
straints between all pairs of points in the group (½N2), and propagated all constraints 
to arc-consistency, as described in [1,2]. Though NMR data do not provide all con-
straints between all atoms, the purpose of this test was to compare the two propaga-
tion algorithms on rigid groups, in which all relative positions, and thus all pairwise 
distances are specified. In other cases, only the binary constraint propagation can 
apply. For the group propagation, we used 10º steps in the rotation searches.  

Figure 6 shows the propagation times and the final domain volumes for both cases.  
Each point on the chart corresponds to the average of 30 independent runs. We can 
see that the group propagation algorithm is more effective than enforcing arc-

Initialize atom range limits 
Search χ using discrete intervals. For each step do 
 Project atom coordinates and z limits on yz plane 
 ZL:=CenterLimits for z limits as a function ϕ 
 Search allowed values of ϕ using discrete intervals. For each step, do: 
  Project atom coordinates, x limits and y limits on xy plane 
  XL:=CenterLimits for x limits as a function of ψ 
  YL:=CenterLimits for y limits as a function of ψ 
  Intercept XL and YL limits to determine allowed ψ values 
  For each atom do 
   Project XL,YL to atom domain and determine x, y extremes. 
   Project ϕ interval of ZL to atom domain and determine z extremes 

  Update atom ranges for each coordinate: 
   Upper range limit =Max(new range limit, old range limit) 
   Lower range limit=Min(new range limit, old range limit) 
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consistency on a network of binary constraints, even using all constraints, except for 
very small groups. For small groups, less than 10-20 atoms, group propagation is only 
slightly more effective than arc-consistency on binary constraints. For groups of over 
20, the final domains with group propagation are an order of magnitude greater than 
for arc-consistency of binary distance constraints. 

The difference is even greater with more structured groups. Figure 7 shows the re-
sults of a similar experiment, but using a spiral structure with a radius of 1 unit, a step 
of 2 units per turn, and three atoms per turn. This approximates a α-Helix, a common 
structural motif in proteins, and which has 3.6 residues per turn and approximately the 
same dimensions in Ångstrom. 
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Fig. 7. Propagation times and final domain volumes for arc-consistency in binary distance 
constraints and group propagation for a spiral generated group, simulating an α-Helix structure. 
Times are in seconds for a PII at 300Mz running Windows. Volumes are arbitrary units. 

This domain reduction has a significant time cost for smaller groups, although, for 
large groups, group propagation is both more effective and faster. The reason for this 
cost in smaller groups is that, with little or no domain reduction, there is also no prun-
ing of the rotational search. The interesting feature is that, the more the domains can 
be reduced, the faster the group propagation algorithm completes the search. If we 
compare the average run times for small groups, AC on the binary constraints is about 
two orders of magnitude faster. But if we compare the minimum times, this difference 
reduces to one order of magnitude for the smallest groups, and with groups of 7 at-
oms, the minimum time for group propagation is already lower than the average time 
for AC on the binary constraints. 

This inverse correlation between domain pruning and computation time suggests 
that heuristics can make group propagation very efficient. Rules like a time limit for 
the propagation or checking the pruning on the ϕ rotation by the z limits are simple 
and effective ways to use group propagation, because it is fastest when it is the most 
effective at reducing domains. 

Another intended application of this algorithm is the integration of structural data 
from other sources, which can complement the experimental NMR constraints. These 
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can be from secondary structure prediction (α-helices, β-sheets) or from homology 
modelling, for example, and can involve large rigid groups. As shown above, the 
group propagation algorithm is especially effective in these cases. But its use is not 
restricted to domain reduction; it is also useful for detecting inconsistencies, which is 
necessary to determine if the theoretical models assumed are compatible with the 
experimental data. To test this we generated random groups as described above, but 
then randomly changed the coordinates of the atoms used to generate the distance 
constraints and for the group propagation. Each x, y, and z coordinate was replaced by 
a uniformly distributed random value within a given distance of the original value. 
This simulates a situation where one set of constraints (e.g. from experimental data) 
reduced the domains to the current random configuration, and another constraint (e.g. 
from homology modelling) specifies a different configuration for the atoms. Figure 8 
shows the percentage of failures detected as a function of this displacement parameter 
for groups of 20, 10, and 5 atoms. 

These results show that the group propagation algorithm can detect inconsistencies 
more reliably. Though the difference in this test is in the displacement necessary to 
make the algorithms detect a failure, in practice this will also translate into detecting 
the failure sooner, when the algorithm is included in PSICO, as part of a propagation 
and enumeration cycle. 
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Fig. 8. Percentage of detected failures as a function of the maximum displacements of the atom 
coordinates. The figure shows three different group sizes (5, 10, and 20), comparing the binary 
arc-consistency algorithm implemented in PSICO with the group propagation described here. 

This is a potentially useful feature because of the difficulty in interpreting NMR 
data. If PSICO can efficiently screen a database of homology candidates, fragments, 
secondary structure prediction (theoretical or even from the NMR data itself), this can 
help in interpreting the data. 

We are still integrating the group propagation algorithm in PSICO, and have no 
experimental data on this feature. But the preliminary results indicate that the group 
propagation algorithm is very efficient at detecting inconsistencies, because if the 
rigid group cannot fit the domains, the rotation searches are always significantly 
pruned (often completely) and the algorithm, in this case, runs very quickly. 
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4   Conclusion and Future Work 

We think our results show that this group propagation algorithm can increase the 
efficiency of protein structural NMR. Not only by speeding up the calculations, but 
also by helping in the data acquisition and interpretation by integrating theoretical 
models with the experimental data. 

At the time of writing, we are extending the algorithm presented here to propagate 
constraints on torsion angles. Instead of having a single rigid group, this is a con-
straint on the relative positions of two rigid groups that are bound together by a rigid 
bond, and can rotate through a limited range of angles. This extension will give us the 
ability to process NMR data from a large set of proteins, and to test and develop a 
prototype application for the researchers in our Chemistry department. 

This extension will involve a minor modification to the algorithm, only requiring 
an extra rotation search loop that will generate a sequence of rigid bodies by fixing 
the torsion angle, and use interval algebra to account for the discrete search, as the 
algorithm already does for the rotations. 
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Abstract. In this paper we study the applicability of bucket elimination
(BE) to the problem of finding still-life patterns. Very recently, it has
been tackled using integer programming and constraint programming,
both of them being search-based methods. We show that BE, which is
based on dynamic programming, provides an exponentially lower worst-
case time complexity than search methods. Unfortunately, BE requires
exponential space, which is a disadvantage over the polynomial space
requirement of depth-first search.
With our experiments, we show that BE is quite competitive with search-
based approaches. It clearly outperforms simple encodings and it is com-
parable with dedicated methods. While the best current search approach
solves the n = 14 instance in about 6 cpu days, BE solves it in about
1 day. BE cannot solve the n = 15 instance due to space exhaustion
(this instance is solved by search in 8 days). Finally, we show how BE
can be adapted to exploit the problem symmetries, with which in sev-
eral cases we outperform previous results in a relaxation of the problem
which restrict solutions to symmetric patterns, only.

1 Introduction

The game of life was invented in the late 60s by John Horton Conway and was
later popularized by Martin Gardner [6]. Given an infinite checkerboard, the only
player places checkers on some of its squares. Each square is a cell. If there is a
checker on it, the cell is alive, else it is dead. Each cell has eight neighbors: the
eight cells that share one or two corners with it. The state of the board evolves
iteratively according to three rules: (i) if a cell has exactly two living neighbors
then its state remains the same in the next iteration, (ii) if a cell has exactly
three living neighbors then it is alive in the next iteration and (iii) if a cell has
fewer than two or more than three living neighbors, then it is dead in the next
iteration.

While conceptually simple, the game has proven mathematically interesting
and has attracted a lot of curiosity, as can be seen in,

home.interserv.com/̃ mniemiec/lifepage.htm
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Maximum density stable patterns (also called still lifes) are board configu-
rations with a maximal number of living cells which do not change along time.
They can be seen as an academic simplification of a standard issue in discrete
dynamic systems. [5] has shown that for the infinite board the maximum density
is 1/2. In this paper we are concerned with finite patterns. In particular, we con-
sider n × n still lifes, for which no polynomial method is known. This problem
has been recently included in the CSPlib1 repository of challenging constraint
satisfaction problems.

In [3] still life is solved using integer programming and constraint program-
ming, both of them being search-based methods. Their best results were ob-
tained with a hybrid approach which combines the two techniques and exploits
the problem symmetries to reduce the search space. With their algorithm, they
solved the n = 15 case in about 8 days of cpu with a modern computer. An-
other interesting work can be found in [11] where pure constraint programming
techniques are used, and the problem is solved in its dual form. Although not
explicitly mentioned, these two works use algorithms with worst-case time com-
plexity O(2(n2)) and polynomial space.

In this paper we find still lifes using dynamic programming. We model the
problem as a weighted constraint satisfaction problem (WCSP) [10,2] and solve
it with bucket elimination (BE) [4]. BE is a generic algorithm suitable for many
automated reasoning and optimization problems. It is often overlooked due to
its exponential space complexity. Here we show that for the still life problem it
is highly competitive. In the theoretical side, we show that its time complexity
is Θ(n2 × 23n), which means an exponential improvement over search-based
methods. Regarding space, the complexity is Θ(n×22n). In the practical side we
show that plain BE is much faster than basic search algorithms and comparable
to sophisticated search methods. Our implementation of BE solves the n = 14
case in less than 30 hours. The n = 15 case cannot be solved with our computer
due to space exhaustion. A nice feature of BE is that it can compute, with no
extra cost, the number of optimal solutions. Thus, we report, for the first time,
the number of still lifes up to n = 14.

An additional contribution of this paper is that we have adapted BE to
exploit some of the problem symmetries, with which the speed is nearly doubled
and the space requirement is halved (the n = 14 case is solved in about 15 hours,
but we still could not solve the n = 15 case).

When n is too large to solve optimally with current methods, some authors
[3,11] find symmetric optimal solutions. We have also adapted BE to solve the
problem subject to a vertical reflection symmetry and have solved the n = 28
case for the first time.

Although the space complexity seems to be a critical limitation of our method,
it is not necessarily so. There are ways to trade space by time within the BE
algorithm (see [7,8,9]), which give room to our approach to scale up and make
it very promising. We discuss this in detail in Section 6.

1 www.csplib.org
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The structure of this paper is as follows: In Section 2 we give preliminary
definitions. In Section 3 we show how the still life problem is modelled as a WCSP
and solved with BE. In Section 4 we adapt BE to exploit problem symmetries. In
Section 5 we modify BE to find symmetrical solutions. In Section 6 we highlight
our ongoing work. Finally, Section 7 summarizes the conclusions of our work.

2 Preliminaries

A Constraint satisfaction problem (CSP) [12] is defined by a tuple (X,D,C),
where X = {x1, . . . , xn} is a set of variables taking values from their finite
domains (Di ∈ D is the domain of xi). C is a set of constraints, which prohibit
the assignment of some combinations of values. A constraint c ∈ C is a relation
over a subset of variables var(c), called its scope. For each assignment t of all
variables in var(c), t ∈ c iff t is allowed by the constraint. A solution to the
CSP is an complete assignment that satisfies every constraint. Constraints can
be given explicitly as tables of permitted tuples, or implicitly as mathematical
expressions or computing procedures.

Weighted constraint satisfaction problems (WCSP) [2] and [10] augment the
CSP model by letting the user express preferences among solutions. In WCSP,
constraints are replaced by cost functions (also called soft constraints). Forbid-
den assignments receive cost ∞. Permitted assignments receive finite costs that
express their degree of preference. The valuation of an assignment t is the sum
of costs of all functions whose scope is assigned by t. A solution to the WCSP is
a complete assignment with a finite valuation. The task of interest is to find the
solution with the lowest valuation.

A WCSP instance is graphically depicted by means of its interaction or
constraint graph, which has one node per variable and one edge connecting any
two nodes whose variables appear in the same scope of some cost function.

Bucket elimination (BE) [4,1] is a generic algorithm that can be used for
WCSP solving. It is based upon two operators over functions. For the WCSP
case they are:

– The sum of two functions f and g denoted (f + g) is a new function with
scope var(f)∪ var(g) which returns for each tuple the sum of costs of f and
g,

(f + g)(t) = f(t) + g(t)

– The elimination of variable xi from f , denoted f ⇓ i, is a new function
with scope var(f) − {xi} which returns for each tuple t the minimum cost
extension of t to xi,

(f ⇓ i)(t) = min
a∈Di

{f(t · (xi, a))}

where t·(xi, a) means the extension of t to the assignment of a to xi. Observe
that when f is a unary function (i.e., arity one), eliminating the only variable
in its scope produces a constant.
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Example 1 Let f(x1, x2) = x1 + x2 and g(x1, x3) = x1x3. The sum of f and g
is (f + g)(x1, x2, x3) = x1 + x2 + x1x3. If domains are integers in the interval
[1..10], the elimination of x1 from f is (f ⇓ 1))(x2) = 1 + x2. The subsequent
elimination of x2, produces constant 2 (i.e, ((f ⇓ 1) ⇓ 2) = 2).

In the previous example, resulting functions were expressed intensionally for
clarity reasons. Unfortunatelly, in general, the result of summing functions or
eliminating variables cannot be expressed intensionally by algebraic expressions.
Therefore, BE collects intermediate results extensionally in tables, which causes
its high space complexity.

BE (Figure 1) uses an arbitrary variable ordering o that we assume, without
loss of generality, lexicographical (i.e, o = (x1, x2, . . . , xn)). BE works in two
phases. In the first phase (lines 1-5), the algorithm eliminates variables one by
one, from last to first, according to o. In the second phase, the optimal assignment
is computed processing variables from first to last. The elimination of variable xi

is done as follows: C is the set of current constraints. The algorithm stores the
so called bucket of xi, noted Bi, which contains all cost functions in C having
xi in their scope (Line 2). Next, BE computes a new function gi by summing
all functions in Bi and subsequently eliminating xi (line 3). Then, C is updated
by removing the functions in Bi and adding gi (line 4). The new C does not
contain xi (all functions mentioning xi were removed) but preserves the value
of the optimal cost. The elimination of the last variable produces an empty-
scope function (i.e., a constant) which is the optimal cost of the problem. The
second phase (lines 6-10) generates an optimal assignment of variables. It uses
the set of buckets that were computed in the first phase. Starting from an empty
assignment t (line 6), variables are assigned from first to last according to o. The
optimal value for xi is the best value regarding the extension of t with respect
to the sum of functions in Bi (lines 8,9). We use the non standard notation
argmina{f(a)} to denote the value a producing minimum f(a).

BE can also compute the number of optimal solutions with not additional
overhead. More than that, all optimal solutions can be easily retrieved from the
buckets computed during the process (see [4] for details).

The complexity of BE depends on the problem structure, as captured by its
constraint graph G, and the ordering o. The induced graph of G relative to o,
noted G∗(o), is obtained by processing the nodes in reverse order of o. When
considering node i, new edges are added in order to form a clique with all its
adjacent nodes, appearing before i in the ordering o. Given a graph and an
ordering of its nodes, the width of a node is the number of edges connecting it
to nodes lower in the ordering. The induced width of a graph along ordering o,
denoted w∗(o), is the maximum width of nodes in the induced graph.

Theorem 1 [4] The complexity of BE along ordering o is time O(Q × n ×
dw∗(o)+1) and space O(n × dw∗(o)), where d is the largest domain size and Q is
the cost of evaluating cost functions (usually assumed O(1)).
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function BE(X, D, C)
1. for i = n downto 1 do
2. Bi := {f ∈ C| xi ∈ var(f)}
3. gi := (

∑
f∈Bi

f) ⇓ i;
4. C := (C ∪ {gi}) − Bi;
5. endfor
6. t := ∅;
7. for i = 1 to n do
8. v := argmina∈Di

{(∑
f∈Bi

f)(t · (xi, a))}
9. t := t · (xi, v);
10. endfor
11. return(C, t);
endfunction

Fig. 1. Bucket Elimination. (X, D, C) is the WCSP instance to be solved. The algo-
rithm returns the optimal cost in C and one optimal assignment in t.

3 Finding Still Lifes with BE

3.1 Modelling Still Life as a WCSP

The still life problem consist of finding a n×n stable pattern of maximum density
in the game of life, where all cells outside the pattern are assumed to be dead.
Considering the rules of the game, it is clear that in stable patterns all living
cells must have exactly two or three living neighbors in order to remain alive, and
dead cells must not have three living neighbors in order to remain dead. Besides,
boundary rows and columns must not have more than two adjacent living cells,
since three consecutive cells would produce a new living cells outside the n× n
region. Figure 2 (left) shows a 3× 3 still life.

Still life can be easily modelled as a WCSP. We use a compact formulation
with n variables, one for every row. Variable xi is associated to the i-th row. Its
domain Di is the set of sequences of n bits. The j-th bit of value a, noted aj ,
indicates the state of the j-th cell of the row. If aj takes value 1 the corresponding
cell is alive, else it is dead. Let a, b and c be domain values. We define Z(a) as
the number of zeroes in a. S(a, b, c) is a boolean predicate satisfied iff all cells
of b are stable cells being a the row above b and c the row below b (S(a, b, c) is
false if there is some unstable cell in b).

The problem has n cost functions fi (with i = 1, .., n). For i = 2, .., n− 1, fi

is ternary, with scope var(fi) = {xi−1, xi, xi+1}. If the arguments represent an
unstable configuration it returns ∞, else it returns the number of zeroes in the
middle row. Formally,

fi(a, b, c) =

⎧⎪⎪⎨⎪⎪⎩
∞ : ¬S(a, b, c)
∞ : a1 = b1 = c1 = 1
∞ : an = bn = cn = 1

Z(b) : otherwise
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X1

X2

X3

X4

Fig. 2. Left: A 3 × 3 still life pattern. Right: Constraint graph of still life.

Functions f1 and fn are binary. They are equivalent to the ternary cost func-
tions, but assuming dead cells above the top row and below the bottom row,
respectively. The scope of f1 is {x1, x2} and it is defined as,

f1(b, c) =
{
∞ : ¬S(0, b, c)

Z(b) : otherwise

where 0 denotes the all zeroes string of bits. Similarly, the scope of fn is
{xn−1, xn} and it is defined as,

fn(a, b) =
{
∞ : ¬S(a, b,0)

Z(b) : otherwise

Note that computing fi(a, b, c), f1(b, c) and fn(a, b) is Θ(n).

3.2 BE for Still Life

The constraint graph of our still life formulation is a sequence of size 3 cliques
(Figure 2, right). The induced graph G∗(o) with o = (x1, x2, . . . , xn) does not
have new edges (i.e, G∗(o) = G). Consequently, the induced width is w∗(o) =
2. Since domains have size 2n, by Theorem 1, the complexity of BE is time
O(n2 × 23n) and space O(n× 22n).

The sequential structure of the constriant graph makes the implementation
of BE very simple (see Figure 3). Sequences of bits of size n are represented
by integers in the interval [0..2n − 1]. In the first phase, we process variables
from last to first. Buckets are implicitly computed. The bucket of xn is Bn =
{fn, fn−1} (these are the only cost function having xn in their scope). Bn is used
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function BE(n)
1. for a, b ∈ [0..2n − 1] do
2. gn(a, b) := minc∈[0..2n−1]{fn−1(a, b, c) + fn(b, c)};
3. endfor
4. for i = n − 1 downto 3 do
5. for a, b ∈ [0..2n − 1] do
6. gi(a, b) := minc∈[0..2n−1]{fi−1(a, b, c) + gi+1(b, c)};
7. endfor
8. endfor
9. (x1, x2) := argmina,b∈[0..2n−1]{g3(a, b) + f1(a, b)};
10. opt := g3(x1, x2) + f1(x1, x2);
11. for i = 3 to n − 1 do
12. xi := argminc∈[0..2n−1]{fi−1(xi−2, xi−1, c) + gi+1(xi−1, c)};
13. endfor
14. xn := argminc∈[0..2n−1]{fn−1(xn−2, xn−1, c) + fn(xn−1, c)};
15. return(opt, (x1, x2, . . . , xn));
endfunction

Fig. 3. Bucket Elimination for the still life problem. The algorithm returns the optimal
value in opt and the optimal assignment in (x1, x2, . . . , xn).

to compute a new binary cost function gn with scope {xn−2, xn−1} (lines 1-3). By
construction, gn(a, b) is the cost of the best extention of (xn−2 = a, xn−1 = b) to
the eliminated variable xn. The bucket of xn−1 is Bn−1 = {gn, fn−2}. It is used
to compute gn−1 with scope {xn−3, xn−2} (lines 5-7, first iteration). gn−1(a, b) is
the cost of the best extension of (xn−3 = a, xn−2 = b) to the eliminated variables
xn−1 and xn. Subsequent iterations of the loop eliminate subsequent variables.
In the last iteration variable x3 is eliminated. When the algorithm reaches line 9,
the current problem contains two cost functions: g3, which contains the optimal
extensions of each potential assignment of x1 and x2 to the rest of variables, and
f1. Instead of continuing the elimination of variables, we found it to be more
efficient to solve the current problem with a brute-force exhaustive search (line
9). Variables x1 and x2 are assigned with their optimal values (line 9) and the
optimal cost is assigned to opt (line 10).

In the second phase (lines 11-14), we process variables from first to last. We
assign to each variable the best value according to its bucket and previously
assigned variables.

It is easy to verify the complexity of the algorithm. Regarding space it is
Θ(n× 22n), due to the space required to store functions gi extensionally, which
have 22n entries each. Regarding time, the critical part of the algorithm is the
execution of lines 4-8. Line 6 has complexity Θ(n× 2n) (finding the minimum of
2n alternatives, the computation of each one being Θ(n)). It has to be executed
Θ(n×22n) times, which makes a global complexity of Θ(n2×23n). Observe that
the complexity of BE in the still life problem is an exponential improvement over
search algorithms.

There is a simple average-case time optimization that we found very effective.
Observe that lines 2 and 6 require the evaluation of fi(a, b, c) with a and b fixed
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and varying c. All values of c such that fi(a, b, c) = ∞ are irrelevant because
they cannot provide the minimum valuation. Let uab be the smallest value such
that fi(a, b, uab) �=∞. Clearly line 6 (similarly line 2) can be replaced by:

gi(a, b) := minc∈[uab..2n−1]{fi−1(a, b, c) + gi+1(b, c)};

which in many cases reduces the interval size drastically. Since all fi in the
original problem are essentially equal (the only difference is their scope) value
uab is common to all fi (with i = 2..n−1). For each a, b, we compute uab during
a pre-process and store it in a table that is used to speed up every variable
elimination. Note that this table has 22n. Thus, it does not affect the space
complexity of the algorithm.

n cost n. sol. BE CP IP CP/IP-sym
5 16 1 0 0 1 0
6 18 48 0 1 23 0
7 28 2 0 10 7 0
8 36 1 1 189 65 2
9 43 76 4 > 1500 > 1500 51

10 54 3590 27 * * 147
11 64 73 210 * * 373
12 76 129126 1638 * * 30360
13 90 1682 13788 * * 30729
14 104 11 105 * * 5 × 105

15 119 ? * * * 7 × 105

Fig. 4. Experimental results of four different algorithms on the still life problem. Times
are in seconds.

3.3 Experimental Results

Table 4 reports the results that we obtained with a 1 Ghz Pentium III machine
with 1 Gb of memory. From left to right, the first three columns report: problem
size, solution cost (as the number of living cells) and number of optimal solutions
(most of them have never been reported before). We count as different two solu-
tions even if one can be transformed to the other through a problem symmetry.
The fourth column reports the CPU time of our executions (BE) in seconds. For
comparison purposes, the fifth, sixth and seventh columns show times obtained
in [3] with basic constraint programming (CP), integer programming (IP), and
a sophisticated hybrid algorithm (CP/IP-sym) which exploits the problem sym-
metries (see Section 4). In their experiments, they used a 650 Mhz Pentium III
with 196 Mb of memory. Time comparison should be done with caution, be-
cause machines are different. Note as well that times in [3] were obtained using
a commercial solver, while our times have been obtained with our ad-hoc imple-
mentation. On the one side, our implementation was made specifically for the
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Fig. 5. A 14 × 14 still life pattern.

still life problem, which has the advantage of optimizing the use of space and
specializing some parts of the code. On the other side, our implementation is a
prototype, inplemented in a few weeks, which is in disadvantage with respect to
commercial solvers, developed during months or years. Having said that, it can
be observed that BE clearly outperforms basic CP and IP by orders of magni-
tude. While CP and IP algorithms cannot solve the problem beyond n = 8 in
less than half an hour, BE can solve the n = 12 case subject to the same time
limit. The n = 14 case is the largest instance that we could solve due to space
exhaustion (see Figure 5). As a matter of fact, the original code could not be
executed for the n = 14 case. We solved it by disabling the counting solutions
feature which deallocates some memory. We computed the number of solutions
in a different execution with a slower machine with more memory space. Com-
paring BE with the CP/IP hybrid we observe that both algorithms give very
similar times (BE is faster, but within the same order of magnitude). Given the
simplicity of the BE algorithm we consider it a very satisfactory result. An addi-
tional observation is that BE scales up very regularly, each execution requiring
roughly eight times more time and four times more space than the previous,
which is in clear accordance with the algorithm complexity.

4 Exploiting Problem Symmetries

Still life is a highly symmetric problem. For any stable pattern, it is possible to
create an equivalent pattern by: (i) rotating the board by 90, 180 or 270 degrees,
(ii) reflecting the board horizontally, vertically or along one diagonal or (iii)
doing any combination of rotations and reflections. Search methods proposed in
[3] and [11] exploit that fact by cutting off some search paths that only contain
solutions that are symmetric of previously processed ones.
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In the following we show how BE can also be adapted to take advantage of
some of the symmetries.

Let’s assume that n is an even number (the odd case is similar). Consider
the algorithm of Figure 3 and assume that we stop the execution after the
elimination of variable xn

2 +2. The elimination of xn
2 +2 produces gn

2 +2, with
scope {xn

2
, xn

2 +1}. At this point supose that we change the order of elimination
of the remaining variables to x1, x2, . . . , xn

2 −1. The elimination x1 produces a
new function g1 with scope {x2, x3}. Due to the 180 rotation symmetry it is
the same to eliminate x1 or rotate the board by 180 degrees and eliminate xn.
Therefore, for all a and b it holds that

g1(a, b) = gn(b̄, ā)

Where ā (respectively, b̄) is the reflection of value a (respectively, b). In addition,
due to the vertical reflection symmetry we have that,

gn(b̄, ā) = gn(b, a)

Therefore, it follows that,
g1(a, b) = gn(b, a)

In general, the elimination of variable xi (with 1 ≤ i ≤ n
2 − 1) produces a new

function gi with scope {xi+1, xi+2}. Due to the problem symmetries, we have
that,

gi(a, b) = gn−i+1(b, a)

Therefore, variables x1, x2, . . . , xn
2 −1 do not have to be eliminated, because the

effect of the elimination can be inferred. At this point, the current problem
contains only two variables (xn

2
and xn

2 +1) and one cost function between them
(gn

2 +1(xn
2
, xn

2 +1)+ gn
2 +1(xn

2 +1, xn
2
)). This problem can be solved by exhaustive

exploration. It is clear that the savings from avoiding the elimination of half of
the variables reduces the time and space requirements to one half.

The previous idea is illustrated by Algorithm BE-sym (Figure 6). In lines
1-6 the elimination of xn, xn−1, . . . , xn

2 +2 is performed as in BE. In line 7,
the optimal cost is computed where gn

2 +1(xn
2
, xn

2 +1) provides the effect of the
performed elimination of xn, xn−1, . . . , xn

2 +2 and the inferred elimination of
x1, x2, . . . , xn

2 −1. In line 8 the optimal assignment of xn
2

and xn
2 +1 is computed.

Lines 9-12 compute the optimal assignment of xn, xn−1, . . . , xn
2 +2 as in the BE

algorithm. Lines 13-16 compute the optimal assignment of x1, x2, . . . , xn
2 −1. The

optimal assignment of xi without exploiting the simmetries would be,

xi := argminc∈[0..2n−1]{fi+1(c, xi+1, xi+2) + gi−1(c, xi+1)}

however, since gi−1(a, b) = gn−i(b, a), it can be computed as,

xi := argminc∈[0..2n−1]{fi+1(c, xi+1, xi+2) + gn−i(xi+1, c)}

Table 7 reports the results obtained with BE-sym. The first column tells the
size of the problem. The second column indicates times obtained with BE-sym.
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function BE-sym(n)
1. for a, b ∈ [0..2n − 1] do
2. gn(a, b) := minc∈[0..2n−1]{fn−1(a, b, c) + fn(b, c)};
3. for i = n − 1 downto n/2 + 2 do
4. for a, b ∈ [0..2n − 1] do
5. gi(a, b) := minc∈[0..2n−1]{fi−1(a, b, c) + gi+1(b, c)};
6. endfor
7. opt := mina,b∈[0..2n−1]{g n

2 +2(a, b) + g n
2 +2(b, a)};

8. (x n
2
, x n

2 +1) := argmina,b∈[0..2n−1]{g n
2 +2(a, b) + g n

2 +2(b, a)};
9. for i = n

2 + 2 to n − 1 do
10. xi := argminc∈[0..2n−1]{fi−1(xi−2, xi−1, c) + gi+1(xi−1, c)};
11. endfor
12. xn := argminc∈[0..2n−1]{fn−1(xn−2, xn−1, c) + fn(xn−1, c)};
13. for i = n

2 − 1 to 2 do
14. xi := argminc∈[0..2n−1]{fi+1(c, xi+1, xi+2) + gn−i(xi+1, c)};
15. endfor
16. x1 := argminc∈[0..2n−1]{f2(c, x2, x3) + f1(c, x2)};
17. return(opt, (x1, x2, . . . , xn));
endfunction

Fig. 6. Bucket Elimination exploiting symmetries (assume n even).

n BE-sym BE CP/IP-sym
9 2 4 51

10 14 27 147
11 120 210 373
12 813 1638 30360
13 7223 13788 30729
14 6 × 104 105 5 × 105

15 * * 7 × 105

Fig. 7. Experimetal results of three algorithms on the still life problem.

To facilitate comparison, the third column reports results obtained with BE
and the fourth column reports the best times obtained by [3] with their hybrid
CP/IP algorithm which also exploits symmetries (again, be aware of the different
machines). Comparing BE vs. BE-sym, the experiments confirm that BE-sym is
twice as fast as BE. Although BE-sym requires less memory than BE, we still
could not execute the n = 15 case. Comparing it with the CP/IP hybrid, it can
be observed that BE-sym seems to be systematically faster.

5 Restricting to Symmetric Still Life

When n is too large to solve optimally with current methods, previous authors
proposed finding symmetric optimal solutions. In [3] optimal horizontally sym-
metric solutions for n = 18 are found, and in [11] optimal 90 degrees rotational
symmetric solutions for n = 18 are also found.
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Fig. 8. A 28 × 28 symmetric still life. The optimal value is 406 living cells.

We followed the same approach and adapted BE to consider vertically sym-
metric patterns. With our formulation, changes are straightforward: we only
need to reduce domains to symmetrical values. Lets assume that n is an even
number (the odd case is similar). We represent symmetric sequences of bits of
length n by considering the left side of the sequence (clearly, the symmetrical
right part can be obtained by reversing the left part), which can be implemented
as integers in the interval [0..2

n
2 − 1]. It is easy to see that the complexity of BE

is now time Θ(n2 × 23n/2) and space Θ(n × 2n), which means that the size of
problems that we can solve should be doubled. Observe that this problem has
exactly the same symmetries as the original problem. Consequently, we can still
use the BE-sym algorithm.

Figure 9 reports the results that we obtained with BE-sym. The first column
contains the problem size (we only solved even values of n), the second column
reports the optimal value as number of living cells, the third column reports the
number of solutions and the fourth column reports CPU time obtained with the
BE-sym algorithm. As predicted, we solve up to the n = 28 case (Figure 8). The
n = 30 case could not be execute due to space exhaustion. These results improve
significatively over the previous works of [3,11].
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n opt. cost n. sol. BE-sym
10 52 133 0
12 76 8 0
14 104 1 0
16 136 3 0
18 170 4 10
20 208 1813 81
22 252 635 633
24 300 5363 4620
26 350 55246 37600
28 406 12718 1.7 × 105

Fig. 9. Experimental results on for finding vertical reflection symmetric still lifes with
BE.

6 Future Work

We have shown that BE provides an efficient solver approach to the still life
problem, although it has the fundamental limitation of its exponential space
complexity which makes impossible with current computers to solve the problem
beyond n = 14. Fortunately, some authors [7,8,9] suggest ways to overcome
space exhaustion when executing BE. These approaches propose parameterized
algorithms, where the parameter indicates the amount of space the user is willing
to use. The algorithms dynamically switch to search each time BE cannot carry
out the solving process. BE is resumed as soon as the space-costly part of the
problem has been solved. We are currently exploring these ideas. Hopefully we
will be reporting new results in the near future.

7 Conclusion

Bucket Elimination is often believed to be an algorithm of little practical interest
due to its exponential space complexity. In this paper we showed that it is
extremely competitive for the still life problem. We showed that it provides a
much lower worst-case time complexity than search-based methods which makes
it systematically faster in practice. The space complexity drawback comes to
the fore where search methods fail due to their exponential time complexity. We
reported some results, which we think are new: the number of optimal solutions
up to n = 14 and the optimal cost and the number of solutions of vertically
symmetric still lifes up to n = 28.

As far as we know, there is no previous work on how to adapt BE to exploit
symmetries. We enhanced the performance of our BE implementation by con-
sidering some of the problem symmetries. We belive that it is a preliminary step
towards a wider (although possibly limited) practical applicability of BE.
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Abstract. Arc consistency plays a central role in solving Constraint Satisfaction
Problems. This is the reason why many algorithms have been proposed to estab-
lish it. Recently, an algorithm called AC2001 and AC3.1 has been independently
presented by their authors. This algorithm which is considered as a refinement
of the basic algorithm AC3 has the advantage of being simple and competitive.
However, it does not take into account constraint bidirectionality as AC7 does.
In this paper, we address this issue, and, in particular, introduce two new algo-
rithms called AC3.2 and AC3.3 which benefit from good properties of both AC3
and AC7. Indeed, AC3.2 and AC3.3 are as easy to implement as AC3 and take
advantage of bidirectionality as AC7 does. More precisely, AC3.2 is a general
algorithm which partially exploits bidirectionality whereas AC3.3 is a binary al-
gorithm which fully exploits bidirectionality. It turns out that, when Maintaining
Arc Consistency during search, MAC3.2, due to a memorization effect, is more
efficient than MAC3.3 both in terms of constraint checks and cpu time. Compared
to MAC2001/3.1, our experimental results show that MAC3.2 saves about 50%
of constraint checks and, on average, 15% of cpu time.

1 Introduction

Arc consistency plays a central role in solving Constraint Satisfaction Problems. Indeed,
the MAC algorithm [10], i.e., the algorithm which maintains arc consistency during the
search of a solution, is still considered as the most efficient generic approach to cope
with large and hard problem instances [3]. Many algorithms have been proposed to
establish arc consistency.

On the one hand, coarse-grained algorithms such as AC3 [8], AC2000 [5], AC2001
[5], AC3.1 [17] and AC3d [13] have been developed, the principle of which is to ap-
ply successive revisions of arcs, i.e., of pairs (C,X) composed of a constraint C and
of a variable X belonging to the set of variables of C. These algorithms are easy to
implement and efficient in practice.

On the other hand, fine-grained algorithms such as AC4 [9], AC6 [1] and AC7 [2]
have been proposed, the principle of which is to apply successive revisions of “values”,
i.e., of triplets (C,X, a) composed of an arc (C,X) and of a value a belonging to the
domain of X . These algorithms are more difficult to implement since it is necessary to
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manage heavy data structures. And even if, AC6 and AC7 are quite competitive with
respect to coarse-grained algorithms in the context of a preprocessing stage, this is
less obvious in the context of a search since maintaining these data structures can be
penalizing.

Arc consistency algorithms can also be characterized by a certain number of desir-
able properties [2]. In particular, it is interesting to exploit constraint bidirectionality
(called multidirectionality when constraints are not binary) in order to avoid useless
constraint checks. Bidirectionality means that if a value b of the domain of a variable
Xj supports (is compatible with) a value a of the domain of a variable Xi with respect
to a binary constraint C defined on Xi and Xj then a of Xi also supports b of Xj .
Hence, if a constraint check C(a, b) is performed when looking for a support of a, there
is no need to perform the same constraint check when looking for a support of b pro-
vided that the constraint check has been recorded as a success or a failure (positive and
negative bidirectionality exploitation). Among all algorithms cited above, AC7 is the
only one which fully takes into account bidirectionality. And, as far as we are aware,
AC3d is the only coarse-grained algorithm that partially exploits bidirectionality (by
using a so-called double-support domain heuristic).

In this paper, we address the issue of exploiting constraint bidirectionality with
respect to coarse-grained algorithms. First, we introduce two new algorithms, called
AC3.2 and AC3.3, which can be seen as improvements of AC2001/3.1. AC3.2 is a gen-
eral algorithm, i.e., suitable to both binary and non-binary problems, which partially ex-
ploits positive bidirectionality whereas AC3.3 is a binary algorithm, i.e., only adapted to
binary problems, which fully exploits positive bidirectionality. In both cases, integrating
positive bidirectionality exploitation only requires a slight additional data structure.

Next, we show that AC2001/3.1, AC3.2, AC3.3 can all benefit from negative bidi-
rectionality by concentrating the search of a support with respect to so-called candidates
[4]. As a result, AC3.2 and AC3.3 benefit from good properties of both AC3 and AC7.
Indeed, AC3.2 and AC3.3 are as easy to implement as AC3 and take advantage of bidi-
rectionality as AC7 does (although AC3.3 is the only coarse-grained algorithm which
fully takes into account bidirectionality).

Our experimentations show that, when arc consistency is used as a preprocessing,
AC3.3 seems to be the most efficient algorithm. Compared to AC2001/3.1, AC3.3 saves
about 25% of constraint checks and, on average, 15% of cpu time. However, it turns out
that, when Maintaining Arc Consistency during search, MAC3.2, due to a memorization
effect, is more efficient than MAC3.3 both in terms of constraint checks and cpu time.
Compared to MAC2001/3.1, our experimental results show that MAC3.2 saves about
50% of constraint checks and, on average, 15% of cpu time.

2 Preliminaries

In this section, we briefly introduce some notations and definitions used hereafter.

Definition 1. A constraint network is a pair (X ,C ) where:

– X = {X1, . . . , Xn} is a finite set of n variables such that each variable Xi has
an associated domain dom(Xi) denoting the set of values allowed for Xi,
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– C = {C1, . . . , Cm} is a finite set of m constraints such that each constraint Cj has
an associated relation rel(Cj) denoting the set of tuples allowed for the variables
vars(Cj) involved in the constraint Cj .

Without loss of generality, it is possible to assume that any set of variables vars(C)
associated with a constraint C is ordered. Then, we can get the position pos(X,C) of
a variable X in vars(C) and the ith variable var(i, C) in vars(C). We shall say that
a constraint C involves (or binds) a variable X if and only if X belongs to vars(C).
The arity of a constraint C is the number of variables involved in C, i.e., the number of
variables in vars(C).

A Constraint Satisfaction Problem (CSP) is the task of finding one (or more) solu-
tion for a constraint network. A solution is an assignment of values to all the variables
such that all the constraints are satisfied. A solution guarantees the existence of a sup-
port in all constraints.

Definition 2. Let C be a k-ary constraint, a k-tuple t is a list of k values indexed from
1 to k = length(t) and denoted here t[1], . . . , t[k]. A k-tuple t is:

– valid wrt C iff ∀i ∈ 1..k, t[i] ∈ dom(var(i, C)),
– allowed by C iff t ∈ rel(C),
– a (current) support in C iff it is valid and allowed.

A tuple t will be said to be a support of (X, a) in C when t is a support in C such
that t[pos(X,C)] = a. Determining if a tuple is valid is called a validity check and
determining if a tuple is allowed is called a constraint check. It is also important to note
that, assuming a total order on domains, tuples can be ordered using a lexicographic
order ≺.

To solve a CSP, a depth-first search algorithm with backtracking can be applied,
where at each step of the search, a variable assignment is performed followed by a
filtering process called constraint propagation. Usually, constraint propagation removes
some values which can not occur in any solution. Modifying the domains of a given
problem in order to get it arc consistent involves using constraint checks and, also, for
some algorithms, validity checks. Constraint checks are required to find (new) supports
whereas validity checks are used to determine if (old) supports are still valid.

Definition 3. Let P be a CSP and (X, a) be a pair composed of a variable X of P and
of a value a ∈ dom(X). (X, a) is said to be consistent wrt a constraint C of P if either
X �∈ vars(C) or there exists a support of (X, a) in C. (X, a) is said to be consistent
wrt P iff (X, a) is consistent wrt all constraints of P . P is said to be arc consistent iff
all pairs (X, a) are consistent wrt P .

3 Properties of Arc Consistency Algorithms

In order to avoid useless constraint checks, arc consistency algorithms can exploit dif-
ferent properties. In this section, we present an adaptation of the desirable properties
defined in [2].
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Algorithm 1 AC3.X
1: Q ← {(C, X) | C ∈ C ∧ X ∈ vars(C)}
2: init3.X()
3: while Q �= ∅ do
4: pick (C, X) in Q
5: if revise3.X(C,X) then
6: if dom(X) = ∅ then return FAILURE
7: else Q ← Q ∪ {(C′, X ′) | X ∈ vars(C′) ∧ X ′ ∈ vars(C′) ∧ X �= X ′ ∧ C �= C′}
8: end if
9: end while

10: return SUCCESS

In any arc consistency algorithm, a constraint check C(t) is always performed with
respect to a triplet (C,X, a) where C is a k-ary constraint, X a variable in vars(C), a
a value in dom(X) and t a k-tuple. The following properties should be ideally verified
by any arc consistency algorithm, given a triplet (C,X, a) and a tuple t.

– positive unidirectionality C(t) is not checked if there exists a support t′ of (X, a)
in C already successfully checked wrt (C,X, a).

– negative unidirectionality C(t) is not checked if it has already been unsuccess-
fully checked wrt (C,X, a).

– positive multidirectionality C(t) is not checked if there exists a support t′ of
(X, a) in C already successfully checked wrt a triplet (C, Y, b) with Y �= X .

– negative multidirectionality C(t) is not checked if C(t) has already been unsuc-
cessfully checked wrt a triplet (C, Y, b) with Y �= X .

Roughly speaking, above properties correspond to properties 1, 3a, 2 and 3b of [2].

4 AC3.X Algorithms

In this section, we present different algorithms which are based on AC3, and are conse-
quently coarse-grained algorithms denoted AC3.X. First, we introduce the main proce-
dure of all these algorithms and recall the AC2001/3.1 algorithm. Next, we propose two
originals algorithms, called AC3.2 and AC3.3, which can be seen as improvements of
AC2001/3.1. Note that the description of all below algorithms (except AC3.3) is given
in the general case of non binary problems.

4.1 Main Procedure of AC3.X Algorithms

The structure of the AC3.X algorithms is identical to the one of the AC3 algorithm [8].
All these algorithms use a propagation set, denoted Q here, in order to hold all the arcs
that need to be revised; the objective of the revision of an arc (C,X) being to remove
the values of dom(X) that have become inconsistent with respect to C.

Although we present, for the sake of simplicity, an arc-oriented propagation scheme,
our implementation integrates a variable-oriented one since it turns out to be more effi-
cient when using so-called revision ordering heuristics [6].
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Algorithm 2 init3.1()
∀C ∈ C ,∀X ∈ vars(C),∀a ∈ dom(X)

last[C, X, a] ← nil

Algorithm 3 revise3.1(in C,X) : int
1: nbElements ← | dom(X) |
2: for each a ∈ dom(X) do
3: if last[C, X, a] is valid then continue
4: seekNextSupport(C,X, a, last[C,X, a])
5: if last[C, X, a] = nil then remove a from dom(X)
6: end for
7: return nbElements �= |dom(X) |

Here is a quick description of the main procedure described by Algorithm 1. Ini-
tially, all arcs (C,X) are put in the set Q in order to be revised, and a call to init3.X
allows the initialization of AC3.X specific data structures. Then, arcs are revised in turn,
and when a revision is effective (at least a value has been removed), the set Q has to be
updated.

4.2 AC2001/3.1

The same algorithm, seen as an extension of AC3, and called AC2001 by [5] and AC3.1
by [17] has been proposed independently by their authors. There is a simple but impor-
tant difference between AC3 and AC2001/3.1. Indeed, when a support of a value has
to be found, AC3 starts the search from scratch whereas AC2001/3.1 starts the search
from a resumption point which corresponds to the last support found for this value.
More precisely, AC2001/3.1 verifies positive and negative unidirectionality.

This less naive approach requires the introduction of a data structure, denoted last.
This data structure is an array used to store the last support of any triplet (C,X, a)
composed of an arc (C,X) and of a value a belonging to dom(X). Initially, the structure
last must be initialized to nil (see Algorithm 2). The revision (see Algorithm 3) involves
testing for any value the validity of the last support (nil is not valid) and potentially
looking for a new support.

Note that seekNextSupport (see Algorithm 4) modifies its parameter t with either
the smallest support of (X, a) in C strictly greater than it or with nil (remember that a
constraint check is denoted by C(t)). It calls the function seekNextTuple which mod-
ifies its parameter t with either the smallest valid tuple t′ in C such that t ≺ t′ and
t′[pos(X,C)] = a or with nil.

Algorithm 4 seekNextSupport(in C,X,a, in/out t)
1: while t �= nil do
2: seekNextTuple(C,X, a, t)
3: if C(t) then break
4: end while
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Algorithm 5 init3.2()
∀C ∈ C ,∀X ∈ vars(C),∀a ∈ dom(X)

last[C, X, a] ← nil ; lastE[C,X, a] ← nil

Algorithm 6 revise3.2(in C,X) : int
1: nbElements ← | dom(X) |
2: for each a ∈ dom(X) do
3: if lastE[C, X, a] is valid then continue
4: if last[C, X, a] is valid then continue
5: seekNextSupport(C,X, a, last[C,X, a])
6: if last[C, X, a] = nil then remove a from dom(X)
7: else
8: for each Y ∈ vars(C) | Y �= X do
9: b ← last[C,X, a][pos(Y, C)]

10: lastE[C,Y, b] ← last[C, X, a]
11: endfor
12: end for
13: return nbElements �= |dom(X) |

AC2001/3.1 has a space complexity of O(md) and an optimal worst-case time com-
plexity of O(md2) [5, 17] (even if we consider non binary constraints provided that we
arbitrarily bound constraint arity).

4.3 AC3.2

To improve the behaviour of the AC2001/3.1 algorithm while keeping simplicity of the
algorithm, it is possible to partially benefit from positive multidirectionality. In partic-
ular, when a support is found, it can be used not only for the value for which it was
looking for but also for all values occurring in the support. To avoid dealing with heavy
data structures, one simply records for any value the last extern support, i.e., a support
that corresponds to the last support of another value.

For instance, let us consider a binary constraint C such that vars(C) = {Xi, Xj}. If
a support (a, b) of (Xi, a) is found in C (when looking for a support of (Xi, a)), then it
is also recorded as being the last extern support of (Xj , b) in C. If later, a support (c, b)
of (Xi, c) is found in C, then the last extern support of (Xj , b) in C becomes (c, b).

This new algorithm requires the introduction of an additional data structure, denoted
lastE. This data structure is an array used to store the last extern support of any triplet
(C,X, a). Initially, the structure lastE must be initialized to nil (see Algorithm 5). The
revision (see Algorithm 6) involves testing for any value the validity of the last extern
support (line 3) and if, it fails, the validity of the last support (line 4). If neither are valid
then a search of a new support is started, and if it succeeds, some extern supports are
updated (lines 8 to 11).

AC3.2 keeps the time and space complexities of AC3.1. Indeed, in the worst case,
the algorithm simply performs one extra test (line 3) and a bounded number of extra
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Algorithm 7 init3.3()
∀C ∈ C ,∀X ∈ vars(C),∀a ∈ dom(X)

last[C, X, a] ← nil ; cpt[C, X, a] ← 0

Algorithm 8 revise3.3(in Ci,j ,Xi) : int

1: nbElements ← | dom(Xi) |
2: for each a ∈ dom(Xi) do
3: if cpt[Ci,j , Xi, a] > 0 then continue
4: if last[Ci,j , Xi, a] is valid then continue
5: if last[Ci,j , Xi, a] �= nil then
6: cpt[Ci,j , Xj , last[Ci,j , Xi, a]] −−
7: seekNextSupport(Ci,j, Xi, a, last[Ci,j , Xi, a])
8: if last[Ci,j , Xi, a] = nil then
9: remove a from dom(Xi)

10: for each Ci,k ∈ C | k �= j do
11: if last[Ci,k, Xi, a] �= nil then
12: cpt[Ci,k, Xk, last[Ci,k, Xi, a]] −−
13: else cpt[Ci,j , Xj , last[Ci,j , Xi, a]] + +
14: end for
15: return nbElements �= |dom(Xi) |

assignments (lines 8 to 11) for each value revision. And we only need an additional
array to store the last extern supports.

4.4 AC3.3

AC3.2 only integrates a partial positive multidirectionality exploitation. For binary
problems, it is possible to conceive a simple algorithm which fully exploits positive
bidirectionality. This algorithm, which is called AC3.3, simply records for any value
the number of its extern supports. Then, an array, denoted cpt is introduced in order to
store the number of extern supports of any triplet (C,X, a).

After initializing these counters to 0 (see Algorithm 7), we have to carefully update
them (see Algorithm 8), when a support is lost (line 6), a support is found (line 13) or
a value is removed (lines 10 to 12). For the sake of simplicity, last[Ci,j , Xi, a] will be
considered as equivalent to last[Ci,j , Xi, a][pos(Xj , C)]. For instance, if (a, b) is the
last support of (Xi, a) in Ci,j then last[Ci,j , Xi, a] will designate the value b instead of
the pair (a, b). The correctness of AC3.3 is given by the following proposition (the proof
of which is omitted here). As AC3.2, AC3.3 keeps the time and space complexities of
AC2001/3.1.

Proposition 1. The following invariant of the main loop of algorithm 8 holds: ∀Ci,j ∈
C , ∀Xi ∈ vars(Ci,j), ∀a ∈ dom(Xi), cpt[Ci,j , Xi, a] gives exactly the number of
extern supports of (Xi, a) in Ci,j .
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Algorithm 9 seekCandidate(in C,X,a, in/out t, in k) : int
1: for k from frontier to length(t) do
2: if k = pos(C,X) then continue
3: if last[C, X, t[k]] = nil then continue
4: t′ ← last[C, var(k, C), t[k]]
5: s ← 1
6: while s ≤ length(t) ∧ t[s] = t′[s] do s++
7: if s = length(t) + 1 then return SUPPORT
8: if t[s] > t′[s] then continue
9: if s < k then k′ ← seekNextTuple(C,X, a, t, k)

10: else
11: k′ ← copy(C, t, t′, s, pos(C,X))
12: if k′ = length(t) + 1 then return SUPPORT
13: if k′ = pos(C,X) ∧ t[k′] > t′[k′] then
14: reinitTupleAfter(C,X,a,t,k’)
15: else k′ ← seekNextTuple(C,X, a, t, k′)
16: end if
17: if k′ = −1 then return NOTHING
18: else if k′ − 1 < k then k ← k′ − 1
19: end for
20: return CANDIDATE

5 Negative Multidirectionality Exploitation

In the previous section, we have focused our attention to positive multidirectionality.
In this one, we show that AC2001/3.1, AC3.2, AC3.3 can all benefit from negative
multidirectionality. New algorithms, denoted AC3.1∗, AC3.2∗ and AC3.3∗, are then
obtained by replacing the call to the “standard” seekNextSupport function by a call to
the seekNextSupport∗ function described below.

The principle is to concentrate the search of a support with respect to so-called
candidates [4]. A candidate is a tuple which has never been checked. Note that the
presentation is quite technical as it is given for non binary constraints.

First, let us consider a function seekCandidate such that a call of the form seekCan-
didate(C,X, a, t, k) computes the smallest candidate t′ valid w.r.t. C such that t � t′

and t′[pos(X,C)] = a. Note that k is only given for optimization as it indicates that
the k − 1 first values in t have been verified to be a possible prefix for a candidate.
This function updates t with t′ and returns one value among NOTHING, SUPPORT and
CANDIDATE which respectively indicate that there are no more candidates, that the
updated argument t is a support or simply a candidate. The difference between this
function, described by Algorithm 9, and that of [4] is due to the fact that it can be called
by an algorithm, such as AC2001/3.1 or AC3.2, which does not (fully) exploit positive
multidirectionality. This is the reason why supports can be found when looking after
candidates.

Three auxiliary procedures are called by seekCandidate:

– seekNextTuple(C,X, a, t, k) computes the smallest valid tuple t′ in C such that
t ≺ t′, t′[pos(X,C)] = a and ∃k′ ≤ k | t[k′] �= t′[k′]. This function, similar to the
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one described in [4], updates t with t′ and returns the smallest k′ | t[k′] �= t′[k′] or
−1 if it does not exist.

– reinitTupleAfter(C,X, a, t, k) computes the smallest valid tuple t′ in C such that
t ≺ t′, t′[pos(X,C)] = a and ∀i ∈ 1..k, t[i] = t′[i]. This procedure updates t with
t′.

– copy(C, t, t′, start, pivot) (see Algorithm 10) copies elements of t′ in t from index
start until an incompatibility is found at position pivot (line 3), an invalid value is
found (line 5) or the end of the tuple (line 7).

Algorithm 10 copy(in C, in/out t, in t′,start,pivot) : int
1: for i from start to length(t) do
2: if t[i] = t′[i] then continue
3: if i = pivot then return i
4: t[i] ← t′[i]
5: if t[i] �∈ dom(var(i,C)) then return i
6: end for
7: return length(t)+1

Due to the lack of space, we focus our analysis of this algorithm to original parts
and report the reader, for a complementary description, to [4]. First, remark that t′ ←
last[C, var(k, C), t[k]] can be equal to t and then be a candidate supporting (X, a)
(line 7) since the tuple t is valid1. t′ can also represent a support even if it is distinct
of t provided that (X, a) is supported by t′ and all values of t′ are still valid (line 12).
When (X, a) is not supported by t′ or when there exists an invalid value in t′, the copy
is stopped at index k′ and we have either to reinit values after k′ or seek the next tuple
with a different prefix of size k′.

Now that seekCandidate has been described, we can present the function seekNext-
Support∗ that has to be called to exploit negative multidirectionality (and also a limited
form a positive multidirectionality if it is called by AC2001/3.1 or AC3.2). This function
(see Algorithm 11) is similar to the one in [4] but takes into account candidates detected
as supports by seekCandidate.

6 Experiments

To prove the practical interest of the algorithms introduced in this paper, we have im-
plemented them in Java [7] and performed some experiments (run on a PC Pentium IV
2,4GHz 512Mo under Linux) with respect to random, academic and real-world prob-
lems. Performances have been measured in terms of the number of constraint checks
(#ccks), the number of validity checks (#vcks) and the cpu time in seconds (cpu). All
coarse-grained algorithms have been implemented using a variable-oriented propaga-
tion scheme and the revision ordering heuristic domv which orders the variables in the

1 Initially, t is valid, and after each turn of the main loop, either t is not modified or t is updated
by a call to setNextTuple or reinitTupleAfter which both only yield valid tuples.
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Algorithm 11 seekNextSupport∗(in C,X,a, in/out t) : boolean
1: if t = nil then reinitTupleAfter(C,X, a, t, 0)
2: else seekNextTuple(C,X, a, t, length(t))
3: result ← seekCandidate(C,X, a, t, 1)
4: if result = NOTHING then return false
5: if result = SUPPORT then return true
6: while true do
7: if C(t) then return true
8: k ← seekNextTuple(C,X, a, t, length(t))
9: if k = −1 then return false

10: result ← seekCandidate(C,X, a, t, k)
11: if result = NOTHING then return false
12: if result = SUPPORT then return true
13: end while

propagation set by increasing current size of their domains (more details can be found
in [6]). On the other hand, our implementation of AC7 integrates the two “standard”
revision ordering heuristics lifo and fifo.

6.1 Stand-Alone Arc Consistency

First, we have considered stand alone arc consistency, i.e., the task of making arc con-
sistent a constraint satisfaction problem. The first series of experiments that we have run
corresponds to some random problems. In this paper, a class of random CSP instances
will be characterized by a 5-tuple (n, d,m, k, t) where n is the number of variables, d
the uniform domain size, m the number of k-ary constraints and t is either the number
of not allowed tuples or the probability that a given tuple is not allowed.

Table 1. Stand alone arc consistency on random instances

AC3 AC3.1 AC3.1* AC3.2 AC3.2* AC3.3 AC3.3* AC7
P1 #ccks 99, 968 99, 968 97, 967 94, 012 93, 984 94, 012 93, 984 93, 994

cpu 0.064 0.069 0.072 0.072 0.078 0.067 0.072 0.092
P2 #ccks 148, 029 74, 539 61, 641 63, 540 56, 645 62, 935 56, 437 272, 443

cpu 0.087 0.048 0.046 0.044 0.043 0.045 0.045 0.266
P3 #ccks 2, 351, 578 587, 505 504, 941 478, 135 446, 188 470, 177 442, 867 506, 340

cpu 1.375 0.384 0.375 0.342 0.347 0.319 0.327 0.457
P4 #ccks 4, 202, 630 1, 033, 014 934, 082 857, 789 831, 040 844, 334 824, 805 794, 853

cpu 2.490 0.701 0.704 0.636 0.661 0.627 0.652 0.614

We present the results, given in Table 1, about the random binary instances stud-
ied in [2, 5, 17]. More precisely, 4 classes, denoted here P1, P2, P3 and P4, have been
experimented. P1=(150, 50, 500, 2, 1250) and P2=(150, 50, 500, 2, 2350) correspond to
classes of under-constrained and over-constrained instances whereas P3=(150, 50, 500,
2, 2296) and P4=(50, 50, 1225, 2, 2188) correspond to classes of instances at the phase
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transition of arc consistency for sparse problems and for dense problems, respectively.
For each class, 50 instances have been generated and the mean of cpu time, constraint
checks and validity checks have been computed.

While all algorithms have close performances with respect to P1 and P2, one can
notice that AC3.2, and especially AC3.3, clearly outperforms AC3.1 with respect to P3
and P4. On the other hand, the algorithms that exploit negative bidirectionality slightly
reduce the number of constraint checks but, due to the overhead, not the cpu time.

Next, we have tested real-world instances, taken from the FullRLFAP archive2,
which contains instances of radio link frequency assignment problems. For stand alone
arc consistency, we present the results, in Table 2, about two instances, respectively
denoted SCEN#08 and SCEN#11, studied in [2, 13, 17].

Table 2. Stand alone arc consistency on RLFAP instances

AC3 AC3.1 AC3.1* AC3.2 AC3.2* AC3.3 AC3.3* AC7
SCEN #ccks 46, 294 42, 223 35, 079 39, 795 34, 223 39, 713 34, 215 866, 382
#08 cpu 0.021 0.023 0.027 0.024 0.028 0.029 0.032 0.516

SCEN #ccks 971, 893 971, 893 841, 225 671, 664 638, 932 671, 664 638, 932 638, 448
#11 cpu 0.226 0.247 0.272 0.225 0.243 0.206 0.232 0.376

For these instances, AC3.2 and AC3.3 are quite close. Both algorithms saves many
constraint checks while not reducing cpu times compared to AC3 and AC3.1. Re-
mark that the number of constraints checks required for SCEN#05 and SCEN#08 is
far weaker than those presented by [2, 17]. This gap is mainly due to the introduction
of our revision ordering heuristic [6]. A similar behaviour can be observed in [13].

The third problem that we have experimented is called Domino and is taken from
[17]. The Domino problem corresponds to an undirected constraint graph with a cycle
and a trigger constraint. Each instance, characterized by a pair (n, d) where n denotes
the number of variables, the domains of which are {1, . . . , d}, is such that there exists
n − 1 equality constraints Xi = Xi+1 (∀i ∈ 1..n − 1) and a trigger constraint (X1 =
Xn + 1 ∧ X1 < d) ∨ (X1 = Xn ∧ X1 = d).

Table 3. Stand alone arc consistency on Domino instances

AC3 AC3.1 AC3.1* AC3.2 AC3.2* AC3.3 AC3.3* AC7
n = 100 #ccks 137.330M 5.970M 3.980M 3.980M 3.960M 3.980M 3.960M 2.029M
d = 200 cpu 22.799 1.259 1.417 0.951 1.055 1.009 1.089 0.802
n = 100 #ccks 459.011M 13.456M 8.970M 8.971M 8.926M 8.971M 8.926M 4.559M
d = 300 cpu 76.406 2.705 3.010 2.010 2.237 2.136 2.295 1.583

On Domino instances, AC3.2 and AC3.3 allow saving about 33% of constraint
checks and about 20% of cpu time compared to AC3.1. AC3.2 is the fastest coarse-

2 We thank the Centre d’Electronique de l’Armement (France).
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Table 4. Maintaining arc consistency on random instances

MAC3 MAC3.1 MAC3.1* MAC3.2 MAC3.2* MAC3.3 MAC3.3* MAC7
#ccks 678, 547 441, 011 379, 966 212, 832 203, 995 361, 994 354, 709 522, 898

A #vcks 0 255, 119 255, 119 517, 056 517, 056 192, 606 192, 606 0
cpu 0.422 0.411 0.406 0.318 0.327 0.460 0.487 0.923

#ccks 413, 987 279, 601 189, 628 145, 852 127, 128 − − 426, 788
B #vcks 0 112, 551 112, 551 222, 671 222, 671 − − 0

cpu 0.250 0.225 0.209 0.167 0.171 − − 0.660

Table 5. Maintaining arc consistency on random instances

MACs3.1 MACs3.1* MACs3.2 MACs3.2* MACs3.3 MACs3.3*
#ccks 374, 190 318, 605 203, 989 193, 355 311, 094 303, 765

A #vcks 356, 732 356, 732 540, 728 540, 728 263, 548 263, 548
cpu 0.476 0.481 0.365 0.373 0.539 0.553

#ccks 218, 929 142, 985 134, 792 110, 828 − −
B #vcks 167, 684 167, 684 241, 715 241, 715 − −

cpu 0.237 0.225 0.183 0.185 − −

grained algorithm with respect to this problem since AC3.2 seems to fully benefit from
positive bidirectionality, and since its overhead is smaller than the one of AC3.3.

6.2 Maintaining Arc Consistency during Search

As it appears that one of the most efficient complete search algorithms is the algorithm
which Maintains Arc Consistency during the search of a solution [10, 3], we have im-
plemented all MAC versions of previous algorithms and experimented them. All our
MAC algorithms integrate the dom/futdeg or DD [11] variable ordering heuristic.

Two classes of MAC algorithms have been developed for AC3.1, AC3.2 and AC3.3.
Algorithms of the former class do not require any additional memory storage to manage
the data structures, and hence, have a O(md) space-complexity. As a result, some con-
straint checks are sacrificed since it is necessary to reinitialize the data structures last
and cpt when backtracking. Algorithms of the latter class requires an additional memory
storage to maintain the data structures, and hence, have a O(md2) space-complexity.
We shall denote algorithms of this class MACs.

On the other hand, we have observed that it is worthwhile to leave unchanged the
specific data structure lastE of AC3.2 while backtracking, having the benefit of a so-
called memorization effect. It means that a (extern) support found at a given depth of
the search has the opportunity to be still valid at a weaker depth of the search (after
backtracking).

The performances of all algorithms have been compared with respect to three dis-
tinct problems. First, two classes of random instances from model RD of [16] de-
noted A and B have been experimented. A=(25, 15, 150, 2, 90/256)and B=(50, 5, 80, 3,
155/256) correspond to classes of instances at the phase transition of search for dense
binary problems (150/300 = 50%) with low tightness (90/256 = 35%) and sparse
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ternary problems (80/19600 ≈ 0.40%) with high tightness (155/256 ≈ 60%), respec-
tively. For each class, mean results are given for 50 generated instances.

Table 4 gives the results obtained when maintaining arc consistency with respect to
A and B. MAC3.2 clearly outperforms MAC3, MAC3.1 and MAC3.3. The number of
constraint checks achieved by MAC3.2 is two times less important than the number of
constraint checks achieved by MAC3.1. The good behaviour of MAC3.2 results from
its memorization effect. Indeed, many constraint checks have been replaced by validity
checks: one can observe that the number of validity checks of MAC3.2 is two times
more important than the number of validity checks of MAC3.3. As validity checks are
cheap, and performed in constant time unlike constraint checks, MAC3.2 has a great
advantage.

Table 5 gives the results for the MACs algorithms. Although some constraint checks
are saved, the overhead of maintaining the data structures during the search is penalizing
in terms of timing.

Next, we have experimented a combinatorial mathematics problem, called Golomb
ruler, of the CSPLib benchmark library (http://4c.ucc.ie/˜tw/csplib/). The satisfaction
problem specification is the following: given two values l and m, does there exist a ruler
of length l with m marks, i.e., a set of m integers 0 ≤ a1 < . . . < am ≤ l such that
the m(m − 1)/2 differences aj − ai, 1 ≤ i < j ≤ m are distinct. We have modeled
this problem as a CSP by using ternary and binary constraints as described in [12]. The
instance (l,m) = (34, 8) corresponds to the maximum number of marks on a ruler of
length 34.

Again, we observe the same phenomenon: MAC3.2 requires two times less con-
straint checks and two times more validity checks than MAC3.1. There is then a speed
up of about 25%.

Table 6. Maintaining arc consistency on Golomb ruler instances

MAC3 MAC3.1 MAC3.1* MAC3.2 MAC3.2* MAC7
l = 34 #ccks 10.677M 4.433M 3.334M 2.388M 2.129M 5.337M
m = 8 #vcks 0 1.297M 1.297M 2.390M 2.390M 0

cpu 2.632 2.169 2.250 1.777 1.863 8.243
l = 34 #ccks 388.871M 208.674M 164.672M 87.691M 81.207M 303.586M
m = 9 #vcks 0 73.080M 73.080M 148.434M 148.434M 0

cpu 95.508 108.452 111.867 81.150 85.202 485.369

Finally, the behaviour of the different MAC algorithms has been studied with respect
to two real instances of the RLFAP archive. Whereas all algorithms are close in terms
of CPU time with respect to GRAPH#14, MAC3.2 is the fastest with respect to the most
difficult instance SCEN#11 (17, 001 visited nodes).

It is important to note the relative bad behaviour of MAC7. We believe that MAC7
could save more constraint checks by integrating some advanced revision ordering
heuristics and could certainly save cpu time with a further optimized implementation.



Exploiting Multidirectionality in Coarse-Grained Arc Consistency Algorithms 493

Table 7. Maintaining arc consistency on RLFAP instances

MAC3 MAC3.1 MAC3.1* MAC3.2 MAC3.2* MAC3.3 MAC3.3* MAC7
SCEN #ccks 137M 49.278M 44.193M 23.050M 21.622M 46.255M 43.935M 68M

#11 #vcks 0 53.675M 53.675M 89.842M 89.842M 47.504M 47.504M 0
cpu 96.761 93.613 95.232 89.751 91.104 131.361 133.556 617

GRAPH #ccks 2.944M 1.584M 1.333M 1.189M 1.115M 1.187M 1.115M 1.129M
#14 #vcks 0 0.712M 0.712M 1.034M 1.034M 0.638M 0.638M 0

cpu 1.958 1.876 1.976 1.864 1.921 1.913 1.960 2.295

7 Conclusion

In this paper, we have introduced two new coarse-grained arc consistency algorithms.
These algorithms, called AC3.2 and AC3.3, are extensions of AC2001/3.1. The posi-
tive form of multidirectionality is partially exploited by AC3.2 and fully exploited by
AC3.3. As far as we are aware, AC3d was the only coarse-grained algorithm exploiting
bidirectionality. However, unlike AC3.3 (and AC3d), AC3.2 has the advantage to be
adapted to non binary constraints.

Next, we have shown that the negative form of multidirectionality can be taken into
account by AC3.1, AC3.2 and AC3.3, resulting in new algorithms denoted AC3.1∗,
AC3.2∗ and AC3.3∗. As a result, AC3.3∗ is proved to fully exploit bidirectionality as
AC7, a fine-grained algorithm, does.

The main differences between AC3.2/AC3.3 and AC7 are the following:

– AC3.2/AC3.3 are far more easier to implement (exploiting negative multidirection-
ality is immediate in the binary case) than AC7,

– AC7 does not perform useless validity checks (at the price of heavy data structures),
– AC3.2/AC3.3 perform revisions of arcs whereas AC7 performs revisions of “val-

ues”.

With respect to the last item, we believe that it must be more difficult to enhance AC7
than AC3.2/3.3 by integrating a revision ordering heuristic [15, 6] since the number of
elements in the propagation set can be very important for AC7.

Some observations can be supported by our experimentations. When arc consistency
is used as a preprocessing, AC3.3 seems to be the most efficient algorithm. Compared
to AC2001/3.1, AC3.3 saves about 25% of constraint checks and, on average, 15% of
cpu time. When arc consistency is maintained during the search, MAC3.2, due to a
memorization effect, is more efficient than MAC3.3 both in terms of constraint checks
and cpu time. Compared to MAC2001/3.1, our experimental results show that MAC3.2
saves about 50% of constraint checks and, on average, 15% of cpu time.

Finally, one could wonder if, MAC3.2 which seems to be the most efficient arc con-
sistency algorithm in terms of constraint checks is also really the fastest algorithm. In
[14], MAC3d is shown to be about 1.5 times faster than MAC2001 for difficult random
problems. However, the version of MAC2001 used by [14] can be improved since it is
simply equipped with the lexicographic revision ordering heuristic. In a related work
[6], we have shown that using a variable-oriented variant of MAC2001 with a (not opti-
mized) revision ordering heuristic based on the current domain size allows saving about
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25% of cpu time. It is then very difficult to know which algorithm among MAC3d and
MAC3.2 is the fastest without a direct confrontation. It is one perspective of this work.
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Abstract. We study local-search satisfiability solvers for propositional
logic extended with cardinality atoms, that is, expressions that provide
explicit ways to model constraints on cardinalities of sets. Adding cardi-
nality atoms to the language of propositional logic facilitates modeling
search problems and often results in concise encodings. We propose two
“native” local-search solvers for theories in the extended language. We
also describe techniques to reduce the problem to standard propositional
satisfiability and allow us to use off-the-shelf SAT solvers. We study
these methods experimentally. Our general finding is that native solvers
designed specifically for the extended language perform better than in-
direct methods relying on SAT solvers.

1 Introduction

We propose and study local-search satisfiability solvers for an extension of propo-
sitional logic with explicit means to represent cardinality constraints.

In recent years, propositional logic has been attracting considerable atten-
tion as a general-purpose modeling and computing tool, well suited for solving
search problems. For instance, to solve a graph k-coloring problem for an undi-
rected graph G, we construct a propositional theory T so that its models encode
k-colorings of G and there is a polynomial-time method to reconstruct a k-
colorings of G from a model of T . Once we have such a theory T , we apply to
it a satisfiability solver, find a model of T and reconstruct from the model the
corresponding k-coloring of G.

Instances of many other search problems can be represented in a similar way
as propositional theories and this modeling capability of the propositional logic
has been known for a long time. However, it has been only recently that we saw
a dramatic improvement in the performance of programs to compute models
of propositional theories [12,8,14,9,10,6]. These new programs can often handle
theories consisting of hundreds of thousands, sometimes millions, of clauses. They
demonstrate that propositional logic is not only a tool to represent problems but
also a viable computational formalism.

The approach we outlined above has its limitations. The repertoire of op-
erators available for building formulas to represent problem constraints is re-
stricted to boolean connectives. Moreover, since satisfiability solvers usually re-
quire CNF theories as input, for the most part the only formulas one can use

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 495–509, 2003.
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to express constraints are clauses. One effect of these restrictions is often very
large size of CNF theories needed to represent even quite simple constraints and,
consequently, poorer effectiveness of satisfiability solvers in computing answers
to search problems. Researchers recognized this limitation of propositional logic.
They proposed extensions to the basic language with the equivalence operator [7],
with cardinality atoms [3,5] and with pseudo-boolean constraints [2,13,1,4,11],
and developed solvers capable of computing models for theories in the expanded
syntax.

In this paper, we focus on an extension of propositional logic with cardinal-
ity atoms, as described in [5]. Specifically, a cardinality atom is an expression
of the form kXm, where k and m are non-negative integers and X is a set of
propositional atoms. Cardinality atoms offer a direct means to represent cardi-
nality constraints on sets and help construct concise encodings of many search
problems. We call this extension of the propositional logic the propositional logic
with cardinality constraints and denote it by PLcc.

To make the logic PLcc into a computational mechanism, we need programs to
compute models of PLcc theories. One possible approach is to compile cardinality
atoms away, replacing them with equivalent propositional-logic representations.
After converting the resulting theories to CNF, we can use any off-the-shelf
satisfiability solver to compute models. Another approach is to design solvers
specifically tailored to the expanded syntax of the logic PLcc. To the best of
our knowledge, the first such solver was proposed in [3]. A more recent solver,
aspps1, was described in [5].

These two solvers are complete solvers. In this paper, we propose and study
local-search satisfiability solvers that can handle the extended syntax of the logic
PLcc. In our work we built on ideas first used in WSAT, one of the most effective
local-search satisfiability solvers for propositional logic [12]2. In particular, as in
WSAT, we proceed by executing a prespecified number of tries. Each try starts
with a random truth assignment and consists of a sequence of local modification
steps called flips. Each flip is determined by an atom selected from an unsatisfied
clause. We base the choice of an atom on the value of its break-count (some
measure of how much the corresponding flip increases the degree to which the
clauses in the theory are violated). In WSAT , the break-count of an atom is the
number of clauses that become unsatisfied when the truth value of the atom is
flipped. In the presence of cardinality atoms, this simple measure does not lead
to satisfactory algorithms and modifications are necessary.

In this paper, we propose two approaches. In the first of them, we change the
definition of the break-count. To this end, we exploit the fact that cardinality
atoms are only high-level shorthands for some special propositional theories and,
as we already indicated earlier, can be compiled away. Let T be a PLcc theory and
let T ′ be its propositional-logic equivalent. We define the break-count of an atom
a in T as the number of clauses in the compiled theory T ′ that become unsatisfied
after we flip a. Important thing to note is that we do not need to compute T ′

1 The acronym for answer-set programming with propositional schemata.
2 In the paper, we write WSAT instead of WALKSAT to shorten the notation.



Local-Search Techniques for Propositional Logic 497

explicitly in order to compute the break-count of a. It can be computed directly
on the basis of T alone.

Our second approach keeps the concept of the break-count exactly as it is
defined in WSAT but changes the notion of a flip. This approach applies when-
ever a PLcc theory T can be separated into two parts T1 and T2 so that: (1) T2
consists of propositional clauses, (2) it is easy to construct random assignments
that satisfy T1, and (3) for every truth assignment satisfying T1, (modified) flips
executed on this assignment result in assignments that also satisfy T1. In such
cases, we can start a try by generating an initial truth assignment to satisfy
all clauses in T1, and then executing a sequence of (modified) flips, choosing
atoms for flipping based on the number of clauses in T2 (which are all standard
propositional CNF clauses) that become unsatisfiable after the flip.

In the paper, we develop and implement both ideas. We study experimen-
tally the performance of our algorithms on several search problems: the graph
coloring problem, the vertex-cover problem and the open latin-square problem.
We compare the performance of our algorithms to that of selected SAT solvers
executed on CNF theories obtained from PLcc theories by compiling away car-
dinality atoms.

2 Logic PLcc

The language of the logic PLcc is determined by the set At of propositional atoms
and two special symbols ⊥ and 4 that we always interpret as false and true,
respectively. A cardinality atom (c-atom, for short) is an expression of the form
kXm, where X is a set of propositional atoms, and k and m are non-negative
integers. If X = {a1, . . . , an}, we will also write k{a1, . . . , an}m to denote a c-
atom kXm. One (but not both) of k and m may be missing. Intuitively, a c-atom
kXm means: at least k and no more than m of atoms in X are true. If k (or
m) is missing, the c-atom constrains the number of its propositional atoms that
must be true only from above (only from below, respectively).

A clause is an expression of the form ¬α1 ∨ . . . ∨ ¬αr ∨ β1 ∨ . . . ∨ βs, where
each αi, 1 ≤ i ≤ r, and each βj , 1 ≤ j ≤ s, is a propositional atom or a c-atom.
A theory of the logic PLcc is any set of clauses3.

An interpretation is an assignment of truth values t and f to atoms in At .
An interpretation I satisfies an atom a if I(a) = t. An interpretation I satisfies
a c-atom k{a1, . . . , an}m if k ≤ |{i : I(ai) = t}| ≤ m.

This notion of satisfiability extends in a standard way to clauses and theories.
We will write interchangingly “is a model of” and “satisfies”. We will also write
I |= E, when I is a model of an atom, c-atom, clause or theory E.

We will now illustrate the use of the logic PLcc as a modeling tool by pre-
senting PLcc theories that encode (1) the graph-coloring problem, (2) the graph
vertex-cover problem, and (3) the open latin-square problem. We later use these
theories as benchmarks in performance tests.
3 It is easy to extend the language of PLcc and introduce arbitrary formulas built

of atoms and c-atoms by means of logical connectives. Since clausal theories, as in
propositional logic, are most fundamental, we focus on clausal theories only.
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In the first of these problems we are given a graph G with the set V =
{1, . . . , n} of vertices and a set E of edges (unordered pairs of vertices). We are
also given a set C = {1, . . . , k} of colors. The objective is to find an assignment
of colors to vertices so that for every edge, its vertices get different colors. A
PLcc theory representing this problem is built of propositional atoms ci,j , where
1 ≤ i ≤ n, and 1 ≤ j ≤ k. An intended meaning of an atom ci,j is that vertex i
gets color j. We define the theory col(G, k) to consist of the following clauses:

1. 1{ci,1, . . . , ci,k}1, for every i, 1 ≤ i ≤ n. These clauses ensure that every
vertex obtains exactly one color

2. ¬cp,j ∨ ¬cr,j , for every edge {p, r} ∈ E and for every color j. These clauses
enforce the main colorability constraint.

It is easy to see that models of the theory col(G, k) are indeed in one-to-one
correspondence with k-colorings of G.

In a similar way, we construct a theory vc(G, k) that represents the vertex-
cover problem. Let G be an undirected graph with the set V = {1, . . . , n} of
vertices and a set E of edges. Given G and a positive integer k, the objective is
to find a set U of no more than k vertices, such that every edge has at least one
of its vertices in U (such sets U are vertex covers). We build the theory vc(G, k)
of atoms ini, 1 ≤ i ≤ n, (intended meaning of ini: vertex i is in a vertex cover)
and define it to consist of the following clauses:

1. {in1, . . . , inn}k. This clause guarantees that at most k vertices are chosen
to a vertex cover

2. inp ∨ inr, for every edge {p, r} ∈ E. These clauses enforce the main vertex
cover constraint.

Again, it is evident that models of theory vc(G, k) are in one-to-one correspon-
dence with those vertex covers of G that have no more than k elements.

In the open latin-square problem, we are given an integer n and a collection
D of triples (i, j, k), where i, j and k are integers from {1, . . . , n}. The goal is to
find an n× n array A such that all entries in A are integers from {1, . . . , n}, no
row and column of A contains two identical integers, and for every (i, j, k) ∈ D,
A(i, j) = k. In other words, we are looking for a latin square of order n that
extends the partial assignment specified by D. To represent this problem we
construct a PLcc theory ls(n,D) consisting of the following clauses:

1. ai,j,k, for every (i, j, k) ∈ D (to represent the partial assignment D given as
input)

2. 1{ai,j,1, . . . , ai,j,n}1, for every i, j = 1, . . . , n (to enforce that every entry
receives exactly one value)

3. {ai,1,k, . . . , ai,n,k}1, for every i, k = 1, . . . , n (in combination with (2) these
clauses enforce that an integer k appears exactly once in a row i)

4. {a1,j,k, . . . , an,j,k}1, for every j, k = 1, . . . , n (in combination with (2) these
clauses enforce that an integer k appears exactly once in a column j).

One can verify that models of the theory ls(n,D) correspond to solutions to the
open latin-square problem with input D.
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The use of c-atoms in all these three examples results in concise represen-
tations of the corresponding problems. Clearly, we could eliminate c-atoms and
replace the constraints they represent by equivalent CNF theories. However, the
encodings become less direct, less concise and more complex.

3 Using SAT Solvers to Compute Models
of PLcc Theories

We will now discuss methods to find models of PLcc theories by means of stan-
dard SAT solvers. A key idea is to compile away c-atoms by replacing them with
their propositional-logic descriptions. We will propose several ways to do so.

Let us consider a c-atom C = k{a1, ..., an}m and let us define a CNF theory
C ′ to consist of the following clauses:

1. ¬ai1 ∨ ...∨¬aim+1 , for any m+1 atoms ai1 , ..., aim+1 from {a1, ..., an} (there
are

(
n

m+1

)
such clauses); and

2. ai1 ∨ ...∨ain−k+1 , for any n−k+1 atoms ai1 , ..., ain−k+1 in {a1, ..., an} (there
are

(
n

k−1

)
such clauses).

It is easy to see that the theory C ′ has the same models as the c-atom C.
Let T be a PLcc theory. We denote by compile-basic(T ) the CNF theory

obtained from T by replacing every c-atom C with the conjunction of clauses
in C ′ and by applying distributivity to transform the resulting theory into the
CNF. This approach translates T into a theory in the same language but it is
practical only if k and m are small (do not exceed, say 2). Otherwise, the size of
the theory compile-basic(T ) quickly gets too large for SAT solvers to be effective.

Our next method to compile away c-atoms depends on counting. To simplify
the presentation, we will describe it in the case of a c-atom of the form kX but
it extends easily to the general case. We will assume that k ≥ 1 (otherwise, kX
is true) and k ≤ |X| (otherwise kX is false).

Let us consider a PLcc theory T and let us assume that T contains a c-
atom of the form C = k{a1, . . . , an}. We introduce new propositional atoms:
bi,j , i = 0, . . . , n; j = 0, . . . , k. The intended role for bi,j is to represent the fact
that at least j atoms in {a1, . . . , ai} are true. Therefore, we define a theory C ′

to consist of the following clauses:

1. b0,j ↔ ⊥, j = 1, . . . , k,
2. bi,0 ↔ 4, i = 0, . . . , n,
3. bi,j ↔ bi−1,j ∨ (bi−1,j−1 ∧ ai), i = 1, . . . , n, j = 1, . . . , k.

Let I be an interpretation such that I |= C ′. One can verify that I |= bi,j if
and only if I |= j{a1, . . . , ai}. In particular, I |= bn,k if and only if I |= C.
Thus, if we replace C in T with bn,k and add to T the theory C ′ the resulting
theory has the same models (modulo new atoms) as T . By repeated application
of this procedure, we can eliminate all c-atoms from T . Moreover, if we represent
theories C ′ in CNF, the resulting theory will itself be in CNF. We will denote this
CNF theory as compile-uc(T ), where uc stands for unary counting. One can show



500 Lengning Liu and Miros�law Truszczyński

that the size of compile-uc(T ) is O(R × size(T )), where R is the maximum of
all integers appearing in T as lower or upper bounds in c-atoms. It follows that,
in general, this translation leads to more concise theories than compile-basic.
However, it does introduce new atoms.

The idea of counting can be pushed further. Namely, we can design a more
concise translation than compile-uc by following the idea of counting and by
representing numbers in the binary system and by building theories to model
binary counting and comparison. For a PLcc theory T , we denote the result
of applying this translation method to T by compile-bc (bc stands for binary
counting). Due to space limitation we omit the details of this translation. We
only note that the size of compile-bc(T ) is O(size(T ) log2(R + 1)), where R is
the maximum of all integer bounds of c-atoms appearing in T .

4 Local-Search Algorithms for the Logic PLcc

In this section we describe a local-search algorithm Generic-WSAT cc designed
to test satisfiability of theories in the logic PLcc. It follows a general pattern
of WSAT [12]. The algorithm executes Max -Tries independent tries. Each try
starts in a randomly generated truth assignment and consists of a sequence of
up to Max -Flips flips, that is, local changes to the current truth assignment.
The algorithm terminates with a truth assignment that is a model of the input
theory, or with no output at all (even though the input theory may in fact be
satisfiable). We provide a detailed description of the algorithm Generic-WSAT cc

in Figure 1.
We note that the procedure Flip may, in general, depend on the input theory

T . It is not the case in WSAT and other similar algorithms but it is so in one
of the algorithms we propose in the paper. Thus, we include T as one of the
arguments of the procedure Flip.

We also note that in the algorithm, we use several parameters that, in our im-
plementations, we enter from the command line. They are Max -Tries, Max -Flips
and p. All these parameters affect the performance of the program. We come back
to this matter later in Section 5.

To obtain a concrete implementation of the algorithm Generic-WSAT cc, we
need to define break -count(x) and to specify the notion of a flip. In this paper we
follow two basic directions. In the first of them, we use a simple notion of a flip,
that is, we always flip just one atom. We introduce, however, a more complex
concept of the break-count, which we call the virtual break-count. In the second
approach, we use a simple notion of the break-count — the number of clauses
that become unsatisfied — but introduce a more complex concept of a flip, which
we call the double-flip.

To specify our first instantiation of the algorithm Generic-WSAT cc(T ), we
define the break-count of an atom x in T as the number of clauses in the CNF
theory compile-basic(T ) that become unsatisfied after flipping x. The key idea
is to observe that this number can be computed strictly on the basis of T , that
is, without actually constructing the theory compile-basic(T ). It is critical since
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Figure 1 Algorithm Generic-WSAT cc(T )

INPUT: T - a PLcc theory
OUTPUT: σ - a satisfying assignment of T , or no output
BEGIN
1. For i ← 1 to Max -Tries, do
2. σ ← randomly generated truth assignment;
3. For j ← 1 to Max -Flips, do
4. If σ |= T then return σ;
5. C ← randomly selected unsatisfied clause;
6. For each atom x in C, compute break -count(x);
7. If any of these atoms has break-count 0 then
8. randomly choose an atom with break-count 0, call it a;
9. Else
10. with probability p, a ← an atom x with minimum break -count(x);
11. with probability 1 − p, a ← a randomly chosen atom in C;
12. End If
13. σ ← Flip(T, σ, a);
14. End for of j
15. End for of i
END

the size of the theory compile-basic(T ) is in general much larger than the size of
T (sometimes even exponentially larger). We refer to this notion of the break-
count as the virtual break-count as it is defined not with respect to an input
PLcc theory T but with respect to a “virtual” theory compile-basic(T ), which
we do not explicitly construct.

Further, we define the procedure Flip(σ, a) (it does not depend on T hence,
we dropped T from the notation) so that, given a truth assignment σ and an atom
a, it returns the truth assignment σ′ obtained from σ by setting σ′(a) to the dual
value of σ(a) and by keeping all other truth values in σ unchanged (this is the ba-
sic notion of the flip that is used in many local-search algorithms, in particular in
WSAT). We call the resulting version of the the algorithm Generic-WSAT cc(T ),
the virtual break-count WSAT cc and denote it by vb-WSAT cc.

The second instantiation of the algorithm Generic-WSAT cc that we will
discuss applies only to PLcc theories of some special syntactic form. A PLcc

theory T is simple, if T = T cc ∪ T cnf , where T cc ∩ T cnf = ∅ and

1. T cc consists of unit clauses Ci = kiXimi, 1 ≤ i ≤ p, such that sets Xi are
pairwise disjoint

2. T cnf consists of propositional clauses
3. for every i, 1 ≤ i ≤ p, ki < |Xi| and mi > 0.

Condition (3) is not particularly restrictive. In particular, it excludes c-atoms
kXm such that k > |X|, which are trivially false and can be simplified away
from the theory, as well as those for which k = |X|, which forces all atoms in
X to be true and again implies straightforward simplifications. The effect of the
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Figure 2 Algorithm Flip(T, σ, a)

INPUT: T - a simple PLcc theory (T = T cc ∪ T cnf )
σ - current truth assignment
a - an atom chosen to flip

OUTPUT: σ - updated σ after a is flipped
BEGIN
1. If a occurs in a clause in T cc and flipping a will break it then
2. pick the best opposite atom, say b, in that clause w.r.t. break-count;
3. σ(b) ← dual of σ(b);
4. End if
5. σ(a) ← dual of σ(a);
6. return σ;
END

restriction m > 0 is similar; it eliminates c-atoms with m = 0, for which it
must be that all atoms in X be false. We note that PLcc theories we proposed
as encodings of the graph-coloring and vertex-cover problems are simple; the
theory encoding the latin-square problem is not.

In this section, we consider only simple PLcc theories. Let us assume that we
designed the procedure Flip(T, σ, a) so that it has the following property:

(DF) if a truth assignment σ is a model of T cc then σ′ = Flip(T, σ, a) is also a
model of T cc.

Let us consider a try starting with a truth assignment σ that satisfies all clauses
in T cc. If our procedure Flip satisfies the property (DF), then all truth assign-
ments that we will generate in this try satisfy all clauses in T cc. It follows that
the only clauses that can become unsatisfied during the try are the propositional
clauses in T cnf . Consequently, in order to compute the break-count of an atom,
we only need to consider the CNF theory T cnf and count how many clauses in
T cnf become unsatisfiable when we perform a flip.

Since all c-atoms in T cc are pairwise disjoint, it is easy to generate random
truth assignments that satisfy all these constraints. Thus, it is easy to generate a
random starting truth assignment for a try. Moreover, it is also quite straightfor-
ward to design a procedure Flip so that it satisfies property (DF). We will outline
one such procedure now and provide for it a detailed pseudo-code description.

Let us assume that σ is a truth assignment that satisfies all clauses in T cc

and that we selected an atom a as the third argument for the procedure Flip.
If flipping the value of a does not violate any unit clause in T cc, the procedure
Flip(T, σ, a) returns the truth assignment obtained from σ by flipping the value
of a. Otherwise, since the c-atoms forming the clauses in T cc are pairwise disjoint,
there is exactly one clause in T cc, say kXm, that becomes unsatisfied when the
value of a is flipped. In this case, clearly, a ∈ X.

We proceed now as follows. We find in X another atom, say b, whose truth
value is opposite to that of a, and flip both a and b. That is, Flip(T, σ, a) returns
the truth assignment obtained from σ by flipping the values assigned to a and b
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to their duals. Clearly, by performing this double flip we maintain the property
that all clauses in T cc are still satisfied. Indeed all clauses in T cc other than
kXm are not affected by the flips (these clauses contain neither a nor b) and
kXm is satisfied because flipping a and b simply switches their truth values and,
therefore, does not change the number of atoms in X that are true.

The only question is whether such an atom b can be found. The answer is
indeed positive. If σ(a) = t and flipping a breaks clause kXm, we must have
that the number of atoms that are true in X is equal to k. Since |X| > k, there
is an atom in X that is false. The reasoning in the case when σ(a) = f is similar.

A pseudo-code for the procedure is given in Figure 2.

5 Experiments, Results and Discussion

We performed experimental studies of the effectiveness of our local-search al-
gorithms in solving several difficult search problems. For the experiments we
selected the graph-coloring problem, the vertex-cover problem and the latin-
square problem. We discussed these problems in Section 2 and described PLcc

theories that encode them. To build PLcc theories for testing, we randomly gen-
erate or otherwise select input instances to these search problems and instantiate
the corresponding PLcc encodings. For the graph-coloring and vertex-cover prob-
lems we obtain simple PLcc theories and so all methods we discussed apply. The
theories we obtain from the latin-square problem are not simple. Consequently,
the algorithm df -WSAT cc does not apply but all other methods do.

Our primary goal is to demonstrate that our algorithms vb-WSAT cc and
df -WSAT cc can compute models of large PLcc theories and, consequently, are
effective tools for solving search problems. To this end, we study the performance
of these algorithms and compare it to the performance of methods that employ
SAT solvers, specifically WSAT and zchaff [10]. We chose WSAT since it is
a local-search algorithm, as are vb-WSAT cc and df -WSAT cc. We chose zchaff
since it is one of the most advanced complete methods. In order to use SAT
solvers to compute models of PLcc theories, we executed them on the CNF
theories produced by procedures compile-bc and compile-basic (Section 3). We
selected the method compile-bc as it results in most concise translations4. We
selected the method compile-basic as it is arguably the most straightforward
translation and it does not require auxiliary atoms.

For all local-search algorithms, including WSAT , we used the same values
of Max -Tries and Max -Flips: 100 and 100000, respectively. The performance
of local-search algorithms depends to a large degree on the on the value of the
parameter p (noise). For each method and for each theory, we ran experiments
to determine the value of p, for which the performance was the best. All results
we report here come from the best runs for each local-search method.

To assess the performance of solvers on families of test theories, we use the
following measures.
4 Our experiments with the translation compile-uc show that it performs worse. We

believe it is due to larger size of theories it creates. We do not report these results
here due to space limitations.
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1. The average running time over all instances in a family
2. The success rate of a method: the ratio of the number of theories in a family,

for which the method finds a solution, to the total number of instances in
the family for which we were able to find a solution using any of the methods
we tested (for all methods we set a limit of 2 hours of CPU time/instance).

The success rate is an important measure of the effectiveness of local-search
techniques. It is not only important that they run fast but also that they are
likely to find models when models exist.

We will now present and discuss the results of our experiments. We start
with the coloring problem. We generated for testing five families C1, . . . , C5, each
consisting of 50 random graphs with 1000 vertices and 3850, 3860, 3870 3880 and
3890 edges, respectively. The problem was to find for these graphs a coloring with
4 colors (each of these graphs has a 4-coloring). We show the results in Table 1.
Columns vb-WSAT cc, df -WSAT cc show the performance results for our local-
search algorithms run on PLcc theories encoding the 4-colorability problem on
the graphs in the families Ci, 1 ≤ i ≤ 5. Columns WSAT -bc and zchaff -bc show
the performance of the algorithms WSAT and zchaff on CNF theories obtained
from the PLcc-theories by the procedure compile-bc. Columns WSAT -basic and
zchaff -basic show the performance of the algorithms WSAT and zchaff on CNF
theories produced by the procedure compile-basic (since the bounds in c-atoms
in the case of 4-coloring are equal to 1, there is no dramatic increase in the size
when using the procedure compile-basic). The first number in each entry is the
average running time in seconds, the second number — the percentage success
rate. The results for local-search algorithms were obtained with the value of noise
p = 0.4 (we found this value to work well for all the methods).

Table 1. Graph-coloring problem

Family vb-WSAT cc df -WSAT cc WSAT -bc zchaff -bc WSAT -basic zchaff -basic
C1 39/96% 97/100% 27/0% 68/100% 29/100% 91/100%
C2 40/98% 100/100% 27/0% 142/100% 29/100% 128/100%
C3 41/100% 103/100% 27/0% 233/100% 30/98% 146/100%
C4 41/100% 104/98% 28/0% 275/100% 30/96% 216/100%
C5 42/96% 108/98% 28/0% 478/100% 30/96% 594/100%

In terms of the success rate, our algorithms achieve or come very close to
perfect 100%, and are comparable or slightly better than the combination of
compile-basic and WSAT . When comparing the running time, our algorithms
are slower but only by a constant factor. The algorithm vb-WSAT cc is only
about 0.3 times slower and the algorithm df -WSAT cc is about 3.5 times slower.

Next, we note that the combination compile-bc and WSAT does not perform
well at all. It fails to find a 4-coloring even for a single graph. We also observe that
zchaff performs well no matter which technique is used to eliminate c-atoms. It
finds a 4-coloring for every graph that we tested. In terms of the running time
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there is no significant difference between its performance on theories obtained
by compile-bc as opposed to compile-basic. However, zchaff is, in general, slower
than WSAT and our local-search algorithms vb-WSAT cc and df -WSAT cc.

Finally, we note that our results suggest that our algorithms are less sensitive
to the choice of a value for the noise parameter p. In Table 2 we show the
performance results for our two algorithms and for the combination compile-basic
and WSAT on theories obtained from the graphs in the family C1 and for p
assuming values 0.1, 0.2, 0.3 and 0.4.

Table 2. Coloring: sensitivity to the value of p

Noise vb-WSAT cc df -WSAT cc WSAT -basic
p = 0.1 16% 100% 18%
p = 0.2 98% 100% 90%
p = 0.3 100% 100% 98%
p = 0.4 96% 100% 100%

We also tested our algorithms on graph-coloring instances that were used in
the graph-coloring competition at the CP-2002 conference. We refer to http:
//mat.gsia.cmu.edu/COLORING02/ for details. We experimented with 63 in-
stances available there. For each of these graphs, we identified the smallest num-
ber of colors that is known to suffice to color it. We then tested whether the
algorithms vb-WSAT cc, WSAT and zchaff (the latter two in combination with
the procedure compile-basic to produce a CNF encoding) can find a coloring
using that many colors. We found that the algorithms df -WSAT cc, WSAT and
zchaff (the latter two in combination with compile-basic) were very effective.
Their success rate (the percentage of instances for which these methods could
match the best known result) was 62%, 56% and 54%, respectively. In com-
parison, the best among the algorithms that participated in the competition,
the algorithm MZ, has success rate of 40% only and the success rate of other
algorithms does not exceed 30%.

For the vertex cover problem we randomly generated 50 graphs with 200
vertices and 400 edges. For i = 103, . . . , 107, we constructed a family V Ci of
PLcc theories encoding, for graphs we generated, the problem of finding a vertex
cover of cardinality at most i. For this problem, the translation compile-basic is
not practical as translating just a single c-atom {in1, . . . , in200}i requires

(200
i+1

)
clauses and these numbers are astronomically large for i = 103, . . . , 107. The
translation compile-bc also does not perform well. Neither WSAT nor zchaff
succeed in finding a solution to even a single instance (as always, within 2 hours
of CPU time/instance). Thus, for the vertex-cover problem, we developed yet
another CNF encoding, which we refer to as ad-hoc. This encoding worked well
with WSAT but not with zchaff . We show the results in Table 3. For this
problem, the value of noise p = 0.1 worked best for all local-search methods.

Our algorithms perform very well. They have the best running time (with
vb-WSAT cc being somewhat faster than df -WSAT cc) and find solutions for all
instances for which we were able to find solutions using these and other tech-
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Table 3. Vertex-cover problem: graphs with 200 vertices and 400 edges

Family vb-WSAT cc df -WSAT cc WSAT -bc zchaff -bc WSAT -ad-hoc zchaff -ad-hoc
V C103 117/100% 300/100% 11/0% 7200/0% 1696/100% 7200/0%
V C104 86/100% 225/100% 11/0% 7200/0% 1400/100% 7200/0%
V C105 69/100% 178/100% 11/0% 7200/0% 1191/100% 7200/0%
V C106 29/100% 78/100% 11/0% 7200/0% 848/100% 7200/0%
V C107 10/100% 27/100% 11/0% 7200/0% 671/100% 7200/0%

niques. In terms of the success rate WSAT , when run on ad-hoc translations,
performed as well as our algorithms but was several (7 to 67, depending on the
method and family) times slower.

As in the case of graph coloring, our algorithms again were less sensitive to
the choice of the noise value p, as shown in Table 4 (the tests were run on the
family V C103.

Table 4. Vertex cover: sensitivity to the value of p

Noise vb-WSAT cc df -WSAT cc WSAT -ad-hoc
p = 0.1 100% 100% 100%
p = 0.2 100% 100% 100%
p = 0.3 100% 100% 58%
p = 0.4 100% 100% 33%

We also experimented with the vertex-cover problem for graphs of an order
of magnitude larger. We randomly generated 50 graphs, each with 2000 vertices
and 4000 edges. For these graphs we constructed a family V C1035 consisting of 50
PLcc theories, each encoding the problem of finding a vertex-cover of cardinality
at most 1035 in the corresponding graph. With graphs of this size, all compilation
methods produce large and complex CNF theories on which both WSAT and
zchaff fail to find even a single solution. Due to the use of c-atoms, the PLcc

theories are relatively small. Each consists of 2000 atoms and 4001 clauses and
has a total of about 10,000 atom occurrences. Our algorithms vb-WSAT cc and
df -WSAT cc run on each of the theories in under an hour and the algorithm
df -WSAT cc finds a vertex cover of cardinality at most 1035 for 9 of them. The
algorithm vb-WSAT cc is about two times faster but has worse success rate: finds
solutions only in 7 instances.

The last test concerned the latin-square problem. We assumed n = 30 and
randomly generated 50 instances of the problem, each specifying values for some
10 entries in the array. Out of these instances we constructed a family LS of the
corresponding PLcc theories. Since these PLcc theories are not simple, we did
not test the algorithm df -WSAT cc here. The results are shown in Table 5. For
the local-search methods, we used the value of noise p = 0.1.

These results show that our algorithms are faster than the combination of
WSAT and compile-basic (compile-bc again does not work well with WSAT ) and
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Table 5. Open latin-square problem

vb-WSAT cc WSAT -bc zchaff -bc WSAT -basic zchaff -basic
43/100% 0/0% 5/100% 250/84% 637/96%

have a better success rate. The fastest in this case is, however, the combination
of zchaff and compile-bc. The combination of zchaff and compile-basic works
worse and it is also slower than our algorithms.

6 Conclusions

Overall, our local-search algorithms vb-WSAT cc and df -WSAT cc, designed ex-
plicitly for PLcc theories, perform very well.

It is especially true in the presence of cardinality constraints with large
bounds where the ability to handle such constraints directly, without the need to
encode them as CNF theories, is essential. It makes it possible for our algorithms
to handle large instances of search problems that contain such constraints. We
considered one problem in this category, the vertex-cover problem, and demon-
strated superior performance of our search algorithms over other techniques.
For large instances (we considered graphs with 2000 vertices and 4000 edges and
searched for vertex covers of cardinality 1035) SAT solvers are rendered ineffec-
tive by the size of CNF encodings and their complexity. Even for instances of
much smaller size (search for vertex covers of 103-107 elements in graphs with
200 vertices and 400 edges), our algorithms are many times faster and have a
better success rate than WSAT (zchaff is still ineffective).

Also for PLcc theories that contain only c-atoms of the form 1X1, X1 and
1X, the ability to handle such constraints directly seems to be an advantage and
leads to good performance, especially in terms of the success rate. In the graph-
coloring and latin-square problems our algorithms consistently had comparable
or higher success rate than methods employing SAT solvers. In terms of time our
methods are certainly competitive. For the coloring problem, they were slower
than the method based on WSAT and compile-basic but faster than all other
methods. For the latin-square problem, they were slower than the combination
of zchaff and compile-bc but again faster than other methods.

Finally, we note that our methods seem to be easier to use and more robust.
SAT-based method have a disadvantage that their performance strongly depends
on the selection of the method to compile away c-atoms and no method we
studied is consistently better than others. The problem of selecting the right
way to compile c-atoms away does not appear in the context of our algorithms.
Further, the performance of local-search methods, especially the success rate,
highly depends on the value of the noise parameter p. Our results show that
our algorithms are less sensitive to changes in p than those that employ WSAT ,
which makes the task of selecting the value for p for our algorithms easier.

These results provide further support to a growing trend in satisfiability
research to extend the syntax of propositional logic by constructs to model high-
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level constraints, and to design solvers that can handle this expanded syntax di-
rectly. In the expanded syntax, we obtain more concise representations of search
problems. Moreover, these representations are more directly aligned with the
inherent structure of the problem. Both factors, we believe, will lead to faster,
more effective solvers.

In this paper, we focused on the logic PLcc, an extension of propositional
logic with c-atoms, that is, direct means to encode cardinality constraints. The
specific contribution of the paper are two local-search algorithms vb-WSAT cc

and df -WSAT cc, tailored to the syntax of the the logic PLcc. These algorithms
rely on two ideas. The first of them is to regard a PLcc theory as a compact
encoding of a CNF theory modeling the same problem. One can now design
local-search algorithms so that they work with a PLcc theory but proceed as
propositional SAT solvers would when run on the corresponding propositional
encoding. We selected the procedure compile-basic to establish the correspon-
dence between PLcc theories and CNF encodings, as it does not require any new
propositional variables and makes it easy to simulate propositional local-search
solvers. We selected a particular propositional local-search method, WSAT , one
of the best-performing local-search algorithms. Many other choices are possible.
Whether they lead to more effective solvers is an open research problem.

The second idea is to change the notion of a flip. We applied it designing
the algorithm df -WSAT cc for the class of simple PLcc theories. However, this
method applies whenever a PLcc theory T can be partitioned into two parts T1
and T2 so that (1) it is easy to generate random truth assignments satisfying
constraints in T1, and (2) there is a notion of a flip that preserves satisfaction
of constraints in the first part and allows one, in a sequence of such flips, to
reach any point in the search space of truth assignments satisfying constraints
in T1. Identifying specific syntactic classes of PLcc theories and the corresponding
notions of a flip is also a promising research direction.

In our experiments we designed compilation techniques to allow us to use
SAT solvers in searching for models of PLcc theories. In general, approaches
that rely on counting do not work well with WSAT , as they introduce too
much structure into the theory. The translation compile-basic is the best match
for WSAT (whenever it does not lead to astronomically large theories). All
methods seem to work well with zchaff at least in some of the cases we studied
but none worked well for the vertex-cover problem. To design better techniques
to eliminate c-atoms and to make the process of selecting an effective translation
systematic rather than ad hoc is another interesting research direction.

Our work is related to [13] and [11], which describe local-search solvers for
theories in propositional logic extended by pseudo-boolean constraints. However,
the classes of formulas accepted by these two solvers and by ours are different.
We use cardinality atoms as generalized “atomic” components of clauses while
pseudoboolean constraints have to form unit clauses. On the other hand, pseu-
doboolean constraints are more general than cardinality atoms. At present, we
are comparing the performance of all the solvers on the class of theories that are
accepted by all solvers (which includes all theories considered here).
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CP 6128 Succ Centre-Ville Montréal, Canada, H3C 3J7
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Abstract. In this paper we show how to exploit in Constraint Pro-
gramming (CP) a well-known integer programming technique, the addi-
tive bounding procedure, when using Limited Discrepancy Search (LDS).
LDS is an effective search strategy based on the concept of discrepancy,
i.e., a branching decision which does not follow the suggestion of a given
heuristic. The property of a node to have an associated discrepancy k
can be modeled (and enforced) through a constraint, called k-discrepancy
constraint. Our key result is the exploitation of the k-discrepancy con-
straint to improve the bound given by any relaxation of a combinatorial
optimization problem by using the additive bounding idea. We believe
that this simple idea can be effectively exploited to tighten relaxations
in CP solvers and speed up the proof of optimality. The general use of
additive bounding in conjunction with LDS has been presented in [14].
Here we focus on a particular case where the AllDifferent constraint is
part of the CP model. In this case, the integration of additive bound in
CP is particularly effective.

1 Introduction

It is widely recognized that integrating relaxations in Constraint Programming
(CP) solvers leads to improved performance in optimization problems. In partic-
ular, relaxations can be used to obtain bounds on the objective function value, for
cost-based filtering [11], and for guiding search (see, e.g., [7], [10] and [15] among
others). This integration enables one to prune provably sub-optimal branches,
thus performing optimality reasoning in CP. The efficiency of optimality rea-
soning depends largely on the quality of available bounds. If we have several
bounding techniques for a given problem, we can simply select the tightest one.
However, in this way we exploit only one relaxation structure.

The Additive Bounding Procedure (ABP) partially solves this problem. ABP
is a general technique for computing accurate bounds for combinatorial problems.
It has been proposed by Fischetti and Toth [8] and effectively applied to the
Asymmetric Traveling Salesman Problem [9].
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Roughly speaking, given a set of bounding procedures for a problem P , one
can apply them in sequence in a way that the information provided by a proce-
dure is used as an input for the next one. Then, the sum of the solution values
of all the procedures is a valid bound for P . The only requirement is that each
bounding procedure must provide a reduced cost vector used as cost vector by
the next one, so that the sum of the solution values of all the procedures provides
a valid bound for P .

In this paper we show how to exploit this remarkable technique when Limited
Discrepancy Search (LDS) [13] and domain splitting are used. Given a heuristic
that provides a ranking of values in the variables’ domain, LDS is an effective
search strategy that trusts the information provided. More precisely, a discrep-
ancy is a branching decision which does not follow the suggestion of the heuristic.
Thus, the LDS strategy explores the overall tree in such a way that sub-trees
with lower discrepancy are considered first. LDS is currently available in many
commercial CP solvers since it has proven to be effective in practice.

We have applied LDS together with domain splitting. At each node, a variable
is selected and its domain partitioned in two parts according to a ranking given
by the heuristic: the good domain part containing promising values (suggested by
the heuristic) and the bad domain part (containing the remaining values). In the
resulting search tree, the property of a leaf to have an associated discrepancy
k can be modeled (and enforced) through a constraint, called k-discrepancy
constraint. Its declarative semantics states that exactly k variables assume a
value in their corresponding bad domain.

The idea to use the k-discrepancy constraint and additive bounding to ac-
celerate the proof of optimality, has been proposed in [14]. This result can be
applied in CP each time we use LDS and a relaxation of the problem provid-
ing reduced costs is available. Thus, the idea presented in [14] is very general
and can be applied to a large variety of problems. In this paper, we focus on a
particular application of this technique which indeed is less general, but more
effective. The case considered is the use of the additive bounding procedure in
LDS when the widely used AllDifferent constraint is contained in the CP model.
In this case, the additive bound procedure can exploit the intrinsic IP model of
the AllDifferent constraint and compute tighter bounds.

We present computational results both for the general approach proposed in
[14] and for its specialized version proposed in this paper for the AllDifferent
case. We show that the proof of optimality is in general much faster.

The remainder of the paper is organized as follows. In the next section
some preliminaries on reduced costs, additive bounding and Limited Discrep-
ancy Search are given. In section 3 the additive bounding technique is applied
in the LDS context. Then, section 4 focuses on the specific AllDifferent case.
Computational results are given in section 5 showing the effectiveness of the
proposed approach. Finally, conclusions are drawn in section 6.
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2 Preliminaries

2.1 Reduced Costs and Additive Bounding

The concept of reduced cost has been proved crucial for CP, as it allows cost
based filtering [11], provides search heuristics [15] and enables one to improve
bounds as it will be shown in this paper.

The reduced costs are computed as a result of the solution of a linear pro-
gram. They come from duality theory and can be intuitively explained as follows.
The solution of the linear program is computed, and each value c̄i in the reduced
cost vector can be seen as the cost which should be added to the optimal so-
lution when the value of the corresponding variable xi increases by one unit,
i.e., variable xi becomes part of the basis. An important point that should be
taken into account is that in general reduced costs are not additive. Indeed, the
overall effect of two or more variables simultaneously entering into the basis is
not captured by the sum of their reduced costs.

The additive bounding procedure [8] is an interesting and effective technique
for computing bounds for combinatorial optimization problems. Intuitively, an
additive bounding procedure consists in solving a sequence of relaxations of a
problem P each producing an improved bound. With no loss of generality, we
consider here minimization problems.

More formally, we consider a problem P whose general form is:

min z = cT x (1)
Ax ≥ b (2)

x ≥ 0 integer (3)

where c is a cost vector, x is a solution vector, A a coefficient matrix and b
the right-hand side vector. We suppose we have a set of bounding procedures
B1, . . . , Bnr for P . We denote as Bi(c) the i-th bounding procedure when applied
to an instance of problem P with cost vector c. For k = 1, . . . , nr, the bounding
procedure Bk returns a lower bound value LBk and a reduced cost vector c̄k.
This reduced cost vector is used to ‘feed’ the next bounding procedure Bk+1,
i.e., Bk+1(c̄k), as shown in Figure 1. The sum of the bounds

∑nr
k=1 LBk is a valid

bound for problem P [8].

2.2 LDS and Its Variants

An important point which should be explained in the preliminary section con-
cerns the search strategy that we are using and which is particularly interesting
when connected with additive bounding.

In this paper we restrict our attention to binary trees explored through LDS.
We assume that our heuristic ranks the values in the domain variables Xi ∀i ∈
{1, . . . , n} that are split in two sets: a set Gi containing the values in the domain
which are likely to correspond to good solutions, and a set Bi for the values in
the domain which are supposed to correspond to bad solutions. At each node,
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Fig. 1. Additive bounding scheme.

on the left branch we force the variable to range on the corresponding Gi and on
the right branch on Bi.

Then, the strategy we use is a two step search procedure: the first step
concerns sub-problem generation where the variables are forced to range on one
domain partition, while the second step concerns sub-problem solution. The
tree is explored through an LDS. Thus, the first sub-problem generated has all
variables ranging on the good domain part, then sub-problems are generated for
increasing discrepancies. For discrepancy k we have k out of n variables that
range on the bad domain part, while the remaining on the good one.

This search strategy, called Decomposition-Based Search (DBS), has been
successfully applied to the Traveling Salesman Problem with Time Windows
with a reduced costs based domain partitioning [15], and is theoretically and
experimentally evaluated in [17].

3 Additive Bounding and DBS

Without loss of generality, we consider a minimization problem P defined on
variables X1, . . . , Xn whose domains are denoted as D1, . . . , Dn. Each time a
relaxation is integrated in a CP solver, a mapping is needed that defines a corre-
spondence between CP variables and relaxation variables. We consider here Lin-
ear Programming relaxations, and we consider that binary variables are mapped
to CP domain values as follows. A classical mapping of CP variables into binary
variables defines a variable xij such that:

xij ∈ {0, 1},∀i ∈ {1, . . . , n},∀j ∈ Di, (4)
xij = 1↔ Xi = j. (5)

Moreover, through this mapping a cost cij is associated to each xij variable,
and we consider the following classical objective function:
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min z =
n∑

i=1

∑
j∈Di

cijxij . (6)

Finally, we suppose that a relaxation of problem P , say R(P ), defined with
an Integer Linear Programming (ILP) model using the x variables, can be solved
to optimality and returns: (i) a bound value LB, (ii) a vector of reduced costs c̄,
and (iii) an optimal solution x∗ (which is, actually, not essential in the following).

Note that R(P ) is any relaxation and its solution procedure is used as the
first bounding procedure of the additive bounding technique.

When the problem is solved through DBS we can add to the problem P a
constraint, called k-discrepancy constraint:

Discrepancy cst([X1, . . . , Xn], [B1, . . . ,Bn], k)

that holds iff k out of n variables range on the corresponding bad domain B.
This constraint defined on CP variables can be expressed in terms of x vari-

ables by the following set of constraints:∑
j∈Bi

xij ≤ 1 ∀ i ∈ {1, . . . , n} (7)

n∑
i=1

∑
j∈Bi

xij = k (8)

xij ∈ {0, 1} (9)

where constraints (7) express that at most one value in the bad set of each
original variable Xi must be considered, while constraint (8) forces that exactly
k of the constraints (7) must be tight.

Obviously, these constraints can be considered as cutting planes and added
to the model of R(P ). In fact, taking into account constraints (7) and (8) in
each node of the search tree would improve the lower bound obtained by only
considering the constraints expressed by R(P ). However, if the relaxation R(P )
is solved through a special-purpose technique, it means that it has a special
structure which is lost when the above constraints are added.

Thus, we are looking for a clean and general framework for improving the
bound from R(P ) by taking into account constraints (7) and (8) and without
a significant increase of the computational effort. This framework is indeed the
additive bounding procedure, and this result is stated by the following theorem.

Theorem 1 (Lodi, Milano [14]).
We suppose that we have a relaxation R(P ) providing a lower bound LB and a
reduced cost vector c̄. Problem P ′:⎧⎨⎩min z′ =

n∑
i=1

∑
j∈Di

c̄ijxij | (7), (8), (9)

⎫⎬⎭ (10)
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can be optimally solved in O(n2) time1 and LB′ = LB+z′ is a valid lower bound
for problem P when a k-discrepancy constraint is imposed.

Proof: The optimal solution (i.e., z′) of the above problem can be easily obtained
through the following simple algorithm: (a) compute the smallest reduced cost
minj∈Di c̄ij for each i ∈ {1, . . . , n}; (b) sort the n obtained reduced costs; and (c)
select the k smallest ones. The time complexity of phase (a) is trivially bounded
by O(n2) being the most expensive one since phase (b) (resp., (c)) only requires
O(n log n) (resp., O(n)).
Concerning the validity of the bound, it is trivially guaranteed by the additive
argument since both R(P ) and the problem modeled by (6), (7), (8) and (9) are
valid (disjunct) relaxations of P plus the k-discrepancy constraint. �

As already pointed out, the above result is perfectly general and independent
on the relaxation R(P ) considered, i.e., it can be used with any other global
constraint. However, if the relaxation is the (continuous) linear one, it is not
difficult to see that a better bound could be obtained by directly considering
constraints (7) and (8) within the linear relaxation itself. On the other hand,
the use of structured relaxations (thus, of special-purpose algorithms to solve
them) is often appealing [12], and the additive operation when DBS is exploited
provides a clean and efficient improvement.

It is worth mentioning that the additive procedure to improve the bound pro-
vided by a structured relaxation has been already tested in the specific context
of the Traveling Salesman Problem [15] showing a satisfactory behavior.

Finally, before closing the section, we note that ABP is not the only way of
taking into account constraints (7) and (8), i.e., branching constraints, without
loosing the structure of a combinatorial relaxation. There are problem specific
ways of doing this. For example, in the ATSP case branching on sub-tours can
be efficiently handled by modifying accordingly the cost matrix (see, Carpaneto,
Dell’Amico and Toth [1]). More generally, any kind of branching constraints
can be dualized in Lagrangean fashion but this requires some kind of iterative
optimization process, such as subgradient/bundle methods. However, ABP seems
to be particularly suited in this context, since it is very simple and efficient to
compute.

4 Application to the AllDifferent Constraint

It was shown in the previous section how to exploit additive bounding for im-
proving a combinatorial relaxation in presence of a DBS constraint. In order
to prove the effectiveness of this framework, we consider the general case of
problems modeled using the AllDifferent constraint. It is well known that the
ILP model of the AllDifferent is the classical linear Assignment Problem (AP,
see, e.g., Dell’Amico and Martello [5]) provided the possible addition of dummy
variables. Since the AP can be solved in polynomial time by special purpose
1 This time bound is obtained assuming that maxi |Di| ≤ n.
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algorithms, using the AP as a combinatorial relaxation is particularly suited in
this context.

The following is a general CP model of any problem containing the AllDif-
ferent constraint and to which was added the discrepancy constraint needed to
perform DBS:

min
∑
i∈N

CiXi (11)

s.t. AllDifferent(X) (12)
AnySide cst(X) (13)

Discrepancy cst(X,B, k) (14)
Xi ∈ N ∀i ∈ N (15)

where N = {1, . . . , n}.
Using the same mapping introduced in section 3, and for the sake of simplicity

defining a graph G = (N,A) where arc (i, j) ∈ A if and only if j ∈ Di, problem
(11)-(15), denoted by P gen, maps in the following ILP formulation:

z(P gen) = min
∑
i∈N

∑
j∈N

cij xij (16)

subject to
∑
j∈N

xij = 1, i ∈ N (17)

∑
i∈N

xij = 1, j ∈ N (18)

AnyLinearSide cst(x) (19)∑
i∈N

∑
j∈Bi

xij = k (20)

xij{0, 1}, ∀(i, j) ∈ A (21)

where (7) is redundant due to (17) and (19) is an equivalent linear formulation
of (13).

4.1 A First Approach

A first lower bound is easily deduced from P gen as the relaxation of constraints
(19) and (20) directly yield the formulation of the Assignment Problem. Since
the AP can be efficiently and incrementally solved through the well-known Hun-
garian Algorithm (see, e.g., Carpaneto, Martello and Toth [2]), one would not
like to change this structure even if one would like to take into account, at least
partially, branching constraints.

In this context, we consider k-discrepancy (branching) constraints, and we
use the output of the Hungarian Algorithm, (z∗(AP), c̄), to define problem P ′

(10) whose optimal solution can be computed as follows:
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(a) compute the smallest reduced cost minj∈N c̄ij ∀i ∈ N ;
(b) sort the |N | obtained reduced costs; and
(c) select the k smallest ones, say c̃1, . . . , c̃k.

The improved bound is then LB′ = z∗(AP) +
∑k

h=1 c̃h and the time complexity
of this improvement is O(n2).

4.2 Better Exploiting the Structure

The method described in the previous section does not take into account the
structure of the AP but only the fact that the AP can be solved through an
algorithm that provides reduced costs. In fact, the structure of the AP can be
efficiently exploited so as to improve the integration of k-discrepancy constraints.
Formally, the following new relaxation, called k-cardinality Assignment Problem
(k-AP), can be defined:

z(k-AP) = min
∑
i∈N

∑
j∈N

cij xij (22)

subject to
∑
j∈N

xij ≤ 1, i ∈ N (23)

∑
i∈N

xij ≤ 1, j ∈ N (24)∑
i∈N

∑
j∈N

xij = k (25)

xij{0, 1}, ∀(i, j) ∈ A. (26)

The k-AP is a relaxation of P gen (16)-(21) where the constraint (19) has been
removed, the degree constraints of both (17) and (18) are relaxed to the ‘≤’
form, and constraint (8) is relaxed to (25) by summing also on the variables xij

such that j ∈ Gi. The k-AP has been introduced by Dell’Amico and Martello
[6], and can be solved in polynomial time by both primal and dual algorithms
(see, Dell’Amico, Lodi and Martello [4]).

Since k-AP is another relaxation of the problems we obtain at each node of
the branching tree by imposing a k-discrepancy constraint, we have now two
combinatorial relaxations, and we can make them co-operate through the addi-
tive bounding procedure. Specifically, we decide to use the AP relaxation first,
and then ‘feed’ the k-AP with the reduced cost vector c̄. This procedure turns
out to change the k-AP we defined before: since c̄ij ≥ 0, ∀(i, j) ∈ A, then vari-
ables xij such that i ∈ N, j ∈ Gi can be disregarded (i.e., set to 0) because in
the original k-discrepancy constraint (8) they are not considered. This induces
a subgraph G′ = (N,A′) where A′ = {(i, j)|j ∈ Bi} and the definition of the
following problem, k-AP′, which is also a valid relaxation of P gen when used as
a second bound:

z(k-AP′) = min
∑

(i,j)∈A′
c̄ij xij (27)
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subject to
∑

(i,j)∈A′
xij ≤ 1, i ∈ N (28)

∑
(i,j)∈A′

xij ≤ 1, j ∈ N (29)

∑
(i,j)∈A′

xij = k (30)

xij{0, 1}, ∀(i, j) ∈ A′. (31)

The improved bound is then LB′ = z∗(AP) + z∗(k-AP′). For clarity purpose we
will now on refer to k-AP′ as simply k-AP.

5 Computational Experiments

In order to validate the ideas proposed in this paper, we need to define opti-
mization problems which make use of the AllDifferent constraint. We propose to
run experiments on two such problems, one being the very well know Traveling
Salesman Problem (TSP) and the other a variant of the Assignment Problem
(LAP)

5.1 Asymmetric Traveling Salesman Problem

The TSP and it asymmetric version (ATSP) are well known combinatorial op-
timization problems, and the CP models presented for this problem, except for
35 are generally variations of the following:

min
n∑

i=1

CiXi (32)

s.t. AllDifferent(X) (33)
NoSubTour cst(X) (34)

Discrepancy cst(X,B, k) (35)
Xi ∈ {1, . . . , n} ∀i ∈ {1, . . . , n} (36)

The X variables used in this model are successor variables, which means that
Xi takes the value of the node directly visited after node i. The AllDifferent
constraint (33) is used here to express conservation of flow in the network. Since
the nature of the decision variables already enforces that each node has exactly
one outgoing arc, we need only to make sure it also has exactly one ingoing arc.
To do so, it is necessary to ensure that no two nodes have the same successor,
which is the role of the AllDifferent constraint. The NoSubTour cst constraint
(34), taken from the work of Pesant et al. [16], enforces connectivity of the
solution by preventing cycles which are not Hamiltonian. Constraint (35) is used
to perform DBS by imposing that exactly k variables X take their values in their
respective B sets. This problem maps into P gen (16)-(21) by substituting (19)
by the set of sub-tour elimination constraints equivalent to (34).
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We are aware that many much more efficient methods have been devised to
solve the ATSP, most of which based on Branch and Cut approaches. However,
the aim of this work is to demonstrate that the proof of optimality of DBS can
be improved by the use of additive bounding and not to show that DBS is a
good approach to solve the ATSP.

The set of ATSP instances we used were based on the ones used in paper
by Cirasella et al. [3]. They are 11 different classes of instances all presenting
different cost structures2.

5.2 Lower Assignment Problem

The Lower Assignment Problem (LAP) is a simple Assignment Problem enriched
with an additional constraint imposing a lower bound on the objective. This
problem, expressed by the following Constraint Programming model:

min
n∑

i=1

CiXi
(37)

s.t.

n∑
i=1

CiXi
≥ L (38)

AllDifferent(X) (39)
Discrepancy cst(X,B, k) (40)

Xi ∈ {1, . . . , n} ∀i ∈ {1, . . . , n} (41)

Each assignment of a value j to a variable Xi incurs the cost Cij and the objective
functions (37) is the minimization of the sum of these costs over all variables.
The lower bound on the objective in defined by (38), the AllDifferent constraint
is expressed in (39), and the discrepancy based search is imposed by (40). This
problems maps into P gen (16)-(21) by substituting (19) by the linear equivalent
of (38). It is easy to see that the LAP is NP-hard by standard reduction of the
minimization version of the classical subset-sum problem.

This problem is very difficult to solve even for small instances. The complex-
ity lies in the fact that the available lower bound (here the pure AP model)
is arbitrarily loosen. If L is more than a few percent greater than the optimal
solution of the AP, then the optimality gap becomes very hard to close. Fur-
thermore, when L increases, the quality of the information provided by the AP
bound (for instance to guide the search or to perform reduced cost based fil-
tering ([11],[12])) decreases. This additional constraint (38) can thus be seen as
an abstraction of any set of unstructured combinatorial constraints which make
solutions near the lower bound infeasible and which cannot be treated by any
special algorithm or global filtering constraint.

To generate instances of this problem we reused the ATSP instances described
previously. In the original instances, the costs associated with diagonal entries
2 The instances were created using the generator provided at

http://www.research.att.com/∼dsj/chtsp/
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of the matrix (Cii) were set to 0 since these assignments are forbidden by the
ATSP definition. We have to modify these entries and set them to ∞ in order
to prevent the Assignment Problem optimal solution to be constituted only of
self assignment (Xi = i) and have an objective of value 0.

5.3 Implementation

The search strategies used to solve the problem are the typical branching schemes
of Constraint Programming. The variables are dynamically ordered using the
simple first fail criteria of increasing domain sizes. Once a variable is selected, it
is fixed to the value of its domain which seems the most promising with respect
to the objective function. For these applications, we have chosen the reduced
costs as a quality criteria and we thus branch on the value j of Di associated
with the minimum reduced cost c̄ij . Reduced costs are also used to partition Di

into Gi and Bi for each Xi as discussed in section 5.5.
Since the relaxation provides reduced costs, we are also able to perform re-

duced cost filtering. This technique is employed to filter out values associated
with sub-optimal solutions, which means eliminating all assignments whose re-
duced cost added to the current lower bound exceeds the upper bound. LB +
C ′

ij > UB3 ⇒ Xi �= j, ∀i, j ∈ {1, . . . , n}.
For the LAP problem, the lower bound L set on the objective (in constraint

(38)) is computed using the value of the Assignment Problem at the root node of
the search tree. Values of L too close to the current value of lower bound make
the problem too easy to solve (and not interesting) while too high values of L
tend to generate very hard problems. For the present experimentation L was
set to a value of 10% above the relaxation value, yielding difficult but solvable
problems.

The Constraint Programming models were implemented using the ILOG
Solver 5.2 library and all experimentations were performed on a Intel Mobile
Pentium IV 1.8 GHz computer.

5.4 Method Comparison

To evaluate the performance of the Discrepancy Additive Bounding on the DBS,
we compare three different approaches: a first approach using only the first AP
bound (normal DBS), a simple implementation of the additive bound described
in section 4.1 (Count-RC) and the more complex k-Assignment version of this
bound detailed in section 4.2 (k-AP).

We considered 11 problem classes and generated 5 instances of each of them,
for a total of 55 benchmark problems4. All problems are defined wiht n = 25 and
all values reported in tables 1 and 2 are averaged on the number of problems
solved by all methods. Problems that could not be solved by all methods are not
accounted for in the given figures but reported separately in table 3.
3 The upper bound is defined as the value of the best feasible solution -1 (for costs

with ingeter values).
4 Input data for problem generation is available on request.
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Table 1. Comparison on ATSP.

DBS Count-RC k-AP
Class nb Time BT k nb Time BT k nb Time BT k
amat 5 0.3 346.4 21.0 5 0.1 138.2 1.0 5 0.1 138.2 1.0
coin 5 300.3 457495.0 26.0 5 90.9 197975.0 6.4 5 86.5 197067.6 5.8
crane 5 247.0 509641.4 26.0 5 127.5 365093.4 7.0 5 127.1 362161.4 5.8
disk 4 706.6 1243108.8 26.0 4 307.5 482212.0 6.8 4 225.6 470009.8 6.5
rect 3 690.6 966603.0 26.0 4 168.0 328863.7 7.7 4 153.6 314006.0 6.7
rtilt 3 564.7 689241.3 26.0 3 182.2 250469.3 9.3 3 167.1 224831.3 7.7
shop 5 4.3 6309.6 26.0 5 1.7 3472.0 3.8 5 1.7 3446.6 3.8
smat 5 4.8 5389.8 26.0 5 1.9 2723.8 4.4 5 1.8 2687.8 4.0
stilt 4 679.6 810107.0 26.0 4 165.3 207979.8 9.0 4 138.3 180666.0 7.8
super 5 0.4 753.8 16.0 5 0.1 247.2 1.0 5 0.1 247.2 1.0
tmat 5 0.6 839.4 16.0 5 0.1 200.6 1.4 5 0.1 200.6 1.4
tsmat 0 0 0 0 0 0 0 0 1 0 0 0

Table 2. Comparison on LAP with L set to 10% over AP optimal solution.

DBS Count-RC k-AP
Class nb Time BT k nb Time BT k nb Time BT k
amat 5 2.1 4499.2 26.0 5 0.6 1586.8 3.0 5 0.6 1565.4 2.6
coin 5 259.7 730824.0 26.0 5 68.3 214000.6 5.4 5 58.6 193188.6 5.0
crane 5 27.6 90946.6 26.0 5 10.3 39789.6 5.6 5 9.6 37780.2 4.8
disk 5 4.8 18247.8 26.0 5 2.9 12884.8 2.8 5 2.9 12884.8 2.8
rect 5 34.3 111333.6 26.0 5 12.8 45629.6 3.8 5 12.3 44735.4 3.6
rtilt 5 52.9 164368.8 26.0 5 18.2 61959.0 4.6 5 17.1 60556.8 4.4
shop 5 3.6 17324.4 26.0 5 3.6 17319.2 20.8 5 3.6 17314.0 15.6
smat 5 1.4 2969.2 26.0 5 0.4 1235.6 2.6 5 0.4 1233.6 2.6
stilt 5 19.7 56518.6 26.0 5 5.0 16792.8 4.8 5 4.6 16065.2 4.0
super 5 0.2 816.2 26.0 5 0.2 803.4 13.2 5 0.2 801.0 10.8
tmat 4 1548.9 4648922.8 26.0 4 954.9 2806462.8 10.3 4 612.6 1951198.5 7.5
tsmat 4 2426.7 8020314.8 26.0 4 1305.2 4277411.5 8.0 4 844.6 2908466.8 6.3

In the following tables we thus report the number of problems solved within
a time limit of an hour (nb), the time (Time), number of backtracks (BT) and
maximum number of discrepancy (k) needed to prove optimality.

Tables 1 and 2 clearly indicate that Discrepancy Additive Bounding, even
in its simpler form, has a significant impact on the time and the number of
backtracks needed to prove optimality. When considering all the problems, the
Count-RC method reduces the time and size of the search tree needed to prove
optimality from 46% to 66% as shown in table 4. The more sophisticated k-AP
second bound, even though is more time consuming, achieves a reduction of 61%
to 71% thus showing that taking advantage of a special structure (in this case
the AllDifferent constraint) may be worth the effort.

If we compare the two k-discrepancy constraints we notice that the approach
using the k-AP version generally needs fewer discrepancies (k) to prove optimal-
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Table 3. ATSP Problems solved only by Discrepancy Additive Bounding.

Problem Time BT k Method
tsmat25.1 3290.61 4182262 9 k-AP
rect25.0 989.854 1385003 9 Count-RC
rect25.0 804.207 1142286 7 k-AP

Table 4. Reduction of the time and backtrack needed to prove optimality.

Count-RC k-AP
Problem Time BT Time BT
ATSP 66% 59% 71% 61%
LAP 46% 46% 64% 62%

ity. This indicates that the lower bounds obtained by this method are higher,
which not only allows to reduce the value of k but also allows a more effec-
tive pruning of the each subproblem search tree (which translates in a reduced
number of backtracks.)

5.5 Additional Remarks

In this section we wish to make some remarks concerning issues of the general
discrepancy-based solution process, which were not directly addressed in this
paper.

Cardinality of the Good Set. As mentioned in [15], an important part of
the Decomposition Based Search is clearly the separation of domains into G
and B sets. To choose an efficient separation one must balance two conflicting
objectives: the complexity of the sub-problems and the tightness of the additive
bound. If the chosen G sets are relatively small then the sub-problems will have
few values and will be easier to solve. However the reduced costs associated to
the values in the B sets will also be lower yielding a weaker second bound and
longer proof of optimality.

On the other hand, generating larger G sets would leave larger reduced costs
in the B sets and increase the value of the discrepancy bound. Unfortunately,
this would also make each sub-problem much harder to solve.

We have also noted that the difference in performance between counting the k
minimum reduced costs and solving the k-AP tends to increase as the cardinality
of G sets decreases, which is probably due to the presence of many small reduced
costs in the B sets.

In this application, the G sets size were set to 20 % of the instance size (here
5 values). Moreover, all values which were less then 20% greater then the largest
value in each G were also included into the G, up to a maximum of 10 values
(40% of the size). An ongoing work by VanHoeve and Milano [17] is dedicated
to these issues and the analysis of Decomposition Based Search in general.
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Application to Traditional LDS. The Discrepancy Based Additive Bounding
presented in this paper can also be applied to the general LDS framework, when
one counts one discrepancy for each left branch taken in search tree. Given all
the values in the domains are ordered, that pi

j is the position of value j in Xi’s
domain (first position being 0) and that xij takes value 1 when Xi is set to value
j, the following equation can replace the discrepancy constraint (8).∑

i∈N

∑
j∈Bi

pi
jxij = k

Preliminary results are disappointing, again because they are too many small
reduced costs (many of value 0) in the discrepancy branches. This means that,
except for very high values of k, the discrepancy lower bound is either null or
very small. Since traditional LDS can be compared to Decomposition Based
Search where the cardinality of the G sets is 1 (see [17]), the preliminary tests
performed confirm the issue raised in the previous remark.

6 Conclusion

In this paper we have demonstrated that the additive bounding procedure can be
used to significantly accelerate the proof of optimality of Decomposition-Based
Search. The case where the AllDifferent is an important part of the model has
been studied and two different additive bounds where proposed and evaluated.

It is important to notice that the application of the additive bounding frame-
work in the CP context is not limited to the interaction between a single global
constraint and the search strategy. Indeed, ABP, as outlined in Figure 1, can be
applied to a sequence of structured relaxations corresponding to several global
constraints, plus, eventually, DBS or another suitable search strategy.

An extensive use of the additive bounding framework in CP and its applica-
tion to real-world and complex problems for which Constraint Programming is
an efficient solution method is the topic of future research.
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Abstract. This paper offers a critique of the framework of Constraint Satisfac-
tion Problems. While this framework has been successful in studying search tech-
niques, and has inspired some constraint programming languages, it has some
weaknesses that leave it not directly applicable to the study of complex constraints
(including so-called global constraints) in constraint programming languages. In
particular, it deals poorly with semantic relations whose consistency can be deter-
mined algorithmically. In this paper the philosophy of the CLP Scheme is applied
to extend the CSP framework to a form more suitable for addressing complex
constraints, where both constraint satisfaction and constraint solving have a role.
Some rough principles for local consistency conditions in the extended framework
are developed, and appropriate notions of local consistency are formulated. These
can be used as a coarse measure of the degree of constraint propagation achieved
by implementations of complex constraints.

1 Introduction

The study of constraint satisfaction problems (CSPs) has been remarkably successful.
The CSP framework provides a flexible basis for formulating NP-complete problems,
which can then be addressed by a wide range of methods. The study of systematic search
in this framework has yielded techniques for performing search more efficiently and
characterized classes of problems for which polynomial time is needed to find solutions.

However, the CSP framework also has some weaknesses. In particular, the framework
assumes that data values come from a domain of uninterpreted constants where the only
semantic relations are equality and its negation. This is in contrast to the use of many of
the ideas from the study of CSPs in practice. Constraint programming systems routinely
use interpreted values – such as integers – and semantic relations – such as ordering or
arithmetic relations – to formulate and solve problems.

The complex constraints used in these systems – the global constraints [4] of CHIP
[16], the hard constraints [28] of CLP(+) [27], constraints in ILOG Solver [24], the
demons written in CHIP or Solver, and predicates defined in Constraint Handling Rules
[19], Claire [9], or Oz [37] – all exploit and infer semantic relations when solving
problems. In some ways these complex constraints are the counterpart of constraints in
the CSP framework, and searching for solutions of a query in these systems corresponds
to search in CSPs. But there are several aspects of the CSP framework, as generally used,
that are not appropriate for these applications.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 525–539, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Traditional treatments of CSPs are not directly applicable to complex constraints
because of assumptions and emphases that are not appropriate for complex constraints.
In particular, most treatments:

1. consider only uninterpreted constants as values;
2. assume relations are finite and defined extensionally;
3. assume domains of variables are finite;
4. assume that there is only one constraint on a given set of variables;
5. almost exclusively study binary relations;
6. formulate notions of local consistency that focus on variables and the values that they

may take, and do not address the possibility of other relations between variables;
7. assume branching in search is determined by the instantiation of variables by values.

As a consequence of the first two points, these treatments cannot include any constraint
solving. There are several works that avoid a few of these assumptions (for example,
[34,15,14]) but not to the extent that they are applicable to complex constraints.

The assumptions are often not justified in practice. Consider, for example, the
cumulative constraint [1] which is widely used for problems of scheduling with scarce
resources, and is representative of many complex constraints. This constraint

– applies to integers and lists of integers;
– represents an infinite relation;
– is not implemented extensionally but as a thread that reacts to the state of a constraint

store;
– has arity 4.

Local consistency will be addressed in more detail later. However, it can be noted that
in many situations arc consistency is inappropriate, for efficiency reasons. Consequently,
many variants have been devised, including interval or bounds consistency [33] in finite
domain systems, and hull consistency [7,5] in solving non-linear real constraints.

Branching in search is often not performed by instantiating variables. In the conven-
tional branch and bound implementation of integer programming (see, for example, [23])
branching is performed by imposing extra inequalities (for example x ≤ 5 and x ≥ 6).
Interval techniques for the solution of non-linear equations over the real numbers use
domain splitting (see, for example, [6]). Even in finite domain constraint programming,
domain splitting is useful (see, for example, [33]).

The aim of this paper is to develop a suitable framework for addressing constraint
programming search problems. In the next section, the CSP framework is extended
to include semantic relations. It represents a synthesis of constraint satisfaction and
constraint solving.

The remainder of the paper investigates local consistency in this extended frame-
work. After outlining weaknesses of existing local consistency conditions for constraint
programming search problems in Section 3, several are reformulated and generalized
for the extended framework. In Section 4 the formulation of arc consistency in [32] is
derived from the standard description, following the approach recommended in [31].
This sets the pattern for discussion and reformulation of node consistency (Section 5),
pairwise and k-wise consistency (Section 6), and restricted path consistency (Section
8). A k-fold consistency is introduced in Section 7 as an extension of the reformulated
arc consistency, and its relationship to other consistency conditions is shown.
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Before going forward, a choice of terminology is needed, because the areas of
constraint satisfaction and constraint solving use the word “constraint” differently. In
constraint satisfaction, constraints are the uninterpreted relations that are the basis
of the combinatorial problem to be solved. In constraint solving, constraints are the
semantically-defined relations whose conjunctions can be solved (perhaps only par-
tially) through algorithmic techniques. The distinction is not always straightforward in
existing work, but in the framework proposed in this paper we will distinguish the two
roles played by relations in these two areas. To avoid confusion, we will use “con-
straint” only to refer to semantic relations that are solved algorithmically in a constraint
solver. Constraints in the sense of constraint satisfaction will be referred to as “prop-
erties”. (Thus, in this terminology, CSPs do not involve constraints! Similarly, “global
constraints” are not constraints; they are implementations of properties.)

2 Extending CSPs

This section proposes an extension of the CSP framework that addresses some of the
weaknesses identified in the introduction. We begin by recalling the definition of a CSP
in our modified terminology.

A property over a set of variables V is a pair (x̃,P) where x̃ is a sequence of n
variables in V and P is a relation of arity n. There is an implicit identification between
the variables in the list and the columns/attributes of P . Often this will be written as
P(x̃).

A Constraint Satisfaction Problem (CSP) is a 3-tuple 〈V ars, Prop,D〉where V ars
is a set of variables, Prop is a set of properties over V ars, and D maps each x ∈ V ars
to a finite set of constants (the domain of the variable). We can alternatively view D as a
conjunction of unary relations, one for each x ∈ V ars. A binary CSP is a CSP where all
properties are formed from binary relations. A solution to a CSP is a function s mapping
each variable to a constant such that for every x ∈ V ars, s(x) ∈ D(x), and for every
(x̃,P) ∈ Prop, s(x̃) ∈ P .

To extend this framework we need to specify the semantic relations (constraints)
that are admitted. Following the formulation in constraint logic programming [26], we
specify these with a constraint domain.

A signature Σ is a set of function and relation symbols, each with an associated arity.
We assume that the binary relation symbol = is in Σ.

A constraint domain over a signature Σ is a pair (D,L) where D is a Σ-structure
and L is a set of logical formulas over Σ and a set of variables. A constraint is a formula
c ∈ L. A primitive constraint c is a constraint of the form r(t1, . . . , tn) where r is a
relation symbol and the ti are terms. If x̃ is the free variables in c, we sometimes write
c(x̃). Thus L specifies the syntax of constraints and D specifies their semantics. When
we need to specify the subclass of constraints with free variables from a set V , we write
L(V ). We assume = is interpreted as identity in D and that L is closed under variable
renaming and conjunction1. The conjunctive language generated by a set S of constraints
contains all constraints in S, and is closed under conjunction and variable renaming.

1 In constraint logic programming it is convenient to also assume thatL is closed under existential
quantification, but that is not needed in this context.
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Given a set of variables V ars and a constraint domain (D,L), a valuation is a
function v : V ars → D. A valuation on a subset of variables x̃ is the restriction of a
valuation to x̃, denoted v|x̃. The complement in a constraint c of a valuation v on x̃ is a
formula equivalent to c ∧ ¬

∧
x∈x̃ x = v(x). A valuation v satisfies a constraint c(x̃) if

c(v(x̃)) evaluates to True in the structure D. v satisfies a property (x̃,P) if v(x̃) ∈ P;
if v(x̃) = ã we sometimes write this as P(ã).

We now extend the CSP framework, following the philosophy of the CLP scheme
[25]. A problem is now parameterized by a constraint domain, and the variable domain
D is replaced by an environment of constraints.

Definition 1. An Extended Constraint Satisfaction Problem (ECSP) with signature Σ
is a 4-tuple 〈(D,L), V ars, Prop, C〉 where (D,L) is a Σ-constraint domain, V ars is
a set of variables, Prop is a set of properties over V ars, and C is a conjunction of
constraints from L(V ars), called the constraint environment.

A solution of the ECSP is a valuation v that satisfies the constraints C and the
properties in Prop.

A CSP C = 〈V ars, Prop,D〉 can be considered to be an ECSP EC =
〈(DC ,LC), V ars, Prop, C〉 where Σ contains all constants, and unary predicate sym-
bols pS for each subset S of constants; LC is the collection of conjunctions of unary
predicates;DC is the structure with a domain consisting of the constants in Σ that inter-
prets each pS(x) as the relation x ∈ S; and C is the conjunction

∧
x∈V ars pD(x)(x).

ECSPs are able to represent a larger array of problems than CSPs, and represent them
more naturally. In finite domain constraint programming, the primitive constraints re-
strict a variable to a finite interval of integers, variables range over integers and lists
of integers, and properties are complex constraints such as cumulative, alldifferent,
element, as well as arithmetic relations such as x + y ≤ z.

The problem of finding solutions to non-linear equations over the reals [6] can be
formulated as an ECSP, where the primitive constraints are floating point bounds on
variables (for example, x ≤ f , where f is a floating point number) over the real numbers,
and the properties are the non-linear equations.

Similarly, the solving of finite set constraints [20] can be formulated as an ECSP,
where the constraints are containment relations between a set variable and a set (for ex-
ample, S ⊆ {a, b, c, d}), the set of values is the set of finite sets of constants (determined
by Σ), and the properties represent relations between set variables, such as S1 ⊆ S2 or
S1 ∩ S2 = S3.

The above examples involve unary primitive constraints, but constraints of greater
arity are needed in applications like temporal reasoning (where there may be precedence
constraints x < y), and to reflect languages like CLP(+), where constraints may contain
arbitrarily many variables. CLP(+) queries are ECSPs where the constraints are linear
arithmetic equations and inequalities over the real numbers, and the properties are non-
linear equations and hard constraints like pow(X, Y, Z).

In all these examples, the underlying values are infinite in number or have internal
structure, the properties are not represented extensionally and generally are not binary,
and there are semantic relations (constraints) that are central to the expression and so-
lution of the problems. Although the CSP framework might theoretically be capable
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of representing these problems by treating constraints as properties, using possibly in-
finite relations to represent them, and admitting infinite domains for variables, such a
representation would be far removed from the practice of solving these problems.

An ECSP, like a CSP, comes without any specific operational interpretation. However,
an abstract execution model is a search tree where each node (except, possibly, the root)
is an ECSP satisfying the invariant:

the constraint environment is satisfiable and the ECSP satisfies a local consis-
tency condition, or the constraint environment is unsatisfiable and the node has
no children

Such an execution model requires a method for obtaining local consistency and a
constraint solver to test satisfiability. Many constraint programs are constructed to gen-
erate constraints and properties in a first phase, and then search for solutions. The ECSP
execution model reflects the second, search, phase. Constraint propagation achieved by
implemented properties in that phase corresponds to achieving a form of local consis-
tency in an ECSP. (For example, see [32].) Thus specific local consistency conditions,
such as arc consistency, represent specific levels of constraint propagation.

The following lemma is used to prove later results. In the lemma, ∃−x̃ denotes the
existential quantification of all variables except x̃, and→ denotes implication.

Lemma 1. Let ψ and φ be formulas involving both properties and constraints, c and c′

be constraints, and x̃ be a set of variables. Consider the following statements:
(1) (ψ ∧ φ ∧ c)→ c′ implies (φ ∧ c)→ c′

(2) (φ ∧ c)→ ∃−x̃ (ψ ∧ φ ∧ c)

1. If vars(c′) ⊆ x̃ and (2) holds, then (1) holds.
2. If, for any valuation v on x̃, there is a constraint cv that is the complement in c of v,

and (1) holds for all c′, then (2) holds.

3 Local Consistency

There have been many different local consistency properties proposed over many years.
Almost all are formulated – whether explicitly or implicitly – in terms of instantiations
of variables and extensions of consistent instantiations2.

For example, a large class of local consistency properties is as follows. A CSP is
(i, j)-consistent [17] if any consistent instantiation of i variables can be extended to a
further j variables. In particular, for binary CSPs3, arc consistency is (1, 1)-consistency
and path consistency is equivalent to (2, 1)-consistency.

While the idea of local consistency has been fruitful in improving systematic search
as a method for solving CSPs, existing treatments are unsuitable in a number of respects
as the basis for systematic search in constraint languages:

2 A consistent instantiation of a set S of variables is an instantiation that satisfies all properties
with all variables from S.

3 Under the assumption that there is at most one property on a given pair of variables.
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1. The presence of algorithmically solved constraints is not addressed.
2. Many forms of local consistency are formulated with binary properties in mind,

although many properties arising in practice are not binary.
3. Most methods for maintaining local consistencies assume that tuples may be deleted

from properties.
4. Almost all methods for maintaining local consistencies assume that values may be

deleted from domains.
5. Many forms of local consistency emphasize the variables involved, rather than the

relations. In particular, the concept of locality is almost always expressed solely in
terms of variables.

The first point is inherent in the use of the CSP framework. The second is tied to the
origins of constraint satisfaction, but it is clear that current practice involves non-binary
properties, and encoding these as binary properties seems impractical. However several
works have addressed the issue of generalizing local consistency conditions to properties
of arbitrary arity. Generalized arc consistency [34] applies to properties of arbitrary
arity, as does relational arc consistency [14]. Also in [14] are two generalizations of
k-consistency that are independent of arity. In addition, pairwise consistency [2] and its
extension to k-wise consistency [21], because they were defined originally in a database
context, from the beginning were independent of arity, as are later extensions hyper-k-
consistency [29] and ω-consistencies [36].

Many consistency conditions, such as path consistency, are enforced by modifying
properties. Such an approach is very difficult if properties are not represented extension-
ally, and expensive in terms of space if they are represented extensionally. The latter
point has led to further investigation of inverse consistencies [18], restricted path con-
sistencies [8,13] and singleton consistencies [12] that only modify variable domains.
Since “global constraints” and related properties are represented as reactive threads of
computation – and not extensionally – it is only such consistency conditions that show
promise of applicability to constraint programming search problems.

However, even for these consistency conditions, enforcement algorithms assume
that values can be deleted from variable domains. In general, in constraint program-
ming, this assumption is invalid since many constraint programming systems do not
provide constraints that can express arbitrary variable domains. This has led to several
approximations of arc consistency where domains are replaced by intervals of integers
[33], real numbers [7], or finite sets [20], and, more generally, approximation spaces
[11]. [38] proposed a variety of interval consistencies, but that proposal does not con-
sider the possbiility of constraints other than intervals, and cannot apply to languages
like CLP(+).

In reference to the fifth point, it is clear that both variables and properties are essen-
tial to the CSP framework. However, most local consistency conditions define locality
in terms of variables. For example, (i, j)-consistency addresses various sub-problems
(of the main problem) containing i + j variables. As a consequence, many of these
consistency conditions are defined in terms of extending a consistent instantiation for
a set V of variables. Considering only consistent instantiations introduces the effect of
an unknown number of unknown properties with variables from V when determining
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consistency. The (i, j)-consistencies and the relational consistencies of [14] are among
those formulated this way, while the k-wise consistencies are not.

Such consistency conditions are practically impossible to achieve when implement-
ing properties as reactive threads. To illustrate the difficulties, consider the implemen-
tation of the property x + y = z over the constraint domain of finite integer intervals. It
is possible that a given ECSP might also involve properties equivalent to even(x) and
odd(x), where even(x) (respectively odd(x)) is satisfied only if x is even (respectively,
odd). If we wish to achieve (2, 1)-consistency then we need to obtain the following
behavior:

– If x + y = z is part of an ECSP involving properties equivalent to even(x) and
odd(y), then the implementation of x + y = z should restrict the possible values of
z to odd numbers.

– If x + y = z is part of an ECSP involving properties equivalent to even(x) and
even(y), then the implementation of x + y = z should restrict the possible values
of z to even numbers.

Without these behaviors, a consistent instantiation for x and z might not be extendable
to y. Clearly an implementation of x + y = z must “know” what other properties are
part of the ECSP if it is to guarantee (2, 1)-consistency. In an ECSP such as this, node
consistency does not solve the problem; see Section 5. Thus, although (2, 1)-consistency
is local in terms of variables, it is not local in terms of properties, and consequently it is
difficult to achieve with reactive implementations of properties.

The remainder of this paper formulates local consistency conditions that address
the above points. These conditions are: independent of arity; formulated in a manner
independent of the particular kind of constraint, as closure requirements; and the locality
of the conditions is based purely on properties, not on variables. In many cases they are
generalizations of consistency conditions for CSPs. These are consistency conditions
that have prima facie potential to reflect the behavior of implemented properties.

4 Arc Consistency

(Generalized) arc consistency of a property is often formulated as requiring that the
instantiation of any variable by a value in the domain of the variable can be extended to
an instantiation of all variables that satisfies the property.

Using logical notation, we can write this as

x ∈ D(x)→ ∃−x (P ∧D)

where ∃−x denotes the existential quantification of all variables except x. If we adapt
this definition to constraints, instead of variable domains, we obtain:

For every variable x,
∃−x c→ ∃−x (P ∧ c)

This says that every value for x that is consistent with the constraint environment c can
be extended to a solution of P and c.
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Such a formulation is very close in spirit to the original definition, while general-
izing from domains to general constraints, but it considers only one variable at a time.
Consequently, the effect of c in this formulation is only to express unary (domain-like)
constraints. We can interpret this formulation as saying that if any unary information is
available in P ∧ c, it is already available in c.

This interpretation provides the basis for the further generalization of arc consis-
tency to a form where variables are less important. We focus on the notion that certain
information in P ∧ c is contained wholly within c.

If we apply this idea too readily we reach a definition

c→ (P ∧ c)

which simply implies that P is irrelevant. We must restrict the information required to be
embedded in c to certain types. We cannot do that directly with the above formulation,
so we replace it with a weaker statement.

Definition 2. A property P is arc consistent with a constraint c if, for every constraint
c′,

(P ∧ c)→ c′ implies c→ c′

An ECSP 〈(D,L), V ars, Prop, C〉 is arc consistent if everyP ∈ Prop is arc consistent
with C.

This relaxes the previous statement by restricting it to information expressible with
constraints c′. It formulates the condition as a closure requirement on the constraint
environment c. Such a formulation emphasizes that enforcing consistency involves ex-
pressing information implicit in the problem as explicit constraints.

This definition unifies several existing forms of local consistency, including gen-
eralized arc consistency, interval consistency and rule consistency for finite domain
languages, and some forms of consistency used for floating point intervals over continu-
ous domains. See [32] for more details. By restricting Definition 2 further, to particular
classes of constraints, we can obtain a parameterized definition of arc consistency [32].

It might not be clear that the definition of arc consistency for ECSPs is equivalent
to arc consistency for CSPs. However, using Lemma 1 where ψ is P , φ is true, and c is
C, we have

Proposition 1. Let C be a CSP and let EC be the equivalent ECSP. Then C is generalized
arc consistent iff EC is arc consistent in the extended sense of Definition 2.

The study of the minimum property in [32] indicates that, in some cases, the def-
inition of arc consistency might be too strong, because c′ might involve variables not
present in the property. Such a situation can make it difficult to implement the properties
to achieve arc consistency. In such cases we can consider a slightly weaker form of arc
consistency where c′ is required to only contain variables appearing in P . The above
proposition also holds for weak arc consistency.

Although arc consistency for ECSPs is a generalization of generalized arc consis-
tency, and some forms of arc consistency (for example, interval consistency) are weaker4

4 We say that a local consistency condition A is weaker than another condition B if every ECSP
that satisfies B also satisfies A.



A Synthesis of Constraint Satisfaction and Constraint Solving 533

than generalized arc consistency, it is not true in general that generalized arc consistency
is stronger than the extended form of arc consistency.

Example 1. Consider the property P(x, y, z) defined by

P
1 1 1
1 2 1
2 3 2
3 1 3

and the constraint environment c that states that x, y and z are in the interval 1..3. ThenP
is generalized arc consistent wrt the domains of the variables, but it is not arc consistent
in the extended sense if the constraint language L contains equations. This because
P ∧ c→ x = z but c �→ x = z.

This situation arises because of the possibility of a constraint language that can express
relations that cannot be expressed with domain constraints.

5 Node Consistency

Node consistency is the special case of generalized arc consistency where the property
involved is unary. Thus it is already covered by the discussion in the previous section.
The initial formulation is that

c→ P

It is noteworthy that, in an ECSP, a unary property is not necessarily eliminable in the
manner that it is in a CSP. The problem is that the property might not be representable by
constraints. Consequently, under the above formulation, node consistency often cannot
be achieved. For example, let odd(x) refer to the property that holds for odd numbers
between 0 and 100, and suppose the constraint language admits only interval constraints.
Then the constraints are unable to represent the property.

On the other hand, the formulation as a closure requirement

(P ∧ c)→ c′ implies c→ c′

concerns only information representable by constraints, and consequently this relaxed
form of node consistency is achievable. Essentially c must contain the tightest outside
approximation ofP∧c by constraints. In the odd example, consistency is achieved when
c is 1 ≤ x ≤ 99.

Even so, there are situations where extended node consistency (and, more generally,
arc consistency) is not attainable. For example, consider a constraint language over the
real numbers permitting only rational bounds (for example, x ≤ 1

2 ), and the property
x ≤
√

2. Since there is no least rational upper bound for
√

2, node consistency cannot
be achieved for this property and constraint domain.
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6 k-wise Consistency

A collection of properties is pairwise consistent [2] if, for every pair of properties P1
and P2 in the collection

(∃−vars(Pi) P1 ∧ P2)↔ Pi for i = 1, 2

This condition means that P1 and P2 are essentially independent – that the presence
of P2 does not eliminate any solutions of P1, and vice versa. It was proposed in the
context of relational databases with no domains or constraints on variables. Adapting
it for ECSPs (and CSPs), where we look for consistency with respect to the constraint
environment C (respectively, the variable domains), we have, for i = 1, 2:

(∃−vars(Pi) P1 ∧ P2 ∧ C)↔ (∃−vars(Pi) Pi ∧ C)

which only requires that P1 and P2 are independent on solutions of C.
As with arc consistency, a relaxed formulation makes the closure requirement ex-

plicit:
For i = 1, 2 and constraints c′ with vars(c′) ⊆ vars(Pi)

(P1 ∧ P2 ∧ C)→ c′ implies (Pi ∧ C)→ c′

Pairwise consistency was generalized to k-wise consistency [21] which, after adapt-
ing it to CSPs and ECSPs, requires that for every subset {P1, . . . ,Pk} of properties in
the collection and for i = 1, . . . , k

(∃−vars(Pi)
∧k

j=1 Pj ∧ C)↔ ∃−vars(Pi) (Pi ∧ C)

After relaxation this definition becomes:

Definition 3. An ECSP 〈(D,L), V ars, Prop, C〉 is k-wise consistent if, for every
{P1,P2, . . . ,Pk} ⊆ Prop of size k, for i = 1, . . . , k and all constraints c′ with
vars(c′) ⊆ vars(Pi)

(
∧k

j=1 Pj ∧ C)→ c′ implies (Pi ∧ C)→ c′

Obviously 1-wise consistency is trivial. Using Lemma 1 where ψ is
∧k

j=1 Pj and φ
is Pi we find that, for k ≥ 2, this formulation of k-wise consistency is strictly weaker
than the adapted formulation for CSPs.

Proposition 2. Let C be a CSP and let EC be the equivalent ECSP. If C is k-wise con-
sistent then EC is k-wise consistent in the extended sense above. But EC might be k-wise
consistent in the extended sense when C is not k-wise consistent, for k ≥ 2.

7 k-fold Consistency

The natural generalization of extended arc consistency is to consider more than one
property at a time.



A Synthesis of Constraint Satisfaction and Constraint Solving 535

Definition 4. An ECSP 〈(D,L), V ars, Prop, C〉 is k-fold consistent if, for every
{P1,P2, . . . ,Pk} ⊆ Prop of size k, and every constraint c′

k∧
i=1

Pi ∧ C → c′ implies C → c′

Thus 1-fold consistency is extended arc consistency. As with arc consistency, we
can also consider the weaker form, where each variable in c′ also occurs in a property.
k-fold consistency, like the previous local consistency conditions that we have discussed,
defines locality purely in terms of properties, and not in terms of variables.

The finite domain constraint solvers discussed in [22] can be viewed as partial imple-
mentations of 2-fold consistency. Where one property is a linear equation involving at
most 2 variables, substitution using the equation is used to improve propagation. Other
pairs of properties may not achieve 2-fold consistency.

Proposition 3. Let E be an ECSP containing at least k properties.
If E is k-fold consistent, then E is (k − 1)-fold consistent. However, the converse is

not true. That is, E might be (k − 1)-fold consistent, but not k-fold consistent.

Thus k-fold consistency, for the various values of k, forms a hierarchy of local
consistency conditions. This also holds for the weaker form where the variables of c′

must occur in a property.
The relational structure of an ECSP E = 〈(D,L), V ars, Prop, C〉 is a pair

〈V ars, {x̃ | P(x̃) ∈ Prop}〉. Let E be an ECSP and let 〈V ars, {x̃1, . . . , x̃m}〉 be
the relational structure of E . Let x̃0 = V ars − ∪m

i=1x̃i. We say that E has lossless
decomposition of constraints if, for every constraint c ∈ L,

c↔
m∧

i=0

∃−x̃i
c

Lossless decomposition of constraints is similar to lossless joins and join dependen-
cies in relational database theory [30]. As there, the relational structure is determined
by properties (relations), but here the lossless decomposition applies to the constraint
environment, rather than a universal relation.

It is straightforward to show that any conjunction of unary constraints has a lossless
decomposition, independent of the relational structure. We use this fact and the next
lemma to prove the following proposition.

Lemma 2. Suppose a solvable ECSP E has lossless decomposition of constraints and
is arc consistent and k-wise consistent. Then E is k-fold consistent.

We now show that k-fold consistency is a stronger condition than k-wise consistency,
but in a practical sense it is not much stronger.

Proposition 4. Let E be an ECSP.

1. If E is k-fold consistent then E is k-wise consistent.
2. Suppose L is generated conjunctively from unary constraints. If E is k-wise consis-

tent and arc consistent then E is k-fold consistent.
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In many settings of interest – CSPs, finite integer domains, finite sets, and interval
approaches to continuous domains – the primitive constraints are unary and arc con-
sistency is maintained. Thus, in these settings there is no practical difference between
k-fold consistency and k-wise consistency. On the other hand, when addressing con-
straint solvers for non-unary constraints, as in CLP(+) or in temporal reasoning, the two
consistency conditions differ.

Example 2. Consider a linearly ordered set, where the only constraint relations are <
and ≤. For concreteness we choose the integers.

Consider the two properties P1(x, y) and P2(y, z) with relations defined as follows:

P1 P2
0 4 4 1
1 5 5 3
2 9 9 6

Consider an ECSP E where the properties are P1 and P2 and the constraint environ-
ment c is 0 ≤ x ≤ 2 ∧ 4 ≤ y ≤ 9 ∧ 1 ≤ z ≤ 6 ∧ x < y ∧ z < y.

Then E is arc consistent, since neither property implies any stronger constraint. E is
2-wise consistent because (∃z P1 ∧ P2 ∧ c) ↔ (∃z P1 ∧ c) and (∃x P1 ∧ P2 ∧ c) ↔
(∃x P2 ∧ c). But E is not 2-fold consistent because P1(x, y) ∧ P2(y, z)→ x < z.

8 Restricted Consistencies

Enforcement of path consistency [35] requires, in general, that tuples be deleted from
properties. Thus it is not of direct use, but we will need the definition later. Since path
consistency is equivalent to (2,1)-consistency on a class of binary CSPs [35], a common
definition of path consistency is that any solution of a property P can be extended to a
solution of the two properties involving the variables of P and any one other variable:

For every tuple in every property P0 on variables x and y, and every variable z and
corresponding properties P1 and P2

(∃−x,y P0(x, y) ∧D)→ ∃−x,y (P0(x, y) ∧ P1(x, z) ∧ P2(y, z) ∧D)

There are many ways in which the idea of path consistency might be extended to prop-
erties of greater arity and to ECSPs. Here we will consider only one:

For all properties P0(x̃),P1(ỹ),P2(z̃) such that x̃∩ ỹ �= ∅, x̃∩ z̃ �= ∅, and (ỹ∩ z̃)−
x̃ �= ∅:

(∃−x̃ P0(x̃) ∧ C)→ ∃−x̃ (P0(x̃) ∧ P1(ỹ) ∧ P2(z̃) ∧ C)

Applying Lemma 1, we relax this to: for constraints c′ with vars(c′) ⊆ x̃,

P0(x̃) ∧ P1(ỹ) ∧ P2(z̃) ∧ C → c′ implies P0(x̃) ∧ C → c′

We can see immediately that path consistency is weaker than 3-wise consistency. It is not
comparable in strength to pairwise consistency and 2-fold consistency, even in CSPs.

Restricted path consistency (RPC) [8] was designed to strengthen arc consistency
towards path consistency on binary CSPs without requiring the deletion of tuples from
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properties. It does this by performing a path consistency check only when a discovery
of inconsistency allows a value to be deleted from a variable domain. Reformulating
this strengthening for arbitrary CSPs, it requires that for every propertyP0(x̃) and every
value a in the domain of a variable x ∈ x̃, if there is only one tuple in P0(x̃) where x
has the value a then a path consistency check should be applied to that tuple.

Obviously, the idea of a restricted consistency can be applied to any local consistency
condition in place of path consistency. We now further generalize the formulation so that
it can apply to ECSPs, and base it on an arbitrary X-consistency.We introduce a parameter
G that describes the criteria for performing a X-consistency check on a property and the
information derived should the check fail.

Definition 5. Let E = 〈(D,L), V ars, Prop, C〉 be an ECSP, let X-consistency be a
consistency condition, and, for any property P , let G(P, C) be a set of pairs 〈φ, c〉
where φ is a formula and c is a constraint.

A propertyP0 ∈ Prop is restricted X-consistent wrtG if, for every 〈φ, c〉 ∈ G(P0, C)
such that

P0 ∧ ¬φ ∧ C → c and ¬φ ∧ C �→ c

we have that the subrelation of P0 satisfying φ is X-consistent.
The ECSP E is restricted X-consistent wrt G if E is arc consistent and every property

P ∈ Prop is restricted X-consistent wrt G.

The definition can be interpreted as: if knowing ¬φ would enable us, using P0, to
infer something new (c) then tuples of P0 satisfying φ should be X-consistent.

To retrieve the original definition of RPC – for the ECSP EC corresponding to a CSP
C – we can take X-consistency to be path consistency and define

G(P, C) = {〈x̃ = ã, pD(x)−{a}(x)〉 | P(ã), x̃ = ã→ x = a,∃!x̃ P(x̃) ∧ C ∧ x = a}

where ∃!z Q(z) denotes that there exists a unique value for z such that Q(z) holds. In
this case, x̃ = ã is the formula φ defining the unique tuple of P where x has the value
a and pD(x)−{a}(x) is the constraint c corresponding to the updated domain of x.

Proposition 5. Let C be a binary CSP and let EC be the equivalent ECSP. C is restricted-
path consistent iff EC is restricted-path consistent in the extended sense above. Further-
more, C is path consistent iff EC is path consistent in the extended sense.

The above definition also captures k-RPC [13] when φ is a disjunction of all k or
fewer tuples of P0 with x = a. Since 2-fold consistency is incomparable in strength
with path consistency, a variant of the above definition employing 2-fold instead of
path consistency might be useful. 2-fold consistency has the advantage that only two
properties are considered at one time. Thus, in general, we can usefully vary the restricted
local consistency, as well as varying the degree of restrictedness through G.

If X-consistency is formulated independent of arity, and is local with regard to
properties, then restricted X-consistency also has these characteristics.
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9 Conclusion

This paper has developed a synthesis of constraint satisfaction and constraint solving
that is suitable for studying search problems that arise in constraint programming. The
framework is an extension of the CSP framework. The paper also identified require-
ments for local consistency conditions to be useful for constraint programming, notably
that locality should be based on properties. Although many local consistency conditions
developed for CSPs are inappropriate for such problems, other have been identified,
reformulated and generalized for the extended framework. In addition, a new local con-
sistency condition, k-fold consistency, has been proposed.

These local consistency conditions can be used to measure the degree of propaga-
tion provided by implementations of properties. It appears that arc consistency is the
strongest achievable consistency for independently-defined reactive implementations
of properties, such as current “global constraints”. However rewriting languages such
as CHR [19], Claire [9], and ELAN [10], and techniques like communication among
“global constraints” [3] have the potential to achieve stronger levels of consistency.
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Abstract. Modeling and programming tools for neighborhood search
often support invariants, i.e., data structures specified declaratively and
automatically maintained incrementally under changes. This paper con-
siders invariants for longest paths in directed acyclic graphs, a fundamen-
tal abstraction for many applications. It presents bounded incremental
algorithms for arc insertion and deletion which run in O(‖δ‖log‖δ‖) and
O(‖δ‖) respectively, where ‖δ‖ is a measure of the change in the input
and output. The paper also shows how to generalize the algorithm to
various classes of multiple insertions/deletions encountered in scheduling
applications. Preliminary experimental results show that the algorithms
behave well in practice.

1 Introduction

The last decades have seen significant progress in the design and implementa-
tion of modeling and programming tools for combinatorial optimization. His-
torically, the major focus of that research has been on systematic search (e.g.,
constraint satisfaction and mathematical programming), but recent years have
seen increased attention being devoted to local search and its variations (See,
for instance, [6,8,10,18,20,22]).

The design of modeling and programming tools for local search generally in-
volves abstractions to express the neighborhood and to encapsulate incremental
algorithms. Localizer [10] proposed the concept of invariants, which specifies,
in a declarative fashion, data structures that are then maintained incremen-
tally by the system. Invariants were used subsequently in [8,21]. More recently,
constraint-based approaches to local search (e.g., [3,7,11,22]) were proposed,
where constraints incrementally maintain properties such as their violation de-
grees. The Comet system [9] pushed this idea further and introduced the con-
cept of differential objects, which can be viewed as the counterpart of global
constraints for local search. Differentiable objects not only maintain properties
incrementally, but also make it possible to evaluate the effects of various ac-
tions (or moves) on these properties (e.g., swapping the values of two variables),
since such queries are often used to choose appropriate moves in local search al-
gorithms. In general, differentiable objects capture combinatorial substructures
of the application at hand and they were instrumental in finding novel, more
efficient, algorithms for several combinatorial optimization problems [9,12].

This paper was motivated by the study of differentiable objects for schedul-
ing applications, where it is often critical to maintain longest paths in directed
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acyclic graphs (DAG) in order to evaluate the makespan or, more generally, ear-
liest and latest completion times. These longest paths are then used in list or
bidirectional scheduling (e.g. [5]), in insertion heuristics (e.g., [23]), as well as in
neighborhood search (e.g., [1,5,13]). For instance, a key component of many of
these algorithms is the ability to update the makespan after an insertion or to
evaluate the impact of swapping two tasks on the makespan.

The main technical result of this paper are novel algorithms to maintain
longest paths in directed acyclic graphs under arc insertions and deletions. The
paper presents bounded incremental algorithms for these two operations which
run in time O(‖δ‖log‖δ‖) (insertion) and O(|δ‖) (deletion), where ‖δ‖ represents
the size of the changes in the input and output1. The results use the Bounded
Incremental Computation (BIC) model of Ramalingam and Reps [15]. The BIC
model differentiates more incremental algorithms than the traditional online
computation model, which only analyzes algorithms in terms of the input size.
The BIC model is particularly appropriate for heuristic and neighborhood search,
where the change in the output is often small compared to the total input size.
The paper also shows how to adapt these algorithms for important operations in
scheduling and gives preliminary experimental results indicating the practicality
of the algorithms.

The rest of the paper is structured as follows. Section 2 gives an overview of
the BIC model. Section 3 discusses the intuition behind the algorithms. Sections
4 and 5 describe the algorithms in detail and give their correctness proofs. Section
6 presents generalizations to the algorithms, as well as their applications to
scheduling. Section 7 gives some preliminary experimental results, Section 8
describes related work, while Section 9 concludes the paper.

2 Bounded Incremental Computation

At a high level of abstraction, incremental algorithms can be modelled as updat-
ing the output of a function subject to changes to its input. Let f be a function,
x be an input, and ε be a change on x. An incremental algorithm receives x,
f(x), and ε as inputs and transforms f(x) into f(x+ ε), where x+ ε denotes the
result of applying change ε on input x. For instance, x may be a directed graph
with a source, f may be a function which computes the length of the longest
paths from the source to all vertices, and ε may be the insertion of an arc a→ b
or the removal of such an arc. In general, it is useful in incremental algorithms
to maintain auxiliary information in order to compute f(x + ε). Provided that
the auxiliary information is polynomially related in size to the output, the prob-
lem can then viewed as computing an enhanced function f ′ incrementally. As a
consequence, we can safely ignore this issue without loss of generality and work
directly with f ′.

Various models for analyzing incremental algorithms have been proposed
and they include online algorithms, amortized analysis (e.g., [19]), and bounded
incremental computation (BIC) [15]. Many such models analyze the complexity
1 We give more precise bounds later in the paper when the terminology is introduced.
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of incremental algorithm in terms of the input size (e.g., x+ ε). The BIC model,
on the contrary, studies the behavior of incremental algorithms in terms of the
changes in both the input and output. As a consequence, the BIC model has a
finer granularity and can differentiate algorithms that other models cannot. In
addition, it is particularly appropriate in the context of neighborhood search,
where most of the neighborhood generally remain unchanged from one iteration
to the next. Analyzing incremental algorithms in terms of the neighborhood size
is thus not very informative in general.

Since this paper assumes the BIC model, let us describe its main concepts
more precisely. Let Δ(f, x, ε) denote the change between f(x) and f(x + ε) and
let δ(f, x, ε) denote ε+Δ(f, x, ε). For instance, in an incremental longest path al-
gorithm, Δ(f, x, ε) may represent the pairs (vertices,lenghts) which have changed
when ε (e.g., an arc insertion) is performed. Since, in general, the function f and
the change ε are clear from the context, we use Δ and δ for simplicity. The BIC
model analyzes the performance of an algorithm in terms of ‖δ‖, i.e., a measure
of the size of δ. The measure ‖δ‖ may actually be greater than |δ| for reasons
that will become clear shortly, but it is, in general, closely related.

An incremental algorithm is bounded if, for all input x and all allowed change
ε, its execution time depends only on δ, not the size of the entire input x + ε. It
is unbounded otherwise. Of course, many incremental algorithms are unbounded
(e.g., graph reachability) and hence the existence of a bounded algorithm is a
strong guarantee for incremental performance.

An example of bounded incremental algorithm is the shortest path algorithm
of Ramalingam and Reps [15], which runs in O(‖δ‖ log‖δ‖) for arc insertions
and deletions, when the arc weights are strictly positive. Here ‖δ‖ denotes the
number of affected vertices, i.e., the vertices whose shortest paths have changed,
and their adjacent arcs. It is natural to use ‖δ‖, and not |δ|, since any algorithm
would necessarily have to examine the adjacent vertices to an affected vertex in
order to determine if they are affected as well. For graphs with bounded degrees
(e.g., jobshop scheduling), this issue is of course moot.

This paper presents a bounded algorithm for incremental longest paths in a
DAG. The algorithm takes O(|δ| log|δ| + ‖δ‖) for an arc insertion and O(‖δ‖)
for arc deletion. The paper also discusses several generalizations of this result,
including the insertion/deletion of multiple arcs and the detection of cycles.

3 Intuition

We now give the high-level intuition behind the algorithms presented in this pa-
per and we explain why some simple and natural ideas do not lead to bounded
algorithms. We initially focus on graphs with strictly positive weights. This re-
striction is lifted in Section 6. Throughout the paper, we use directed acyclic
graphs with a source s. Given a DAG G = (V,A) and a vertex v ∈ V , we denote
by lp(G, v) the length of a longest path from the source of G to vertex v. The
projection of a graph G = (V,A) wrt its longest paths is the graph G|l = (V,A′)
where
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1. forall(v ∈ V ) do
2. degree(v) = |pred(G, v)|;
3. Q = {v | degree(v) = 0};
4. while Q �= ∅ do
5. v = dequeue(Q);
6. l(v) = max(w ∈ pred(G, v)) l(w) + d(w, v);
7. forall w ∈ succ(G, v) do
8. degree(w) = degree(w) − 1;
9. if degree(w) = 0 then
10. insert(Q, w);

Fig. 1. An Offline Algorithm for Longest Path in a DAG.
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Fig. 2. The Affected Set of an Insertion.

A′ = {x→ y | lp(G, x) + d(x, y) = lp(G, y)},

i.e., the subgraph consisting of all arcs belonging to longest paths.
Figure 1 presents an offline algorithm for longest paths in a DAG, which

runs in O(|V |+ |E|) for a directed acyclic graph G = (V,E). The key idea of the
algorithm is to consider the vertices in topological order, which guarantees that,
when a vertex is dequeued, its predecessors have the correct longest path values.
Lines 1-2 compute the initial degree of the vertices and Line 3 inserts the source
in the queue. Lines 4 and 5 dequeue a vertex and compute the length of its
longest path from the source. Lines 7 to 9 decrease the degrees of the successors
of v and insert them in the queue if all their predecessors have been updated,
i.e., when their degrees is 0.

Consider now the problem of updating the longest paths after insertion of an
arc a → b. To obtain a bounded algorithm, it is necessary to consider affected
vertices only, i.e., those vertices whose longest paths have changed. Figure 2
depicts such a situation. The affected vertices are shown in the grey area. Note
that vertex g is not affected, although one of its predecessors is. The reason is
that the new longest path coming from f is not longer than the longest path
from e.

Since the batch algorithm works in terms of degrees, it would be ideal to
apply the batch algorithm on the subgraph consisting of the affected vertices.
Unfortunately, as vertex g indicates, computing the set of affected vertices re-
quires the computation of longest paths.
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procedure insertArc(G,x → y)
begin
1. G = G ∪ {x → y};
2. if l(x) + d(x, y) > l(y) then
3. insert(Q, 〈l(y), y〉);
4. while Q �= ∅ do
5. v = extractMin(Q);
6. l(v) = max(x ∈ pred(G, v)) l(x) + d(x, v);
7. forall(w ∈ succ(G, v)) do
8 if l(v) + d(v, w) > l(w) then
9. if w /∈ Q then insert(Q, 〈l(w), w〉);
end

Fig. 3. A Preliminary Version of Procedure insertArc.

Another natural approach would be to maintain a topological ordering in-
crementally and to use this topological ordering to propagate the changes to the
longest paths. The use of degrees in the offline algorithm is, in fact, a simple way
to order the vertices topologically. This approach is appealling, since there ex-
ists a bounded incremental algorithm for priority ordering which can be used for
that purpose [2]. Unfortunately, this simple idea does not lead to a bounded al-
gorithm. Indeed, a change to the topological ordering does not necessarily entail
a change to the longest paths, so that the incremental algorithm for topological
ordering may consider non-affected vertices. For instance, if successive integers
are used as topological numbers, the arc insertion a→ b would change the topo-
logical number of g and its successors, although they are not affected vertices for
the longest paths. Similar examples can of course be produced for other choices
of topological numbers.

The key idea behind our insertion algorithm is the observation that the lengths
of the longest paths in the graph G− before the insertion are, in fact, a topological
order for the affected vertices, since the longest path of a vertex is necessarily
greater than the longest paths of its predecessors. As a consequence, it is possible
to adapt the offline algorithm in order to propagate the changes to the longest
paths using that topological ordering and to enqueue the successors of affected
vertices when the lengths of their longest paths are increasing. Such an algorithm
is shown in Figure 3. Let G− be the graph G at call time. Line 2 tests whether
the new arc x→ y changes the longest path of its destination y. If it does, then y
is inserted in the queue with l(y), its longest path in G−, as its key. The affected
vertices are computed and processed in lines 5-9. Line 5 pops the vertex v with
the smallest key and updates its longest paths. It then considers each successor
w of v and inserts w in the queue if its longest paths increases and it is not in
the queue already. The algorithm runs in time O(|δ| log|δ|+‖δ‖) using a priority
queue. It only uses insert and extractMin on the queue (not updateKey, which
updates a key in the queue) and each affected vertex enters the queue at most
once.

The key idea behind deletion is rather different. The algorithm relies on the
fact that the affected vertices can be identified without computing longest paths.
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Fig. 4. The Longest Path Projection G|l.

This is possible because it is sufficient to notice that the length of a longest path
decreases: it is not necessary to know by how much. More precisely, arc deletion
can be tought of as working on subgraphs G|l obtained by keeping only those
arcs that belong to longest paths. If a vertex v is affected and w is one of its
successors in G|l, vertex w is affected if v → w is the only arc incident to w in
G|l. By proceeding this way, all affected vertices can be computed in O(‖δ‖).
Figure 4 depicts the graph G|l from our previous example. Consider the deletion
of a → b which obviously affects b. Its successor c is also affected, since it has
only one incident arc in G|l. On the other hand, vertex e is not affected since
it has two incident arcs. Once the affected vertices are computed, arc deletion
can proceed simply by applying the offline algorithm on the affected vertices.
Of course, the above discussion indicates that G|l (or at least the degrees in
G|l) must be maintained incrementally. As we will see, maintaining G|l does not
increase the complexity of the algorithms. The rest of the paper presents these
algorithms in detail, together with the correctness proofs and some important
generalizations. Once again, we focus on strictly positive weigths, this restriction
being lifted in Section 6.

4 Insertion

Figure 5 depicts procedure insertArc. The main differences with the preliminary
version presented earlier are lines 7-8 and 12-15, which maintain the projected
graph. Lines 7-8 updates the projected graph for an affected vertex v, lines 12-13
adds an arc originating from an affected vertex to a non-affected vertex, while
lines 14-15 handle the case of the inserted arc. We now prove the correctness
of the algorithm. We first define formally the set of vertices affected by an arc
insertion.

Definition 1 (Affected Vertices). Let G = (V,A), x → y /∈ A, and G′ =
(V,A ∪ {x→ y}). The set of affected vertices by the insertion of x→ y in G is
defined as

AffectedI (G, x→ y) = {v ∈ V | lp(G′, v) > lp(G, v)}.
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procedure insertArc(G,x → y)
begin
1. G = G ∪ {x → y};
2. if l(x) + d(x, y) > l(y) then
3. insert(Q, 〈l(y), y〉);
4. while Q �= ∅ do
5. v = extractMin(Q);
6. l(v) = max(x ∈ pred(G, v)) l(x) + d(x, v);
7. Gl = Gl \ {x → v | x → v ∈ Gl};
8. Gl = Gl ∪ {x → v | x ∈ pred(G, v) ∧ l(x) + d(x, v) = l(v)};
9. forall(w ∈ succ(G, v)) do
10. if l(v) + d(v, w) > l(w) then
11. if w /∈ Q then insert(Q, 〈l(w), w〉);
12. else if l(v) + d(v, w) = l(w) then
13. Gl = Gl ∪ {v → w};
14. else if l(x) + d(x, y) = l(y) then
15. Gl = Gl ∪ {x → y};
end

Fig. 5. Procedure insertArc.

In the following, we abuse notations and remove the arguments of AffectedI when
they are clear from the context. The following proposition informally states that
a vertex is affected only if one of its predecessors is affected.

Proposition 1. Let G = (V,A), x→ y ∈ A, and G′ = (V,A∪{x→ y}). Then,

w ∈ AffectedI (G, x→ y)⇒ ∃v ∈ pred(G′, w) : lp(G′, v) + d(v, w) > lp(G,w).

The proposition makes it natural to define a binary relation affectI.

Definition 2. Let G = (V,A), x → y /∈ A, and G′ = (V,A ∪ {x → y}). The
binary relation affectI is defined as

affectI (v, w)⇔ lp(G′, v) + d(v, w) > lp(G,w) ∧ v ∈ pred(G′, w).

We use affectI∗ to denote the transitive closure of affectI.

The following proposition characterizes the affected vertices.

Proposition 2. Let G = (V,A), x → y /∈ A, G′ = (V,A ∪ {x → y}), and let
v ∈ AffectedI (G, x → y) (v �= y). Then, affectI ∗(y, v) holds, i.e., there exists a
path of affected vertices from y to v.

Definition 3 (Specification of insertArc). Let G = (V,A) be a DAG with
strictly positive weights, x → y /∈ A, and G′ = (V,A ∪ {x → y}). Procedure
insertArc(G, x→ y) satisfies the following specification:

Pre: ∀v ∈ V : l(v) = lp(G, v) ∧Gl = G|l.
Post: ∀v ∈ V : l(v) = lp(G′, v) ∧Gl = G′

|l.
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Theorem 1. Procedure insertArc is correct and terminates.

Proof. The proof relies on the observation that the algorithm partitions the
affected vertices in three sets

P = {x ∈ AffectedI | l(x) = lp(G′, x)};
Q = {x ∈ AffectedI | ∃v ∈ P : v → x & x /∈ P};
R = {x ∈ AffectedI | ∃v ∈ Q : affectI ∗(v, x) & x /∈ P ∪Q}

and that the following two invariants hold at line 4 in the algorithm

AffectedI = P ∪Q ∪R (1)
∀v ∈ P,∀x ∈ Q : lp(G, v) ≤ lp(G, x). (2)

Initially, P = ∅, Q = {y}, and R = AffectedI \ {y}, and the invariants hold
by Proposition 2. Assume now that the invariants hold at iteration i. We show
that lines 5-13 restore the invariant for iteration i + 1. Line 5 pops the vertex v
with the smallest value l(v) = lp(G, v) from Q. Since lp(G, v) > lp(G, p) for all
p ∈ pred(G, v), all its affected predecessors must be in P by Invariant (2) and
the fact that

∀y ∈ succ(G, x) : lp(G, x) < lp(G, y).

As a consequence, line 6 correctly computes l(v) = lp(G′, v). Each successor w
of v now belongs to Q∪R by Invariant (2) and lines 8-10 move these successors
of v from R to Q, since v ∈ P after line 6. Observe that no new vertices are
added to the union Q ∪R and hence Invariant (1) is restored. By selection of v
and since ∀y ∈ succ(G, x) : lp(G, x) < lp(G, y), Invariant (2) holds as well. On
termination, Q is empty, which entails that R is empty, and hence l(v) = lp(G′, v)
for all v ∈ V . The algorithm is also guaranteed to terminate, since the size of
Q ∪ R strictly decreases at each iteration. It is easy to verify that Gl is also
updated correctly, since it is recomputed for each affected vertex (lines 7-8) and
since arcs to successors of affected vertices are inserted in lines 13 and 15.

5 Arc Deletion

Figures 6 and 7 depict the algorithms to compute the deletion of an arc x→ y.
Function computeAffected in Figure 6 computes the set of affected vertices by
a deletion. It starts with the deleted arc x → y and works on the projected
graph. Each iteration dequeues an affected vertex and inserts its successors in
the queue if they are affected. A successor w is affected if all its predecessors
in the projected graph are affected. This is tested by removing from Gl all arcs
v → w, where v is affected. When a vertex has no predecessor in Gl, it is
affected. Procedure removeArc in Figure 7 is the main routine. If the deletion
of x → y affects y, the procedure computes the affected vertices using function
computeAffected. It then initializes the degrees of all affected vertices using
the affected vertices only. Indeed, the unaffected vertices can be considered as
having been processed, since the lengths of their longest paths did not change.
It then applies the traditional offline algorithm on the affected vertices. We now
formalize the various concepts and give the correctness proofs.
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function computeAffected(Gl, y)
begin
1. Q = {y};
2. A = ∅;
3. while Q �= ∅ do
4. u = dequeue(Q);
5. A = A ∪ {u};
6. forall(v ∈ succ(Gl, u)) do
7. Gl = Gl \ {u → v};
8. if pred(Gl, v) = ∅ then
9. insert(Q, v);
10. return A;
end

Fig. 6. Function computeAffected.

procedure removeArc(G,x → y)
begin
1. G = G \ {x → y};
2. if x → y ∈ Gl then
3. Gl = Gl \ {x → y};
4. if pred(Gl, y) = ∅ then
5, Affected = computeAffected(Gl, y);
6. forall(v ∈ Affected) do
7. degreelp(v) = |pred(G, v) ∩ Affected |;
8. Q = {v ∈ Affected | degreelp(v) = 0};
9. while Q �= ∅ do
10. v = dequeue(Q);
11. l(v) = max(x ∈ pred(G, v)) l(x) + d(x, v);
12. Gl = Gl ∪ {x → v | x ∈ pred(G, v) ∧ l(x) + d(x, v) = l(v)};
13. forall(w ∈ succ(G, v) ∩ Affected) do
14. degreelp(w) = degreelp(w) − 1;
15. if degreelp(w) = 0 then insert(Q, w);
end

Fig. 7. Procedure removeArc.

Definition 4 (Affected Vertices). Let G = (V,A), x → y ∈ A, and G′ =
(V,A \ {x → y}). The set of affected vertices by the deletion of x → y in G is
defined as

AffectedD(G, x→ y) = {v ∈ V | lp(G′, v) < lp(G, v)}.

As before, we abuse notations and remove the arguments of AffectedD when
they are clear from the context. We also denote by x→l y an arc in G|l and by
x →∗

l y the existence of a path from x to y in G|l. The following proposition is
the counterpart to Proposition 1 and states that a vertex is affected if and only
if all its predecessors in the projected graph are affected.
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Proposition 3. Let G = (V,A), x → y ∈ A, G′ = (V,A \ {x → y}), and let
v ∈ V such that v �= y. Vertex v is affected iff

∀p ∈ pred(G|l) : p ∈ AffectedD(G, x→ y).

Proof. By definition, v is affected iff lp(G′, v) < lp(G, v) which is equivalent to
∀p ∈ pred(G, v) : lp(G′, p) + d(p, v) < lp(G, v). Since

∀p ∈ pred(G, v) \ pred(G|l, v) : lp(G, p) + d(p, v) < lp(G, v)

and since lp(G′, p) ≤ lp(G, p), it follows that v is affected iff ∀p ∈ pred(G|l, v) :
lp(G′, p)+d(p, v) < lp(G, v) which is equivalent to ∀p ∈ pred(G|l, v) : lp(G′, p) <
lp(G, p). The result follows.

Corollary 1. Let G = (V,A), x→ y ∈ A, G′ = (V,A\{x→ y}), and let v ∈ V
such that v �= y. Vertex v is affected implies y →∗

l v.

Proof. Suppose that no such path exists. Then a longest path to v cannot go
through y. By Proposition 3, the source must be affected, which is impossible.

Definition 5 (Specification of computeAffected). Let G = (V,A) be a DAG
with strictly positive weights, x→ y ∈ A, G′ = (V,A\{x→ y}), and lp(G′, y) <
lp(G, y). Procedure computeAffected(G, x→ y) satisfies the specification:

Pre: Gl = G|l.
Post: Gl = G′

|l \ {v → w | v ∈ AffectedD};
the function returns AffectedD.

Theorem 2. Procedure computeAffected is correct and terminates.

Proof. The proof relies on the observation that the algorithm partitions the
affected vertices in three sets A, Q, and R, satisfying the invariants

v ∈ A⇒ v ∈ AffectedD (1)
v ∈ Q⇒ v ∈ AffectedD (2)
R = {w ∈ AffectedD \ (A ∪Q) | ∃v ∈ Q : v →∗

l v} (3)
Gl = Gl \ {v → w|v ∈ A ∪Q} (4).

in line 3 of the algorithm. Initially, A is empty, Q = {y}, and the invariants hold
by Corollary 1. By Invariant (2), lines 4 and 5 are correct. Moreover, if v is a
successor of u and the test on line 8 succeeds, by Invariant (4), all predecessors
of v must be in A ∪Q and are affected. By Proposition 3, v is affected and line
9 is correct. Moreover, all other affected vertices are still reachable from vertices
in Q. Indeed, if the only path to an affected vertex w not in A∪Q goes through
u, i.e., y →l . . . →l u →l s →l . . . →l w, then s is in Q (because of lines 8-9)
and s →∗

l w. On termination, Q is empty and A is the set of affected vertices.
The algorithm terminates, since |Q ∪R| strictly decreases at each iteration.

Definition 6 (Specification of removeArc). Let G = (V,A) be a DAG with
strictly positive weights, x → y ∈ A, and G′ = (V,A \ {x → y}). Procedure
removeArc(G, x→ y) satisfies the specification:
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procedure propagateChanges(G,S)
begin
1. Q = S;
2. while Q �= ∅ do
3. v = extractMin(Q);
4. l(v) = max(x ∈ pred(G, v)) l(x) + d(x, v);
5. forall(w ∈ succ(G, v)) do
6 if l(v) + d(v, w) �= l(w) then
7. if w /∈ Q then insert(Q, 〈l(w), w〉);
end

Fig. 8. Procedure propagateChanges.

Pre: ∀v ∈ V : l(v) = lp(G, v) ∧Gl = G|l.
Post: ∀v ∈ V : l(v) = lp(G′, v) ∧Gl = G′

|l.

Theorem 3. Procedure removeArc is correct and terminates.

Proof. The proof follows from Theorem 2 and the fact that the degrees for the
non-affected vertices are initialized correctly.

6 Generalizations and Applications to Scheduling

Multiple Insertions/Deletions. It is easy to generalize the insertion algorithm
to accommodate a set of arcs of the form {x → y1, . . . , x → yn}. Indeed, since
all these arcs have the same origin, the values lp(G, v) are still a valid topolog-
ical ordering for the affected vertices, since no new topological constraints are
introduced between the affected vertices. Such multiple insertions are typical
in list-scheduling and bidirectional search algorithms for jobshop scheduling [5].
This suggests that, as long as insertions/deletions do not change the topological
ordering, adaptations of Procedure insertArc may be used.

Consider for instance changing (increasing or decreasing) the weights of a set
of arcs of the form {x → y1, . . . , x → yn}, i.e., changing d(x, y1), . . . , d(x, yn).
Obviously, the lengths of longest paths lp(G, v) provide a topological ordering
of the graph, since the graph has not changed (only the weights). We can thus
apply an algorithm similar to insertArc in order to propagate the changes to
vertices in {y1, . . . , yn}. The core of such an algorithm is depicted in Figure 8
and is essentially similar to insertArc. The main difference is in line 6, which
tests whether the lengths have changed (i.e., have been increased or decreased).
This procedure may be called with S initialized to those vertices in {y1, . . . , yn}
which are affected.

A more complex use of multiple insertions/deletions arises in local search
algorithms for jobshop or openshop scheduling. Here a typical move consists of
swapping two vertices (or tasks) on a critical path which are executing on the
same machine. Observe that swapping two such vertices is guaranteed not to
create cycles [1] and that evaluating the impact of such moves on the makespan
for a restricted set of vertices is the basic operation of the successful tabu-search
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Fig. 9. Inverting Two Vertices on a Critical Path.

Fig. 10. A Graph with a Zero-Weight Arc and its Transformation.

algorithm of Nowicki [13]. The left side of Figure 9 depicts such a situation. In the
figure, pv, v, w, sw are executed on the machine, and sj(v) and sj(w) represent
the job successors of vertices v and w. Such a move seems rather complex.
However, observe that we can add an arc pv → w with weight d(pv, v) + d(v, w)
in constant time, since no vertex is affected. We can now remove v → w in
constant time since, again, no vertex is affected. Now the effect of swapping v and
w on the makespan is achieved simply by modifying the weights of pv → v and
pv → w appropriately. As a consequence, algorithm propagateChanges gives
us a bounded O(|δ|log|δ| + ‖δ‖) incremental algorithm for evaluating changes
to the makespan when swapping two critical vertices. Of course, none of the
above arc operations need to take place in practice. It is sufficient to apply
propagateChanges on the affected vertices. Similar reasoning can be applied
to many more situations, including moves in the neighborhood NB in [5] and
arc additions in insertion algorithms [23] for scheduling. Observe also that our
deletion algorithm supports multiple deletion naturally, since it only reasons on
the projected graph.

Zero Weight Arcs. Our algorithm naturally generalizes to the case of zero-weight
arcs. The difficulty here is that several vertices may have the same longest path
lengths, although they are topologically ordered. Consider, for instance, the left
side of Figure 10 which depicts parts of a DAG and assume that vertices c
and d have the same longest path lengths and are affected (due to some of
their predecessors). Vertices c and d are thus on the queue and d could be
dequeued before c, although it comes after c in the topological ordering. This
does not raise any major issue however. The intuition is to recognize that the
arc c → d can be replaced by adding arcs p → d for each arc p → c, and that
this transformation, whose result is shown in on the right side of Figure 10,
preserves the longest paths. After the transformation, observe that c and d are
topologically independent and can be processed in any order.
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Table 1. Experimental Evaluation of the Incremental Algorithms.

abz7 abz8 abz9 la31 la32 la33 la34 la35
Offline 88.39 87.41 87.32 157.05 159.36 156.75 166.41 155.68
Incr 1.93 1.94 1.94 3.40 3.44 3.39 3.45 3.45
Incr(i+d+i) 2.75 2.88 2.70 5.00 4.95 4.78 5.00 4.97

Negative Weight Arcs. Negative weights can be handled by a similar transfor-
mation. When an arc a → b has a negative weight, it must be replaced by arcs
of the form p → b for each predecessor p of a, whose weights must be reduced
appropriately. In scheduling applications, these negative arcs represent a gener-
alization of precedence constraints: they are not dynamic and generally shorter
than the duration of the tasks. Hence the transformation is simple and only
introduce a marginal increase in the size of the graph. Even if such insertions
are dynamic, they correspond to cases which are well-handled by our algorithm,
since they preserve the existing topological order of the affected vertices. The
bookkeeping is however more tedious, since a more complex mapping between
actual and virtual arcs must be maintained.

Cycle Detection. It is also easy to generalize our algorithm to detect cycles. Since
procedure insertArc guarantees that a vertex can only be processed once, it
suffices to mark the vertices popped from the queue. A cycle is detected if such
a vertex is about to be reinserted in the queue.

7 Experimental Results

Table 1 reports some preliminary experimental results on the practicality of the
algorithms. The only purpose of these experiments is to show that the algo-
rithms can be implemented efficiently (i.e., the constants are not prohibitive)
and may bring significant benefits. To validate this claim, we instrumented an
implementation of bidirectional search so that each arc addition is propagated
immediately. We then compared the behavior of a differentiable object with
offline and incremental algorithms. Table 1 reports the results of running the
resulting procedures on 10 longest paths simultaneously to minimize the impact
of other parts of the procedure. Line offline depicts the offline implementa-
tion, line Incr gives the results of the incremental implementation, and line
Incr(i+d+i) describes the results of the procedure testing deletion. In the in-
strumentation Incr(i+d+i), an arc addition is replaced by a sequence of three
operations (addition,deletion,addition) of the same arcs. Of course, the differen-
tiable object has no idea that it is being used in a bidirectional search procedure
and cannot perform any optimization. The results show the significant benefits
that may result from the incremental algorithm. For instance, la35 shows an
improvement of a factor 48 for a graph of 300 tasks. Note also the excellent
times Incr(i+d+i), where the times for the additional deletion and insertion
are amortized by other parts of the bidirectional implementation.
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8 Related Work

The bounded incremental computation (BID) model was formally introduced by
Ramalingam and Reps [15]. However, it was used as early as 1982 (by Reps again
[17]) to analyze algorithms for attribute grammars, as well as in several other
papers, primarily in the programming language community. Ramalingam and
Reps also proposed a bounded algorithm for maintaining shortest paths, which
was the inspiration for this research. Their algorithms are adaptations of Dijk-
stra’s shortest path algorithm, while ours are adaptations of topological sorting
for longest paths. Their insertArc procedure runs in O(|δ|log|δ| + ‖δ‖), but it
needs a Fibonacci heap, since it updates elements of the queue. Their deleteArc
procedure runs in O(|δ|log|δ|+ ‖δ‖), starts by computing the set of affected ver-
tices using a projected subgraph, and uses the completement of the projected
graph to initialize a Dijkstra-like second phase. Our deletion procedure runs in
O(‖δ‖) and uses an offline algorithm (based on degrees) on the subgraph, once
the affected vertices are computed. Reference [14] presents a grammar problem
which can be viewed as a generalization of the shortest path problem. Using
the transformations described earlier, it is possible to reduce longest paths to
this problem, since longest paths give rise to superior functions. The resulting
algorithm handles arbitrary multiple insertions/deletions. However, it runs in
O(‖δ‖log‖δ‖) and is more costly from a practical standpoint as well. Its addi-
tional complexity is not necessary for many applications, as we discussed earlier,
where our simpler algorithms are significantly faster and should be preferred.
Ramalingam [16] considers incremental feasibility of systems of difference con-
straints using incremental shortest path algorithms. These algorithms can be
applied to incremental feasibility of temporal constraint networks [4].

9 Conclusion

This paper considered invariants for longest paths in directed acyclic graphs,
a fundamental abstraction for programming tools supporting local search. It
presented bounded incremental algorithms for arc insertion and deletion which
run in O(|δ|log|δ|+ ‖δ‖) and O(‖δ‖) respectively, where ‖δ‖ is a measure of the
change in the input and output. The algorithms were also shown to be practical
experimentally and their generalizations to various scheduling applications were
also discussed. There are several open issues raised by this research. On the
one hand, it would be interesting to determine if there exists a O(‖δ‖) insertion
algorithm, since the incremental algorithm has an additional log factor compared
to the offline algorithm. On the other hand, it would be interesting to find out
an algorithm that can handle negative weights without graph transformations.
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Resolution and Constraint Satisfaction
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Abstract. We study two resolution-like refutation systems for finite-
domain constraint satisfaction problems, and the efficiency of these and
of common CSP algorithms. By comparing the relative strength of these
systems, we show that for instances with domain size d, backtracking
with 2-way branching is super-polynomially more powerful than back-
tracking with d-way branching. We compare these systems with propo-
sitional resolution, and show that every family of CNF formulas which
are hard for propositional resolution induces families of CSP instances
that are hard for most of the standard CSP algorithms in the literature.

1 Introduction

Algorithms for constraint satisfaction problems (CSPs) are generally described
in terms of a scheme which may be instantiated in many ways. For example, the
usual backtracking algorithm does not prescribe how to choose which variable
to branch on, leaving this detail up to implementers. Experimental studies of
algorithms examine the relative performance of implementations with particu-
lar choices for these details, and on particular benchmark instances. Another
approach is to consider the fundamental strengths or limitations of such algo-
rithms. Here we study the relative power of various techniques measured by how
efficiently they can refute a given unsatisfiable instance in the best circumstance
— that is, with optimal strategies. We consider a number of standard CSP algo-
rithms, and also two resolution-like proof systems which are useful for modeling
the reasoning used in these algorithms.

Since refutations are the basis for our study, formally we restrict our atten-
tion to unsatisfiable instances, but our study is equally motivated by performance
on satisfiable instances. For satisfiable instances backtracking with an optimal
branching strategy will find a solution without backtracks. However, any poly-
time computable branching strategy will make incorrect choices, necessitating
showing unsatisfiability of restricted instances during search. Indeed, the only
way a backtracking algorithm can generate a large search tree is if it does so
while showing unsatisfiability in this sense.

We begin by recalling a familiar example from propositional logic. Consider a
set φ of propositional clauses φ (henceforth simply called a formula). The lines of
a resolution derivation from φ are clauses, and the resolution inference rule allows
adding the line A∨B if we already have the lines A∨ x and B ∨ x. A resolution
derivation of the empty clause from φ is called a resolution refutation of φ. There

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 555–569, 2003.
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is a refutation of φ if and only if φ is unsatisfiable. A derivation is tree-like if any
derived line is used at most once to derive further lines. The smallest tree-like
resolution refutation of a formula is of the same size as the search tree constructed
by the backtracking algorithm (i.e., DLL) for SAT under an optimal branching
strategy. Since there are formulas which have short refutations but no short
tree-like refutations, we know that there are formulas which can be efficiently
proven unsatisfiable by some algorithm, but require exponential time for DLL
algorithms. The most effective current SAT solvers enhance DLL with “conflict
clause learning”, which provides more power than tree-like resolution but less
power than un-restricted resolution. See [5] for initial steps in characterizing just
how much power is gained.

1.1 CSP Refutations

Perhaps the most natural way to adapt the resolution idea to CSPs is to gen-
eralize the intuition of “exhausting the domain” of a variable. This leads to a
system we call Nogood Resolution (NG-RES for short), because the lines of
a refutation in this system are nogoods. A nogood for a CSP instance I is a
disjunction of the form (xi1 �= ai1 ∨ xi2 �= ai2 ∨ . . .), where each xi is a variable
and each ai a value from the domain. If the domain is {1, . . . , d}, then from a
collection of nogoods {(x �= 1 ∨ X1), (x �= 2 ∨ X2), . . . (x �= d ∨ Xd)}, we may
soundly infer (X1 ∨X2 ∨ . . .∨Xd), since every possible value for x is included in
one of the disjunctions. For CSP instance I we take as axioms the set of nogoods
corresponding to the partial assignments explicitly forbidden by constraints of
I, and there is an NG-RES derivation of the empty nogood from these if and
only if I is unsatisfiable. NG-RES is equivalent to a system introduced in [1]
and a special case of a general family of systems studied in [15].

NG-RES corresponds naturally to the usual backtracking algorithm for
CSPs, which we denote BT. To solve instance I, BT selects a variable x with
domain D = {1, . . . , d}, and for each a ∈ D recursively tries to satisfy I restricted
by setting x = a. Clearly I is unsatisfiable if and only if all d recursive calls fail.
Now, consider a BT search tree T for unsatisfiable instance I, and label each
leaf of T with a nogood that is in the axioms for I. Recursively label the internal
nodes with derived nogoods, by labeling each node N with the result of applying
the NG-RES derivation rule to the collection of nogoods labeling the children
of N. A simple induction shows that the root of T is labeled with the empty
nogood if and only if I is unsatisfiable. Moreover, the minimum number of lines
in a tree-like NG-RES refutation of I is exactly the number of recursive calls
made by BT under an optimal branching strategy.

We can compare the relative power of both algorithms and refutation proof
systems in a uniform way as follows. For any two proof systems A and B , we
say that A dominates B if for every instance I the smallest A-proof of I is
no larger than the smallest B-proof of I. We may also regard algorithms as
proof systems as follows. For any complete CSP algorithm A and unsatisfiable
instance I, we view a trace of the execution of A on input I as an A-proof that
I is unsatisfiable. Thus, we may say that BT dominates tree-like NG-RES,
and vice versa — as refutation systems they have equivalent power.
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Domination is a very strong but brittle property. We may easily find two proof
systems are of essentially the same power but neither dominates the other. As a
more robust measure, we say that A p-simulates B if we can always transform a
B-proof of an instance I into a A-proof of I in polynomial time. As an example
consider negative resolution, the restriction of propositional resolution in which,
at each application of the resolution rule, one of the two clauses used must
be negative (i.e., contain no positive literals). Certainly unrestricted resolution
can p-simulate negative resolution, as every negative resolution refutation is
also an unrestricted refutation. However, negative resolution cannot p-simulate
unrestricted resolution. In particular, Goerdt [13] showed that there is an infinite
family of formulas which have polynomially sized resolution refutations, but no
negative refutations of size less than nΩ(logn). We will later make us of these
same instances in analyzing CSP algorithms.

The algorithms we will consider are backtracking-based algorithms, including
the use of the following standard techniques: forward checking (FC), conflict-
directed backtracking (CBJ), arc-consistency filtering (AC), k-consistency en-
forcement (K-CON) and nogood learning. We denote combinations of tech-
niques with +, for example BT+FC denotes backtracking with forward check-
ing. In general, by this notation we mean any complete algorithm definable by the
given combination of methods. For example, by BT+AC, we denote the class of
algorithms which amount to backtracking plus any use of arc-consistency filter-
ing. Thus, BT which does not do any arc-consistency, and the algorithm MAC
which is BT modified by doing complete arc consistency processing at every
search node, are both included in BT+AC. BT+CBJ included backtrack-
ing plus any amount of back-jumping. The class of nogood learning schemes
we capture is all restrictions of the general scheme described in [19], and called
“backjump learning” in [12]. Here we denote this class Backjump Nogood Learn-
ing (BNL), and BT+BNL constitutes backtracking algorithms which use any
strategy for storing “backjump nogoods”. These are just the nogoods in the
NG-RES refutation corresponding to BT as described above, which are also
used in backjumping.

Baker [1] observes informally that (in our terminology) NG-RES dominates
BT, BT+CBJ, and dynamic backtracking (DBT). Here we extend Baker’s
observations, showing that:

1. Tree-like NG-RES also dominates BT+FC and BT+CBJ.
2. NG-RES dominates, in addition to those algorithms that tree-like

NG-RES dominates, the algorithms BT+AC, BT+BNL and
BT+K-CON. In fact it dominates any combination of these.

The first point illustrates that FC and CBJ add no additional power to BT,
in that everything they accomplish can be done by a good enough branching
strategy. FC is a simple but useful mechanism to enforce certain properties of
in the branching strategy. CBJ amounts to using a partial tree-search to decide
which variable to branch on next, and then remembering the results of that
search so that one branch does not have to be explored a second time. The
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second point gives us a method to characterize limitations of these methods,
in that they can never refute an instance using fewer steps than an optimal
NG-RES prover.

The main result in [1] implies that BT, BT+CBJ and DBT cannot p-
simulate NG-RES . In particular, an infinite family of instances {In} is exhib-
ited for which there are NG-RES proofs of size polynomial in n, but no BT,
BT+CBJ or DBT proofs of size less than nΩ(log n), where n the number of
variables. The instances {In} can be solved in polytime by algorithms which are
efficient on instances with bounded induced width (or tree-width) [1], such as
adaptive consistency [11] or BT with full backjump nogood learning [12].

Here, we exhibit an infinite family of instances MPHn, that are hard for all
the algorithms discussed so far, but are efficiently solved by making a “small”
modification to the backtracking algorithm.

1.2 2-Way vs K-Way Branching

Most papers in the CSP literature on backtracking algorithms consider the ver-
sion described above (BT), which might be described as backtracking with d-way
branching, where d denotes the domain size. Another version, available in many
commercial solvers such as Ilog and Eclipse, we call backtracking with 2-way
branching, here be denoted 2BT. In 2BT we have mutable domains for vari-
ables. To solve I, a variable x and a value a in the current domain of x are
selected, and two recursive calls are made. The first is to solve I with x set to
a, and the second with the value a removed from the domain of x. Clearly I is
unsatisfiable if and only if both modified instances are unsatisfiable.

There are intuitive arguments in favour of both versions. The argument for
superiority of 2-way branching is that, in the process of finding that there is no
solution to I with x = a, we may have acquired information indicating that the
best way to solve I is to branch on some variable other then x, rather than trying
other values for x. The argument for preferring k-way branching is roughly that
a priori it has a smaller space to search. If n is the number of variables, then
k-way backtracking requires time at most O(dn). Allowing 2-way branching is
essentially equivalent to transforming the CSP instance to a SAT instance with
dn variables, wherein the only obvious upper bound is 2dn >> dn.

It is easy to check that any strategy for k-way branching can be simulated
by a 2-way branching strategy with no loss of efficiency. But can any 2-way
branching strategy be efficiently simulated by some k-way strategy? We show
that, at least when we allow enhanced versions involving some learning strategy
the answer is no. In particular, we exhibit an infinite family of instances MPHn

with the following properties:

1. MPHn has no NG-RES refutations of size smaller than nΩ(logn).
2. The k-way branching algorithm BT, with optimal branching strategy, and

optimal use of FC, AC, BCJ, K-CON, and BNL cannot solve MPHn in
fewer than nΩ(logn) steps.

3. The 2-way branching algorithm 2BT, with a simple branching strategy, AC,
and a simple and efficient BNL strategy, can solve MPHn in time O(n3).
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Item 1 is obtained by showing that negative resolution efficiently simulates
NG-RES , and applying Goerdt’s result [13] that there are formulas MPHPn

which have no short negative refutations, but have short general refutations. Our
CSP family is chosen so the CNF encoding of MPHn is identical to MPHn,
and the claim follows. Item 2 follows from 1 plus NG-RES simulations of the
algorithms. For item 3, we exhibit such an algorthim.

1.3 C-RES and Hard Instances

If NG-RES cannot model the reasoning of CSP algorithms using 2-way branch-
ing, then we need a stronger proof system to do so. Such a system was suggested
to us by de Kleer’s study [10] showing a connection between CSP local con-
sistency methods and propositional resolution. We call this system “Constraint
Resolution”, or C-RES for short. For a CSP instance I, we let the axioms be
the clauses of a CNF formula CNF(I) encoding I, sometimes called the direct
encoding of I [22]. A line in a C-RES proof of I is a clause over the vari-
ables of CNF(I), and indeed a C-RES refutation is just a resolution refutation
of CNF(I). This system has been used or studied in [16,17,2,3,18]. In [16], it
was shown that C-RES dominates BT, BT+FC, BT+AC, BT+k-CON,
BT+BNL and DBT. In a little more detail:

1. Tree-like C-RES dominates both versions of backtracking, including those
enhanced by FC, AC, and CBJ. Tree-like C-RES p-simulates any algo-
rithm dominated or p-simulated by tree-like NG-RES .

2. C-RES dominates all algorithms dominated by tree-like C-RES , and all
of these with the addition of BNL and K-CON.

We will show that C-RES p-simulates NG-RES ; we have already pointed out
that NG-RES cannot p-simulate C-RES . It is natural to ask what the rela-
tionship is between our versions of CSP resolution and propositional resolution.
Not surprisingly, under natural translations between problem spaces C-RES is
of essentially the same power as propositional resolution. This can be shown by
simple simulation arguments.

There is a large and varied collection of instance families which are hard for
both C-RES and NG-RES , in the sense that the smallest refutations of these
instances are of exponential size. These instances must also require exponential
time for the algorithms we consider. Hard instances based on simple pigeon-hole
formulas were addressed in [16], and typical random CSP instances were shown
hard in [17,18,23]. Random instances of k-colouring were shown hard in [2]. The
simulations between C-RES and RES show that, corresponding to any family
of k-CNF formulas which require exponential-sized resolution refutations, there
is a k-ary boolean CSP family and also a binary CSP family with domain size k
that require exponential-sized C-RES and NG-RES refutation.

1.4 Outline

The remainder is organized as follows. Section 2 provides definitions and gives
an efficient C-RES simulation of NG-RES . Section 3 gives the separations be-
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tween NG-RES and C-RES , and between BT and 2BT. Section 4 discusses
simulations between propositional resolution and C-RES and construction of
hard instances for resolution-based CSP algorithms. Section 5 Gives NG-RES
simulations of CSP algorithms. Finally, Section 6 briefly discusses some impli-
cations and future work.

2 Preliminaries

A CSP instance I is a tuple I = 〈X,D,C〉. X is a set of variables, D a set
of domains, one for each variable in X. We will consider only the case where
all variables have the same domain, and call that domain D. This restriction
is purely a matter of convenience, and has no bearing on our results. C =
{C1, C2, . . . , Cm} is a set of constraints, where each Ci = 〈Si, Ri〉 is a pair in
which Si is a tuple of variables from X, and Ri is relation over D of arity |Si|.
That is, Ri ⊂ D|Si|. Since we can denote the set of variables of I by vars(I) or
even vars(C), we usually leave X implicit (i.e., we write I = 〈D,C〉).

Let I = 〈D,C〉 be a CSP instance. An assignment α for I is a function
α : vars(C)→ D mapping each variable to a domain value. A partial assignment
is an assignment which may be undefined at some variables: we denote that α is
undefined at x by α(x) = ⊥. If α is an assignment and S = 〈x1, . . . , xk〉 a tuple
of variables, then we write α(S) to denote 〈α(x1), . . . , α(xk)〉. An assignment
α for I satisfies a constraint 〈S,R〉 if α is defined at every variable in S, and
α(S) ∈ R, and satisfies I if it satisfies every constraint in C. Assignment α
violates a constraint C = 〈S,R〉 if α is defined at every variable in S, and
α(S) �∈ R.

A (CSP) literal is an expression x = a, where x is a variable and a a domain
element. We often write an assignment as a set of literals, i.e., α = {x = a, y = b}
is the assignment with α(x) = a, α(y) = b and α(z) = ⊥ for z different from
x, y. We can then write α ⊂ β to indicate that β is defined at all variables α is,
and possibly others. If α is an assignment for which α(x) = ⊥, then α;x = a is
the assignment such that α;x = a(y) = α(y) for y �= x, and α;x = a(x) = a.

2.1 Propositional Resolution and Proof Complexity

A literal is a propositional variable or its negation; A clause is a set of literals,
written as a comma-separated sequence of literals within parentheses. A formula
is a set of clauses. For a formula φ, we write vars(φ) for the set of variables
appearing in φ. A truth assignment τ for φ is a function τ : vars(φ) → {t, f}.
For simplicity, we extend τ to negative literals so for x ∈ vars(φ), τ(x) = t ↔
τ(x) = f . Assignment τ satisfies clause C if τ(p) = t for at least one literal in
C, and satisfies φ if is satisfies every clause of φ.

The propositional resolution rule allows us to infer a clause (X,Y ), where X
and Y denote arbitrary sets of literals, from two clauses (X,x) and (Y, x). We
say that we resolve (X,x) and (Y, x), on x, and that (X,Y ) is the resolvent. A
resolution derivation of a clause C from a set of clauses φ is a sequence C0, . . . Cm
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of clauses, where each clause Ci is either an element of φ or is derived by the
resolution rule from two clauses Cj , Ck, for j, k < i, and Cm = C. The derivation
is of length or size m. A resolution derivation of the empty clause (denoted �)
from φ is called a resolution refutation of φ. We will denote this proof system by
RES . RES is a sound and complete refutation system, meaning that there is
a refutation of a formula φ if and only if φ is unsatisfiable. We will use “proof”
and “refutation” interchangeably.

For any RES derivation π, the graph of π is the directed acyclic graph (DAG)
Gπ

def= 〈V,E〉 where V is the set of clauses of π and E is the set of ordered pairs
(u, v) from V such that v is derived in π by resolving u with w, for some w in V .
We will extend these notions to the other proof systems we use in the natural
way. The restriction of proof system P to proofs whose graphs are trees is called
tree-like P .

Intuitively, a proof is a string which can be efficiently inspected, after which
the reader is convinced of some proposition. Adapting the formalization of a
proof system from [9], we formally define a refutation system P for a CSP to be
a poly-time function P whose range is the set of unsatisfiable CSP instances. A
string π such that P(π) = I is a P-proof of I. An algorithm which computes
the function P is a verifier for the proof system. For any proof system P , we
define the P-complexity of an instance I to be the minimum size of any P-proof
of I, which we denote by P(φ).

We may associate to any complete CSP algorithm A a refutation system A,
where the trace of A on unsatisfiable instance I is a A-proof of I. We say that a
proof system A dominates proof system B if for every instance I, A(I) ≤ B(I).
We say that proof system A p-simulates proof system B if there is a polynomial-
time computable function f such that for every unsatisfiable instance I and every
A-proof π of I, f(π) is a B-proof of I.

2.2 Nogood Resolution

A nogood is a set of CSP literals in which no variable occurs in two literals.
Note there is a 1-1 correspondence between partial assignments and nogoods.
For clarity, we write η(α) for a nogood, where α is an assignment. The initial
nogoods of an instance I = 〈D,C〉 is the set

Init(I) = {η(α) : 〈S,R〉 ∈ CI and S = vars(α) and α(S) �∈ R}

The nogood resolution rule allows the following inference of a nogood from a
set of nogoods, provided that the domain of x is {1, 2, . . . d}:

η(x=1, N1)
η(x=2, N2)

...
η(x=d, Nk)

x ∈ {1, . . . , d}
η(N1, N2, . . . Nk)
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A nogood derivation of a nogood N from a set of nogoods Γ for instance I with
domain A = {1, 2, . . . d}, is a sequence of nogoods, N0, . . . Nm, where each nogood
Ni is either an element of Γ or is derived by the nogood resolution rule from a set
of nogoods Ni1 , Ni2 , . . . , Nik

, where each ij < i, and Nm = N . The derivation is
of length or size m. A nogood resolution refutation of I is a nogood resolution
derivation of the empty nogood η() = � from the set of initial nogoods of I.
We denote the nogood resolution system by NG-RES . NG-RES is a sound
and complete refutation system. That is, I has an NG-RES refutation if and
only if I is unsatisfiable. Often, we will identify a CSP instance I with its set
of initial nogoods Init(I), together with its domain. We will henceforth always
assume the domain is D = [d] = {1, . . . , d}.

Example 1. Let G be a graph with vertices {a, b, c} and edges {(a, b), (b, c), (a, c)},
and let R �= be the binary relation on {1, 2} such that let R �=(x, y)⇔ x �= y. Let
I be the CSP instance I = 〈{1, 2}, 〈〈a, b〉, R�=〉, 〈〈b, c〉, R�=〉, 〈〈a, c〉, R�=〉〉. G is
2-colourable if and only if I is satisfiable. The set of initial nogoods of I is
{η(a = 1, b = 1), η(a = 1, c = 1), η(b = 1, c = 1), η(a = 2, b = 2), η(a = 2, c =
2), η(b = 2, c = 2)} and the following tree-like NG-RES refutation of I demon-
strates that G is not 2-colourable.

η(b = 1, a = 1)
η(b = 2, c = 2)
η(a = 1, c = 2)

η(b = 1, c = 1)
η(b = 2, a = 2)
η(a = 2, c = 1)

����
η(a = 1, c = 2)
η(a = 2, c = 2)

η(c = 2)

����
η(a = 1, c = 1)
η(a = 2, c = 1)

η(c = 1)

�����
η(c = 1)

�������

η(c = 2)
η()

2.3 C-RES

For any CSP instance I = 〈D,C〉, we define the associated formula CNF(I) as
follows. For each CSP variable x ∈ vars(I) we have d propositional variables, one
for each value x may take. We write x :a for the propositional variable intended to
assert that CSP variable x is assigned value a. For each CSP variable x, CNF(I)
has a domain clause asserting that x must take some value from A. For each
constraint C = 〈S,R〉 of I, and each partial assignment α defined at exactly the
variables in S, if α violates C then CNF(I) has a conflict clause which forbids
the corresponding assignment. There is a one-to-one correspondence between
the conflict clauses in CNF(I) and the initial nogoods of I. So the propositional
formula associated with I is

CNF(I) = {{v :a : a ∈ D} : v ∈ vars(I)} ∪ {{x :a : x = a ∈ α} : η(α) ∈ Init(I)}

CNF(I) is satisfiable if and only if I is satisfiable. Remark: It is natural to
add clauses that enforce that a CSP variable be given at most one value, as well
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as those that say it need at least one. The presence of these clauses has no effect
on our results, so we leave them out for simplicity.

We define a constraint resolution refutation (C-RES refutation) for any CSP
instance I to be a propositional resolution (RES) refutation of the formula
CNF(I). Soundness and refutational completeness of C-RES follow from the
soundness and completeness of RES , together with the correctness of CNF(I).

2.4 Negative C-RES Simulation of NG-RES

Here we show how to efficiently simulate NG-RES with C-RES as follows.

Proposition 1. For any n-variable CSP instance I with domain D,

C-RES(I) ≤ |D|NG-RES(I) + n.

Proof. Let π be an NG-RES refutation of I. Define a mapping �� from nogoods
to clauses such that, for any nogood N ,

(x=a) ∈ N ⇐⇒ x :a ∈ �N�.

Construct a C-RES refutation of I (i.e., a propositional resolution refutation
of CNF(I)) as follows. First, modify π by replacing each nogood N of π with
�N�. Then, for each inference step, which now looks like this;

(x :a1, X1)
(x :a2, X2)

...
(x :ak, Xk)

(X1, X2 . . . , Xk)

re-arrange the clauses together with the domain clause (x :a1, x :a2, . . . , x :ak),
to obtain the resolution derivation of Figure 1. The new construction is clearly a
propositional resolution refutation, and since each leaf is an element of CNF(I),
it is a C-RES refutation of I. Moreover, it is a negative resolution refutation,
since the clauses corresponding to nogoods are all negative clauses. For each
derived nogood N in π, the new refutation has |D| derived clauses. There must
also be one occurrence of each of the n domain clauses, giving the stated size
bound.

3 Separating K-Way and 2-Way Branching

Theorem 1. There is an infinite family of CSP instances MPHn, one for each
integer n, such that

1. C-RES(MPHn) = O(n3),
2. NG-RES(MPHn) = nΩ(log n).
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(x :a1, x :a2, . . . , x :ak) (x :a1, X1)

(x :a2, . . . , x :ak, X1) (x :a2, X2)

(x :a3, . . . , X1, X2)
. . .

(x :ak, X1, . . . , Xk−1) (x :ak, Xk)

(X1, X2 . . . , Xk)

Fig. 1. C-RES simulation of an NG-RES step

We construct the family MPHn as follows. Fix n ∈ N so that m = �log2 n� is
even. Let the domain be D = [m] = {1, . . .m}. The variable set is vars(MPHn)=
{x0, x1, . . . , xn−1}. Define Rm,r = {〈x, y〉 : x, y ∈ [m], with x, y not both r}.
The constraint set of MPHn is

CMPHn =
⋃

r∈[m]

⎧⎨⎩〈〈xi, xj〉, Rm,r〉 :
k ∈ {b2r : 0 ≤ b < n/(2r)},
k ≤ i < k + 2r−1,
k + 2r−1 ≤ j < k + 2r

⎫⎬⎭
These instances are, more intuitively, as follows: We have n variables, each with
domain of size m = log2 n. Variables x1, x2 may not both have value 1, x3 and x4
may not both be 1, x5 and x6 may not both be 1, etc. If any variable in {x1, x2}
has value 2, then no variable in {x3, x4} may have value 2, and similarly for the
pairs of sets {x5, x6}, {x7, x8}, etc. For value 3, the constraints are on pairs of
sets of 4 variables, and so on. Finally, if any variable in {x1, . . . , xn/2} has value
m, then no variable in {x(n/2)+1, . . . , xn} may, and vice versa.

Theorem 1, follows with only a little care from the proof of the main result in
[13], where Goerdt defines an infinite family of CNF formulas, denoted MPHPn,
and proves the following.

Theorem 2 (Goerdt [13]).RES(MPHPn) = O(n3), but N-RES(MPHPn)
= nΩ(log n).

Proof. (Theorem 1) The formula CNF(MPHn) associated to our CSP instance
MPHn is identical to the formula MPHPn in [13]. The C-RES simulation
we of NG-RES we give in proving Proposition 1 is a negative derivation, so
it follows that MPHn has no NG-RES refutations of size less than nΩ(log n).
Trivially, MPHn has size O(n3) C-RES refutations.

Theorem 3. The family of CSP instances MPHn satisfies

1. MPHn cannot be solved with BT in less than nΩ(log n) time, even with an
optimal branching strategy and optimal use of any or all of FC, AC, CBJ,
K-CON and BNL, but

2. MPHn can be solved in time O(n3) by 2BT, using a simple branching strat-
egy, AC, and a simple and efficient BNL learning scheme.
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Proof. Given Theorem 1, the lower bound requires only that NG-RES effi-
ciently simulates the algorithms addressed. We give these simulations in Sec-
tion 5. To show the upper bound, we exhibit such an algorithm.

It is important to understand that AC, for example, does exactly the same
thing when used to enhance BT or 2BT, but learning is fundamentally different.
When learning while executing BT, we construct a nogood from a subset of the
current partial assignment that BT is exploring, which it is now known cannot
be extended to a satisfying assignment. While executing 2BT, the current as-
signment involves both assignments of values to variables and “non-assignments”
of values to variables. Thus, we must learn “generalized nogoods”, in which we
can include both claims of the form xi �= ai and claims of the form xj = aj .

The branching strategy for our algorithm is: Select a maximally constrained
value amongst all variables and values, and set if first to maximize the number
of values removed from other domains (that is, in the manner of fail-first). We
assume AC is executed after every assignment made by 2BT. The learning
strategy is: Derive all back-jump clauses but record only those which are of size
one or are strictly positive (whereas standard nogoods are strictly negative).

Let S(n) denote the number of steps executed by the algorithm on MPHn.
At the root, the algorithm chooses value d from some variable. Since the instance
is symmetric with respect to variables, we may assume it is variable x1. We set
x1 = d and then run and arc consistency algorithm, which removes the value d
from the domains of all variables x1+n/2, . . . xn. The value d is now unconstrained
in variables x2, . . . xn/2 (since their only constraints are now satisfied). So, we
are left with an instance of MPHn/2 on variables x1+n/2, . . . xn, which we solve
recursively in time S(n/2). It is not hard to verify that in doing this the algorithm
will learn the positive nogood that expresses (x1+n/2 ∨ . . . ∨ xn).

Now we to search the other branch, beginning by setting x1 �= d. The most
constrained values are now d in variables x2, . . . xn/2. (We don’t count learned
nogoods for the branching heuristic, and because x1 �= d, each value d for vari-
ables x1+n/2, . . . xn now has one less constraint.) So we now branch on d for some
xi with i ∈ {2, . . . n/2}. After setting xi = d, arc consistency removes d from
the domains of x1+n/2, . . . xn, and falsifies the learned clause. Setting xi �= d, we
repeat the same argument for value d of the remaining variables in x2, . . . xn/2,
and eventually obtain an instance of MPHn/2 on variables x1, . . . xn/2. The to-
tal time (including allowing n2 time to compute the branching heuristic), can
be seen to be:

S(n) ≤ 2S(n/1) + O(n2) ≤ O(n3)

The algorithm also seems to run in O(n3) time with the slightly more nat-
ural branching strategy: branch the most constraint value of any variable with
smallest domain. However, this version is less amenable to analysis.

4 C-RES vs RES and Hard Instances

The simplest transformation from k-SAT to CSP involves having the same set of
variables, domain size 2, and a suitable k-ary constraint corresponding to each
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clause. We call this the direct translation of k-SAT to CSP. When we restrict
the CSPs we consider to those which are the direct translation of CNF formulas,
we find that RES and C-RES have almost the same power.

Proposition 2. If Φ is a set of CNF formulas, and I is the set of CSP instances
that are the direct translation of the instances of Φ to CSP, then

C-RES(I) ≥ RES(Φ).

The CSP instances resulting from the direct translation from CNF formulas
all have domain size 2, and have (some significant portion of) constraints of arity
larger than 2. We give a second translation from SAT to CSP, which generates
binary CSP instances with large domain size, and leaves resolution complexity
unaltered. For simplicity, we restrict our attention to k-CNF formulas, in which
every clause has the same number of literals.

For any k-CNF formula φ, we define the binary translation of φ to CSP to
be the instance I constructed as follows. Let n be the number of variables and
m the number of clauses of φ. The domain of I is D = [k] = {1, . . . k}, The
constraint set is constructed as follows. There is a variable xi for each clause
Ci of φ. For each pair of clauses Ci,Cj , such that there is a literal p in Ci and
its negation p in Cj , there is a constraint 〈〈xi, xj〉, Ri,j〉. The rth value in the
domain of xi is intended to correspond to the rth literal of Ci (under an arbitrary
but fixed ordering). So if p is the rth literal in Ci, and p is the sth literal in Cj ,
then I must have the initial nogood η(xi = r, xj = s). The constraint relations
Ri,j are chosen so that I has the initial nogoods on xi and xj .

Proposition 3. For any k-CNF formula φ, if I is the binary translation of φ
to CSP, then C-RES(I) ≥ RES(φ)

Thus, any set of CNF formulas for which exponential resolution lower bounds
hold translates directly into two sets of CSP instances for which exponential
C-RES and NG-RES lower bounds also hold. There are many examples of
hard formulas in the literature, including [14,20,8,21,4,6] among others.

5 Algorithm Simulations

Proposition 4. BT is dominated by tree-like NG-RES.

Proposition 5. CBJ is dominated by tree-like NG-RES.

Proof. Execute BT and simultaneously construct a tree-like NG-RES as de-
scribed for BT, but with one subtlety. When assigning values to variable a, exe-
cute the recursive calls for each a ∈ D in some order. After each returns, inspect
the nogood obtained at the corresponding child node. If it does not mention the
branching variable x, make no further recursive calls, label the current node with
that same nogood, and immediately return “unsatisfiable”. If it does mention
x, continue with the next recursive call. If all d recursive calls are made, resolve
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together the d nogoods from the children as in BT. An easy induction shows
that the set of variables in the conflict set computed in the usual description of
conflict-directed backjumping is the same as the set of variables in the nogood
derived at that corresponding node.

Proposition 6. BT+BNL is dominated by NG-RES.

Proof. (Sketch) The nogoods constructed by the caching schemes, as just de-
scribed, are exactly those derived according to our scheme for constructing refu-
tations corresponding to BT or CBJ executions, so we execute this nogood
caching strategy merely by adding any chosen derived nogood to the cache.

Proposition 7. FC is dominated by tree-like NG-RES.

Proof. We simulate the domain reductions performed by FC as follows. For each
variable x we maintain an array C(x) = [η1, . . . , ηk]. Initially, each ηi has the
special value ◦. If the algorithm extends assignment α to α;x = a, and as a
result deletes the value b from the domain of variable y, then η(x = a, y = b) is
an initial nogood, and we set C(x)[a] = η(x = a, y = b). (Upon backtracking,
b is returned to the domain for y, and C(x)[a] is reset to ◦.) If the domain of
a variable x becomes empty, then the structure C(x) contains a collection of
nogoods C(x) = [η(x = 1, α1), . . . , η(x = i, αk)] which can be resolved on x
producing η(α1, . . . , αk). It can then return immediately, no matter what the
current branching variable is. At a node where we branch on x, and the domain
of x has been reduced to {1, . . . , r} from {1, . . . , r, . . . , d}, the algorithm branches
only on values 1, . . . r for x. To derive the required nogood for this node, collect
the nogoods returned by the r recursive calls, together with the k − r nogoods
stored in C(x), and then apply the resolution rule.

5.1 k-Consistency
A CSP instance is called k-consistent if every partial assignment to k−1 variables
that does not violate any constraint can be extended to any kth variable without
violating any constraint. Transforming an instance that is not k-consistent into
an equivalent instance that is k-consistent is called k-consistency processing,
or k-consistency enforcement. The “default” algorithm for doing this, which we
denote KC, is as follows. For any assignment α for k− 1 variables, and any kth

variable y, test all assignments that extend α to y. If all violate some constraint,
then α cannot be extended to a satisfying assignment. Modify I by (in our
terms) adding η(α) to its set of initial nogoods.

Proposition 8. BT+K-CON is dominated by NG-RES.

Proof. If the conditions for k-consistency processing to add the size k−1 nogood
η(α) are satisfied, then α does not violate any initial nogood of I, but there is
some kth variable x with α(x) = ⊥ such that, for every value a ∈ D, the extension
of α to α;x = a violates some initial nogood of I. That is, for every a ∈ D, there
is a initial nogood η(α;x = a). We may resolve all of these conflicts together on
x, obtaining the new nogood η(α), and we are done.
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Proposition 9. BT+AC, when arc-consistency if computed by applying the
usual Revise procedure, is dominated by NG-RES.

Proof. Standard AC algorithms are based on repeated application the procedure
called Revise, which takes a pair of variables and a value for the first variable,
and removes that value from the domain of the first variable if there is no support
for (no value consistent with it) it at the second variable. We model domain
deletion done by Revise in essentially the same way we did for FC. If Revise
deletes a value a from the domain of variable x, because there is no support
for it at y, then for every value b in the domain of y there is an initial nogood
η(x = a, y = b). If the domain of y has not been reduced, we can resolve all of
these together to obtain η(x = a), modeling the removal of a from the domain
of x. If the domain of y has have values removed, for example by previous arc-
consistency processing, then for each value that was removed we have a collection
of nogoods “hitting” that value, which were collected at the time it was removed.
We can resolve all of these together to obtain a new nogood excluding x = a.

6 Discussion

The main conclusion about practical CSP algorithms is that, at least when
learning is involved, 2-way branching may be substantially better than d-way
branching, and should never be much worse. Since learning is essential in first-
rate SAT solvers, we expect it will also soon be considered essential in first-rate
CSP solvers. A fair experimental comparison of the two versions of backtrack-
ing is worth carrying out, but is not necessarily easy to design, as it requires
understanding “corresponding” branching strategies.

The most obvious next step in this line of work is to improve the sepa-
ration between NG-RES and C-RES (and thus between the two branching
strategies) from super-polynomial to exponential. Recently the separation be-
tween negative resolution and unrestricted resolution has been improved from
Goerdt’s nlog n to 2n/ log n [7]. The same separation almost certainly holds for
NG-RES and C-RES , but the proof method does not carry over.
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Abstract. This work introduces a combinatorial optimization problem
called Mars Express Memory Dumping Problem (Mex-Mdp), which
arises in the European Space Agency program Mars Express. It con-
cerns the generation of high quality schedules for the spacecraft mem-
ory downlink problem. Mex-Mdp is an NP-hard combinatorial problem
characterized by several kinds of constraints, such as on-board memory
capacity, limited communication windows over the downlink channel,
deadlines and ready times on the observation activities. The contribu-
tion of this paper is twofold: on one hand it provides a CSP model of a
real problem, and on the other it presents a set of metaheuristic strate-
gies based on local and randomized search which are built around the
constraint-based model of the problem. The algorithms are evaluated on
a benchmark set distilled from ESA documentation and the results are
compared against a lower bound of the objective function.

1 Introduction

Tackling hard optimization problems by means of metaheuristic strategies has
became a pervasive technique not only in Constraint Programming, but also in
many Artificial Intelligence research areas. In solving such problems, metaheuris-
tics bridge the gaps between contrasting needs, such as anytime availability of a
solution, bounded computational time and solution quality.

This paper describes, analyzes and models through the CSP paradigm a space
mission planning problem within the ESA program Mars-Express which has
launched a spacecraft toward Mars on June 2, 2003. This problem, referred to as
the Mars Express Memory Dumping Problem (Mex-Mdp), is aimed at syn-
thesizing sequences of on-board memory dumps during the space probe’s regular
scientific activities around Mars. Any sequence of dump operations should satisfy
a number of complex constraints such as limited availability of communication
windows, maximal data rate in communication links, operation ready times and
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bounded on-board packet store capacities. The results we present are spawned
from a study [1] aimed at demonstrating the effectiveness of Artificial Intelli-
gence and constraint-based techniques in mission planning domains like Mars
Express.

Space domains are very rich of challenging optimization problems. Similar
problems to Mex-Mdp arise also in satellite domains. Some of the previous
works, see for example [2,3], confirm the complexity of the domain constraints
and show also how not all the best solutions are obtained by a single solv-
ing technique. Different needs —and, dually, different trade-offs between quality
and computational times— are addressed by different algorithms or combina-
tions of solving techniques in a metaheuristic schema. In a similar light, this
work proposes a quite general constraint-based model for the on-board space-
craft memory scenario and a portfolio of heuristic strategies for Mex-Mdp. These
heuristic strategies, which are defined around the CSP formulation, join knowl-
edge from different research areas such as Constraint Reasoning, Local Search
and Randomized Algorithms [4,5].

We will begin by describing the details of the Mex-Mdp problem, and con-
tinue with an analysis of its complexity (Section 2). Section 3 contains the de-
scription of the CSP model, whereas Sections 4 and 5 describe and experimen-
tally evaluate a portfolio of solving methods. We conclude with some comments
about the results obtained, and more in general, about the experience described
in this work.

2 The Mars Express Memory Dumping Problem

Inside the complex domain of a space mission like Mars-Express we have
been concerned with the issue of data transmission to Earth. A space probe
continuously produces a large amount of data from both scientific observations
and house-keeping. Because Mars-Express is a single pointing probe, it points
either to Mars (data production) or to Earth (data downlink). As a consequence
data are first collected in the finite capacity on-board memory. The problem
solving goal consists in synthesizing spacecraft operations for emptying as much
as possible the on-board memory during downlink time intervals, in order to
allow the spacecraft to save new information without losing previous data.

Different constraints are conflicting with the data preservation. Besides the
communication channel availability there are different transmission rates to be
taken into account. Additional constraints rise from the specific use of the on-
board memory, which is subdivided into different memory banks (or packet
stores), each of them having a finite capacity. For each piece of information
produced inside the probe, a packet store is also defined in which such data
should be stored. Different data are stored in a sequential way and the packet
stores are managed cyclically. As a consequence, if the memory is full and new
data becomes available, the stored data are lost.

We have formalized this problem as the Mars Express Memory Dumping
Problem (Mex-Mdp) whose different components are described in the rest of
this section.
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Fig. 1. On-board telemetry flow. Telemetry (TM) data produced on board are stored
on the on board memory (SSMM) subdivided into packet stores. Memory stores are
then downloaded with different dumps that transfer the data to the ground. The figure
contains also the real-time communication path to Earth that is not considered in this
study.

Problem Description. The basic ontological objects of the Mex-Mdp domain
are either resources or activities: resources represent domain subsystems able to
give services; activities model tasks to be executed using resources over time. A
set of constraints defines needed relationships between the two types of objects.
Figure 1 shows a sketch of the Mars Express modules that are relevant to
Mex-Mdp. Three kinds of resources are present in Mex-Mdp:

– Packet Stores. The on-board memory (Solid State Mass Memory or SSMM)
is subdivided into a set of separated packet stores pki, i.e. they cannot ex-
change data among them. Each one has a fixed capacity ci and a priority
value pi. Each packet store can be seen as a file of a given maximal size that
is managed cyclically.

– On-Board Payloads. An on-board payload can be seen as a finite state ma-
chine in which each state has a different behavior in generating observation
data. In particular, each possible state of the payload corresponds to a dif-
ferent generation data rate.

– Communication Channels. These resources are characterized by a set of sep-
arated communication windows identifying intervals of time for downlink.
Each temporal window has a constant data rate1.

Activities describe how the resources can be used. Three types are relevant in
Mex-Mdp: payload operations, memory dumps and continuous data streams.
Each activity ai has an associated execution interval, which is identified by its
start time s(ai) and end time e(ai).

– Payload Operations. A payload operation pori corresponds to a scientific
observation. According to the Mars Express operational modalities each

1 It will be 0 in case of no-transmission window.
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observation generates an amount of data that is decomposed into different
store operations, and distributed over the set of available packet stores.

– Memory Dumps. A memory dump operation mdi transfers a set of data from
a packet store to a transfer device (Transfer Frame Generator - TFG). Those
activities represent the transmission of the data through the communication
channel.

– Continuous Data Streams. The particular case of the continuous data stream
operations cdsi is such that s(cdsi) = 0 and e(cdsi) = +∞. Each data stream
is given a packet store. This activity represents a continuous generation of
data with a fixed average data rate. We choose to model also a cdsi as a
periodic sequence of store operations.

Each type of activity is characterized by a particular set of resource requirements
and constraints. Given these basic domain entities, let us now define the Mex-
Mdp. A set of scientific observations, POR = {por1, por2, . . . , porn} and a set of
housekeeping productions, CDS = {cds1, cds2, . . . , cdsm}, are both reduced to
a set of store operations on the on-board memory. A solution to a Mex-Mdp,
is a set of dumping operations S = {md1,md2, . . . ,mds} such that:

– the whole set of data are “available” on ground within the considered tem-
poral horizon H = [0, H].

– Each dump operation starts after the generation of the corresponding data.
For each packet store, the data are moved through the communication chan-
nel according to a FIFO policy.

– Each dump activity, mdi, is executed within an assigned time window wj

which has a constant data rate rj . Moreover, dump operations cannot recip-
rocally overlap.

– At each instant t ∈ H, the amount of data stored in each packet store pki

has to be less or equal to the packet store capacity ci (i.e., overwriting is not
allowed).

The additional goal is to find high quality solutions with respect to a set of
evaluation parameters: a high quality plan delivers all the stored data as soon
as possible according to a definite policy or objective function. A relevant piece
of information to define an objective function is the turnover time of a payload
operation pori:

tt(pori) = del(pori)− e(pori)

where del(pori) is the delivery time of pori and e(pori) is its end time. Thus, we
introduce as an objective function the mean α-weighted turnover time MTTα of
a solution S:

MTTα(S) =
1
n

n∑
i=1

αi tt(pori) (1)

Given an instance of a Mex-Mdp, an optimal solution with respect to a weight
α is a solution S which minimizes the objective function MTTα(S). Two weights
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α have been found to be interesting, namely data priority and data volume gen-
erated by the observations (see [1] for a detailed description). The experimental
evaluation in this paper considers the Mean Turnover Time (MTT ) with αi = 1,
i = 1..n.

Complexity Analysis. The Mex-Mdp can be shown to be NP-hard by reduc-
tion from the problem2 1|chains; ri; pmtn|

∑
Ci, i.e., a single-machine optimiza-

tion scheduling problem where the goal is to minimize the sum of the activity
completion times Ci [7]. There are n activities, each one having a ready time
ri and a duration pi. Preemption (pmtn) is allowed, hence the execution of an
activity ai can be suspended and a new one can be resumed or started from
scratch. Finally, among the set of activities, a partial order ≺, imposed by a set
of precedence constraints, is defined3 which partitions the set of activities into
a set of separate chains of activities.

The problem 1|chains; ri; pmtn|
∑

Ci can be reduced to Mex-Mdp con-
sidering: (1) each packet store with an infinite capacity; (2) the communica-
tion channel having a uniform data rate r over the total problem horizon;
(3) an unbounded problem horizon; (4) each pori stores data in a single packet
store, and there is no pair of activities, pori and porj , which store data in
the same packet store at the same time. These hypotheses allow to reduce
1|chains; ri; pmtn|

∑
Ci to Mex-Mdp. In fact, the single-machine corresponds

to the communication channel. Each activity ai with duration pi and ready time
ri, corresponds to a pori which contains a single store activity with end-time
ri and size equal to the duration pi multiplied by the channel data rate r. The
number of packet stores is equal to the number of chains. Each chain of activ-
ities, corresponds to a set of activities in Mex-Mdp which stores data in the
same packet store and has the same temporal total order imposed by the chains
(remember that each packet store is a FIFO buffer). Finally, we observe that the
completion time Ci and the turnover time tti are equivalent objective functions.
In fact, Ci = tti + ri, hence a solution is optimal with respect to

∑
Ci if and

only if it is optimal with respect to
∑

tti.
The complexity of the Mex-Mdp is a strong limitation to problem scalability

for systematic solving methods in finding optimal (or near-optimal) solutions
under tight temporal bounds on the computational time. For these reasons this
work proposes a set of meta-heuristic strategies based on local and randomized
search.

3 CSP Representation

A Constraint Satisfaction Problem, CSP, consists of a set of variables X =
{X1, X2, . . . , Xn} each associated with a domain Di of values, and a set of con-
straints C = {C1, C2, . . . , Cm} denoting the legal combinations of values for the
2 Expressed in the α|β|γ-notation of [6].
3 Such that ai ≺ aj means aj must start only after the end of ai.
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variables s.t. Ci ⊆ D1 × D2 × · · · × Dn [8]. A solution consists of assigning to
each variable one of its possible values so that all the constraints are satisfied.
The resolution process can be seen as an iterative search procedure where the
current (partial) solution is extended on each cycle by assigning a value to a new
variable. As new decisions are made during this search, a set of “propagation
rules” removes elements from domains Di which cannot be contained in any
feasible extension of the current partial solution. In general, it is not possible
to remove all inconsistent values through propagation alone. Choices are made
among possible values for some variables, giving rise to the need for variable and
value ordering heuristics.

A CSP representation for a problem should focus on its important features.
In the case of Mex-Mdp, the following characteristics have been selected:

1. the temporal horizon H = [0, H],
2. the amount of data stored at the end time of each operation,
3. the channel communication windows,
4. the finite capacity ci of each memory bank pki and its FIFO behavior.

It is worth noting that the FIFO behavior of the packet stores allows us to make
an important simplification. In fact, it is possible to consider both the data
in input and those in output to/from the memory as flows of data, neglecting
the information about which operations those data refer to. In this way, given
a generic time window over the communication channel, it is possible to split
the problem into two levels of abstraction. A first one, where we just consider
the constraints on the flows of data: for each generic dump window and each
packet store the amount of residual data in the packet store should not exceed
its capacity. And a second level, where a sequence of memory dump operations
(generation of data packets) is generated over the communication link. In par-
ticular, we divide the temporal horizon H into a set of contiguous temporal
windows wj = (tj−1, tj ], with j = 1 . . .m, according to the domain’s significant
events, that is: store operations and changes of transmission data rate. This par-
tition allows us to consider temporal intervals, wj , in which store operations do
not happen (except for its upper bound tj) and the data rate is constant.

As a consequence, the CSP decision variables are defined according to the
set of windows wj and to the different packet stores pki. We defined δij as the
amount of data dumped from the packet store pki within the window wj . We also
introduce: (1) dij , the amount of data stored4 in pki at tj , (2) lij , the amount
of data5 that pki can hold within wj and (3) bj , the maximal dumping capacity
in the interval wj . These represent the input of Mex-Mdp.

A fundamental constraint captures the fact that for each window wj the
difference between the amount of generated data and the amount of dumped
data cannot exceed lij the maximal imposed level in the window (overwriting).

4 The variables di0 ≤ ci represent the initial level of data in the packet store pki.
5 Defining lij = ci for j < n and lij = 0 for j = n we model that a solution has to

download the whole set of spacecraft data.
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Additionally, the dumped data cannot exceed the generated data (overdumping).
We define the following inequalities as conservative constraints

j∑
k=0

dik −
j∑

k=1

δik ≤ lij

j−1∑
k=0

dik −
j∑

k=1

δik ≥ 0

(2)

for i = 1 . . . n and j = 1 . . .m. A second class of constraints considers the dump-
ing capacity imposed by the communication channel. The following inequalities,
called downlink constraints, state that for each window wj it is not possible to
dump more data than the available capacity bj , j = 1 . . .m,

0 ≤
n∑

i=1

δij ≤ bj (3)

Each decision variable δij has a potential interval of feasible values [lbδij
, ubδij

]
defined by its lower and upper bounds lbδij

and ubδij
. For i = 1 . . . n, j = 1 . . .m:

lbδij
= max{0,max{0,

j∑
k=0

dik − lij} −max{
j−1∑
k=1

bk,

j−2∑
k=0

dik}} (4)

ubδij
= min{bj ,

j−1∑
k=0

dik −max{0,
j−1∑
k=0

dik − li(j−1)}} (5)

Equation (4) states that a lower bound of δij is represented by the difference
between the amount of data generated at tj over the packet store capacity lij
(
∑j

k=0 dik − lij}) and the maximal amount of data which is “downloadable” by
tj−1 (max{

∑j−1
k=1 bk,

∑j−2
k=0 di,k}}). Whereas (5) claims that an upper bound of δij

is the minimal value between bj and the maximal amount of data which is really
“downloadable” within the window wj (

∑j−1
k=0 dik−max{0,

∑j−1
k=0 dik− li(j−1)}).

Grounded on these constraints, a set of propagation rules (or domain filtering
rules) are defined to further reduce the domain intervals [lbδij

, ubδij ].

Domain Filtering Rules. Domain filtering rules are fundamental components
of a CSP solver aimed at pruning the problem search space by removing incon-
sistent values in the decision variable domains.

On the basis of the conservative constraints, the following two rules update
the bounds lbδij and ubδij

lbδij = max{lbδij ,

j∑
k=0

dik − lij −
j∑

k=1,k �=j

ubδik
} (6)
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ubδij
= min{ubδij

,

j∑
k=0

dik −
j∑

k=1,k �=j

lbδik
} (7)

The intuition behind (6) is that the value
∑j

k=0 dik − lij −
∑j

k=1,k �=j ubδik
is

the minimal value for δij in order to avoid overwriting in pki within wj . In
(7),

∑j
k=0 dik −

∑j
k=1,k �=j lbδik

is the maximal value for δij in order to avoid
overdumping. A third rule, based on communication constraints, updates the
values ubδij

.

ubδij
= min{ubδij

, bj −
n∑

k=1,k �=i

lbδkj
} (8)

In this case the basic intuition is that bj−
∑n

k=1,k �=i lbδkj
represents the maximal

value allowed for δij on the basis of the other lower bounds lbδij
.

The application of the previous set of filtering rules generally updates the
values ubδij and lbδij . In particular, when the condition lbδij ≤ ubδij is violated
for at least one window, the partial solution is not consistent. In Section 5 we
will show how these rules effect our solving methods and we will highlight their
importance to achieve a feasible solution.

4 Problem Solving

The further contribution of the paper is to propose a portfolio of heuristic strate-
gies for Mex-Mdp defined on the CSP formulation which joins knowledge from
different research areas such as Constraint Reasoning, Local Search and Ran-
domized Algorithms. One or more meta-heuristic strategies can be built on top
of the set of basic solving components. In particular, we propose two basic solving
strategies: a greedy solver and a tabu search strategy for improving an initial solu-
tion. Furthermore, these basic procedure are combined in three meta-strategies:
(1) a serialization of greedy and tabu search; (2) an iterative sampling approach
which uses a randomized version of the greedy procedure; (3) a serialization of
iterative random sampling and tabu search.

A Greedy Solving Method. The basic greedy solving method uses two levels
of abstraction for the Mex-Mdp problem: (1) a first one called data dump level,
where the horizon is partitioned into a set of windows w1, w2, . . . , wm, such that
for each window wj only the decision variables δij , representing the amount of
data to be dumped in the window, are considered; (2) a second level, called pack-
etization level, where a sequence of memory dump operations is generated over
the communication links according to the constraints imposed on each window
wj .

Data Dump Level. Figure 2 shows the algorithm MakeConsistentDataDump().
At first (Step 2) a propagation procedure is called. Such a procedure imple-
ments the propagation features described above and basically sets the domains
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MakeConsistentDataDump:

Input: mexmdp instance
Output: a consistent assignment of the set of decision variables δij

1. {
2. Propagation(mexmdp)
3. j ← 1
4. while (j ≤ m and Feasible(mexmdp)) {
5. AssignDecisionVariablesΔ(j)
6. Propagation(mexmdp)
7. j ← j + 1
8. }
9. }

Fig. 2. Algorithm to generate a consistent assignment of the set of variables δij .

[lbδij , ubδij ] of possible values for all the decision variables δij . In addition, each
time the algorithm performs a solving decision (Step 5), the Propagation() proce-
dure is called again in order to further reduce the domains [lbδij , ubδij ] (Step 6).

The algorithm considers the set of windows w1, w2, . . . , wm in increasing
order of time, and for each window wj , it considers the amount of data bj

that can be dumped within the window. Subsequently, by the sub-procedure
AssignDecisionVariablesΔ(), it iteratively executes the following steps: selects a
packet store (according to a given priority rule); computes an amount of data
to be dumped from the selected packets store; updates the lower bound of the
domain of the involved decision variable. For each window wj the previous steps
are executed until a dump capacity is available or a failure state occurs.

It is possible to implement different solving priority rules inside the step
AssignDecisionVariablesΔ(). Two rules are currently used: CFF (Closest to Fill
First) that selects the packet store with the highest percentage of data volume
and HPF (Highest Priority First) which selects the packet store with the highest
priority. In case that a subset of packet stores has the same priority, the packet
store with the smallest store as outcome data is chosen.

It is worth noting that the greedy solver is based on the composition of effects
between a dispatching strategy that takes decisions proceeding ahead in time and
the propagation rules on the CSP representation that propagate decision effects
forward and backward on the structure adjusting values according to problem
constraints.

Packetization Level. The second step of the greedy procedure generates the
final solution S, that is the sequence of memory dump operations. It works
in analogous way to MakeConsistentDataDump() with the difference that no
propagation function is called. In fact, when all the variables δij are consistently
assigned, it is possible to generate the sequence of data dumping operations
without the risk of finding inconsistent states. Hence, the algorithm considers
the set of windows w1, w2, . . . , wm in increasing order of time, for each window
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Fig. 3. An example of move.

wj , considers the set of decision variables δij (with i = 1 . . . n) representing the
assigned dumping capacity to each packet store i and generates a correspondent
sequence of memory dumping operations (stream of data packets from the set of
packet stores). Two alternative priority rules are currently used: SDF (Smallest
to Dump First) which selects the packet store with the smallest value of the
decision variable δij and HPF (Highest Priority First) that selects the packet
store with the highest priority.

A Tabu Search Strategy. Tabu search [9] is a well-known local search ap-
proach for solving hard combinatorial optimization problems. A tabu algorithm
starts from an initial solution S0. At each step it looks at the neighborhood of
the current solution SC , that is, a subset of solutions obtained from SC by the
application of a local transformation operator called move. Next the algorithm
finds the solution SN with the best value of a given objective function. SN be-
comes the new current solution and the process is iterated until some termination
conditions met and the best solution S* is returned. The search process is not
allowed to turn back to solutions visited in the previous MaxSt steps (cycles).
For this purpose a tabu list, managed as a first-in-first-out queue, is defined with
the last MaxSt moves.

A tabu search strategy for solving a given optimization problem, requires
the definition of some parameters (e.g., the tabu list length) and operators,
in particular the move operator. For the sake of space we do not present a
detailed description of the move here, but just give the intuition behind it by an
example. Let us consider the Mex-Mdp example in Fig. 3, there are two scientific
observations, the grey and the black one, which respectively are stored in the
packet store pk1 and pk2 and it is possible to dump data over the communication
channel only within the periods containing the represented dumping activities.
In the left-hand side of Fig. 3 a possible solution of the problem is shown, where
both the level of data in the packet stores and the turnover times TT1 and TT2
are represented. After the application of the move operator6 a new solution is
obtained (shown in the right part). The new value of TT1 improves the average
turnover time.
6 Basically it performs a swap of data packets over the communication link.
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IterativeRandomSampling:

Input: mexmdp instance, termination conditions
Output: best sequence S∗ of memory dumps over the communication links

1. {
2. S∗ ← ∅
3. while (termination conditions not met) {
4. S ← GreedyRandomSampling(mexmdp)
5. UpdateBestSolution(S, S∗)
6. }
7. }

Fig. 4. An algorithmic template for iterative sampling.

Meta-heuristic Strategies. Meta-heuristics are obtained by the application of
two operators on the basic solving components: random iteration, a randomized
version of a core solving procedure is iterated many times until some termination
conditions are met; serialization, the output of one procedure becomes the input
of the next one.

The random iteration is defined as the iterative random sampling strategy of
Fig. 4 which samples the space of feasible solutions until a termination condition
is met. Solutions are sampled by a randomized version of the greedy procedure
(called GreedyRandomSampling()) which incrementally generates a solution or
a failure. The overall process generates a stream of feasible solutions with differ-
ent values of the objective function (together with a set of failures). When the
procedure stops, the best solution is returned. It is worth noting that the inte-
gration of a propagation mechanism inside the random sampling has the main
benefit of increasing the probability of finding feasible solutions during each iter-
ation. This property is very useful when the optimization problem is formulated
within a set of tight constraints, such that, the set of feasible solutions is sparse
over the search space.

The procedure in Fig. 4 takes as input an instance of Mex-Mdp problem
(that is, a temporal horizon H, a set of store activities, a description of the com-
munication links, and the set of packet stores) together with a set of termination
conditions: for example a maximal number of iterations or a cpu time bound.
The output of the algorithm is the best sequence S∗ of memory dumps over the
communication link consistent with all the domain constraints or a failure, in
the case no iteration finds a feasible solution. The iterative sampling procedure
is composed by these main steps: a random seed is generated and then used by
the procedure GreedyRandomSampling(), after each random sampling, the best
solution found so far is stored in S∗.

The next experimental section evaluates the iterative random sampling pro-
cedure together with two other strategies obtained by serialization: greedy and
tabu search, iterative random sampling and tabu search.
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5 Evaluation

An important step in the evaluation of a set of different solutions is to select
a touchstone. Since it is not possible to easily obtain a reference set of optimal
solutions for our Mex-Mdp benchmark instances, we choose to analyze the per-
formance of the solving procedures through a lower bound of the Mean Turnover
Time. In particular, in order to find a representative lower bound we consider
two relaxed formulation of Mex-Mdp:

– first, we consider the relaxed version of the problem such that each packet
store has an infinite capacity and there are no chain constraints among the
activities. Under this hypothesis, the problem can be reduced to a classical
optimization scheduling problem of minimizing the mean flow time (in our
case called MTT ) on a single machine (i.e., the communication channel)
where preemption is allowed. For this problem a polynomial strategy which
gives the optimal value is known7,

– the second relaxed version of Mex-Mdp considers that each packet store
has a dedicated communication channel with identical characteristics to the
original one. In this way any linear sequence of activities (chain) which stores
data in a packet store has a dedicated channel for data dumping and the
optimal solution can be easily computed in polynomial time.

Hence, we define the lower bound of Mex-Mdp as the maximal value of the
mean turnover times for the two relaxed formulations of the problem.

Experimental Results. During our study different benchmark sets have been
generated based on the test data provided by the ESA mission planning experts.
However, in this section we just present the results for one of these benchmark
sets, which can be seen as the most critical with respect to, on one hand, the
competition among the packet stores for the same channel bandwidth, and with
respect to the limited capacity of the packet stores in comparison to the amount
of generated data on the other. All the algorithms presented in this paper are
implemented in Java 1.4.1 and the cpu times presented in the following tables
are obtained on a Pentium III machine under Windows 98. A more complete
experimentation and analysis can be found in [1]. In this section we consider
only the Mean Turnover Time (MTT) and present five different types of result:

– the lower bound of the MTT values,
– the values generated by the greedy (one-pass) strategy with the best combi-

nations between the two levels of priority rules (see Section 4),
– the values generated by the greedy strategy without the support of the do-

main filtering rules,
– the best MTT values obtained with the application of the iterative sampling

optimization strategy (the number of iterations is set to 100),
7 Shortest Remaining Processing Time (SRPT) [10].
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Table 1. Each column represents percentage difference between the solution obtained
with each approach and the lower bound.

pr. # pr. size greedy no propagation greedy+tabu random sampling rs+tabu
1 60 143,39 - 126,28 15,63 14,99
2 66 48,30 - 45,80 10,30 9,25
3 86 333,73 333,73 164,61 42,77 40,67
4 76 357,18 357,18 164,22 47,77 44,64
5 87 271,95 271,95 133,30 31,38 30,31
6 66 138,14 - 128,58 15,44 13,63
7 66 140,24 - 134,63 13,00 10,59
8 58 140,34 - 120,55 16,52 14,95
9 81 272,36 272,36 171,97 29,63 29,14
10 62 155,84 - 147,61 18,34 18,05
11 66 - - - 25,10 22,57
12 91 311,81 311,81 139,79 41,45 40,09
13 96 295,14 295,14 149,02 39,01 38,19
14 56 136,93 - 116,92 16,26 14,98
15 71 324,43 324,43 169,66 34,50 33,77
16 15 26,80 26,80 26,80 11,38 10,21
17 12 34,28 34,28 34,28 14,32 12,83

– the results of the application of the tabu search procedure8 to the solutions
obtained with the greedy algorithm and to the best solution found by the
random sampling algorithm.

Table 1 presents the performance results for the solving procedures described in
Section 4. Basically we evaluate and combine two types of metaheuristic strate-
gies: improving an initial solution by local search and performing a broad random
sampling of the search space. A third one is a combination of the previous two.
The experimental data show how the tabu search procedure always improves
an initial solution, even if we have different levels of improvement according to
different methods used to construct the initial solution. When tabu search is
applied to the iterative sampling solutions, indeed, the improvement is much
less than what we obtain on the greedy solutions. That different behavior is
justified by the fact that the iterative sampling approach is an effective solution
method in itself for this kind of optimization problems. In fact, as it possible to
see in Table 1, the solutions are quite close to the lower bound values. However,
from these experiments we can draw an additional conclusion about the tabu
search. Even if we have introduced a definition of move which is quite “natural”
for the problem - we move data packets forwards and backwards in time (see
Fig. 3) - the local search can easily get stuck in local minima. In other words, the
structure of the search space is probably weakly (or not at all) connected with
respect to the move definition. That is, due to the rich set of constraints of Mex-
Mdp, it is quite difficult (or impossible) to reach a near-optimal solution from
a generic feasible solution through a sequence of move applications. This fact is
confirmed by the cpu results reported in Table 2. As it is possible to see, the
random sampling strategy shows the best trade-off between solution quality and
cpu times compared to the tabu search performances. In fact, a broad random
8 In particular, the tabu-list has a length set to 7 and the procedure stops when a

maximal value of 100 neighborhoods are searched without solution improvement.
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Table 2. cpu time (sec.).

pr. # greedy greedy+tabu random sampling rs+tabu
1 0,20 13,72 14,41 26,04
2 0,20 8,24 14,07 25,39
3 0,13 47,54 14,96 50,21
4 0,12 64,85 14,70 45,36
5 0,11 46,47 12,40 36,59
6 0,15 8,01 14,77 27,33
7 0,14 10,86 15,07 26,97
8 0,14 16,91 14,71 25,10
9 0,10 19,01 12,67 44,25
10 0,13 11,25 13,99 25,21
11 - - 13,37 30,65
12 0,12 28,17 14,96 41,04
13 0,13 37,41 14,93 37,58
14 0,13 16,35 14,57 26,61
15 0,10 26,63 12,47 27,56
16 0,10 4,90 12,64 24,54
17 0,10 4,84 12,63 19,59

sampling strategy, as the one introduced in this work, is quite effective when the
search decisions are correctly driven in the right direction by the propagation
rules. This last aspect is underlined in Table 1 where the performance results
of the greedy strategy without propagation rules are shown in the column la-
beled no propagation. The reader can see the main contribution of the deduction
rules. Indeed, almost half of the problem instances are not solved because of the
lack of propagation (for example, see the “-” reported for instances #1, #2 or
#7). This proves the fundamental role of propagation rules: indeed, at each step
they propagate the effects of current decisions on future ones, thus predicting
unsuccessful decision branches.

6 Conclusions

This paper has presented a CSP approach to a real problem in the context of
space missions. It is worth reminding that in Mars-Express the synthesis of
memory dumping spacecraft operations is an activity which is decided manually
by a human planner, for the entire life-cycle of the mission. In the study for
Mars-Express we have formalized the problem as a Mex-Mdp, and produced
as set of algorithms grounded on a CSP representation. In addition, the algo-
rithms described in this paper have been integrated in a decision support system
that has been delivered to ESA in May 2002. The tool, called Mexar [11], is
an interactive system which allows the user to obtain solutions for Mex-Mdp
problems. In the process of doing so, the mission planner is given the opportu-
nity to inspect different features of the solution. Mexar is a CSP tool which
basically solves difficult problems for the human planner, but maintaining the
control over the strategic decisions in the hands of the user.

From the study the authors have derived an important experience in facing
the realm of space missions, a working environment in which criticality is the
name of the game. They have also drawn a number of directions for further
research on Mex-Mdp. At present the synthesis of different moves for the tabu
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search is being studied to obtain a more effective use of the neighborhood. This
would enable both a reduction of the cpu time and the implementation of a full
grasp metaheuristic strategy.
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Abstract. The addition of symmetry breaking constraints is one of
the most successful symmetry breaking technique for constraint satis-
faction problems (CSP). In this paper we present STAB, a method that
adds some symmetry breaking constraints during the search for solution.
STAB adds constraints that are not yet broken by the current partial
assignment. The computation of those additional constraints require the
computation of graph isomorphism at each node. Graph isomorphism is
not know to be NP complete, and in practice can be solved quite effi-
ciently using an auxiliary CSP. The method is refined to be applied to
matrix problems where rows and columns can be permuted. A theoreti-
cal comparison with previously published methods shows how to combine
those methods together safely. An experimental comparison on a class
of highly symmetrical combinatorial problems, namely BIBD shows that
STAB is more than one order of magnitude more efficient than best
published techniques so far.

1 Introduction

A symmetry for a CSP is a mapping of the CSP onto itself that preserves its
structure as well as its solutions. Therefore, a symmetry map solutions to solu-
tions. A symmetry also maps infeasible partial assignments into infeasible partial
assignments. In this paper, we will only deal with complete tree search methods,
such as MAC. If the problem is difficult, it may be the case that all symmetrical
variants of every dead end encountered during the search must be explored be-
fore a solution can be found. Even if the problem is easy, all symmetrical variants
of a solution are also solutions, and listing all of them may just be impossible
in practice. Also, when optimizing, proving optimality may become impossible
for the same reason. Those observations have triggered a lot of interest for the
detection and removal of symmetries in the constraint programming community.
Several methods to deal with symmetries have been published: adding symme-
try breaking constraints S[13][3][6], using symmetry breaking heuristics[12], and
using every completely generated sub tree as a no good to prevent the explo-
ration of any symmetrical variants. The last approach either uses the addition
of constraints during search (SBDS) [10][11][1], or the detection of dominance
during search (SBDD)[9][5][14].

In this paper we will explore some refinements of the first kind of method.
Our approach is to try to not add all the symmetry breaking constraints as in [3]

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 585–599, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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at the start of the search for solution. Instead, during search, we add constraints
that remove symmetries that are compatible with the current partial assignment.

The remainder of the paper is organized as following. Section 2 introduces
the basic definitions used in the paper. It also discusses the relationship between
adding symmetry breaking constraints and SBDD, including a possible com-
bination. Section 3 introduces STAB, a method based on the computation of
stabilizers of partial assignments. Section 4 describes how this technique can be
efficiently realized for two dimensional matrix problems where rows and columns
can be permuted. Section 5 describes an experimental evaluation on special ma-
trix models known as BIBDs. Those results show that our new technique is
more than one order of magnitude faster than any previously published method.
Section 6 concludes the paper with a summary and a discussion of possible
extensions.

2 Symmetry Breaking Techniques

Several definitions of symmetries exist in the literature, see for instance [11][14]
[12][1]. The method presented here can be used with any of those definitions. We
just need to know how a symmetry σ maps any partial assignment A into another
partial assignment σ(A). We will also only consider variable permutations.

2.1 Basic Notations

From now on we will consider a CSP P = (V,D,C) where V is a n-vector of
variables, D is a n-vector of domains, one for each variable, and C is a m-vector
of constraints. The domains and the constraints are defined in the usual way.
Together, domains and constraints define the set of solutions of the CSP.

In this section we will assume that the symmetry group G of the CSP is
given. We will discuss how G can be generated in section 4. Let |G| denote the
size of G.

When the variables of the CSP can be represented as a k × l matrix such
that any row or column permutation is a symmetry, we say that the CSP is a
two dimensional matrix model. In such case, the size of the symmetry group is
|G| = k!l! elements. Problems in this class of CSP are quite common[6].

Let us define In = {1, . . . , n}. Symmetries can be described in terms of
permutations of Ik for some k[11]. Let Sn be the set of all permutations of the
set In. A permutation in Sn is represented by an n-vector σ, with σ[i] being the
image of i under σ. If v is an n-vector and σ ∈ Sn, let w = σ(v) denote the
vector w obtained by permuting the coordinates of v according to σ, i.e.

w[σ[i]] = v[i], for all i ∈ In

2.2 Canonical Solutions

In order to relate several symmetry breaking techniques, we will introduce a
fixed variable ordering as well as a value ordering. Without loss of generality, we



Symmetry Breaking Using Stabilizers 587

can assume that domains are subsets of Ik for some k, with the usual ordering
on integers.

The ordering on domains can be extended to a lexicographic ordering on
vectors. Let X be a s− vector and Y a t− vector.

X <Lex Y if and only if there exists i ∈ In such that
X[k] = Y [k], for all k ∈ Ii−1

(i = s and s < t)orX[i] < Y [i]
X ≤Lex Y if and only if X <Lex Y or X = Y

Given a solution A for P , and a symmetry σ for P , σ(A) is also a solution
of A. We say that a solution is canonical if and only if it is smaller than all its
symmetrical variants, i.e.

A ≤Lex σ(A), for all σ ∈ G

Symmetry breaking techniques’ aim is to remove solutions without removing any
canonical solutions.

2.3 Symmetry Breaking Constraints

Adding symmetry breaking constraints is one of the oldest method for reduc-
ing the number of symmetries of a CSP[13]. In [3], it is shown that any CSP
can be turned into a CSP without symmetries by the addition of the following
constraints to the CSP.

V ≤Lex σ(V ), for all σ ∈ G (1)

These symmetry breaking constraints remove all solutions but the canonical
ones. Although very appealing, this technique is not scalable because of the
potentially large size of the group G. Indeed, we exhibit in section 5 a problem
with less than 450 variables that has more than 1090 symmetries.

In practice researchers have investigated the use of only some symmetry
breaking constraints. For matrix models, it is useful to add the constraints (1) the
permutations that swap two adjacent rows or that swap two adjacent columns.
An equivalent (but simpler) set of constraints was proposed in[6]: a lexicographic
constraint is stated between all pairs of consecutive rows, and also between all
pairs of consecutive columns. We denote this set of constraints by Lex2. It is also
shown in [6] that although Lex2 breaks many symmetries, it does not break all of
them. Equivalently, the set of constraints stated by Lex2 is not equivalent to the
set of all constraints (1). We will provide further evidence for this in section 5.

2.4 Symmetry Breaking Search

The second approach we will discuss in the paper was introduced in [9][5] and
further refined in [14]. We will refer to it as SBDD in the rest of the paper. It is
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based on a modification of the search tree. The idea is to prune sub trees that
contain no canonical solutions.

Let T be the tree explored during the search for solution. We assume that
T does not contain any inconsistent node. Therefore, the leaves of T are either
solutions or nodes that cannot be consistently extended. Let us suppose we use
fixed variable ordering and value ordering. Without loss of generality, we can
assume that the variables are selected in the order V [1], V [2], . . . , V [n], and that
the values are selected in increasing order. A node A at depth d in T is then a
d-vector such that

A[i] ∈ D[i], for all i ∈ Id

Note that this departs from the usual definitions where A is called the partial
assignment corresponding to the node. Every child of node A is obtained by
extending the vector A by one additional element a. We denote this child by
ε(A, a). The additional element a is the value assigned to the variable V [d + 1]
in that child node. Nodes of T are explored in increasing lexicographic order:
node A is explored before node B if and only if A <Lex B.

SBDD then prunes search at every node that is symmetrical to a previously
explored node. More precisely, SBDD explores the tree T − sym(T ), where,

sym(T ) = {A ∈ T | ∃ σ ∈ G, B ∈ T such that B = σ(A) and B <Lex A}
It is proven in[14] that sym(T ) contains none of the canonical solutions of T .

This means that SBDD will explore all the canonical solutions of T . In practice,
SBDD requires at each node A the search for a symmetry σ and a previous
node B such that σ(B) ⊆ A. The number of previously explored nodes can be
exponential. However, the search for symmetries can be limited to d previously
explored nodes where d is the depth of node A. For each pair A and B, the search
for σ amounts to solve a sub graph isomorphism problem, which is known to
be NP-complete. Although SBDD requires the solution of several NP-complete
problems at each node, good results have been obtained on mid size problems.
New results using SBDD are given in section 5.

2.5 SBDS

Symmetry Breaking During Search (SBDS)[10][1] is another technique that is
worth mentioning here. Given a n vector X, let pre(X, d) be the prefix of length
d of X. Given a node A ∈ T d and one of its child ε(A, a), obtained by extending
A by a value a, SBDS state the following constraint after exploring the sub tree
rooted at ε(A, a).

pre(σ(V ), d) = A → σ(V )[d + 1] �= a

2.6 Combining Methods

If the same variable and value ordering are used, then it is valid to apply several
symmetry breaking methods at the same time. Indeed, none of these methods
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remove canonical solutions. Therefore, any combination will keep canonical so-
lutions. For instance, one may state the Lex2 constraints and use SBDD at the
same time for matrix models. This observation is also valid for the method we are
going to present in the next section: this method can be combined with previous
methods.

3 The STAB Method

In this section we will reuse the notations of the previous one. We will see in the
end how to relax the requirement for a fixed variable and value ordering.

As said before, it is not possible in practice to state all the possible symmetry
breaking constraints when the size of the symmetry group is too large. A natu-
ral idea is then to state only some of the symmetry breaking constraints, hoping
that enough symmetries will be broken to yield good speedups in practice. For
instance, Lex2 only states a number of constraints linear in the size of the prob-
lem. Another possibility is not to state all the constraints at the root node, but
to state some of them at each node of the search tree. This is for instance the
basis for SBDS.

We suggest to state symmetry breaking constraints (1) only for symmetries
that leave the partial assignment A at the current node unchanged:

stab(A) = {σ ∈ G | σ(A) = A}

This set is called the stabilizer of A, and it is a subgroup of G. Moreover,
its size divides the size of G. In practice the size of the stabilizers is often much
smaller than the size of G. Our method, then, amounts to add the following set
of constraints at each node A.

V ≤Lex σ(V ), for all σ ∈ stab(A) (2)

These constraints remove all the solutions that are not canonical with respect
to stab(A) in the sub tree rooted at A.

Let us look at an example to explain how STAB works in more detail. For
instance let us consider a 4× 5 matrix model. For simplicity we will refer to the
matrix of variable by V , i.e. we identify the vector of variables with its matrix
representation:

x1 x2 x3 x4 x5
x6 x7 x8 x9 x10
x11 x12 x13 x14 x15
x16 x17 x18 x19 x20

Let us consider the partial assignment A where the first 10 variables, are
assigned values in the following way.

0 0 0 1 1
0 1 1 0 0
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Every symmetry for A is defined by a row permutation ψ ∈ S4 and a column
permutation φ ∈ S5 such that A = A(ψ, φ). We will see later how to compute
these symmetries. They are listed below.

σ1 = (ψ1, φ1), ψ1 = [1, 2, 3, 4], φ1 = [1, 2, 3, 4, 5]
σ2 = (ψ1, φ2), ψ1 = [1, 2, 3, 4], φ2 = [1, 3, 2, 4, 5]
σ3 = (ψ1, φ3), ψ1 = [1, 2, 3, 4], φ3 = [1, 2, 3, 5, 4]
σ4 = (ψ1, φ4), ψ1 = [1, 2, 3, 4], φ4 = [1, 3, 2, 5, 4]
σ5 = (ψ2, φ5), ψ2 = [2, 1, 3, 4], φ5 = [1, 4, 5, 2, 3]
σ6 = (ψ2, φ6), ψ2 = [2, 1, 3, 4], φ6 = [1, 4, 5, 3, 2]
σ7 = (ψ2, φ7), ψ2 = [2, 1, 3, 4], φ7 = [1, 5, 4, 2, 3]
σ8 = (ψ2, φ8), ψ2 = [2, 1, 3, 4], φ8 = [1, 5, 4, 3, 2]
σ9 = (ψ3, φ1), ψ3 = [1, 2, 4, 3], φ1 = [1, 2, 3, 4, 5]
σ10 = (ψ3, φ2), ψ3 = [1, 2, 4, 3], φ2 = [1, 3, 2, 4, 5]
σ11 = (ψ3, φ3), ψ3 = [1, 2, 4, 3], φ3 = [1, 2, 3, 5, 4]
σ12 = (ψ3, φ4), ψ3 = [1, 2, 4, 3], φ4 = [1, 3, 2, 5, 4]
σ13 = (ψ4, φ5), ψ4 = [2, 1, 4, 3], φ5 = [1, 4, 5, 2, 3]
σ14 = (ψ4, φ6), ψ4 = [2, 1, 4, 3], φ6 = [1, 4, 5, 3, 2]
σ15 = (ψ4, φ7), ψ4 = [2, 1, 4, 3], φ7 = [1, 5, 4, 2, 3]
σ16 = (ψ4, φ8), ψ4 = [2, 1, 4, 3], φ8 = [1, 5, 4, 3, 2]

Then, we can state constraints (2) for each of these symmetries, except for
the identity permutation. For instance, let us state the constraint for σ6. The
matrix W = V (ψ2, φ7) is defined by

W [ψ2(i), φ6(j)] = V [i, j]

This yields the matrix

x6 x9 x10 x8 x7
x1 x4 x5 x3 x2
x11 x14 x15 x13 x12
x16 x19 x20 x18 x17

The symmetry breaking constraint is then

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20]
≤Lex

[x6, x9, x10, x8, x7, x1, x4, x5, x3, x2, x11, x14, x15, x13, x12, x16, x19, x20, x18, x17]

As the first 10 variables are bound, the constraint is

[0, 0, 0, 1, 1, 0, 1, 1, 0, 0, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20]
≤Lex

[0, 0, 0, 1, 1, 0, 1, 1, 0, 0, x11, x14, x15, x13, x12, x16, x19, x20, x18, x17]

As the two 20-vector have the same 10-vector prefix, the constraint can be
simplified into:
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[x11, x12, x13, x14, x15, x16, x17, x18, x19, x20] ≤Lex

[x11, x14, x15, x13, x12, x16, x19, x20, x18, x17]

The prefixes are identical because we considered a symmetry in stab(A).
Let us go back to the general case. The simplification based on identical

prefixes is valid in general. Given the n-vector V , let tail(V,n-d) be the vector
obtained by removing the first d elements of V . If A is a d-vector then constraints
(2) can be simplified into

tail(V, n− d) ≤Lex σ(tail(V, n− d)), for all σ ∈ stab(A) (3)

This explains one advantage of using stabilizers: the symmetry breaking con-
straints are simpler. An even greater advantage is that the number of constraints
(3) is much smaller than the number of constraints (1). Several simplifications
and further improvements are possible.

A simple observation can be used to reduce the number of constraints that
have to be added, without breaking less symmetries. Let us consider a node A
and one of its children B. If a symmetry belongs to both stab(A) and stab(B),
then we should not state the same constraint twice, i.e. we must not add it again
in the node B. It happens for instance when stab(B) ⊆ stab(A).

Another optimization is based on the fact that we use the same ordering for
stating symmetry breaking constraints and for generating solutions. Therefore,
as long as no backtracking has ever occured, the current partial assignment is
minimal, and there is no need to state the constraints (3).

If two vectors of variables are lexicographically ordered, so are any of their
prefixes. In other words, the vectors in a lexicographic constraint can be short-
ened, which yields a looser, but correct, symmetry breaking constraint. A direct
application in our context is to limit the length of vectors appearing in a sym-
metry breaking constraint to a numbed that depends on the problem at hand.

The stabilizer for the root node is the full symmetry group. Hence a naive use
of the method amounts to state all the constraints (1), which is not possible in
practice. In practice, we can state a subset of the symmetry group, for instance
the Lex2 constraints for matrix models.

It is worth noting that STAB does not require the search tree to be explored
in the lexicographic order used for stating the constraints. In fact, the order in
which the variables and the values are generated can be arbitrary. Indeed, the
definition of constraints (3) does not refer to the order in which the nodes of the
tree are generated. We can then add them at each node of the tree, regardless
of the order in which variables and values are tried. A similar observation for
SBDD was made in [5], section 2.2.

4 An Efficient Realization of STAB for 2D Matrix Models

The example above shows how STAB can be applied to matrix models. The
constraints (3) can be added at each node, as shown in the above example.
However, by tailoring the search to the 2D matrix nature of the problem, further
improvements can be made to STAB.
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4.1 Using a Row by Row Variable Ordering

We will use the STAB method with all the optimization discused in the pre-
vious section. In particular, we will limit the length of the symmetry breaking
constraints to one row length. In our example, the constraint stated for σ6 is
shortened to:

[x11, x12, x13, x14, x15] ≤Lex [x11, x14, x15, x13, x12]

More generally, assume that the first r rows of variables have been assigned
a value in node A. Let VA be the matrix composed of the first r rows of V .
Any permutation of the last k − r rows of V is in stab(A), because these rows
are all identical w.r.t A. Therefore, the elements of stab(A) can be obtained
by the composition of any permutation of the last k − r rows with a matrix
permutation of VA. There are (k − r)! permutations of the last k − r rows,
therefore |stab(A)| = (k − r)!|stab(VA)|.

However, by limiting the size of constraints to one row length, the number
of constraints is reduced to (k − r)|stab(VA)|. Indeed, any two permutations of
the last k − r rows that map the r + 1-th row to the same row yield identical
symmetry breaking constraints. These symmetry breaking constraint state that
row r + 1 is the smallest possible row given the symmetry group stab(VA).

4.2 Coping with the Root Node

Let us look again at what happens at the root node. The method above amounts
to state that the first row is the smallest row given the symmetry group obtained
by all the column permutations. Let Sb be the set of all column permutations,
and let Vi be the i-th row of V . Then at the root node, STAB states the con-
straints:

V1 ≤Lex φ(Vi), for all i ∈ Iv, φ ∈ Sb (4)

The first of these constraints states that V1 ≤Lex φ(V1) for all column
permutation φ. This is equivalent to sort V1 in increasing order:

Lemma 1. Given a b-vector of variables V , and the full permutation group Sb,
then the two following conditions are equivalent:

V ≤Lex φ(V ), for all φ ∈ Sb

V [i] ≤ V [i + 1], for all i ∈ Ib−1

Proof: Swapping any two consecutive columns where the elements of V1 aren’t
in increasing order result in a smaller V1.

The other constraints state that V1 is lexicographically smaller than φ(Vi),
for all column permutation φ. By the previous lemma, the smallest possible
φ(Vi) is the vector sort(Vi) obtained by sorting Vi in increasing order. Therefore,
constraints (4) are equivalent to

V1 ≤Lex sort(Vi), for all i ∈ Iv, (5)
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This can be further simplified by observing that we can use multiset ordering
as explained in [8]. Note that STAB states a stronger constraint at the root node
as it also states that V1 is sorted in increasing order. Note also that when all the
variables are 0 − 1 variables using a multiset ordering among rows amounts to
sort the sums of the rows.

4.3 Aggregating Identical Column

For matrix models, the complexity of symmetry breaking constraints can be
further simplified, using an idea presented in the combinatorics community[4],
although the latter does not use constraint programming. When all the variables
are 0−1 variables, then we can replace identical adjacent columns by their sum.
Indeed, these columns can be freely permuted.

Let us look at our example. The idea is to replace each group of adjacent
columns in V that are identical in A by their sum. The variable matrix then
becomes ΣA(V )

x1 (x2 + x3) (x4 + x5)

x6 (x7 + x8) (x9 + x10)

x11 (x12 + x13) (x14 + x15)

x16 (x19 + x20) (x18 + x17)

and A matrix becomes ΣA(A),

0 0 2
0 2 0

Its symmetry group is then

σ17 = (ψ5, φ9), ψ5 = [1, 2], φ9 = [1, 2, 3]
σ18 = (ψ6, φ10, ψ6 = [2, 1], φ10 = [1, 3, 2]

Then for each of the above permutations, we state that row 3 is less than per-
muted rows 3 or permuted row 4. This yields three symmetry breaking constraint
in our example, instead of fifteen when columns aren’t aggregated:

[x11, x12 + x13, x14 + x15] ≤Lex [x11, x14 + x15, x13 + x12]
[x11, x12 + x13, x14 + x15] ≤Lex [x16, x17 + x18, x19 + x20]
[x11, x12 + x13, x14 + x15] ≤Lex [x16, x19 + x20, x17 + x18]

4.4 Computing Stabilizers

There exists algorithms in the computation group theory that efficiently com-
pute stabilizers if the symmetry group is given as input. These algorithms could
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be used to implement STAB in such case. We chosed to compute directly the
stabilizers from the partial assignments A because we think that providing the
symmetry group as input may be too complex for users. The method is explained
with more details in [15].

We construct a labelled graph g(A) whose nodes are the rows and the columns
of A. There exists an arc between row i and column j with label A[i, j]. Then
the symmetry group of this graph is the same as the stabilizer of A. Computing
this stabilizer amounts to compute all the automorphisms of the graph g(A). We
can use an auxiliary CSP to perform this task.

Given a graph with labelled edges, we construct a CSP as follows. There is
one variable yi per node i. The domain of the variables are the set of nodes.
There are two constraints. First of all, the variables are all different. Second,
there is a constraint stating that neighbors are mapped onto neighbors. The rest
of this section describes the second constraint into detail.

If i is a node, and a a label, let Γ a(i) be the set of nodes j such that there
exists an arc labeled a whose ends are i and j. If dom(yi) is the domain of yi,
let Γ a(yi) be,

Γ a(yi) =
⋃

j∈dom(yi) Γ a(j)

Then the neighbor constraint says that

yj ∈ Γ a(yi) for all j ∈ Γ a(i)

The propagation of this constraint is straightforward. The sets Γ a(yi) are
maintained incrementally. Whenever they are reduced, the above condition is
used to reduce the domains of the variables yj for each j neighbor of i.

This method is quite efficient for computing graph automorphisms. In the
experiments described in section 5, the number of failed nodes explored when
solving the auxiliary CSP is less than the number of automorphisms found. The
time spent in the search for automorphisms ranges from 20 to 80 percents of the
total running time.

5 Experimental Results

The evaluation of symmetry breaking techniques can be done in two ways, ei-
ther by applying it to some specific real world problem, or by selecting a class
of highly symmetrical problems. We have chosen the latter because it enables a
direct comparison between competing techniques. Two classes of combinatorial
problems have been traditionally used for comparing symmetry breaking tech-
niques in the CP community, the social golfer problem, and balanced incomplete
block designs (BIBD). Both are real world problems. We have selected BIBDs
for our evaluation because all published work use the same CP model[6][12][11].
On the contrary, models for the social golfer problem differ in publications such
as [14][5][6], which makes comparisons difficult to carry on.

A BIBD is defined as an arrangement of v points into b blocks such that each
block contains exactly k distinct points, each point occurs in exactly r different
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blocks, and every two distinct points occur together in exactly λ blocks. An other
way of defining a BIBD is in term of its incidence matrix, which is a binary
matrix with v rows, b columns, r ones per row, k ones per column, and scalar
product λ between any pair of distinct rows. A BIBD is fully specified by its
parameters (v, k, λ), the other parameters can be computed using

r = λ(v−1)
(k−1) , b = λv(v−1)

k(k−1)

A BIBD can be represented as a CSP with a v by b matrix model. Each
variable in the matrix is a binary variable m[i, j] with domain {0, 1}. There are
three sets of constraints:

1. Σj∈Ib m[i, j] = r, for all i ∈ Iv

2. Σi∈Iv m[i, j] = k, for all j ∈ Ib

3. Σj∈Ib m[i, j]m[i′, j] = λ, for all i ∈ Iv, i′ ∈ Iv, i < i′

Any permutation of the rows or of the columns is a symmetry of the problem.
The size of the symmetry group G is therefore v!b!

We use a static variable ordering: variables are selected row by row, then col-
umn by column. Values ordering is also fixed: 1 is tried first, then we try 0. This
generates possible design in a decreasing lexicographic ordering. All the symme-
try breaking techniques described above can be applied, provided we revert the
lexicographic ordering.

As a first evaluation we compare STAB with the techniques Lex2[6], sym-
metry based heuristics[12], SBDS[11], and SBDD. To ensure a fair comparison,
we have implemented the three methods Lex2, SBDD and STAB with the same
CP system (ILOG Solver) and the same implementation for lexicographic con-
straints1. Both STAB and SBDD methods are used in conjunction with Lex2.
We report running times to find the first solution in Table 1. We also give for
each column, the CP technology used, the CPU type and speed in MHz in order
to ease comparison. Note in particular that [12] used a much slower machine.
We also report the running time ratios for our implementations in the last two
columns. Means are computed with geometric means, which is much more reli-
able when averaging ratios. These results show that STAB is as efficient as our
implementation of Lex2. On the contrary, SBDD is much slower.

We report the times for computing all solutions in Table 2. The running
times are measured on a Pentium III 833 MHz laptop running Windows 2000
for the easy problems, and on a 1.4GHz Pentium mobile laptop for the problems
after (31, 6, 1). The problems are sorted by the time used by STAB. For each
method, we report the running time and the number of solutions found. A “-
” indicates that the running times were in excess of 10000 seconds. We also
report information for the simultaneous use of STAB and SBDD (label “S+S”).
That combination computes the same solutions as SBDD alone: the canonical
solutions.
1 Our implementation uses an algorithm different from the ones described in [7] and

[2], but these algorithms could be used as well.
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Table 1. Results when computing one solution.

Problem STAB SBDD LEX2 LEX2[6] [12]
Solver 5 Solver 5 Solver 5 Solver 5 Lex2

STAB
SBDD
STAB

v k λ PIII 833 PIII 833 PIII 833 PIII 750 Ultra sparc 360
8 4 6 0.03 1.5 0.07 2.3 50
7 3 10 0.04 0.04 0.03 11.4 2.4 0.8 1.0
6 3 10 0.04 1 0.04 1.7 0.8 1.0 25
6 3 12 0.08 2.2 0.05 4.6 1.5 0.6 28
12 6 5 0.08 37 0.14 1.8 463
13 4 2 0.09 0.04 0.03 0.3 0.4
9 3 9 0.1 3.3 0.09 8.4 14 0.9 33
9 3 10 0.12 4.7 0.1 8 14 0.8 39
11 5 4 0.13 18 0.15 1.2 138
16 6 3 0.13 25 0.12 0.9 192
16 4 1 0.14 1.9 0.05 0.4 14
10 3 6 0.15 11.8 0.13 111 5.3 0.9 79
19 9 4 0.22 78 1.7 7.7 355
12 3 4 0.23 33 1.1 249 5.1 4.8 143
10 3 8 0.25 30 0.24 1316 13 1.0 120
13 3 4 0.26 23 0.27 397 8.7 1.0 88
16 6 2 0.28 0.23 0.04 0.1 0.82
15 3 1 0.28 0.06 0.06 0.42 0.2 0.21
15 3 2 0.37 0.13 0.12 6.2 5.5 0.3 0.35
15 5 2 0.71 9.8 18.8 26.5 14
25 9 3 0.78 109 10 12.8 140
25 5 1 1.1 157 0.23 0.2 143
21 5 1 1.5 0.06 0.07 0.05 0.04
22 7 2 8.9 9.6 37 4.2 1.1
Mean 0.99 16

Table 2 shows that we are able to compute all solutions of the problems
that have up to 1.1091 symmetries in a reasonable amount of time. This table
also shows that SBDD is almost always slower than Lex2, except for (15, 3, 1)
and (21, 6, 2). However, SBDD eliminates all non canonical solutions, which is
expensive. For instance, it computes only 80 solutions for (15, 3, 1) instead of
more than 32 millions found by Lex2 on the same problem! The table further
shows that STAB is about 15 times faster than Lex2 (geometric mean) and even
faster than SBDD. It also shows that combining STAB with SBDD improves
SBDD by about 21 percents on average.

In [14], it was shown that running time of SBDD could be greatly improved
if the symmetry checks were only performed on nodes close to the root of the
tree. Similarly, we ran STAB with a threshold: stabilizer constraints were only
added at nodes with a depth smaller than 70 percents of the maximal depth.
We report results using this new method (label “PART”) in Table 3 along the
results for Lex2 and STAB. We computed results for the BIBDs were STAB
takes between 0.1 and 30 seconds, plus few others.
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Table 2. Results when computing all solutions.

BIBD num Lex2 STAB Lex2

STAB
SBDD S+S SBDD

S+S

v k λ sym soln time soln time time soln time time time
6 3 2 2.6e+9 1 0 1 0 1 0.01 0.01 1.0
7 3 1 2.6e+7 1 0 1 0.01 0.0 1 0 0 1.0
6 3 4 1.8e+21 21 0.02 4 0.01 2.0 4 0.32 0.25 1.3
9 3 1 1.7e+14 2 0.01 1 0.02 0.5 1 0.01 0.01 1.0
7 3 2 4.4e+14 12 0.01 7 0.02 0.5 4 0.1 0.1 1.0
8 4 3 3.5e+15 92 0.04 6 0.03 1.3 4 0.54 0.33 1.6
6 3 6 1.9e+35 134 0.13 7 0.04 3.3 6 2.2 1.7 1.3
11 5 2 1.6e+15 2 0.01 1 0.05 0.2 1 0.06 0.07 0.9
10 4 2 4.7e+18 38 0.05 4 0.05 1.0 3 0.83 0.36 2.3
7 3 3 2.6e+23 220 0.07 24 0.05 1.4 10 1.5 1.25 1.2
13 4 1 3.9e+19 2 0.03 1 0.07 0.4 1 0.03 0.07 0.4
6 3 8 5.9e+50 494 0.69 15 0.1 6.9 13 11.4 9.4 1.2
9 4 3 2.3e+21 2600 2.4 41 0.11 21.8 11 13.6 11.8 1.2
16 4 1 5.1e+31 12 0.21 1 0.14 1.5 1 2 2 1.0
7 3 4 1.5e+33 3209 1.17 116 0.17 6.9 35 19.4 16.5 1.2
6 3 10 2.2e+67 1366 2.7 26 0.24 11.3 19 45.1 38.4 1.2
9 3 2 2.2e+29 5987 1.4 344 0.5 2.8 36 28 20.5 1.4
16 6 2 4.3e+26 46 0.55 3 0.51 1.1 3 3 2.7 1.1
15 5 2 6.6e+31 0 17.8 0 0.67 26.6 0 9.8 7.9 1.2
13 3 1 2.5e+36 12800 13.6 21 0.68 20.0 2 11.3 6.6 1.7
7 3 5 5.2e+43 33304 15.1 542 0.76 19.9 109 155 142 1.1
15 7 3 1.7e+24 118 0.98 19 1 1.0 5 12.9 8.7 1.5
21 5 1 2.6e+39 12 0.52 1 1.7 0.3 1 0.47 1.9 0.2
25 5 1 4.1e+57 864 78 1 1.9 41.1 1 156 75 2.1
10 5 4 2.3e+22 8031 24.9 302 1.9 13.1 21 131 104 1.3
7 3 6 7.0e+54 250878 136 2334 3.3 41.2 418 1258 1176 1.1
22 7 2 1.2e+42 0 35 0 8.3 4.2 0 9.5 10.2 0.9
7 3 7 3.1e+66 1459585 966 8821 13.9 69.5 1508 8062 7632 1.1
8 4 6 1.2e+34 2058523 1282 17890 17 75.4 2310 11028 10046 1.1
19 9 4 1.4e+34 6520 1511 71 23 65.7 6 6411 5428 1.2
10 3 2 9.6e+38 724662 178 24563 25.6 7.0 960 2915 1845 1.6
31 6 1 6.7e+67 864 56 1 19.4 2.9 1 477 470 1.0
7 3 8 3.6e+78 6941124 2664 32038 25 106.6 5413 - 21302
9 3 3 1.3e+47 14843772 1871 315531 76 24.6 22521 - 34077
7 3 9 1.0e+91 38079394 13059 105955 98 133.3 - -
15 3 1 1.3e+52 32127296 13522 6782 128 105.6 80 4312 2522 1.7
21 6 2 1.6e+49 0 26654 0 337 79.1 0 - 9235
13 4 2 2.5e+36 3664242 15139 83337 400 37.8 2461 - 18496
11 5 4 4.5e+28 6142308 15734 106522 473 33.3 4393 - 83307
12 6 5 5.4e+29 - 228146 3196 - -
25 9 3 2.4e+50 - 17016 9274 - -
16 6 3 1.3e+37 - 769482 14745 - -
Mean 14.6 1.21
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Table 3. Partial symmetry breaking.

BIBD Lex2 STAB PART Lex2

PART
STAB
PART

v k λ soln time soln time soln time time time
6 3 8 494 0.69 15 0.1 15 0.11 6.3 0.9
9 4 3 2600 2.4 41 0.11 45 0.1 24.0 1.1
16 4 1 12 0.21 1 0.14 1 0.12 1.8 1.2
7 3 4 3209 1.17 116 0.17 147 0.18 6.5 0.9
6 3 10 1366 2.7 26 0.24 26 0.24 11.3 1.0
9 3 2 5987 1.4 344 0.5 457 0.38 3.7 1.3
16 6 2 46 0.55 3 0.51 3 0.48 1.1 1.1
15 5 2 0 17.8 0 0.67 0 0.67 26.6 1.0
13 3 1 12800 13.6 21 0.68 24 0.33 41.2 2.1
7 3 5 33304 15.1 542 0.76 714 0.72 21.0 1.1
15 7 3 118 0.98 19 1 19 0.61 1.6 1.6
21 5 1 12 0.52 1 1.7 1 1.05 0.5 1.6
25 5 1 864 78 1 1.9 1 1.68 46.4 1.1
10 5 4 8031 24.9 302 1.9 302 1.5 16.6 1.3
7 3 6 250878 136 2334 3.3 3165 3.5 38.9 0.9
22 7 2 0 35 0 8.3 0 8.3 4.2 1.0
7 3 7 1459585 966 8821 13.9 11884 15.3 63.1 0.9
8 4 6 2058523 1282 17890 17 23252 18 71.2 0.9
19 9 4 6520 1511 71 23 71 23 65.7 1.0
10 3 2 724662 178 24563 25.6 28172 18 9.9 1.4
7 3 8 6941124 6569 32038 57 42888 65 101.1 0.9
9 3 3 14843772 4744 315531 182 418176 192 24.7 0.9
15 3 1 32127296 51784 6782 358 7154 157 329.8 2.3
Mean 14.4 1.17

The table 3 shows that STAB can be improved by about 17 percents using
partial symmetry breaking. The resulting method is about 15 times faster than
Lex2 on these examples.

6 Conclusion

We presented a new method for symmetry breaking that adds constraints dur-
ing search. These constraints break the symmetries that leave the current partial
assignment unchanged. An efficient realization of this technique was presented
for matrix models where variable symmetries are defined by rows and columns
permutation. The new technique was related from a theoretical point of view to
other techniques such as Lex2 and SBDD. This theoretical analysis have shown
how to safely combine these methods. Several improvements and optimizations
for STAB were also discussed. A comprehensive test of experiments using BIBD
problems have shown that our new technique is more than one order of magni-
tude faster than other methods. Moreover, STAB seemed much more scalable
than any previous method, as it enabled to solve problems that are hopeless for
other methods.
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These results are encouraging and we plan to make a more general purpose
implementation of STAB. More specifically we want to study its extension to
symmetries involving value permutations. We also want to apply STAB to gen-
eral CSPs, instead of only matrix models.
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Abstract. Previous studies have demonstrated that designing special
purpose constraint propagators can significantly improve the efficiency
of a constraint programming approach. In this paper we present an ef-
ficient algorithm for bounds consistency propagation of the generalized
cardinality constraint (gcc). Using a variety of benchmark and random
problems, we show that on some problems our bounds consistency algo-
rithm can dramatically outperform existing state-of-the-art commercial
implementations of constraint propagators for the gcc. We also present
a new algorithm for domain consistency propagation of the gcc which
improves on the worst-case performance of the best previous algorithm
for problems that occur often in applications.

1 Introduction

Many interesting problems can be modeled and solved using constraint pro-
gramming. In this approach one models a problem by stating constraints on
acceptable solutions, where a constraint is simply a relation among several un-
knowns or variables, each taking a value in a given domain. The problem is then
usually solved by interleaving a backtracking search with a series of constraint
propagation phases. In the constraint propagation phase, the constraints are
used to prune the domains of the variables by ensuring that the values in their
domains are locally consistent with the constraints.

Previous studies have demonstrated that designing special purpose constraint
propagators for commonly occurring constraints can significantly improve the
efficiency of a constraint programming approach (e.g., [9,13]). In this paper we
study constraint propagators for the global cardinality constraint (gcc). A gcc
over a set of variables and values states that the number of variables instantiating
to a value must be between a given upper and lower bound, where the bounds can
be different for each value. This type of constraint commonly occurs in rostering,
timetabling, sequencing, and scheduling applications (e.g., [1,4,11,15]).

Two constraint propagation techniques for the gcc have been developed.
Régin [10] gives an O(n2d) algorithm for domain consistency of the gcc (where n
is the number of variables and d is the number of values) that is based on relating
the gcc to flow theory. As well, a gcc can be rewritten as a collection of “atleast”

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 600–614, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



An Efficient Bounds Consistency Algorithm 601

and “atmost” constraints, one for each value, and constraint propagation can
be performed on the individual constraints [16]. However, on some problems the
first technique suffers from its cubic run-time and the second technique suffers
from its lack of pruning power. An alternative which has not yet been explored
with the gcc is bounds consistency propagation, a weaker form of consistency
than domain consistency. Bounds consistency propagation has already proven
useful for the alldifferent constraint [7,12], a specialization of the gcc.

In this paper we present an efficient algorithm for bounds consistency prop-
agation of the gcc. The algorithm runs in time O(t + n), where t is the time to
sort the bounds of the domains of the variables and n is the number of vari-
ables. Using a variety of benchmark and random problems, we show that on
some problems our bounds consistency algorithm can dramatically outperform
existing state-of-the-art commercial implementations of constraint propagators
for the gcc. We also present a new algorithm for domain consistency propagation
of the gcc which improves on the worst-case performance of Régin’s algorithm
for problems that occur often in applications.

2 Background
A constraint satisfaction problem (CSP) consists of a set of n variables, X =
{x1, . . . , xn}; a set of d values, D = {v1, . . . , vd}, where each variable xi ∈ X
has an associated finite domain dom(xi) ⊆ D of possible values; and a collection
of m constraints, {C1, . . . , Cm}. Each constraint Ci is a constraint over some
set of variables, denoted by vars(Ci). Given a constraint C, the notation t ∈ C
denotes a tuple t—an assignment of a value to each of the variables in vars(C)—
that satisfies the constraint C. The notation t[x] denotes the value assigned to
variable x by the tuple t. A solution to a CSP is an assignment of a value to
each variable that satisfies all of the constraints.

We assume in this paper that the domains are totally ordered. The minimum
and maximum values in the domain dom(x) of a variable x are denoted by
min(dom(x)) and max(dom(x)), and the interval notation [a, b] is used as a
shorthand for the set of values {a, a + 1, . . . , b}.

CSPs are usually solved by interleaving a backtracking search with constraint
propagation. The constraint propagation phase ensures that the values in the
domains of the unassigned variables are “locally consistent” with the constraints.
Support Given a constraint C, a value a ∈ dom(x) for a variable x ∈ vars(C)

is said to have: (i) a domain support in C if there exists a t ∈ C such
that a = t[x] and t[y] ∈ dom(y), for every y ∈ vars(C); (ii) an inter-
val support in C if there exists a t ∈ C such that a = t[x] and t[y] ∈
[min(dom(y)), max(dom(y)], for every y ∈ vars(C).

Local Consistency A constraint C is said to be: (i) bounds consistent if for
each x ∈ vars(C), each of the values min(dom(x)) and max(dom(x)) has an
interval support in C; (ii) domain consistent if for each x ∈ vars(C), each
value a ∈ dom(x) has a domain support in C.

A CSP can be made locally consistent by repeatedly removing unsupported
values from the domains of its variables.
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A global cardinality constraint ( gcc) is a constraint which consists of a set of
variables X = {x1, . . . , xn}, a set of values D = {v1, . . . , vd}, and for each v ∈ D
a pair [lv, uv]. A gcc is satisfied iff the number of times that a value v ∈ D is
assigned to the variables in X is at least lv and at most uv.

Example 1. Consider the CSP with six variables x1, . . . , x6 with domains, x1 ∈
[2, 2], x2 ∈ [1, 2], x3 ∈ [2, 3], x4 ∈ [2, 3], x5 ∈ [1, 4], and x6 ∈ [3, 4] and a single
global cardinality constraint gcc(x1, . . . , x6) with bounds on the occurrences of
values, l1, l2, l3 = 1, l4 = 2 and uv = 3, for all v ∈ {1, 2, 3, 4}. Enforcing bounds
consistency on the constraint reduces the domains of the variables as follows:
x1 ∈ [2, 2], x2 ∈ [1, 1], x3 ∈ [2, 3], x4 ∈ [2, 3], x5 ∈ [4, 4], and x6 ∈ [4, 4].

3 Local Consistency of the gcc

A gcc can be decomposed into two constraints: A lower bound constraint (lbc)
which ensures that all values v ∈ D are assigned to at least lv variables, and an
upper bound constraint (ubc) which ensures that all values v ∈ D are assigned
to at most uv variables. We will show how to make both constraints locally
(bounds or domain) consistent and prove that this is sufficient to make a gcc
locally consistent.

3.1 The Upper Bound Constraint (ubc)

The ubc is a generalization of the well studied alldifferent constraint (in the
alldifferent constraint uv = 1, for each value v). Some previous algorithms for
bounds consistency of the alldifferent constraint have been based on the concept
of Hall intervals [3,7,8]. A Hall interval is an interval H ⊆ D such that there
are |H| variables whose domains are contained in H. The definition of a Hall
interval can be generalized to sets by using the notion of maximal capacity. Let
C(S), S ⊆ D, be the number of variables whose domains are contained in S.
The maximal capacity �S� of a set S is the maximum number of variables that
can be assigned to the values in S; i.e., �S� =

∑
v∈S uv.

Hall set A Hall set is a set H ⊆ D such that there are �H� variables whose
domains are contained in H; i.e., H is a Hall set iff C(H) = �H�.

The values in a Hall set are fully consumed by the variables that form the
Hall set and unavailable for all other variables. Clearly, a ubc is unsatisfiable if
there is a set S such that C(S) > �S�. We show that the absence of such a set
is a sufficient and necessary condition for a ubc to be satisfiable.

Lemma 1. A ubc is satisfiable if and only if for any set S ⊆ D, C(S) ≤ �S�.

Proof. We reduce a ubc to an alldifferent constraint. We first duplicate uv times
each value v in the domain of a variable, using different labels to represent the
same value. For example, the domain {1, 2} with u1 = 3 and u2 = 2 is represented
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by {1a, 1b, 1c, 2a, 2b}. Clearly, this alldifferent constraint is satisfiable iff the ubc
is satisfiable. In a ubc, the maximal capacity of a set S is given by �S�; in an
alldifferent constraint, it is given by the cardinality |S| of the set. Hall [3] proved
that an alldifferent constraint is satisfiable iff for any set S, C(S) ≤ |S|. Thus,
the result holds also for a ubc. ��

3.2 The Lower Bound Constraint (lbc)

Next we define some concepts that will be useful for constructing a propagator
for the lbc. Let I(S) be the number of variables whose domains intersect the set
S. The minimal capacity 	S
 of a set S is the minimum number of variables that
must be assigned to the values in S; i.e., 	S
 =

∑
v∈S lv.

Failure set A failure set is a set F ⊆ D such that there are fewer variables
whose domains intersect F than its minimal capacity; i.e., F is a failure set
if I(F ) < 	F 
.

Unstable set An unstable set is a set U ⊆ D such that there are the same
number of variables whose domains intersect U as its minimal capacity; i.e.,
U is an unstable set if I(U) = 	U
.

Stable set A stable set is a set S ⊆ D such that there are more variables
whose domains are contained in S than its minimal capacity, and S does not
intersect any failure or unstable sets; i.e., S is a stable set if C(S) > 	S
,
S ∩ U = ∅ and S ∩ F = ∅ for all unstable sets U and failure sets F .

These three sets are the main tools to understand how to make an lbc locally
consistent. Failure sets determine if an lbc is satisfiable, unstable sets indicate
where the domains have to be pruned, and stable sets indicate which domains
do not have to be pruned because all of their values have supports.

Lemma 2. An lbc is satisfiable if and only if it does not have a failure set.

Proof. To satisfy an lbc, we must associate at least lv different variables to each
value v ∈ D such that every variable is assigned a single value from its domain.
For each value v ∈ D, we construct lv identical sets T i

v for i = 1, . . . , lv that
contain the indices of the variables that have v in their domain; i.e., T i

v = {j |
xj ∈ X ∧ v ∈ dom(xj)}. Let T be the set of all sets T i

v. To satisfy the lbc, we
must select one variable index from each set T i

v such that all selected indices
are different. The variables that are not selected can be instantiated to any
arbitrary value in their domain. This problem is known as the complete set of
distinct representatives problem and has been studied by Hall [3]. His main result
states that for any family of sets, a complete set of distinct representatives exists
if and only if the union of any k sets contains at least k elements. Formally the
problem is solvable if and only if |

⋃
t∈T t| ≥ |T | holds for any T ⊆ T . Applying

this theorem here, we have that an lbc is satisfiable if and only if for any set
S ⊆ D we have I(S) ≥ 	S
. Hence, the absence of a failure set is a necessary
and sufficient condition for an lbc to be satisfiable. ��
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Lemma 3 shows that a value in a domain that intersects an unstable set has
an interval/domain support only if the value also is in the unstable set.

Lemma 3. A variable whose domain intersects an unstable set cannot be in-
stantiated to a value outside of this set.

Proof. Let U be an unstable set and x a variable whose domain intersects U . If
x is instantiated to a value that does not belong to U then U becomes a failure
set and the lbc is no longer satisfiable by Lemma 2. ��

Lemma 4. A variable whose domain is contained in a stable set can be instan-
tiated to any value in its domain.

Proof. By definition, a stable set S does not intersect any unstable or failure set.
Thus, for any subset s of S, I(s) > 	s
. If a variable whose domain is contained
in S is assigned a value, the function I(s) will decrease by at most one and
therefore s will either stay a stable set or become an unstable set. In both cases,
no failure set is created and the lbc is still satisfiable. ��

A satisfiable lbc has several interesting properties: (i) the union of two un-
stable sets gives an unstable set, (ii) the union of two stable sets gives a stable
set, and (iii) since stable and unstable sets are disjoint, there exists a stable set
S and an unstable set U that forms a bipartition of D. The bipartition prop-
erty implies that there are two types of variables: those whose domains are fully
contained in a stable set and those whose domains intersect an unstable set.

3.3 An Iterative Algorithm for Local Consistency of the gcc

Suppose we have an algorithm A that makes a ubc locally consistent and suppose
that we have an algorithm B that makes an lbc locally consistent. To make a
gcc locally consistent we can decompose it, run A to prune the domains of the
variables, and then run B to further prune the domains. Since the domains can
potentially be pruned each time either algorithm is run, we alternatively run
each algorithm until no more modifications occur. In principle, we might need
to repeat this process a large number of times. Surprisingly, we prove that only
one iteration is sufficient.

The outline of the proof is as follows. We first prove that if a ubc is satisfiable
after running A, the ubc is still satisfiable after running B. We then prove that
the ubc is still locally consistent after running B.

Theorem 1. If B is run after A, B never creates a set s such that there are
more variables whose domains are contained in s than its maximal capacity �s�.

Proof. Suppose that algorithms A and B do not return a failure. Then there are
no failure sets and there is an unstable set U and a stable set S that form a
bipartition of D. Algorithm B does not modify the domains of the variables that
belong to a stable set. Therefore we know that for all s ⊆ S we have C(s) ≤ �s�
since the ubc is satisfiable according to A.
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We will show that for any set E ⊆ U ∪ S we have C(E) ≤ �E� and therefore
the ubc is still satisfiable after running B. Assume, by way of contradiction, there
is a set E that exceeds its capacity; i.e., C(E) > �E�. We divide this set into
two subsets: let L = U ∩ E be the unstable values in E and F = S ∩ E be the
stable values in E. We also define R = U −E as the unstable values that do not
belong to E. We know that �F � ≥ C(F ) since F is a subset of a stable set and
we showed that the property holds for any such a set. We also know that R is
not a failure set and U is an unstable set. Therefore we have I(R) ≥ 	R
 and
	L
 + 	R
 = I(L ∪ R).

�F � + 	L
 + 	R
≤�F � + �L� + 	R

�F � + I(L ∪ R)<C(E) + 	R

�F � + I(L ∪ R)< |{x ∈ X | dom(x) ⊆ E ∧ dom(x) � F}| + C(F ) + 	R

�F � + I(L ∪ R)< |{x ∈ X | dom(x) ∩ L �= ∅ ∧ dom(x) ∩ R = ∅}| + C(F ) + 	R


�F � + I(R)<C(F ) + 	R

�F �<C(F )

The last inequality is incompatible with the hypothesis hence the contradiction
hypothesis cannot be true. Notice that the proof holds for both bounds and
domain consistency. ��

Theorem 2. If B is run after A, the ubc is still locally consistent after B is
run.

Proof. Suppose that A and B make the constraints locally consistent and neither
returns a failure. To prove that the ubc is still locally consistent, we have to
show that all variables are still consistent with all Hall sets. By a variable being
consistent with a Hall set H we mean the following: for bounds consistency, the
domain of the variable must have either both or neither bounds in H; and for
domain consistency, the domain of the variable must be either fully included in
or completely disjoint from H.

Since B did not return a failure, there is an unstable set U and a stable set
S that form a bipartition of D. Let H ⊆ D be a Hall set. We divide this Hall
set into two subsets: F = H ∩S contains the values of H that belong to a stable
set and L = H ∩ U contains the values of H that belong to an unstable set. We
also define R = U − L as the unstable values that do not belong to H. Using
these three sets, we will prove that all variables are consistent with H.

The unstable set U can be expressed as the union of L and R and therefore
we have 	L
+ 	R
 = I(L∪R). Similarly, H is the union of F and L and implies
�F �+�L� = C(H) = |{x ∈ X | dom(x) ⊆ H ∧dom(x) � F}|+C(F ). Therefore,

�F � + 	L
 + 	R
≤�F � + �L� + 	R

�F � + I(L ∪ R)≤|{x ∈ X | dom(x) ⊆ H ∧ dom(x) � F}| + C(F ) + 	R

�F � + I(L ∪ R)≤|{x ∈ X | dom(x) ∩ L �= ∅ ∧ dom(x) ∩ R = ∅}| + C(F ) + 	R


�F � + I(R)≤C(F ) + 	R
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By Theorem 1 we obtain C(F ) ≤ �F � and since R is not a failure set, we have
I(R) ≥ 	R
. Using these two inequalities, we find that R is an unstable set i.e.
I(R) = 	R
 and F is a Hall set i.e. C(F ) = �F �. Using this observation, we now
show that all variables whose domains are contained in S are consistent with
H. The Hall set F is a subset of S and since algorithm B does not modify any
variables whose domains are contained in S, algorithm A already identified F
as a Hall set and made all variables consistent with it. Since the variables whose
domains are contained in S were not modified by B they are still consistent with
F . A variable whose domain intersects an unstable set like U and R must have
both bounds in this set. Since U = L ∪ R, a variable whose domain intersects
U must have both bounds in either L or R and therefore be consistent with the
Hall set H. Similarly, one can show the result also holds for domain consistency.

We have shown that any variable whose domain is either contained in S or
intersects U is consistent with H. Thus all variables are consistent with any Hall
set and the ubc is still locally consistent after running B. ��

Finally, we show that making the ubc and the lbc locally consistent is equiv-
alent to making the gcc locally consistent.

Theorem 3. A value v ∈ dom(x) has a support in a gcc if and only if it has
supports in the corresponding lbc and ubc.

Proof. Clearly, if there is a tuple t that satisfies the gcc such that t[x] = v, this
tuple also satisfies the lbc and the ubc. To prove the converse, we consider a value
v ∈ dom(x) that has a support in the lbc and a (possibly different) support in the
ubc. We construct a tuple t such that t[x] = v that satisfies the gcc and therefore
prove that v ∈ dom(x) also has a support in the gcc. We first instantiate the
variable x to v. The lbc and ubc are still satisfiable since the value has a support
in both constraints. We now show how to instantiate the other variables.

If there is an uninstantiated variable x whose domain does not intersect
any unstable set and is not contained in any Hall set, then the domain of x is
necessarily contained in a stable set. By Lemma 4 we can instantiate x to any
value in its domain and keep the lbc satisfiable. We therefore choose a solution of
the ubc and instantiate x to the same value as it is instantiated in the solution.
This operation can create new unstable sets or new Hall sets but keeps both
the lbc and the ubc satisfiable. For all variables that intersect an unstable set U ,
we choose a solution of the lbc and assign the variables to the same values as
the solution. We perform the same operation for the variables whose domain is
contained in a Hall set H using a solution of the ubc. There will be exactly lv
or uv variables assigned to a value v depending if the value belongs to U or H,
which in either case satisfies both the lbc and ubc. We repeat the above until all
variables are instantiated. The constructed tuple t satisfies the lbc and the ubc
simultaneously and therefore also satisfies the gcc. ��

4 Bounds Consistency

We present algorithms for making a ubc and an lbc bounds consistent.
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4.1 The Upper Bound Constraint (ubc)

Finding an algorithm that makes a ubc bounds consistent is relatively straight-
forward if we already know such an algorithm for the alldifferent constraint that
uses the concept of Hall intervals. If there is a variable whose domain is [a, b] and
there is a Hall interval [c, d] such that c ≤ a ≤ d < b holds, the algorithm will
update the domain of the variable to [d + 1, b]. The algorithm introduced in [7]
detects Hall intervals by checking if there are d − c + 1 variables in an interval
[c, d]. We can adapt this algorithm to a ubc without altering its complexity by
finding a way to compute the maximal capacity of an interval in constant time.
We use a partial sum data structure, implemented as an array A containing the
partial sums of the maximal capacities A[i] =

∑i
j=0 uj . The maximal capacity

of an interval I ⊆ D can be computed by subtracting two elements in A since
we have �I� = A[max(I)] − A[min(I) − 1]. Initializing the array A takes O(D)
time to compute but this is done once and is reused for any future calls to the
propagator. The algorithm time complexity is O(t + |X|) where t is the time
required for sorting the variable domains by lower and upper bounds.

4.2 The Lower Bound Constraint (lbc)

We now present an algorithm (see Figure 1) that shrinks the lower bounds of the
variable domains received as input. The upper bounds can be updated symmet-
rically by a similar algorithm and consequently make the lbc bounds consistent.

The initialization step assigns to each value v ∈ D exactly lv empty buckets
corresponding to the minimal capacity to be filled for v and setting a failure flag
which indicates if v belongs to a failure set. The union-find data structure PS
covers all values in D and contains potential stable sets. If the greatest element
of a set S ∈ PS is in a stable set then S is fully contained in this stable set.
Stable sets are stored in the variable Stable.

Our algorithm processes each variable x ∈ X in nondecreasing order by upper
bound. Like the algorithm of Lipski et al. [6], it searches for the smallest value v ∈
dom(x) that has an empty bucket and fills it in with a token. If v > min(dom(x))
and v belongs to a stable set then the interval I = [min(dom(x)), v] is contained
in this stable set. The algorithm regroups all values in I in its variable PS. If
there are no empty buckets in dom(x) then max(dom(x)) belongs to a stable set
and so do all the values that belong to the same set in PS.

The algorithm initially assumes that all values belong to a failure set. When
processing variable x, an interval I = [a,max(dom(x))] with no empty buckets
contains the domains of a least 	I
 variables and thus cannot be a failure set.
The algorithm unsets the failure flags for all values in I. If a value still has a
failure flag set after processing all the variables then the lbc is unsatisfiable.

To shrink the domains, the algorithm stores in NewMin[i] the smallest value
v ∈ dom(xi) with a failure flag. If dom(xi) intersected an unstable set U , v would
be the smallest value in dom(xi)∩U . If no values in dom(xi) have a failure flag,
xi belongs to a stable set and NewMin[i] remains undefined. After processing all
variables, the algorithm assigns the new lower bound NewMin to the variables
that are not contained in a stable set.
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Algorithm 1. Bounds consistency algorithm for the lbc

Example 2. Figure 1 shows a trace of the algorithm on the CSP introduced in
Example 1. Initially, all buckets are empty and all values are marked with a
failure flag. Figure 1 shows the data structures as the algorithm iterates through
the variables. The circles represent the buckets, a letter f symbolizes a failure
flag, and the state of the variables PS and Stable are also represented by the sets
of values. Upon completion of the algorithm, the new domains of the variables
are: x1 ∈ [2, 2], x2 ∈ [1, 2], x3 ∈ [2, 3], x4 ∈ [2, 3], x5 ∈ [4, 4], and x6 ∈ [4, 4].

A naive implementation of our algorithm has time complexity O(t+ |X| |D|),
where t is the complexity of sorting the intervals by upper bounds. Incremental
and linear time sorting algorithms have time complexity less than O(|X| log |X|).
We will show how to improve the complexity to O(t + |X|).

To obtain a complexity independent of |D|, we consider the variables as semi-
open intervals where xi = [ai, bi) and define the set D′ as the union of the lower
bounds ai and the open upper bounds bi of each variable. The size of D′ is
bounded by 2|X|. Let c and d be two consecutive values in D′ and let I = (c, d]
be a semi-open interval. We modify the algorithm to assign 	I
 buckets to the
value d using a partial sum data structure (see Section 4.1). We then run the

Let PS be a union-find data structure over the elements in D;
Let Stable = ∅;
for v ∈ D do

associate lv empty buckets to the value v;
if lv > 0 then mark v as a failure element;

D ← D ∪ {−∞,∞};
associate ∞ buckets to the values −∞ and ∞;
for xi ∈ X in nondecreasing order of max(dom(xi)) do

a ← min(dom(xi)); b ← max(dom(xi));
z ← min({v ∈ D | v ≥ a, a has an empty bucket});
if z > a then union (PS, a, a + 1, . . . , min(b, z));
if z > b then

S ←findSet (PS, b);
Stable ← Stable ∪ {S};

else
add a token in one of the empty buckets of z;
z ← min({v ∈ D | v ≥ a, a has an empty bucket});
NewMin[i] ← min({v ∈ D | v ≥ a, v has a failure flag});
if z > b then

j ← max({v ∈ D | v ≤ b, v has an empty bucket});
reset the failure flag for all elements in (j, b];

if |{v ∈ D | v has a failure flag}| > 0 then return Failure;
for xi ∈ X such that ∀S ∈ Stable, dom(xi) 
⊆ S do

dom(xi) ← dom(xi) − [min(dom(xi)), NewMin[i]);

return Success;
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Fig. 1. Trace of Algorithm 1

algorithm as before using the set D′ instead of D. This modification improves
the time complexity to O(t + |X|2).

To get a linear complexity, we implement the buckets using a union-find data
structure and an array of integers that stores the number of empty buckets a
value v has. If all buckets of a value v are filled in, the algorithm merges the value
v with the next element in D′. Requesting n times the next value having a free
bucket is a linear time operation using the interval union-find data structure [2].
The algorithm takes O(t+ |X|) steps using the interval union-find for the failure
flags, the stable sets Stable, and the potential stable sets PS.

Although the interval union-find data structure gives the best theoretical
time complexity, we found that it did not result in the fastest code in practice in
spite of our best efforts to optimize the code. In our experiments (see Section 6),
we use instead the tree data structure described in [7] to obtain an algorithm
with O(t + |X| log |X|) time complexity. This tree data structure even offers
slightly better performance than the standard union-find data structure which
runs in O(t + |X|α(|X|)) where α is the inverse of Ackermann’s function.

5 Domain Consistency

In this section we present a propagator that makes a gcc domain consistent. We
will use Régin’s propagator [9,17] for the alldifferent constraint as a black box
that has complexity O(d|X| 3

2 ), where d is the size of the largest domain of a
variable, to make the lbc and ubc domain consistent.

5.1 The Upper Bound Constraint (ubc)

The problem of making a ubc domain consistent can be reduced to the problem
of making an alldifferent constraint domain consistent. Consider the domain

x1 = [2, 2] x2 = [1, 2] x3 = [2, 3]
−∞ 1f 2 3f 4f ∞
© © ⊗ © © ©... ©

...
PS {1} {2} {3} {4}

Stable

−∞ 1 2 3f 4f ∞
© ⊗ ⊗ © © ©... ©

...
PS {1} {2} {3} {4}

Stable

−∞ 1 2 3 4f ∞
© ⊗ ⊗ ⊗ © ©... ©

...
PS {1} {2 3} {4}

Stable
NewMin[1] ← 2 NewMin[2] ← 1 NewMin[3] ← 3

x4 = [2, 3] x5 = [1, 4] x6 = [3, 4]
−∞ 1 2 3 4f ∞
© ⊗ ⊗ ⊗ © ©... ©

...
PS {1} {2 3} {4}

Stable {2 3}

−∞ 1 2 3 4f ∞
© ⊗ ⊗ ⊗ ⊗ ©... ©

...
PS {1 2 3 4}

Stable {2 3}

−∞ 1 2 3 4 ∞
© ⊗ ⊗ ⊗ ⊗ ©...

⊗ ...
PS {1 2 3 4}

Stable {2 3}
NewMin[5] ← 4 NewMin[6] ← 4
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dom(x) of a variable x as a multiset where the multiplicity of a value v ∈ dom(x)
is uv. One can represent a multiset as a normal set where different labels refer
to the same value. We apply Régin’s propagator with the new domains and then
remove all duplicates from the domains. Since there are |X| variables and the
largest domain is bounded by u|D| where u = maxv∈D uv, we obtain a time
complexity of O(u |D| |X|

3
2 ).

5.2 The Lower Bound Constraint (lbc)

The problem of making an lbc domain consistent can also be reduced to the
problem of making an alldifferent constraint domain consistent. We first dupli-
cate the values as we did in Section 5.1 according to the minimal capacities. Let
M be a |X| × |D| binary matrix such that Mij equals 1 if the value j belongs
to the domain of the variable xi and equals 0 otherwise. The transposed matrix
MT defines the dual problem. In a dual problem, the dual values D′ represent
the primal variables and the dual variables X ′ represent the primal values.

Theorem 4. Solving the alldifferent problem on the dual problem solves the
lower bound problem on the primal problem.

Proof. Since we have duplicated some values in the domains of the variables, the
minimal capacity of a set S is now equal to the size of the set; i.e., 	S
 = |S|. Let
U be an unstable set in the primal problem. In the dual problem, the values in
U are represented by variables. There are |U | dual variables whose domains are
contained in a set of |U | dual values. Consequently, an unstable set in the primal
corresponds to a Hall set in the dual. A propagator for the alldifferent problem
removes from a domain the values contained in a Hall set only if the domain is
not fully contained in the Hall set. If such a propagator is applied on the dual
problem, it would remove from the domains that intersect an unstable set the
values that do not belong to this unstable set. This operation is sufficient to make
the primal domain consistent. The alldifferent propagator would also return a
failure if the problem is unsolvable. A failure set in the primal corresponds to
a set of values in the dual that contains more variables than values. Such a set
makes the dual unsolvable and is detected by the alldifferent propagator. ��

We use Régin’s propagator to solve the dual problem and then remove the
duplicates from the domains of the variables. Since in the dual problem there
are at most l|D| variables and the largest domain is bounded by |X|, the total
time complexity is O(l1.5|X||D|1.5) where l = maxv∈Dlv.

5.3 The Complete Algorithm for Domain Consistency of the gcc

The complete algorithm makes the ubc domain consistent and then makes the lbc
domain consistent. The total time complexity is O(u|X|1.5|D| + l1.5|X||D|1.5).

That the complexity depends on the number of values in D can make the
filter inefficient for some problems. We identify two classes of problems that
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occur often in applications and where our algorithm offers a better complexity
than existing algorithms. Our analysis assumes that the maximal capacity uv is
bounded by a constant for all values v. The first class consists of problems where
the minimal capacity lv is non-null. Since each value must be instantiated by at
least one variable, we necessarily have |D| ≤ |X| for a solvable problem. In this
case the algorithm runs in time O(|D||X|1.5). The second class of problems is
the one where the minimal capacity lv is null for all values v. In this case we only
need to make ubc domain consistent which can be done in time O(|D||X|1.5).
For either class, the complexity of the algorithm improves the previous best gcc
propagator for domain consistency which runs in O(|D||X|2) [10].

6 Experimental Results

We implemented our new bounds consistency algorithm for the generalized cardi-
nality constraint (denoted hereafter as BC) using the ILOG Solver C++ library,
Version 4.2 [4]1. Following a suggestion by Puget [8] adapted to the gcc, the range
of applicability of BC can be extended by combining bounds consistency with
the removal of a value when the number of times it has been assigned reaches its
upper bound (denoted BC+). The ILOG Solver library already provides imple-
mentations of Régin’s [10] domain consistency algorithm (denoted DC), and an
algorithm (denoted CC) that enforces a level of consistency that is equivalent to
enforcing domain consistency on individual cardinality constraints, where there
is one cardinality constraint for each value [4,16].

We compared the algorithms experimentally on various benchmark and ran-
dom problems. All of the experiments were run on a 2.40 GHz Pentium 4 with
1 GB of main memory. Each reported runtime is the average of 10 runs except
for random problems where 100 runs were performed. Unless otherwise noted,
the minimum domain size variable ordering heuristic was used in the search.

We first consider problems introduced by Puget ([8]; denoted here as Patho-
logical) that were “designed to show the worst case behavior” of algorithms for
the alldifferent constraint. Here we adapt the problem to the gcc. A Pathological
problem consists of a single gcc over 2n + 1 variables with dom(xi) = [i − n, 0],
0 ≤ i ≤ n, and dom(xi) = [0, i−n], n+1 ≤ i ≤ 2n and each value must occur ex-
actly once. The problems were solved using the lexicographic variable ordering.
On these problems, our BC propagator offers a clear performance improvement
over the other propagators (see Figure 2). Qualitatively similar results were ob-
tained for a generalization of these problems where each value must occur exactly
c times, where c is some small value.

We next consider instruction scheduling problems for multiple-issue pipelined
processors. For these problems there are n variables, one for each instruction to
be scheduled and latency constraints of the form xi ≤ xj +l where l is some small
integer value, and one or more gcc’s over all n variables (see [14] for more details
on the problem). In our experiments, we used ten hard problems that were taken
from the SPEC95 floating point, SPEC2000 floating point, and MediaBench
1 The code discussed in this section is available on request from vanbeek@uwaterloo.ca
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Fig. 2. Time (sec.) to first solution for Pathological problems

Table 1. Time (sec.) to optimal solution for instruction scheduling problems; (left)
issue width = 2; (right) issue width = 2 + 2 = 4. A blank entry means the problem
was not solved within a 10 minute time bound

n CC DC BC
69 0.01 0.12 0.00
70 0.00 0.07 0.00

111 0.03 0.75 0.01
211 0.51 9.24 0.07
214 0.60 9.29 0.09
216 2.67 124.07 0.31
220 5.09 285.91 0.52
690 1.34 493.15 1.67
856 471.16 3.84

1006 8.70

n CC DC BC
69 0.00 0.07 0.00
70 0.01 0.07 0.00

111 0.03 0.44 0.01
211 0.56 7.16 0.11
214 0.61 7.85 0.13
216 2.78 89.61 0.48
220 2.90 98.15 0.57
690 2.17 307.20 2.81
856

1006 307.00 14.44

benchmarks. The issue width of a processor refers to how many instructions can
be issued each clock cycle. In our experiments we used the representative cases
of a processor with an issue width of two with two identical functional units,
and an issue width of four with two floating point units and two integer units
(see Table 1). Here, our BC propagator offers a clear performance improvement
over the other propagators.

We next consider car sequencing problems (see [4]). For these problems there
are n variables, n values, each configuration of five options is equally likely, and
there are approximately 4n gcc’s. Here, our BC+ propagator achieves almost the
same pruning power as DC and becomes faster than the other propagators as n
grows (see Table 2). We also consider sport league scheduling problems (see [15]
and references therein). For these problems there are n2 variables, n values, and
n/2 gcc’s. Here, our BC+ propagator is within 15% of the fastest propagator, DC,
in terms of run-time and pruning power (see Table 3). The complexity or run-
time of the CC and DC propagators depends on the number of domain values,
whereas the BC/BC+ propagators do not. The car sequencing and sports league
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Table 2. (left) Time (sec.) to first solution or to detect inconsistency for car sequencing
problems; (right) number of backtracks (fails)

n CC DC BC BC+
10 0.07 0.07 0.09 0.09
15 3.40 3.88 5.39 4.12
20 20.65 30.05 30.95 21.83
25 131.27 203.23 163.97 118.57

n CC DC BC BC+
10 437 321 460 429
15 13,849 9,609 19,958 13,565
20 55,657 52,581 105,436 55,580
25 255,690 250,042 520,519 255,653

Table 3. (left) Time (sec.) to first solution for sports league scheduling problems;
(right) number of backtracks (fails). A blank entry means the problem was not solved
within a 10 minute time bound

n CC DC BC BC+
8 0.19 0.16 0.04 0.18

10 1.10 0.12 0.03 0.19
12 1.98 1.70 51.71 2.07
14 11.82 8.72 9.98

n CC DC BC BC+
8 1308 914 136 942

10 5767 428 54 689
12 6449 4399 149728 5356
14 33901 19584 22176

Table 4. Time (sec.) to first solution or to detect inconsistency for random problems
where the bounds on number of occurrences of each value were (left) [0, 2]; (right)
chosen uniformly at random from {[0, 1], [0, 2], [1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [2, 4]}.
A blank entry means some problems could not be solved within a 10 min. time bound

n DC BC
100 0.02 0.01
200 0.23 0.02
400 2.55 0.08
800 26.14 0.33

1600 266.80 1.24

DC BC
n d/2 d 2d d/2 d 2d

100 0.00 0.01 0.33 0.00 0.00 0.00
200 0.00 0.07 4.81 0.00 0.01 0.01
400 0.01 0.60 74.88 0.00 0.03 0.04
800 0.03 4.58 0.01 0.15 0.16

1600 0.20 34.78 0.02 0.70 0.62

scheduling problems illustrate that the number of domain values does not have
to be very large for this factor to lead to competitive run-times for our relatively
unoptimized BC/BC+ propagators.

To systematically study the scaling behavior of the algorithm, we next con-
sider random problems. The problems consisted of a single gcc over n variables
and each variable had its initial domain set to [a, b], where a and b, a ≤ b, were
chosen uniformly at random from [1, d = n/2] (chosen so that a mixture of con-
sistent and inconsistent problems would be generated). In these “pure” problems
nearly all of the run-time is due to the gcc propagators, and one can clearly see
the cubic behavior of the DC propagator and the nearly linear incremental be-
havior of the BC propagator (see Table 4). On these problems, CC (not shown)
could not solve some of the smallest problems within a 10 minute time bound.

7 Conclusions

We presented an efficient algorithm for bounds consistency propagation of the
gcc and showed its usefulness on a set of benchmark and random problems.
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We also presented an algorithm for domain consistency propagation with an
improved worst-case bound on problems that arise in practice.

Acknowledgments

The authors thank the participants of the constraint programming problem
session at the University of Waterloo, Kent Wilken for providing the instruc-
tion scheduling problems used in our experiments and Irit Katriel and Sven
Thiel [5] for trying out our algorithm. Alexander Golynski is partially supported
by NSERC grant RGPIN8237.

References

1. Y. Caseau, P.-Y. Guillo, and E. Levenez. A deductive and object-oriented approach
to a complex scheduling problem. In Deductive and Object-Oriented Databases,
pages 67–80, 1993.

2. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. In STOC-1983, pages 246–251.

3. P. Hall. On representatives of subsets. J. of the London Mathematical Society,
pages 26–30, 1935.

4. ILOG S. A. ILOG Solver 4.2 user’s manual, 1998.
5. I. Katriel and S. Thiel. Fast bound consistency for the global cardinality constraint.

In CP-2003.
6. W. Lipski and F. P. Preparata. Efficient algorithms for finding maximum matchings

in convex bipartite graphs and related problems. In Acta Informatica, 15:329–346,
1981.
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Solving Existentially Quantified Constraints with
One Equality and Arbitrarily Many Inequalities
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Abstract. This paper contains the first algorithm that can solve dis-
junctions of constraints of the form ∃y∈B [f = 0 ∧ g1 ≥ 0∧ . . .∧gk ≥ 0]
in free variables x, terminating for all cases when this results in a nu-
merically well-posed problem. Here the only assumption on the terms
f, g1, . . . , gn is the existence of a pruning function, as given by the usual
constraint propagation algorithms or by interval evaluation. The paper
discusses the application of an implementation of the resulting algorithm
on problems from control engineering, parameter estimation, and com-
putational geometry.

1 Introduction

Dealing with uncertainty is an important challenge for constraint programming.
An important way of modeling bounded (in contrast to stochastic [30]) uncer-
tainty uses the logical quantifiers ∀ and ∃—as illustrated by an over-60-paper-
bibliography on applications of solving constraints with quantifiers [22]. However,
the problem of solving real-number constraints with quantifiers is undecidable
in general [29], and very hard for special cases [32,7].

This paper is part of a research program on solving real-number constraints
with quantifiers, with only the two restrictions of numerical well-posedness and
existence of a pruning algorithm for the individual (atomic) constraints. The
case we consider in this paper are constraints of the form ∃y∈B [f = 0 ∧ g1 ≥
0∧. . .∧gn ≥ 0] in free variables x, and disjunctions thereof. For example, this case
is very important in parameter estimation [14]. For disproving such constraints
or computing elements that are not in the solution set, one can use a method
for solving constraint with quantifiers and no equality predicate symbols [26,25].
However, proving such constraints or computing elements in its solution set
introduces significant additional difficulties: First, the non-empty solution set of
an equality might not contain any rational (or even real algebraic) number, as
in the example ∃x [sinx = 0 ∧ x ≥ 3 ∧ x ≤ 4]. Second, the branching step of the
mentioned algorithms [26,25] does not necessarily decrease the difficulty for such
constraints. On the contrary—it can even produce a new, numerically ill-posed
problem!

For the design of the algorithm introduced in this paper we use the following
main objectives: First, it should terminate for all cases that are numerically

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 615–633, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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well-posed. And second, computed positive and negative information should be
mutually used within the algorithm.

We proceed by giving a criterion characterizing the numerical well-posedness
of such constraints, extending the case [26] of just inequalities. Using this crite-
rion we design an algorithm that is based on the usual branch-and-prune scheme
extended with an additional checking step for proving the truth of the input con-
straint on a part of the free-variable space. Here, branching not only splits bounds
on the free-variables, but can also split an existential quantifier into a disjunction
of two existential quantifiers. If desired, the algorithm can also return witnesses
in the case of a positive result. We have implemented the algorithm and applied
it to problems in control engineering, parameter estimation, and computational
geometry.

The paper is self-contained except for a few basic notions from analysis. Its
structure is as follows: In Section 2 we introduce some basic notions; in Section 3
we present the main branch-prune-and-check algorithm; in Section 4 we give a
characterization of the stability of such constraint; in Section 5 we discuss the
pruning step, in Section 6 the branching step, in Section 7, the checking step; in
Section 8 we apply the results to the main algorithm; in Section 9 we discuss an
implementation of the algorithm and we apply it to simple application examples;
in Section 10 we discuss related work; and in Section 11 we conclude the paper.

2 Preliminaries

In this paper we concentrate on a certain type of constraints:

Definition 1. An E-constraint is a constraint of the form

∃y∈B1 [f1 = 0 ∧ g1,1 ≥ 0 ∧ . . . ∧ g1,k1 ≥ 0]
∨ . . .∨

∃y∈Bn [fn = 0 ∧ gn,1 ≥ 0 ∧ . . . ∧ gn,kn
≥ 0], where

– B1, . . . , Bn are boxes of the same dimension as the length of the variable
vector y, and

– f1, g1,1, . . . , g1,k1 , . . . , fn, gn,1, . . . , gn,kn
are terms built from a fixed set of

function symbols (e.g., +, ·, sin, cos, exp) to which we give their usual mean-
ing over the real numbers.

Within this paper we call an E-constraint or any sub-constraint of an E-
constraint a constraint. A bounded constraint is a pair consisting of a constraint
φ in n free variables, and a box B ⊆ IRn (the free-variable-bound). A bounded
constraint is true/false iff it is true/false for all elements of the bound. As usual
in mathematics we will use the same notation to write down a term and the
function it denotes. By “solving” we mean the following:

Definition 2. Given a bounded E-constraint (φ,B) and ε ∈ IR+, an ε-solution
of (φ,B) is a pair (T, F ) of sets of boxes such that
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–
⋃

T ⊆ B,
⋃

F ⊆ B,
– φ is true on all elements of

⋃
T ,

– φ is false on all elements of
⋃

F , and
– the volume of B \

⋃
T \

⋃
F is smaller than ε.

We will use a few basic notions from analysis such as continuity, intermediate
value theorem, convergence of sequences. Furthermore, we say that a sequence of
sets over IRn converges to a real vector r ∈ IRn iff all element sequences converge
to r. In order to be able to use the convergence notion also for n = 0, we measure
distance in IR0 according to d(x, y) = 0 if x = y and ∞, otherwise. We also say
that a sequence x1, . . . eventually fulfills a property P iff there is a k such that
for all i ≥ k, P (xi) holds. Finally, we define the width of a box B (w(B)) to be
the maximum of the width of its component intervals.

3 Overall Algorithm

One can extend numerical constraint satisfaction methods [8,2] to constraints
that contain quantifiers [23,25]. This uses a branch-and-prune framework, where
pruning tries to prove or disprove (parts of) the input constraints and if this
fails, branching tries to decrease the difficulty by splitting one of the quantifiers
into subproblems.

However, for constraints that contain equalities or disequalities this fails,
because equalities have solution sets without volume, and disequalities have so-
lution set complements without volume. For the example ∃x [sinx = 0 ∧ x ≥
3∧x ≤ 4] pruning will never compute a real number x fulfilling sinx = 0 and so
the method will never prove the whole constraint. In general, for E-constraints,
pruning will disprove a false constraint (compute false elements) without prob-
lems. However, it fails in proving a true constraint (computing true elements).
Note that formulating an equality by two inequalities will not help: this intro-
duces an ill-posed problem because arbitrary perturbations of the inequalities
will make any solution vanish.

In order to remedy this situation, we modify the according branch-and-prune
algorithm, resulting in Algorithm 1. The main change consists of an additional
checking step that tries to prove constraints. By letting pruning (for computing
negative information) and checking (for computing positive information) work
on the same constraints, one can take advantage of the results of the other.

Here we have the following sub-algorithm specifications:

Diff: Takes two sets of bounded constraints and returns a set of boxes such that
their union is equal to the closure of the difference of the free-variable-bounds
of the inputs.

Prune: Returns the input (a set of bounded constraints), with the free-variable
bounds replaced by sub-boxes, such that the closure of the difference of the
old and new bounds contains no solutions.

Check: Returns the input except for some true bounded constraints.
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Algorithm 1 Solver
Input: (φ, B): a bounded E-constraint, ε ∈ IR+

Output: T, F : an ε-solution of (φ, B)
C ← {(φ, B)}
C′ ← C; C ← Prune(C); F ← F ∪ Diff(C′, C)
C′ ← C; C ← Check(C); T ← T ∪ Diff(C′, C)
while the volume of {B | (φ, B) ∈ C} is greater or equal ε do

C ← Branch(C)
C′ ← C; C ← Prune(C); F ← F ∪ Diff(C′, C)
C′ ← C; C ← Check(C); T ← T ∪ Diff(C′, C)

end while

Branch: Splits a sub-constraint of the form ∃x∈B φ into ∃x∈B1 φ ∨ ∃x∈
B2 φ such that the union of B1 and B2 is B, and their intersection has zero
volume, or splits a bounded constraint (φ,B) into (φ,B1) and (φ,B2), such
that the union of B1 and B2 is B, and their intersection has zero volume.

Here we assume that in IR0 the volume of the empty box is 0 and the volume
of the non-empty box is ∞. In the algorithm, for closed inputs, the set C will
never contain more than one element, and the algorithm terminates as soon as
C becomes empty.

The reason, why such algorithms use a pruning step (instead of checking
for false constraints also), is that often one can deduce information by pruning
even when a checking step would fail. This allows us to keep the size of the
problem small by avoiding branching. Based on the above specifications of the
sub-algorithms, it is now easy to prove:

Theorem 1. Algorithm 1 is correct.

However, it is not clear when it will terminate. In the rest of the paper we will
implement the sub-algorithms in such a way that we can prove termination in
all cases that are numerically well-posed (in a sense that we will shortly define).

4 Stability of Constraints

Algorithms that involve rounding or approximation can only succeed on prob-
lems where this does not change the result in an essential way. Studying this
phenomenon is one of the main tasks of the field of numerical analysis. In this
section we undertake a similar endeavor for E-constraints. Readers who are in-
terested only in algorithms for solving E-constraints and not in their detailed
properties can skip this section.

Definition 3. A constraint φ′ is a result of a δ-perturbation of a constraint φ iff
it results from φ by replacing the right-hand-side zeros of atomic constraints by
terms denoting a continuous function (in both the free and quantified variables),
whose co-domain is [−δ, δ].
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Definition 4. A closed E-constraint is stable iff there is a real number δ > 0
such that all results of δ-perturbations have the same truth value.

For example, the constraint ∃x∈ [−2, 2] x2 = 0 is unstable: although it is true,
it becomes false under small perturbations. On the other hand, the constraint
∃x∈ [−2, 2] x2 − 1 = 0 is stable.

In the previous definition, perturbations by constants—as for the case of
inequality constraints [26]—do not suffice for capturing the E-constraints that
are solvable by numerical methods. For example, for functions f and g as in

f
g

a b

Fig. 1. Constant Perturbations Fail

Figure 1, the constraint ∃x [f(x) = 0 ∧ g(x) ≥ 0] would be stable and true,
but the zero proving the existential quantifier jumps discontinuously between
the zeros a and b. This obstructs the use of methods that involve rounding or
approximation for such a problem.

Now, as in the case of inequality constraints [26], we introduce a number
that replaces the discrete notion of truth of a constraint by a continuous one
that is negative for false constraints, positive for true constraints, and such that
the ease of proving this is proportional to its distance to zero. Similar to the
notion of condition number in numerical analysis, this will allow us to study the
difficulty of a problem (the essential difference being that, by using derivatives,
condition numbers concentrate on local information, while we want to capture
the problem globally).

The idea is, that for proving a constraint of the form ∃y ∈B [f = 0 ∧ g1 ≥
0∧. . .∧gk ≥ 0], by Bolzano’s intermediate value theorem, it suffices to prove that
there is a path between two points within the quantification bound such that the
inequalities g1 ≥ 0 ∧ . . . ∧ gk ≥ 0 hold on the whole path, and the function f is
non-positive at the beginning and non-negative at the end. We assume that the
ease of proving an inequality between two real numbers is proportional to the
distance of the two numbers; the ease of proving an inequality on all elements
of a path is the minimal ease of proving the inequality on the path elements;
and the ease of proving the whole E-constraint is proportional to the ease of
performing the above on the easiest path:

Definition 5. The degree of truth of a closed constraint ∃y∈B [f = 0 ∧ g1 ≥
0 ∧ . . . ∧ gn ≥ 0] on a path P ⊆ B between two points p1 ∈ B and p2 ∈ B is

min{f(p1),−f(p2),min
P

g1, . . . ,min
P

gn}
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The degree of truth τ(φ) of a closed E-constraint of the form ∃y ∈ B1 φ1 ∨ . . .∨
∃y ∈ Bn φn is the maximum of the degree of truth of a sub-constraint ∃y ∈ Bi φi

over all paths in Bi and all i ∈ {1, . . . , n}.

Here we can deal with p1 and p2 in an asymmetric way, because the set of all
paths contains for each path its reverse. Also we can use the maximum (instead
of the supremum) over all paths because the degree of truth is a continuous
function on the compact set of paths; therefore the supremum of the image of
the degree of truth on the set of paths is attained on one path.

The degree of truth determines the truth of a sentence as follows:

Theorem 2. For a closed E-constraint, positive degree of truth implies truth, a
negative degree of truth implies falsehood.

Proof. Assume that the degree of truth of a closed E-constraint is positive.
This means that there is a sub-constraint of the form ∃y ∈B [f = 0 ∧ g1 ≥
0∧ . . .∧ gn ≥ 0] and a path P ⊆ B with endpoints p1 ∈ B and p2 ∈ B such that
f(p1) is positive and f(p2) is negative. Furthermore, g1, . . . , gn are positive on
P . Therefore, by the Bolzano intermediate value theorem, the sub-constraint is
true, and since this sub-constraint is part of a disjunction, the whole constraint
is true.

Now assume that the degree of truth is negative and the constraint is true.
The truth of the constraint implies that there is a sub-constraint of the form
∃y ∈ B [f = 0 ∧ g1 ≥ 0 ∧ . . . ∧ gn ≥ 0] such that f has a zero in B, and
g1, . . . , gn are greater or equal zero there. So the degree of truth of the path that
just contains this zero is zero, implying that the total degree of truth is greater
or equal zero—a contradiction. ��

For investigating the connection between degree of truth and stability, we
use:

Lemma 1. For every closed E-constraint φ and δ > 0 there is a result of an
δ-perturbation of φ whose degree of truth is larger/smaller than the one of φ.

Proof.

– Increasing the degree of truth: Let ∃y ∈ B [f = 0 ∧ g1 ≥ 0 ∧
. . . ∧ gn ≥ 0] be the sub-constraint and let P be the path on which
the maximum is attained. We have to find a perturbation such that
min{f(p1),−f(p2),minP g1, . . . ,minP gn} increases. This can be easily done
by a perturbation that increases the degree of truth of each element of
{f(p1),−f(p2),minP g1, . . . ,minP gn} 1.

– Decreasing the degree of truth: We find a perturbation that decreases the de-
gree of truth of every existentially quantified sub-constraint and every path.
Let ∃y∈B [f = 0 ∧ g1 ≥ 0∧. . .∧gn ≥ 0] and let P be an arbitrary, but fixed
path. Their degree of truth is min{f(p1),−f(p2),minP g1, . . . ,minP gn}. For
each of its elements one can easily find a perturbation that decreases it. ��

1 For perturbing f(p1) and f(p2) independently we need perturbation by functions
(instead of just constants) here, see Figure 1.
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The degree of truth characterizes its stability as follows:

Theorem 3. A closed E-constraint is stable iff its degree of truth is non-zero.

Proof. ⇒: We assume a constraint with zero degree of truth and prove that it
is unstable. This certainly holds because, by Lemma 1, a small perturbations
will change the degree of truth, and by Theorem 2 this will also change the
truth value.

⇐: Assume that the degree of truth is non-zero. Since the degree of truth
depends continuously on perturbation, this implies that there is a δ > 0,
such that under all perturbations less than δ, the degree of truth does not
change its sign. Hence, by Theorem 2, it also does not change its truth value.

��

For false E-constraints, one can use a simpler characterization, that is com-
patible with the case of inequality constraints [23,25].

Lemma 2. The degree of truth of a false closed E-constraint of the form

∃y∈B1 [f1 = 0 ∧ g1,1 ≥ 0 ∧ . . . ∧ g1,k1 ≥ 0]
∨ . . .∨

∃y∈Bn [fn = 0 ∧ gn,1 ≥ 0 ∧ . . . ∧ gn,kn ≥ 0]

is maxi∈{1...n} supy∈B min{fi,−fi, gi,1, . . . , gi,ki
}.

Proof. We prove that for every i ∈ {1, . . . , n} the maximal path of the according
disjunctive branch consists of just a point. Obviously this implies the lemma.

Since φ is false, by Theorem 2, τ(φ) is non-positive, and so for every i ∈
{1, . . . , n} the degree of truth of every disjunctive branch on the maximal path
P from p1 to p2 is non-positive.

Now there are three cases:

– There is a j ∈ {1, . . . , ki} such that min{fi(p1),−fi(p2),minP gi,1, . . . ,
minP gi,ki

} is minP gi,j . In this case the minimum is attained on a certain
point of P .

– The minimum of {fi(p1),−fi(p2),minP gi,1, . . . ,minP gi,ki
} is fi(p1): In this

case, −fi(p1) is not smaller than fi(p1) and therefore the path just containing
p1 has the same degree of truth and therefore is also maximal.

– The minimum of {fi(p1),−fi(p2),minP gi,1, . . . ,minP gi,ki} is −fi(p2): In
this case, fi(p2) is not smaller than −fi(p2), and therefore the path just
containing p2 has the same degree of truth and therefore is also maximal.

��

5 Pruning

In this section we develop the pruning step of Algorithm 1. Here we assume a
pruning algorithm for atomic bounded constraints (i.e., bounded constraints
where the first element is an equality or inequality) and extend it to E-
constraints.
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We start with introducing certain properties that we assume for atomic prun-
ing. These properties refine the properties postulated for the notion of “narrow-
ing operator” [3]. We will also use these properties later for implementing the
branching and checking steps.

Note that branching can result in arbitrarily small boxes. So we have to
use arbitrary precision arithmetic. However, the usual pruning techniques (for
computing box-consistency [2], hull-consistency [8] etc.) are defined for fixed
precision. So we add an additional precision parameter to the pruning function
(a similar parameter is sometimes used to prevent slow convergence [10]).

The first property we assume is, that atomic pruning should result in a
bounded constraint with the same constraint and a smaller bound (still we return
a full bounded constraint instead of just a box because, when extending pruning
to E-constraints, we will also allow changes of the constraint):

Property 1 (Contractance). For an atomic bounded constraint (φ,B) and posi-
tive real number p, Prunep(φ,B) = (φ′, B′) implies that φ = φ′ and B′ ⊆ B.

It should only remove elements not in the solution set:

Property 2 (Correctness). For an atomic bounded constraint (φ,B) and positive
real number p, Prunep(φ,B) = (φ′, B′) implies that the intersection of the
solution set of φ with B is equal to the intersection of the solution set of φ′ with
B′.

Pruning is monotonic in the following sense:

Property 3 (Monotonicity). For an atomic constraint φ, boxes B1 and B2
such that B1 ⊇ B2 and positive real numbers p1, p2 such that p1 ≤ p2,
Prunep1(φ,B1) = (φ′, B′

1) and Prunep2(φ,B2) = (φ′, B′
2) implies B′

1 ⊇ B′
2.

Pruning eventually succeeds for all well-posed inputs:

Property 4 (Convergence). For all atomic constraints φ and sequences of boxes
B1, . . . converging to a point at which φ is stably false, there is a natural number
k and a real number p such that for all k′ ≥ k and p′ ≥ p, Prunep′(φ,Bk′) has
an empty bound.

Pruning results in borders on which it will succeed using the same precision:

Property 5 (Prunable Borders). For atomic φ, such that Prunep(φ,B) = (φ′, B′),
for all new faces D of B′ (i.e., faces of B′ that are in the interior of B),
Prunep(φ,D) = (φ, ∅).

This property has two purposes: First, it will allow the Diff function of Algo-
rithm 1 to include the new borders into the result. And second, it will allow the
checking step to compute the necessary information on the new borders using
the current precision.

Pruning with a certain precision eventually reaches a fixpoint:
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Property 6 (Fixed Point). For every positive real number p and infinite sequence
(φ1, B1), . . . of bounded constraints such that for every natural number i, Bi+1
is the bound of Prunep(φi, Bi), there is a k such that Bk = Bk+1 = . . ..

Now we can extend such a pruning algorithm to E-constraints as required by
Algorithm 1. For this we accordingly adapt the case of constraints with quanti-
fiers, as introduced in earlier papers [23,25]:

– For a set C of E-constraints, Prune(C) := {Prune(φ,B) | (φ,B) ∈ C}
– Prune(φ1 ∨ . . . φn, B) := (φ′

1 ∨ . . . ∨ φ′
n, B′

1 7 . . . 7 B′
n), where (φ′

i, B
′
i) =

Prune(φi, Bi)
– Prune(∃y∈By φ,Bx) := (∃y∈By ′ φ′, Bx′),

where (φ′, Bx′ ×By ′) = Pruneprec(Bx×By)(φ,Bx ×By)
– Prunep(φ1 ∧ . . . ∧ φk, B) := fix({Prunei

p|1 ≤ i ≤ k})(φ1 ∧ . . . ∧ φk, B)
– Prunei

p(φ1 ∧ . . . ∧ φk, B) := (φ1 ∧ . . . ∧ φ′
i ∧ . . . ∧ φk, B

′)
where (φ′

i, B
′) := Prunep(φi, B)

Here 7 denotes the smallest box containing the union of the argument boxes.
The operator fix takes a set of functions and applies them to the second argu-
ment until a fixed point is reached (this fixed point exists by Property 6). The
function prec() takes the Cartesian product of the bounds of the constraint and
returns the desired precision. We only assume that this precision goes to infinity
as the width of its argument goes to zero.

6 Safe Branching

In this section we study the branching step (i.e., either splitting a sub-constraint
of the form ∃x∈B φ into ∃x∈B1 φ ∨ ∃x∈B2 φ such that the union of B1 and B2
is B, and their intersection has zero volume, or splitting a bounded constraint
(φ,B) into (φ,B1) and (φ,B2), such that the union of B1 and B2 is B, and
their intersection has zero volume). Here we have to ensure that this will allow
pruning or checking to eventually succeed on the result. How can it happen that
this fails? On the one hand, branching can introduce an unstable constraint (e.g.,
by replacing ∃y∈ [−1, 1] x = 0 by ∃y∈ [−1, 0] x = 0 ∨ ∃y∈ [0, 1] x = 0). On the
other hand, it can fail to decrease the sizes of the free-variable and quantification
bound appropriately.

In order to prevent the first possibility we ensure:

Definition 6. Given a bounded constraint (φ,B) and a constraint φ′ created
from φ by branching at a quantifier, the branching is safe iff for all x0 ∈ B, φ′

is stable at x0 if φ is stable at x0.

One could easily ensure this by only branching the free-variable-bounds. How-
ever, then the second problem discussed above arises—the size of the quantifi-
cation bound does not go to zero, and therefore pruning might never succeed to
disprove a false constraint. So we have to analyze the problem in more detail.
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Lemma 3. Branching a quantification bound in a false E-constraint is safe.

Proof. We prove that the degree of truth decreases by branching—by Theorems 2
and 3 this implies the lemma.

In each branch of the splitted sub-constraint the set of paths is a subset of
the set of paths of the original constraint. Therefore the degree of truth of both
paths decreases, and so also the degree of truth of the whole formula. ��

So we can branch the quantification bound of a false constraint without
problems. Still we have to take care when branching true constraints. For now, we
defer the problem by simply assuming that checking of true constraint will even
succeed if the width of the quantification bound does not go to zero. Therefore,
we only have to branch the quantification bound of false constraints, which
according to Lemma 3 is no problem.

So we have to following situation:

– For stably false constraints, both the free-variable bound and the quantifi-
cation bound size should go to zero.

– For stably true constraints, only the free-variable bound size should go to
zero.

However, during the algorithm, we do not yet know whether a constraint is
true! So we need a condition that can be checked more easily. The problem in
the above example was that branching created a new boundary on the (lower-
dimensional) solution set of the sub-constraint. We can avoid this as follows:

Theorem 4. Branching a sub-constraint of the form ∃y ∈ By φ of an E-
constraint with free-variable bound Bx into quantification bounds By

1 and By
2

is safe if (∃y∈By
1 ∩By

2 φ,Bx) is false.

Proof. Let x0 ∈ Bx be arbitrary, but fixed. Assume that the input is stable at
x0. We have two cases:

– The input is true at x0. This means that the degree of truth is positive at
x0.
If no path of positive degree of truth passes through the border By

1 ∩ By
2

then obviously the theorem holds.
Now assume an arbitrary, but fixed path of positive degree of truth that
passes through the border. This gives rise to a positive path in at least one
resulting branch: Assume that the conjunction under the quantifier has the
form f = 0∧g1 ≥ 0∧. . .∧gn ≥ 0. Since the path has positive degree of truth,
g1, . . . , gn are all positive on the path. This means that, on the border, f
has to be non-zero, and so has opposite sign to one of the path end-points.
Hence the branch containing this end-point has positive degree of truth, and
therefore also the whole constraint.

– The input is false at x0: Then, by Lemma 3, it remains false.
��



Solving Existentially Quantified Constraints 625

Now we can use Theorem 4 in an algorithm for safe branching. How can we
check the necessary condition? In the one-dimensional case we just have to check
a single point, and by Property 4 it suffices to call Prune with the quantification
bound replaced by the new border B1 ∩B2. However, in the higher-dimensional
case, this will not succeed in branching the quantification bound of stably false
constraints, as the width of this quantification bound does not go to zero. So we
have to decompose By into parts such that the overall size goes to zero, and call
Prune on all the parts.

Algorithm 2 Branching
Input: C: a set of bounded E-constraints

(φ, Bx) ← an element of C with the free-variable bound of highest volume
∃y∈By φ′ ← a sub-constraint of φ with quantification bound of highest volume
(By

1 , By
2 ) ← bisection of By along the variable of maximal width

n ← #(∃y∈By φ′)dim(By)−1

(By
1 , . . . , By

n) ← equal-sized decomposition of By
1 ∩ By

2 into n pieces
if w(By) > w(Bx) and for all i ∈ {1, . . . , n}, Prune(∃y∈By

i φ′, Bx) = ∅ then
return C with ∃y∈By φ′ replaced by the result of branching By

else
return C with (φ, Bx) replaced by the result of branching Bx

end if

The result is Algorithm 2. By #(φ) we denote the number of times the algo-
rithm already tried to branch the quantification bound of φ in earlier calls, but
did not succeed (i.e., it took the else-branch of the if-statement). In the case of
closed constraints, branching of the free-variable-bound will leave it unchanged.

By Theorem 4 the algorithm does safe branching. Does it also decrease the
width of the bounds appropriately? For the free-variable bounds this is the case:

Theorem 5. By repeatedly applying Algorithm 2 to a set of E-constraints, in-
terleaved with any operation that removes elements from the set or decreases the
width of their bounds, the width of all free-variable bounds in the set goes to zero.

Proof. We prove that it cannot happen that a quantification bound is branched
infinitely often without branching the free-variable bound. Certainly this holds,
because eventually w(By) > w(Bx) does not hold and the else branch is taken.

��

Also the quantification bounds are branched as necessary:

Theorem 6. By repeatedly applying Algorithm 2 to a set of E-constraints, in-
terleaved with any operation that removes elements from the set or decreases
the width of their bounds, the width of all quantification bound of stably false
constraints goes to zero.

Proof. Algorithm 2 cannot produce an infinite sequence of branchings of the
free-variable bound because the precision of the if-statement-test goes to infinity.



626 Stefan Ratschan

Furthermore, it eventually branches each quantification bound, because of the
maximal width choice. ��

7 Checking

In this section we show how to do the checking step within Algorithm 1. Here
we compute some information for the atomic sub-constraints and propagate it
to the whole constraint. For the latter (i.e., propagation) we could build upon
the rules provided in an earlier paper [24]. However, in order to increase the
readability of this paper, we use the formalism developed there only indirectly:

Obviously we can check a set of constraints by checking each of its elements.
Furthermore we can check the disjunction of an E-constraint by just checking
each of its branches. For proving a sub-constraint of the form ∃y ∈ By [f =
0 ∧ g1 ≥ 0∧ . . .∧gk ≥ 0] where the free variables range over a box Bx it suffices
to find a subset D ⊆ By such that all the inequality constraints hold on Bx×D
and the equality constraint has at least one solution in D for each element of
the free-variable-bound Bx (then the rules of Theorem 1 of that paper [24] show
that the whole constraint holds).

We can prove the existence of a solution to an equality f = 0 in a set D by
finding an element of D for which f is non-negative and an element for which f
is non-positive. For this we can use pruning: If (f < 0, B) is pruned to the empty
free-variable bound then the sign of f on B is non-negative, and if (f > 0, B) is
pruned to the empty free-variable bound then the sign of f on B is non-positive.
In a similar way we can use pruning for proving inequalities.

We search for such a set D by computing the sign of f on the Cartesian
product of Bx with—in each direction—#(∃y ∈ By [f = 0 ∧ g1 ≥ 0 ∧ . . . ∧
gk ≥ 0]) + 2 equally distributed sample points in By (including samples on the
borders), but such that at least on each corner there is a sample (such as done
in Figure 2 for #(∃y∈By [f = 0 ∧ g1 ≥ 0 ∧ . . .∧ gk ≥ 0]) + 2 = 3). For all this
we use pruning with precision prec(Bx ×By).

By

Fig. 2. Samples—coordinates corresponding to By

Furthermore we prove g1 ≥ 0, . . . , gn ≥ 0 on the Cartesian product of Bx

with boxes that contain a sample point on each corner, and no sample points
elsewhere. If we can connect a positive and a negative sample point on a path
where g1 ≥ 0, . . . , gn ≥ 0 holds (as in Figure 3), then the constraint is proven.
This can be easily done by considering a graph whose vertices are the samples
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+

−

Fig. 3. Successful Check

and which has edges between all neighboring samples between which we have
proven g1 ≥ 0, . . . , gn ≥ 0. We want to find out whether there is a path between
a positive and a negative vertex.

It is trivial to formalize the above informal algorithm description. Now, using
Property 2 of pruning and Bolzano’s intermediate value theorem, one can easily
prove:

Theorem 7. Checking is correct.

Furthermore a witness for this correctness is given by the samples on which
f is positive and negative, respectively, and a set of boxes that connects these
samples and on which g1, . . . , gn are non-negative.

Checking is successful in the following sense:

Theorem 8. For every sequence of bounded constraints of the form (∃y ∈
By [f = 0 ∧ g1 ≥ 0 ∧ . . . ∧ gk ≥ 0], Bx) that are stable and true for each
element of the free-variable bound, and such that each element results from its
predecessor as

– one branch of branching, and
– pruning

checking eventually succeeds.

Proof. Every element of the sequence is stably true at each element of the free-
variable-bound, and so by Theorems 2 and 3 also the degree of truth is positive at
each element of the free-variable-bound. So there is an element a of the interior
of the free-variable bound of all sequence elements, an element b of the interior
of the quantification bound of all sequence elements, and a neighborhood D of
b such that:

D+

D−

ByD

b
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– f is zero at a× b,
– g1, . . . , gn are positive on a×D,
– there is an open subset D+ of D of positive volume such that f is positive

on a×D+, and b is an element of the closure of D+, and
– there is an open subset D− of D of positive volume such that f is negative

on a×D−, and b is an element of the closure of D−.

Denote by Bx
1 , . . . the sequence of free-variable bounds, and by By

1 , . . . the
sequence of quantification bounds. By Theorem 5, the width of the free-variable
bound goes to zero (limi→∞ w(Bx

i ) = 0), the width of the quantification bound
not necessarily. We prove that checking will eventually succeed.

First we prove the success of finding a sample point on which f is positive.
Observe that D+∩By

i always has positive volume since b is in the interior of By
i

and is an element of the closure of D+. So checking will eventually try infinitely
many samples within this set. It remains to be proven that pruning eventually
succeeds on one of them. Here we have two cases:

– The intersection of the border of By
i with D+ eventually has positive volume

on the border, and so we will eventually check a sample, and by Property 5,
since this border has been created by pruning, pruning will be able to com-
pute the sign at the sample using the current precision.

– Otherwise, for all i, D+ has not more than singular intersection with the
border of By

i : In this case, we can construct a sequence Dy
1 , . . . of sub-boxes

of the sequence of quantification bounds such that this sequence converges
to an element of D+. By Property 4, pruning with precision going to infinity
eventually succeeds on the elementwise Cartesian product of that sequence
with the corresponding free-variable bounds. Since the samples are equally
distributed, for every element of the sequence Dy

1 , . . . eventually a sample
with higher precision will be created, and by Property 3 pruning will succeed
on the Cartesian product of this sample with the corresponding free-variable
bound.

In a similar way we can prove the success of finding a sample point on which
f is negative.

These sample points are all within D, on which g1, . . . , gn are all positive.
So, by Property 4, the positivity check will also eventually succeed. ��

8 Application to Overall Algorithm

Now we can use the results developed in the previous three sections in the main
algorithm. As a result we get:

Theorem 9. Using pruning from Section 5, branching from Section 6, and
checking from Section 7, Algorithm 1 terminates for inputs for which the volume
of the elements of B for which φ is not stable is zero.
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Proof.

– For bounded constraints converging to a point with positive degree of truth,
by Theorem 8, eventually the check succeeds.

– For bounded constraints converging to a point with negative degree of truth
eventually pruning succeeds: We have to prove that for all sequences of
bounded constraints converging to a point with negative degree of truth,
where one element results from the previous by pruning and branching
(taking one element of the produced branches), eventually the free-variable-
bound is the empty set.
Let ∃y∈B [f = 0 ∧ g1 ≥ 0∧. . .∧gn ≥ 0] be an arbitrary but fixed disjunctive
branch of the constraint under consideration. By Lemma 2, its degree of
truth is given by supy∈B min{f,−f, g1, . . . , gn}. Let h be the element of
{f,−f, g1, . . . , gn} on which the (negative) optimum is attained.
Now, by Theorem 6 the width of the quantification bound goes to zero,
and so by Property 4, Prune will eventually result in the empty set for h,
disproving the constraint.

��

9 Implementation and Applications

We have implemented a prototype of the algorithm in the programming language
O’Caml (www.ocaml.org). We do not use more precision than available with
machine-precision floating-point numbers. This suffices for all our examples. For
pruning we use an extremely simple (and thus usually inefficient) algorithm for
computing hull consistency based on the interval library smath [12,11].

As there are no existing algorithms/implementations for the general problem
studied in this paper, instead of a comparison, we illustrate the usefulness of our
approach by discussing the application of the resulting solver to simple examples
from control engineering, parameter estimation, and computational geometry.

In the first example, we consider a problem in control engineering [20]. Here
one important tool to describe the behavior of a system is its characteristic
polynomial. In the design process this polynomial is parametric, and the goal is
to find values for these parameters such that the resulting polynomial has certain
properties. For example, often one requires that the polynomial has a real root
in a certain interval.

Now consider the characteristic polynomial s(s+ 1.71)(s+ 100) + 6.63K = 0
of the positioning system of a radio telescope antenna [20, p. 17ff, p. 295ff].
Here the parameter K denotes the gain of a certain amplifier. It needs to be
set in such a way that the total system fulfill certain characteristics. We already
know that, for the system to be stable, 0 < K < 2623. Now we also want
that the characteristic polynomial has a real root in [−2.0,−0.5]. This results
in the constraint ∃s∈ [−2.0,−0.5] s(s + 1.71)(s + 100) + 6.63K = 0 which the
solver proves to be true for K ∈ [0, 9.375] and false for K > 11.25. Very often,
the design goal imposes additional constraints to the system. So we add the
additional constraint seK ≤ −1. The solver reports the same solution as before.
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The second example comes from the field of parameter estimation [31]. Here
one has given a model of a system and some information coming from measure-
ments on some of these variables. The goal is to deduce further information on
the possible variable values.

We consider the following parameter estimation problem: Given a sys-
tem model whose explicit solution (obtained from a differential equation) is
f(p1, p2, t) = 20e−p1t−8e−p2t [15,14,18]. We have the information that f reaches
zero some-when, but we only know that this happens between time 2 and 4. We
want more information about the parameters p1 and p2. This results in the con-
straint ∃t∈ [2, 4] 20e−p1t − 8e−p2t = 0 for which the implementation computes
a strip of values for p1 and p2 as solutions.

The third example comes from computational geometry. Here, very often the
situation arises that one wants to visualize high-dimensional non-linear objects.
One method for doing this, is to project them into 2-dimensional space, resulting
in constraints like ∃z ∈ [−2, 2]

[
x2 + y2 + z2 − 1 = 0 ∧ x2 + y2 − 0.5 ≥ 0

]
to

which we applied our solver, resulting in a 2-dimensional ring.
The run-times in all the above examples (for the precision 0.1) were under

one second on an average Linux PC. However, for some bigger examples they
increase rapidly. The main reason for this is that it often computes lots of sample
points although pruning did not yet succeed in isolating a solution sufficiently
enough.

10 Related Work

The main alternative to modeling uncertain variables by bounded quantification
is stochastic [30]. For quantified constraints, despite of the undecidability of the
general problem, several special cases could be solved:

– In the case without equality constraints, the atomic sub-constraints in gen-
eral have solution sets with volume. Therefore, one can compute true ele-
ments by pruning the negation of the original constraints [26,25,1].

– In the case k = 0, that is, constraints of the form ∃y ∈B f = 0, according
to Bolzano’s intermediate value theorem, one can reduce the problem to the
previous case by reformulating it to ∃y f ≥ 0 ∧ ∃y f ≤ 0. However, this
method does not generalize to E-constraints, because here the solution set
of the inequalities should connect the positive and negative elements of f .

– In the case ∃y∈By [f = y ∧ g1 ≥ 0∧ . . .∧ gn ≥ 0], where f does not contain
y, the equality holds a priori. One just has to make sure that it is contained
in By and that it fulfills the inequalities, which can be checked by the usual
interval methods. Note that in some cases one can isolate the variable y in
such a way, but in general not! The case where some additional existentially
quantified variables (but not the isolated one!) occur in f can be treated by
additional splitting [14, p. 156].

– The case where all terms are polynomials, which is a classical research topic
in computer algebra [29,6,13,16].
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– The case where the quantified variables fulfill certain structural restrictions
(e.g., only occurring once) [28,9,33], or where primitive pruning operations
suffice for solving [4].

Existence proofs for systems of equations, are usually done using variants
of the interval Newton method. This fails for zeros that are well-posed, but
not simple (e.g., the zero of x3 = 0), and for very close zero clusters. These
methods do not avoid splitting on solutions. Instead they usually use a method
called ε-inflation which seems to succeed for simple zeros in practice, but whose
general success is proven only for special cases [17,27]. As shown by Neumaier [19,
Chapter 5] one can alternatively construct a super-box of a presumed zero for
which existence holds.

In general, existence proofs for non-simple, but still well-posed, zeros need
techniques that do not rely on the derivative. A promising notion here is the
topological degree [21, Chapter 6].

11 Conclusion

In this paper we have introduced the first known algorithm for solving a cer-
tain type of quantified constraint over the real numbers, and we have applied
the algorithm to several application areas. In future work we will consider the
following improvements of the method:

– heuristics for the number of computed samples, and the choice of branching,
– making the checking step incremental, by reusing the information computed

in earlier steps, and
– replacing the checking operation by a dual pruning operation that removes

elements from the free-variable-bound that provably belong to the solution
set.

Our final goal is to be able to efficiently solve general, well-posed quantified
constraints.

Thanks to Laurent Granvilliers for interesting discussions on the topic and
to Varadarajulu Reddy Pyda for help with the implementation of the solver.
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ILOG Sophia Antipolis
Les Taissounières HB2
1681 route des Dolines
06560 Valbonne, France

regin@ilog.fr

Abstract. This paper aims to show that Constraint Programming can
be an efficient technique to solve a well-known combinatorial optimiza-
tion problem: the search for a maximum clique in a graph. A clique of a
graph G = (X, E) is a subset V of X, such that every two nodes in V are
joined by an edge of E. The maximum clique problem consists of find-
ing ω(G) the largest cardinality of a clique. We propose two new upper
bounds of ω(G) and a new strategy to guide the search for an optimal
solution. The interest of our approach is emphasized by the results we
obtain for the DIMACS Benchmarks. Seven instances are solved for the
first time and two better lower bounds for problems remaining open are
found. Moreover, we show that the CP method we propose gives good
results and quickly.

Introduction

Constraint Programming (CP) involves finding values for problem variables sub-
ject to constraints on which combinations are acceptable. One of the main prin-
ciples of CP is that every constraint is associated with a filtering algorithm
(also called a domain reduction algorithm) that removes some values that are
inconsistent with the constraint. Then, the consequences of these deletions are
studied thanks to a propagation mechanism that calls the filtering algorithms
of the constraints until no more modification occurs. CP uses also a systematic
search, like a branch-and-bound for instance, but this is not limited to this case,
to find solutions.

In this paper, we aim to contradict some conventional wisdom of Constraint
Programming. It is often considered that CP is not an efficient method to solve
pure combinatorial optimization problems. By ”pure problems”, we mean prob-
lems in which only one kind of constraint is involved.

A clique of a graph G = (X, E) is a subset V of X , such that every two
nodes in V are joined by an edge of E. The maximum clique problem consists
of finding ω(G) the largest cardinality of a clique. Finding a clique of size k is
an NP-Hard problem. This problem is quite important because it appears in a
lot of real world problems. Therefore almost all types of algorithms have been

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 634–648, 2003.
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used to try to solve it. For more information the reader can consult the survey
of Bomze, Budinich, Pardalos and Pelillo [3].

Fahle [7] has proposed to use CP techniques to solve this problem. The results
he obtained were encouraging. Notably, he has been able to close some open
problems. His model uses two constraints: one based on the degree, we will call
it degreeCt, and one based on the search for an upper bound of the size of
a maximum clique, we will call it UBMaxCliqueCt. These two constraints are
defined on the set of nodes that are considered at every moment by the algorithm.
Then a branch-and-bound algorithm is used to traverse the search space.

Fahle’s algorithm tries to construct a clique as large as possible, by succes-
sively selecting a node and studying the candidate set, that is the set of nodes
that can extend the clique currently under construction. After each selection of
node, the filtering algorithms associated with the two constraints are triggered
until no more modification of the candidate set occurs.

The filtering algorithm associated with degreeCT removes all nodes whose
degree is too small to extend the current clique to a clique of size greater than
the current objective value.

The filtering algorithm associated with UBMaxCliqueCt removes all nodes
for which we know that they cannot belong to a clique of size greater than the
current objective value. A non obvious bound is searched by computing an upper
bound of the number of colors needed to color the subgraph induced by a node
and its neighborhood such that two adjacent nodes have different colors.

The drawback of this filtering is the time required to compute such a bound,
and also its systematic use. That is, a priori, we do not know whether the filtering
algorithm will remove some values or not.

In this paper we propose to use another upper bound based on matching
algorithm. The advantage of our method is that we can easily identify some
cases for which the filtering algorithm will remove no value; and so we can avoid
to call it.

Moreover, Fahle uses a common strategy to select the next node that will
extend the current clique under construction. This strategy is based on the degree
of the nodes and selects the one with the smallest value. We propose a different
approach that can be viewed as an adaptation and a generalization of the Bron
& Kerbosh’s [4] ideas for enumerating the maximal cliques of a graph. This
idea leads to a new filtering algorithm based on the study of the nodes that
have already been tried. Our strategy is more complex but tends to find more
quickly the cliques with a large size as it is shown by the results we obtain on
the well-known DIMACS benchmarks.

The paper is organized as follows. First we present, new upper bounds for
the maximum clique problem. Then, we introduce some new properties that
are based on the ideas of the Bron & Kerbosh’s algorithm. The strategy that
exploits the previous ideas is detailed. After, we will give some results. Finally,
we present some ideas about the definition of a maximum clique constraint and
we conclude.
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1 Preliminaries

1.1 Graph

A graph G = (X, E) consists of a node set X and an edge set E, where every
edge (u, v) is a pair of distinct nodes. u and v are the endpoints of (u, v). The
complementary graph of a graph G = (X, E) is the graph G = (X, F ), where
(x, y) is an edge of G if and only if x �= y and (x, y) is not an edge of G.

A path from node v1 to node vk in G is a list of nodes [v1, ..., vk] such that
(vi, vi+1) is an edge for i ∈ [1..k − 1]. The path contains node vi for i ∈ [1..k]
and arc (vi, vi+1) for i ∈ [1..k − 1]. The path is a cycle if k > 1 and v1 = vk.
The length of a path p, denoted by length(p), is the number of arc it contains.
Γ (x) is the set of neighbors of x, that is the set of nodes y such that (x, y) ∈ E.

A clique of a graph G = (X, E) is a subset V of X , such that every two nodes
in V are joined by an edge of E. The maximum clique problem consist of
finding ω(G) the largest cardinality of a clique. Given a node x, ω(G, x) denotes
the size of the largest clique containing x.

A independent set of a graph G = (X, E) is a subset S of X , such that every
two nodes in V are not joined by an edge of E. The maximum independent
set problem consist of finding α(G) the largest cardinality of an independent
set.

A vertex cover of a graph G = (X, E) is a subset V of X , such that every
edge of E has an endpoint in V . The minimum vertex cover problem consist
of finding ν(G) the smallest cardinality of a vertex cover.

A matching of a graph G = (X, E) is a subset M of E, such that no two
edges of M have a common node. The maximum matching problem consists
of finding μ(G) the largest cardinality of a matching.

1.2 CP Algorithm for Solving Maximum Clique

Let G = (X, E) be a graph. The idea is to start with a clique C = ∅, called the
current set, and a candidate set equals to X . Then the algorithm successively
selects nodes in the candidate set in order to increase the size of C. When a node
x is added to C, all the nodes that are non adjacent to x are removed from the
candidate set. The candidate set is also used for bounding. Algorithm 1 is a
possible implementation. The algorithm must be called with Current = ∅ ,
Candidate = X and K = ∅, where K is the largest clique found so far. Function
filterAndPropagate returns false when we can prove that there is no clique
whose cardinality is strictly greater than |K| in the subgraph of G induced by
(Current ∪ Candidate); otherwise it returns true. This function also aims to
remove some values of Candidate that cannot belong to a clique of size strictly
greater than |K| and containing Current. The simplest condition to remove a
node y is to check whether |Γ (y) ∩ Candidate| + |Current| < |K|

Every upper bound for the maximum clique problem is interesting in a CP
approach, because we will use it to check whether a node can belong to a clique
of a given size.
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Algorithm 1: Basic Algorithm for searching for a maximum Clique
maximumClique(Current,Candidate, io K)
while Candidate 
= ∅ do

select x in Candidate and remove it
save Candidate
add x to Current
remove from Candidate the nodes y s.t. y 
∈ Γ (x)
if filterAndPropagate(Current, Candidate,K) then

if Candidate = ∅ then K ← Current // solution
else maximumClique(Current,Candidate,K)

remove x from Current
restore Candidate

Property 1 Let G = (X, E) be a graph and x a node, and K be a clique of G.
If ω(G, x) < |K| then ω(G) = ω(G − {x}).

Therefore any upper bound of ω(G, x) can be used to remove some nodes in
the candidate set. A simple bound can be |Γ (x)∩Candidate|+ |Current|. That
is, as proposed by [7], we can remove from the candidate set all the nodes such
that |Γ (x) ∩ Candidate| + |Current| < |K|. The deletion of a node modifies the
neighborhood of its neighbors thus it can change the value of the upper bound of
some other nodes, so the process is repeated until no more modifications occurs.
Function filterAndPropagate given by Algorithm 2 implements this idea.

Algorithm 2: Filtering algorithm and propagation
filterAndPropagate(Current, Candidate, io K)
do

continue ← false
for each y in Candidate do

if |Γ (y) ∩ Candidate| + |Current| < |K| then
remove y from Candidate
if |Candidate| + |Current| < |K| then return false
continue ← true

while continue
return true

2 Upper Bounds for Clique

If we find better upper bounds for the size of the maximum clique involving a
node then we will be able to improve function filterAndPropagate and so
to remove more values.

There are some relations between the maximum clique problem, the maxi-
mum independent set, the minimum vertex cover, and the maximum matching:
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Property 2 Let G = (X, E) be a graph, then
• ω(G) = α(G)
• α(G) = |X | − ν(G)
• ω(G) = |X | − ν(G)

proof: A maximum clique corresponds to an independent set in the complementary
graph, hence ω(G) = α(G). The subgraph induced by an independent set S does not
contain any edge, thus every edge of G has an endpoint in Y = X − S, therefore Y

is a vertex cover of G. Hence S = X − Y and the largest set S is associated with the
smallest set Y , so α(G) = |X| − ν(G). Then, ω(G) = |X| − ν(G) follows immediately.

Property 3 Let G = (X, E) be a graph, then
ν(G) ≥ μ(G) and the equality holds if G is bipartite.

proof: Let V be any vertex cover of G. All the edges of a matching have no common
nodes, thus at least one endpoint of every edge of the matching must be in V in order
to cover this edge. Therefore ν(G) ≥ μ(G). The proof for the bipartite case can be
found in [2].

From this property and the previous one we immediately deduce the well
known property:

Property 4 ω(G) ≤ |X | − μ(G)

This new upper bound could be used, but it has one drawback: G can be non-
bipartite, and the algorithm to compute a maximum matching in a non-bipartite
graph is complex. Thus we propose to use an original upper bound for ω(G),
which is stronger and much more easy to compute. We need, first, to define the
duplicated graph of a graph (See Figure 1.)
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Fig. 1. An example of a duplicated graph of a graph. The bold edges represent the
edges of the matchings. The right graph is the projection of the matching of Gd in G.
G is covered by an edge and a triangle, therefore 1 + 2 nodes are necessary to cover all
the edges and ν(G) ≥ 3.

Definition 1 Let G = (X, E) be a graph. The duplicated graph of G is the
bipartite graph Gd = (X, Y, F ), such that Y is a copy of the nodes X, c(u) is the
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node of Y corresponding to the node u in X, and there is an edge (u, c(v)) in F
if and only if there is an edge (u, v) in E.

Note that if (u, v) ∈ E then (v, u) ∈ E.

Property 5 μ(Gd) ≥ 2.μ(G) and there exist graphs G with μ(Gd) > 2.μ(G)

proof:From a matching M of G we can create a set M ′ of edges of Gd as follows: for
each edge (u, v) in M we add the edges (u, c(v)) and (v, c(u)) to M ′. M is matching
thus it involves 2.|M | nodes. By construction of M ′ and by definition of Gd, M ′ involves
2.|M | nodes of X and 2.|M | nodes of Y . Therefore M ′ is matching of size 2.|M | and
μ(Gd) ≥ 2.μ(G). A triangle is an example of graph G with μ(Gd) = 3 and μ(G) = 1,
that is μ(Gd) > 2.μ(G) (See also Figure 1.)

We define the projection of a matching of Gd in G:

Definition 2 Let G = (X, E) be a graph and M be a matching of Gd. Let E′ by
the subset of E defined by (u, v) ∈ E′ if and only if either (u, c(v)) or (v, c(u))
belongs to M .
The projection of M in G is the subgraph of G induced by the subset E′ of E.
We will denote it by P (M, G).

Figure 1 contains an example of projection.
We will denote by edges(cc) the edge set of a connected component cc.

Property 6 Let G = (X, E) be a graph, M be a matching in Gd, P (M, G) be
the projection of M in G, and CC be the set of the connected components of
P (M, G). Then

ν(G) ≥
∑

cc∈CC

� |edges(cc)|
2

�

proof: Consider cc a connected component of P (M, G). M is matching, so no node
of P (M,G) can have a degree greater than 2. Therefore, cc is either an isolated node,
or a path, or a cycle. Hence, the number of nodes needed to cover the edges of cc is
� |edges(cc)|

2 �. The connected components are node disjoint therefore the value associ-
ated with each component can be sum, and the property holds.

From this property we can also deduce a simpler property which is weaker
but interesting due to property 5.

Property 7 ν(G) ≥ �μ(Gd)
2 �

proof: Consider a matching M in Gd with M = μ(Gd), P (M, G) the projection of
M in G, and cc a connected component of P (M,G). As mentioned in the proof of
Property 6, cc is either an isolated node, or a path, or a cycle. Let Medges(cc) be the
set of edges (u, c(v)) of M such that (u, v) belongs to cc. If cc is a path containing only
one edge then |Medges(cc)| = 2 and � |edges(cc)|

2 � = � |Medges(cc)|
2 �. In all the other cases

|edges(cc)| = |Medges(cc)|, and so � |edges(cc)|
2 � = � |Medges(cc)|

2 �. Moreover, by defini-
tion of the projection of M , for every edge (u, c(v)) of M there exists a connected com-
ponent cc containing (u, v), then we have

∑
cc∈CC

� |Medges(cc)|
2 � =

∑
cc∈CC

� |edges(cc)|
2 �.
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On the other hand
∑� i

2� ≥ �
∑

i

2 �
thus we have:∑

cc∈CC

� |edges(cc)|
2

� =
∑

cc∈CC

� |Medges(cc)|
2

� ≥ �
∑

cc∈CC
|Medges(cc)|

2
� ≥ �μ(Gd)

2
�

And from Property 6 we deduce: ν(G) ≥ �μ(Gd)
2 �

Finally, from Property 2 we immediately have the property:

Property 8 ω(G) ≤ |X | − �μ(Gd)
2 �

We decided to base our filtering algorithm on this property and not on Prop-
erty 6 because with Property 8 we have a good test to know whether it can be
interesting to check it. We just have to check whether |X | − � |X|

2 � is lower than
the size of the clique currently computed. From our experiments, thanks to this
test, only 5% of the matching that are computed are useless1.

We have also implemented Property 6 but the gain is really small in term
of eliminated nodes and more time is needed. We would like to stress on this
point. CP involves a propagation mechanism, therefore, and especially for pure
problems, the comparison of two properties is not simple because we have to
take into account the propagation mechanism. Here, we have seen that the use of
Property 8 and propagation gives equivalent result to the use of Property 6 with
propagation, so we can eliminate the use of the second, if, of course, it required
more time to be checked. Moreover, in practice, we can stop the computation of
the maximum matching either when the current size of the matching is enough
to conclude that we cannot find a clique with a largest size of the better found
so far, or when we known that we will not be able to make such a deduction.

On the other hand, in practice there is an important difference between
Property 4 and Property 8. It seems really worthwhile to improve the upper
bound even by a small value, provided that we have an interesting test to avoid
some useless computations.

Function filterAndPropagate can be refined. Algorithm 3 gives its new
code.

There is no need to explicitly create the subgraph in the function it is suf-
ficient to traverse the nodes of Γ (x) ∩ Candidate and the matching can be
computed by considering that an edge exists if two nodes are non adjacent. In
the algorithm, we also apply this new test for the set Candidate when a node is
removed in order to know whether it is useless to continue the search.

3 Introduction of a Not Set

When enumerating all the maximal cliques of a graph, Bron and Kerbosh [4]
have proposed to use a new set of nodes: a not set denoted by Not. This set
1 More precisely, only 5% of nodes that satisfies this test (that is mark 1 in Algorithm

3) will not be removed by Algorithm 3 (that is by mark 2.)



Using Constraint Programming to Solve the Maximum Clique Problem 641

Algorithm 3: Filtering algorithm and propagation: a new version
filterAndPropagate(Current, Candidate, io K)
do

continue ← false
for each y in Candidate do

N ← |Γ (y) ∩ Candidate|
if N + |Current| < |K| then remove y from Candidate
else

1 if N − �N
2 � + |Current| < |K| then

Let H be the subgraph of G induced by Γ (x)∩ Candidate

compute μ(H
d
)

if N − �μ(Hd)
2 � + |Current| < |K| then

2 remove y from Candidate

if y 
∈ Candidate then
Let H be the subgraph of G induced by Candidate

compute μ(H
d
)

if |Candidate| − �μ(Hd)
2 � + |Current| < |K| then return false;

continue ← true

while continue
return true

contains the nodes that have already been studied by the algorithm and that
are linked to all the nodes of the Current set. We propose to adapt their idea
to our case and to generalize it.

In order to clearly understand the meaning of the not set we propose to imme-
diately adapt our algorithm (See Algorithm 4.) Function removeFromNot(x)
removes from Not the element that are not in Γ (x).

The idea of Bron and Kerbosh corresponds to the following property:

Property 9 If there is a node x in Not such that Candidate ⊆ Γ (x) then the
current branch of the search can be abandoned.

proof: all cliques that we can find from the current set and from the candidate set
will be a clique by adding x, therefore these cliques cannot be maximal.

This property can be refined when searching for the size of a maximum clique.
A dominance property can be obtained:

Dominance Property 1 If there is a node x in Not such that |Candidate −
Γ (x)| ≤ 1 then the current branch of the search can be abandoned.

proof: We just have to consider the case Candidate−Γ (x) = {y}. There are two pos-
sible cliques: the cliques that contain y and the cliques that do not contain y. Consider
any clique that does not contain y. In this case, this clique could also be found if y is
removed from Candidate and therefore Property 9 can be applied. Consider any clique
that contains y, then if we replace y by x we also obtain a clique because x is linked
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Algorithm 4: Solving the maximum Clique problem: introduction of a not set
maximumClique(Current,Candidate,Not, io K)
while Candidate 
= ∅ do

select x in Candidate and remove it
save Candidate
save Not
add x to Current
remove from Candidate the nodes y s.t. y 
∈ Γ (x)
removeFromNot(x)
if filterAndPropagate(Current, Candidate,Not, K) then

if Candidate = ∅ then K ← Current // solution
else maximumClique(Current,Candidate,K)

restore Not
remove x from Current
add x to Not
restore Candidate

to all the nodes except y, and the size of the clique is unchanged. And, this clique has
already been found when x has been selected, hence we cannot improved the largest
cardinality found so far.

This new property leads to a modification of our algorithm. In the Bron and
Kerbosh’s algorithm a node is removed from Not when the selected node is not
linked to it. In our case, we slightly change this property: instead of removing a
node x in Not when a selected node y is not linked to it, we can mark x if it is
unmarked and remove x if it is already marked. Our property must be changed:

Dominance Property 2 If there is a node x in Not such that x is not marked
and |Candidate − Γ (x)| ≤ 1 then the current branch of the search can be aban-
doned.
If there is a node x in Not such that x is marked and Candidate ⊆ Γ (x) then
the current branch of the search can be abandoned.

Function removeFromNot has to be accordingly modified. From this prop-
erty we can define a new filtering algorithm:

Unfortunately, the cost of checking this property is high. In practice, it is
not worthwhile to use it. We have preferred to use it in a different way. Instead
of searching if the current neighborhood of every node of the candidate set is
included in the neighborhood of every node in Not, we decided to limit our study
to the node of not whose neighborhood contains almost all nodes of candidate.
That is, for every node x of Not we compute the number of nodes of candidates
that are linked to x. If this number is greater than |Candidate| − 2 we can
immediately identify the nodes of the candidate set that must be selected or
that must be removed. The strict application of Dominance Property 2 gives
better results in terms of backtracks (around 10% less) than the restriction we
propose. However, the latter approach is much more easy to implement and more
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efficient to compute, because we only need to compare the neighborhood of a
node of Not with the candidate set and not with neighborhood of every node in
the candidate set taken separately.

The final version of our algorithm is given by Algorithm 5.
Function filteringFromNot uses the notion of mark or removes some nodes.

Algorithm 5: Filtering algorithm and propagation taken into account nodes of
the not set

filterAndPropagate(Current, Candidate, io K)
do

do
continue ← false
for each y in Candidate do

N ← |Γ (y) ∩ Candidate|
if N + |Current| < |K| then remove y from Candidate
else

if N − �N
2 � + |Current| < |K| then

Let H be the subgraph of G induced by Γ (x) ∩ Candidate

compute μ(H
d
)

if N − �μ(H
d
)

2 � + |Current| < |K| then remove y from
Candidate

if y 
∈ Candidate then
Let H be the subgraph of G induced by Candidate

compute μ(H
d
)

if |Candidate| − �μ(H
d
)

2 � + |Current| < |K| then return
false; continue ← true

while continue
if continue then

continue ← FilteringFromNot(Not, Candidate)

while continue
return true

4 A New Search Strategy

As it has been shown by Bron and Kerbosh to enumerate the maximal cliques
of a graph, it is interesting to select node such that Property 9 can be applied
as soon as possible.

This means that when a node is added to Not, we identify first the node x
in Not which has the largest number of neighbors in the candidate set. Then,
we select for next node, a node y such that y is not linked to x

We have used exactly the same idea by considering in Not only the unmarked
nodes. The ties have been broken by selecting the node y with the fewest number
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of neighbors in the candidate set, in order to have more chance to remove quickly
y and then to be able to apply successfully Dominance Property 2.

When a node has not been removed, that is when the latest selection is suc-
cessful; we select the node with the largest number of neighbors in the candidate
set. This approach gives a better chance to find quickly cliques whose cardinality
is huge. This is important for our approach because our filtering algorithm takes
into account the size of the clique found so far.

4.1 Diving Technique

This technique is often used in conjunction with a MIP approach. It consists
of searching whether of solution exists for every value of every variable. Each
search for a solution is not complete. In other words, a greedy algorithm is used
(that is no backtrack is allowed). Then, the new objective value is the best
objective value found so far. The advantages of this approach is triple: its cost
is low because the algorithm is polynomial, the minimum of the objective value
can be improved, and an objective value can be quickly found whereas a depth
first search strategy will need a lot of time to find it. In fact, a systematic search
spends a lot of time to proved the local optimality of the current objective value;
this proof is abandoned when a better value is found.

In our program, this technique is used after 10 minutes of computations. That
is, we stop the current search, we apply the diving technique and the initial search
continues with the objective value returned by the diving technique, which can
be improved or not.

5 Experiments

We have used ILOG Solver to implement our algorithm and the well known
DIMACS benchmark set for our tests [6].

All our experiments have been made on a Pentium IV mobile at 2Ghz with
512 Mo of memory.

The experiments have been stopped after 4 hours (that is 14,400 s) of com-
putation, except for p hat1000-2 because we saw after 14,400 s that the problem
should be solved. In this case, 16,845 s are needed to close the problem.

The results are given in table entitled ”Dimacs clique benchmarks”.
All the problems having 400 nodes or less are solved. Notably, for the first

time the brock400 series is now solved. Only, johnson32-2-4, prevent us from
solving all the problems having 500 nodes or less.

All san series or sanr series are now solved.
7 problems have been closed for the first time: all the brock400 series, p hat500-

3, p hat1000-2 and sanr200 0.9, which is solved in 150 s.
Two results are particularly remarkable: p hat300-3 is solved in 40s, instead

of 850s; and p hat700-2 is solved in 255s instead of 2,086s.
Two lower bounds of the remaining open problems MANN a45 (the optimal

value is reached) and MANN a81 have been improved.
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DIMACS CLIQUE BENCHMARKS
Wood Östegard Fahle ILOG Solver

Name |K| |K| #select time |K| time |K| #select time |K| #select time
brock200 1 21 21 379,810 53.68 21 18.10 21 66,042 92.97 21 93,795 10.72
brock200 2 12 12 2,594 0.26 12 0 12 437 0.31 12 2,185 0.29
brock200 3 15 15 24,113 2.57 15 0.15 15 2,332 2.23 15 7,821 0.86
brock200 4 17 17 52,332 6.20 17 0.33 17 8,779 8.18 17 23,037 2.13
brock400 1 27 fail fail ≥ 24 fail 27 60,159,630 11,340.8
brock400 2 29 fail fail ≥ 29 fail 29 36,843,872 7,910.6
brock400 3 31 fail fail ≥ 24 fail 31 19,616,188 4,477.23
brock400 4 33 fail fail ≥ 25 fail 33 32,457,068 6,051.77
brock800 1 23 fail fail ≥ 21 fail ≥ 21 fail
brock800 2 24 fail fail ≥ 20 fail ≥ 20 fail
brock800 3 25 fail fail ≥ 20 fail ≥ 20 fail
brock800 4 26 fail fail ≥ 20 fail ≥ 20 fail
c-fat200-1 12 12 8 0 12 0 12 5 0 12 3 0
c-fat200-2 24 24 7 0 24 0 24 5 0 24 3 0
c-fat200-5 58 58 27 0 58 2.6 58 5 0 58 3 0
c-fat500-1 14 14 13 0 14 0.02 14 3 0 14 3 0
c-fat500-10 126 126 1 0 126 0.02 126 5 0.02 126 3 0.04
c-fat500-2 26 26 23 0 26 0.03 26 5 0 26 3 0
c-fat500-5 64 64 23 0 64 3,480.21 64 5 0.02 64 3 0
hamming10-2 512 512 1 0 512 0.84 512 257 5.16 512 257 1.04
hamming10-4 ≥ 40 fail fail ≥ 32 fail ≥ 40 fail
hamming6-2 32 32 1 0 32 0 32 17 0 32 17 0
hamming6-4 4 4 81 0 4 0 4 31 0 4 42 0
hamming8-2 128 128 1 0 128 0 128 65 0.07 128 65 0
hamming8-4 16 16 36,441 5.28 16 0.28 16 1,950 6.11 16 40,078 4.19
johnson16-2-4 8 8 256,099 13.05 8 0.09 8 126,460 7.91 8 250,505 3.80
johnson32-2-4 ≥ 16 fail fail ≥ 16 fail ≥ 16 fail
johnson8-2-4 4 4 23 0 4 0 4 15 0 4 14 0
johnson8-4-4 14 14 115 0 14 0 14 39 0.03 14 140 0
keller4 11 11 12,829 1.23 11 0.17 11 1,771 2.53 11 7,871 0.5
keller5 27 fail fail ≥ 25 fail ≥ 27 fail
keller6 ≥ 59 fail fail ≥ 43 fail ≥ 54 fail
MANN a9 16 16 60 0 16 0 16 31 0 16 50 0
MANN a27 126 126 47,264 46.95 fail 126 39,351 10,348.87 126 1,258,768 18.48
MANN a45 345 fail fail ≥ 331 fail ≥ 345 fail
MANN a81 ≥1100 fail fail ≥ 996 fail ≥ 1100 fail
p hat300-1 8 8 1,310 0.10 8 0 8 254 0.07 8 364 0.11
p hat300-2 25 25 2,801 0.67 25 0.33 25 1,121 3.01 25 1,695 0.59
p hat300-3 36 fail fail 36 171,086 856.67 36 102,053 40.71
p hat500-1 9 9 9.772 0.91 9 0.1 9 690 0.6 9 8,731 2.30
p hat500-2 36 36 59,393 17.81 36 142.93 36 32,413 203.93 36 41,259 32.69
p hat500-3 50 fail fail ≥ 48 fail 50 10,986,526 12,744.7
p hat700-1 11 11 25,805 2.69 11 0.22 11 2,195 2.67 11 25,653 6.01
p hat700-2 44 fail fail 44 188,823 2,086.63 44 259,775 255.79
p hat700-3 ≥ 62 fail fail ≥ 54 fail ≥ 62 fail
p hat1000-1 10 10 179,082 18.88 10 1.95 10 19,430 16.43 10 69,582 27.80
p hat1000-2 46 fail fail ≥ 44 fail 46 14,735,370 16,845.7
p hat1000-3 ≥ 68 fail fail ≥ 50 fail ≥ 66 fail
p hat1500-1 12 fail fail 12 136,620 119.77 12 1,063,765 480.84
p hat1500-2 ≥ 65 fail fail ≥ 52 fail ≥ 63 fail
p hat1500-3 ≥ 94 fail fail ≥ 56 fail ≥ 91 fail
san1000 15 15 106,823 43.59 15 0.17 15 35,189 3044.09 15 256,529 102.80
san200 0.7 1 30 30 206 0.06 30 0.19 30 301 1.57 30 1,310 0.36
san200 0.7 2 18 18 195 0.03 18 0 18 394 0.66 18 3,824 0.37
san200 0.9 1 70 70 2,069 0.77 70 0.09 70 20,239 62.61 70 1,040 1.04
san200 0.9 2 60 60 211,889 70.13 60 1.43 60 309,378 1930.90 60 6,638 2.62
san200 0.9 3 44 fail fail 44 32,327 194.96 44 758,545 182.70
san400 0.5 1 13 13 3,465 0.75 13 0 13 882 6.74 13 6,204 1.19
san400 0.7 1 40 40 38,989 13.25 fail 40 11,830 425.99 40 70,601 23.28
san400 0.7 2 30 30 1,591,030 415.12 30 168.7 30 26,818 159.72 30 249,836 67.53
san400 0.7 3 22 fail fail 22 213,195 617.07 22 1,690,023 273.23
san400 0.9 1 100 fail fail 100 291,195 7,219.53 100 984,133 1,700
sanr200 0.7 18 150,861 22.50 18 4.7 18 25,582 24.99 18 41,773 4.30
sanr200 0.9 fail fail ≥ 41 fail 42 541,496 150.08
sanr400 0.5 13 233,381 22.55 13 2.21 13 32,883 23.09 13 164,276 17.12
sanr400 0.7 fail fail 21 9,759,158 15,925 21 22,791,798 3,139.11

Our program reaches the best lower bounds found so far for 6 problems:
p hat700-3, johnson32-2-4, hamming10-4, keller5 (the optimal value is reached),
MANN a45 (the optimal value is reached), and MANN a81.

Better lower bounds have been found by [1] for p hat1500-2 (65) , and
p hat1500-3 (94); and by [8] for keller6 (59) and p hat1000-3 (68).

We think that this method is not the good one to solve some problems:
keller6, johnson32-2-4, hamming10-4. For the other open problems, we are more
confident.
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5.1 Comparison with Complete Methods

We compare our approach with 3 other algorithms:
• [11]: A branch-and-bound approach using fractionnal coloring and lower bound
heuristic.
• [9]: this approach is similar to dynamic programming: solve the problem with
one node, then with 2 nodes, and so on until reaching n. Each time the optimal
value of the previous computations is used as a minimal value for the new prob-
lem.
• [7]: This is the first CP approach. Fahle proposes to consider two filtering: the
first one consists of removing the nodes that have a degree which is too small to
improve the current objective value, the second consists of computing an upper
bound of the clique involving each vertex taken separately by using a well known
heuristic algorithm for graph coloring. The strategy selects the node with the
smallest degree.

We decided to use a normalization of the time of the other approaches, instead
of re-program the algorithm, because we were able to compare the performance
of our algorithm on several machines and then to obtain a time ratio that should
be fair. Therefore we have used the following time ratio:
• The times given by Wood are divided by 15
• The times given by Östegard are divided by 3
• The times given by Fahle are divided by 1.5

We can resume the comparison with other complete method by the following
table:

Wood Östegard Fahle ILOG Solver
number of solved problems 38 36 45 52
number of problems solved 38 35 38 44
in less than 10 min.
number of best time 15 26 10 30
number of best lower bound 0 0 1 5
for open problems

If we consider all the problems solved by Östegard in less than 10 minutes,
then Östegard needs 345.88s for solving all these problems, whereas we need
only 282.44s

Our approach is almost always better than the Fahle’s one, only p hat1500-1
is quickly solved by the Fahle’s method.

5.2 Comparison with Heuristic Methods

Two heuristic methods give very interesting results for solving the maximum
clique problem: QUALEX-MS [5] and the method proposed in [10].

For the set of benchmarks we consider, these two methods are able to reach
the best bound known so far for 50 problems. In less than 1 minute QUALEX-MS
found 48 best bounds.

Here are the results we obtain with our approach:
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– Within a limit of 4 hours of computation, our method is able to reach the
best bound for 58 problems (and for 52 the optimality is proved).

– In less than 10 minutes of computation, we are able to find 49 best bounds,
whose 44 are proved to be optimal.

– Within a limit of 1 minute of computation, we can reach 41 best bounds,
and prove that 37 are optimal.

These results show that our method is competitive in regards to the best
heuristic methods, even when the computational time is limited.

5.3 Interest of the Diving Technique

The diving technique is used after 10 minutes of computations. This technique
requires most of the time less than 10 s, except for some huge problems where
100 s are needed and for keller6 which needs one and half hour.

It improves the current objective value |K| found so far by the search, for 4
problems:
• brock400 2: the current value is 24, and the diving technique gives 29. From
this information the search is speed-up. Without the diving technique we need
9,163 s to solve the problem, whereas with it, we need only 7,910 s.
• keller6: the current value is 51, and the diving technique gives 54. This result
is interesting because after 4 hours of computation the solver is not able to
improve 51. Therefore the diving technique in itself gives a better result. This
result cannot be improved in 4 hours of computation.
• p hat1500-3: the current value is 89, and the diving technique gives 91. This
value cannot be improved by further computations within the limit of 4 hours.
• san400 0.9 1: the current value is 92. The diving technique gives 100 which
is the optimal value. With the diving technique 1,700 s are needed to solve the
problem, instead of 2,900 s.

6 A Maximum Clique Constraint

We can imagine to have a constraint stating the a set of nodes of a graph must be
a clique of size greater than a given integer K. For instance, this set of nodes can
be represented by a set variable as presented in ILOG Solver. Then, the filtering
algorithm associated with this constraint will aim to remove some values of this
set variable. The current set will then be defined by the required elements of the
set variable. Moreover, then a node will be required all its non-neighboor will be
removed from the possible set. In this case Algorithm 3 can be used as a filtering
algorithm.

Moreover, a Not set could also be used. For instance, it could be given at
the definition, and the growing of this set could be managed. We can define
a filtering algorithm involving this set by using Property 9. The dominance
properties cannot be used because some solutions could be missed.
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7 Conclusion

In this paper we have presented a CP approach to solve a famous combinatorial
optimization problem. We have presented new upper bound for the maximum
clique problem and adapted and generalized the ideas of Bron and Kerbosh to
this problem. The results that we obtain are good: seven problems are closed
and 2 lower bounds have been improved for problems remaining open. We have
also discussed the possible definition of a maximum clique constraint and its
association with a filtering algorithm based on the ones presented in this paper.
We hope that our ideas will lead to new improvements of the CP approach. In
order, to encourage these improvements we claim that our approach is, currently,
one of the best methods to solve the Maximum Clique Problem.
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Abstract. A conditional constraint satisfaction problem (CCSP) ex-
tends a standard constraint satisfaction problem (CPS) with a condition-
based component that controls what variables participate in problem so-
lutions. CCSPs adequately represent configuration and design problems
in which selected subsets of variables, rather than the entire variable
set, are relevant to final solutions. The only algorithm that is available
for CCSP and operates directly on the original, unreformulated CCSP
statement has been basic backtrack search. Reformulating CCSPs into
standard CSPs has been proposed in order to bring the full arsenal of
CSP algorithms to bear. One reformulation approach adds null values
to variable domains and transforms CCSP constraints into CSP con-
straints. However, a complete null-based reformulation of CCSPs has
not been available. In this paper we provide more advanced algorithms
for CCSP and a full null-based reformulation into standard CSP. Thor-
ough testing reveals that the advanced algorithms perform up to two
orders of magnitude better than plain backtracking, but that realizing
practical advantages from reformulation is problematic. The advanced
algorithms extend forward checking and maintaining arc consistency to
CCSPs. The null-based reformulation improves on the preliminary find-
ings in [1] by removing the limitation on multiple activation, and by
localizing changes. It identifies and addresses a difficulty presented by
activity cycles.

1 Introduction

There are many important and complex tasks to which constraint satisfaction has
been successfully applied. As a result, specialized constraint satisfaction problem
(CSP) classes have emerged to cope more directly with specific characteristics
of various application domains. Qualifiers such as partial, dynamic, hierarchi-
cal, composite, interval, mixed, and others characterize CSP specializations that
have been studied in the last decade. The conditional constraint satisfaction is
another specialization developed to cope with the special features of diagnosis
and configuration problems.
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Conditional CSP extends standard CSP with a condition-based component
that models dynamic changes of problem solutions with predefined conditions.
The formalism has been introduced in [2] under the name of dynamic CSP. It in-
tegrates classical constraint satisfaction with a special type of constraint, activity
constraints, responsible for selecting those variables that should participate in
solutions. The formalism has been originally motivated by synthesis tasks such
as product configuration, in which not all cataloged components are present in
every single configured product. This class of dynamic CSPs is renamed condi-
tional constraint satisfaction problems (CCSPs) [3] to (1) capture the nature of
the control component that conditionally changes the initial model of the prob-
lem, and to (2) distinguish this class of problems from another class of dynamic
CSPs that reuses problem solutions when problem changes over time [4,5,6].

Since its first formalization in 1990, conditional constraint satisfaction pa-
radigm has been used for modeling not only configuration problems, but also
diagnosis [7], design [1], and network management [8] problems. Despite increas-
ing interest in the area of representing application problems as CCSPs, little
progress has been made in the area of improving direct solving methods that op-
erate on CCSP representations. In contrast with other CSP specializations, no
standard CSP solving method, except for backtrack search [1], has been adapted
to the conditional domain. The lack of specialized, direct solving methods is
compounded by the fact that a benchmark test base for this type of problems is
extremely limited [9,10], although very much needed in experimental evaluations.

In this paper we present two advanced methods for solving CCSPs that use
local consistency methods of forward checking and maintaining arc consistency.
Solving methods find values for the set of active variables. These are obtained
from the initial set of variables that are assigned values in every solution, and
variables that are newly incorporated into the problem via activity constraints.
The technical challenges encountered and overcome in extending forward check-
ing and maintaining arc-consistency to CCSP are to: (1) keep track of variables’
activity status as determined by consistency checking of activity constraints, (2)
enforce chosen level of consistency when checking both compatibility and activ-
ity constraints, (3) in case of maintaining arc consistency, extend arc consistency
with activation consistency along activity constraints.

The opportunity of importing efficient standard algorithms, whose behavior
has been extensively tested, raises new challenges. Are there available similarly
comprehensive experimental studies for evaluating CCSP solving? The reality of
many application domains, such as configuration or diagnosis, is that either real-
life problems data is not publicly available or problem examples are too simple.
A practical approach that overcomes this difficulty and has proved very success-
ful for benchmarking standard solving algorithms is to use randomly generated
CSPs. This is the approach we consider in this paper to evaluate empirically
the proposed algorithms. We extend a random standard CSP generation model
[11] to produce random activity constraints, and use the model to implement
a random conditional CSP generator. We generate large and diverse problem
populations to conduct experimental studies that time algorithm execution, and
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count search operations specific to standard and conditional CSP solving. The
testing reveals that the advanced algorithms perform up to two orders of mag-
nitude better than plain backtracking.

An alternative approach to directly solving CCSP is to reformulate a CCSP
into an equivalent standard CSP. This approach has the advantage of bringing
to bear a mature constraint technology developed in the standard domain. The
first reformulation of conditional CSP into standard CSP has been mentioned
by Mittal and Falkenhainer [2], although they have not presented a full descrip-
tion of the transformation. They consider the addition of a special value, called
“null”, to the domains of all variables which are not initially active. A variable
instantiation with “null” indicates that the variable does not participate in the
problem solution. The feasibility of obtaining a null-based CSP reformulation of
a CCSP has been examined in-depth by Gelle [1]. She develops a null-based refor-
mulation algorithm that imposes the following limitation on CCSPs: non-initial
variables are activated by at most one activity constraint. A transformation of
multiple activations of the same variable has not been considered on the grounds
of an additional limitation, i.e., the transformation does not preserve locality of
change [1,9].

We have developed an algorithm of null-based reformulation that removes
these limitations. The algorithm (1) transforms multiple activations, and, (2)
preserves locality of change by allowing a less restrictive local change than the
one defined in [9]. Moreover, we have identified a new difficulty with null-based
reformulation introduced by activity cycles. We have developed an alternative
null-based reformulation algorithm that overcomes this difficulty at the cost of
not preserving locality of change. We have evaluated experimentally the per-
formance of solving the reformulated standard problem and compared it with
results obtained from applying direct solving methods to the original problem.
The findings show that the advanced solving methods are faster by one to two
orders of magnitude than solving the equivalent, reformulated problem.

2 Conditional CSP: An Example

Before we recall the definition of the conditional CSP, we give an example of a
simple product configuration task for which we develop a CCSP representation.
The insights of the modeling exercise facilitate the introduction of the basic
concepts of the CCSP framework. The example is a simplified version of an
example introduced by [2] and specifies a car configuration task (Figure 1). The
specifications include:

– required components, that participate in all final car configurations, with
their values;

– optional components, that can be optionally selected according to certain
configuration requirements, with their values;



652 Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace

– configuration requirements of compatibility, that restrict the values of the
selected components according to product assembly requirements and pro-
motional sales strategies;

– configuration requirements for selecting optional components, that express
customer preferences and additional requirements with regard to assembling
and selling the product.

Given the specified components and requirements, the task of configuration is to
assign values to selected components in such a way that requirements pertinent
to what is selected are satisfied. To obtain a CCSP representation of the car

Required components and their values
– comfort package has luxury, deluxe, and standard values
– frame has convertible and sedan values

Optional components and their values
– sunroof has sr1 and sr2 values
– air conditioner has ac1 and ac2 values

Configuration requirements of compatibility among component values
1. standard comfort package is not compatible with ac2 air conditioner
2. luxury comfort package is not compatible with ac1 air conditioner

Configuration requirements for selecting optional components
1. luxury comfort package includes sunroof option
2. luxury comfort package includes air conditioner option
3. convertible frame excludes sunroof option

Fig. 1. A simple car configuration task example

configuration example, we identify problem variables, values, and constraints. We
apply the following modeling guidelines and produce the CCSP representation
in Figure 2.

– Configuration task components and their values correspond to problem vari-
ables and their associated domains of values. Required components, which
are part of any configuration solution, are distinguished as initial variables.
Initial variables have the property of being initially active or included in the
problem search space. Optional components have their activity status ini-
tially undefined as they are not selected to either participate in, that is, be
included, or to explicitly not participate in, or be excluded from, problem
solutions.

– The requirements of component compatibility are modeled as compatibility
constraints, which restrict the combinations of allowed values assigned to
selected components.

– activity constraints change the initial variable set according to certain con-
ditions. These conditions control which optional components get selected in
a configuration, and which optional components are removed from a config-
uration.
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Initial variables

sr1

sr2

Sunroof

ac1

ac2

excl

luxury

deluxe

standard

Package

convertible

sedan

Frame

a2

AirConditioner

a1

a3

c2

c1

Activity Constraints

a1 : Package = luxury
incl−→ Sunroof

a2 : Package = luxury
incl−→ AirConditioner

a3 : Frame = convertible
excl−→ Sunroof

Compatibility Constraints

cdisallowed
1 : {(luxury ac1)}

cdisallowed
2 : {(standard convertible)}

Solution Set

Frame Package Sunroof AirConditioner
convertible deluxe EXCL UNDEF
sedan luxury sr1 a2

sedan luxury sr2 a2

sedan luxury UNDEF UNDEF
sedan standard UNDEF UNDEF

Fig. 2. Conditional CSP representation of the car configuration task example

This description of modeling a configuration task as a CCSP identifies five
problem components. Thus, a conditional constraint satisfaction problem, P =
〈V,D,VI , CC , CA〉, involves a set of variables, V = {v1, . . . , vn}, which, if ac-
tive, can take on discrete values from their corresponding finite domains D =
{Dv1 , . . . , Dvn

}, a non-empty set of initially active variables, called initial vari-
ables, VI , VI ⊆ V, a set of compatibility constraints, CC , and a set of activity
constraints, CA. All sets are finite.

The CCSP model in Figure 2 has four variables, two compatibility constraints
{c1, c2}, and three activity constraints, {a1, a2, a3}, of which a1 and a2 are in-
clusion activity constraints, and a3 is an exclusion activity constraint. Two of
the problem variables, Package and Frame are initial variables and, therefore,
active. They participate in all solutions and define the initial search problem
with which the solving process starts. The non-initial variables, AirConditioner
and Sunroof , have their activity status initially undefined. Their participation
in solutions is determined by activity constraints.

We say that a compatibility constraint c is consistent with an instantiation
I of the constraint variables iff either not all constraint variables are active, or
constraint variables are active and c satisfies I. For example, the instantiation
Package = standard and Frame = convertible trivially satisfies c1 since the
constraint variable AirConditioner is not active.

An inclusion activity constraint, a : acond
incl−→ vt, has an activation condition,

acond, which is a regular constraint defined on a set of condition variables, and
a target variable, vt. We say that a is consistent with an instantiation I of
the activation variables of acond iff either (1) not all condition variables are
active, or I is inconsistent with acond, or (2) all condition variables are active, I
satisfies acond, and vt is active. The example’s activity constraints of inclusion are
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a1 and a2. The instantiation Package = luxury makes AirConditioner active
according to a1, and Sunroof active according to a2. In both cases, condition
variable Package is active and the instantiation satisfies the activation condition
of a1 and a2.

Given an exclusion activity constraint, a : acond
excl−→ vt, we say that a is con-

sistent with an instantiation I of the activation variables acond iff (1) either not
all condition variables are active, or I is inconsistent with acond, or (2) all condi-
tion variables are active, I satisfies acond, and vt is not active. a3 is an example of
an exclusion activity constraint. The instantiation Frame = convertible makes
Sunroof not active, since condition variable Frame is active and the instanti-
ation satisfies the activation condition of a3. Note that this instantiation does
not involve condition variables of either of the inclusion activity constraints.

A solution to a CCSP P is an instantiation of a set of active variables such
that all compatibility and activity constraints are satisfied. All solutions to the
example problem are listed in Figure 2.

3 Solving Methods

The domain of standard CSPs benefits from a rich collection of thoroughly tested
algorithms. In contrast, the study of conditional CSPs is still in its infancy with
little research directed to specialized solving methods that operate directly on
CCSP representations. Following the model of other CSP specializations, we
develop adaptations of the most representative standard CSP methods for the
conditional domain:

– modified backtrack search algorithm (CondBT) that handles both types of
activity constraints,

– new forward checking algorithm (CondFC) that propagates compatibility
constraints over active variables, and

– new maintaining arc-consistency algorithm (CondMAC) that propagates
both compatibility and activity constraints.

In Section 4, the relative performance of the proposed methods is analyzed
experimentally by using random CCSPs. We show that (1) the run-time
complexity order in the standard domain holds in the conditional domain,
i.e., CondBT < CondFC < CondMAC, and that (2) the advanced algorithms
CondFC and CondMAC are faster by up to two orders of magnitude than
CondBT. The full descriptions of the algorithms can be found in [12]. In the
following we use a running example to describe the algorithms’ behavior.

Backtrack search is the only algorithm that has been adapted for conditional
constraint satisfaction [2,1]. The proposed adaptation, however, handles only
activity constraints of inclusion. Activity constraints of exclusion are reformu-
lated as compatibility constraints [13]. We modify the algorithm, what we call
CondBT, to handle both types of activity constraints as given in the original
problem representation. Figure 3 shows the search tree for finding all solutions
to the example problem in previous section. The algorithm maintains an agenda



Greater Efficiency for Conditional Constraint Satisfaction 655

EXCLUDED

UNDEFINED

UNDEFINED

UNDEFINED

Initial search space

convertible sedan

sr1

ac1 ac2

sr2

ac1 ac2

Package luxury deluxe standard luxury deluxe standard

AirConditioner

Frame

Sunroof

Fig. 3. CondBT search trace on the sample problem in Figure 2

of future variables, which await instantiation. Therefore, only active variables
are stored in the agenda. The agenda’s initial set is the set of the problem’s
initial variables. The algorithm’s implementation uses recursion to traverse the
search tree. For each active variable instantiation, the algorithm first checks the
compatibility constraints and then the activity constraints. The backtrack search
trace in Figure 3 has the initial search space defined by Frame and Package.

A compatibility constraint is checked only if it involves the current variable
and previously instantiated variables, called past variables. Otherwise, no com-
patibility constraint check is performed. If the current instantiation is consistent
with the value assignment of the past variables, the constraint is satisfied. For
example, when search reaches the instantiation Package = luxury, with past
variable Frame = convertible, both c1 and c2 are satisfied.

An activity constraint is checked only if its activation condition is defined
on the current variable and past variables. Otherwise, the activity constraint is
discarded and no check is performed. Checking the consistency of the activation
condition has two possible outcomes: either (1) current instantiation violates the
activation condition, in which case the constraint does not “trigger” or has no ef-
fect on the activity status of its target variable, or (2) activation condition holds,
in which case its effect has to be determined. In the first case, the constraint
is trivially satisfied. In the second case, the constraint satisfiability depends on
matching the constraint type (of inclusion or exclusion) with the activity status
of the target variable (included, excluded, or undefined). The constraint fails if
an inclusion (or exclusion) activity constraint targets an already excluded (or
included) variable. The constraint holds if the activity status of the target vari-
able is consistent with the type of activation. The constraint also holds if the
target variable’s activity status is undefined. In this case, the activity constraint
has the effect of setting the target’s status to active (or included) or to excluded.

Let us consider that the current search point is Frame = convertible. Note
that the activity status of AirConditioner and Sunroof is undefined. The only
constraint checked at this point is the exclusion activity constraint a3: its activa-
tion condition is satisfied, and the exclusion of Sunroof takes effect, that is, its
activity status becomes excluded. The algorithm proceeds deeper in the tree by
choosing the next future variable in the agenda, and instantiates Package with
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luxury. As shown before, compatibility constraint checking is successful and the
algorithm continues with checking the activity constraints. Activity constraint
a1 is checked and it fails: the inclusion of Sunroof conflicts with its current
activity status. luxury instantiation is found inconsistent, luxury is removed
from Package’s domain, and the search goes sideways in the tree to the next
value, deluxe, in the domain of the current variable. Constraint checking re-
sults in finding the first solution to the example problem: Frame = convertible,
Package = deluxe.

Forward checking in the conditional context (CondFC) enforces look-ahead
consistency [14] along compatibility constraints and prunes inconsistent values
from the domains of future variables. When activity constraints come into play
and newly activated variables are added to the set of future variables in the
agenda, consistency propagation is reiterated to involve these variables as well:
values which are inconsistent with the current partial solution are filtered from
the newly active variables. In Figure 4 we use the same sample problem to trace
CondFC execution. Let us consider that the current instantiation is Package =
luxury. Frame has been assigned the value sedan, but the propagation of c2
compatibility constraint did not find any inconsistent value in the domain of
Package. When luxury is tried for Package the only applicable constraints
are: a1 includes Sunroof and a2 includes AirConditioner. Both constraints are
satisfied and the search space grows with these two variables. Forward checking
prunes ac1 from the domain of AirConditioner by propagating c1.

c2 propagation => c2 propagation =>

EXCLUDED UNDEFINED

UNDEFINED UNDEFINEDAirConditioner

Sunroof

Package

Frame

Initial search space

c1 propagation =>

sr1

ac2

convertible

luxury deluxe

sedan

standarddeluxeluxurystandard

luxury deluxe luxury deluxe standard

ac2ac1

sr2

ac2

Fig. 4. CondFC search trace on the sample problem in Figure 2

The level of consistency enforced by CondFC can be extended to arc consis-
tency over all future variables, which are both directly and indirectly connected
via compatibility constraints to the current instantiation node in the search tree.
Arc consistency processing has received constant attention in the research com-
munity since Mackworth’ seminal paper on consistency in constraint networks
[15]. Combining backtrack search with arc consistency has produced one of the
most effective solving algorithm for binary standard CSPs, maintaining arc con-
sistency (MAC) [16,17,18,19]. CondMAC is MAC’s analog for binary conditional
CSP. It uses arc consistency over binary compatibility constraints1 and a new

1 CondMAC implementation uses AC-4 arc consistency algorithm [20].
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form of local consistency over binary activity constraints, called activation con-
sistency.

A modified version of the running example (Figure 5) is used to exemplify
the execution of CondMAC. Prior to launching backtrack search, the agenda
of initial variables is made arc consistent. The figure shows that there is only
one compatibility constraint, c2

′, which participates in the computation of the
support counters associated with (and shown next to) the values of the initial
variables. The support value of 0 for hatchback on c2

′ indicates that hatchback
is inconsistent with Package’s values and can be removed for Frame’s domain.
Having completed this preliminary phase, in Figure 6 we show how local consis-
tency is interleaved with backtrack search in CondMAC.

The improvement of CondMAC over CondFC consists of (1) making the
newly included variables arc consistent along compatibility constraints and (2)
propagating activity constraints to further remove condition values that contra-
dict activity status of problem variables. When convertible is assigned to Frame,
the other value left in its domain, sedan, is eliminated. Along the compatibil-
ity constraint c2

′, sedan supports all three values at Package. Its elimination
propagates via c2

′ and support counters of luxury, deluxe, and standard are
decremented. Consequently, standard’s support counter becomes 0, which shows
its inconsistency with the partial solution Frame = convertible. The value is
removed and no more arc consistency propagation takes place at this point. Fol-
lowing the checking of compatibility constraints, we check activity constraints
whose condition variables are active. a3 qualifies, it is satisfied, and Sunroof is
marked as excluded from the search tree rooted at Frame = convertible. How-
ever, there is another activity constraint, a1, whose condition involves future
variable Package, and which conflicts with a3. To maintain activation consis-
tency over future variables, a1’s condition value, luxury, which is found incon-
sistent with convertible, is also removed from the domain of Package. All value
removals due to enforcing activation consistency are propagated via arc consis-
tency over compatibility constraints defined on future variables. In this example,
removal of luxury propagates on c2

′ and results in convertible losing one more
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Initial variables

AirConditioner

ac1

ac2

sr1

sr2

Sunroof

exclluxury

deluxe

standard

Package

convertible

sedan

hatchback

c2’
Frame

a2 a3

a1

c1

c2
′ : {(luxury convertible)(luxury sedan)

(deluxe convertible)(deluxe sedan)(standard sedan)}

Fig. 5. Modified version of sample problem: an additional value, hatchback, in Frame,
and updated c2

′, which leaves hatchback with no support at Package. Values partici-
pating in compatibility constraints have associated support counters
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0 2   1

sedan
3 1   02   12   1

: luxury includes Sunroof convertible and becomes inconsistent with 
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sedan hatchback)
0 1 0

{(convertible
1 3 1

Initial search space
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SC of c2’

SC of c2’
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a1

deluxe(luxury standard)}

convertible

Package

Frame

Sunroof

AirConditioner

deluxe(luxury standard)}

deluxe

Fig. 6. CondMAC search trace on the sample problem in Example 5

support, down to 1 at this point. With this level of consistency achieved, search
continues with the instantiation of Package with the only value left in its do-
main, deluxe. Applicable constraints (that is, c2

′ only) are checked and satisfied,
and the first solution to the problem is found.

4 Experimental Evaluation

In our experiments we use Freuder and Wallace’s model of constant probability of
inclusion for generating random CSPs [21,11], extended with additional parame-
ters that collect activity information, called activity parameters, for a specialized
class of binary CCSPs. The class restricts both compatibility and activity con-
straints to binary constraints. Binary activity constraints are defined on a single
condition variable, with an associated unary activation constraint, and the usual
target variable. As a general practice, the most prevalent experimental design for
studying algorithm performance using random standard CSPs involves varying
density and satisfiability parameters. In the context of random CCSPs, these
parameters are the probability of generating compatibility constraints, denoted
dc, and the probability of generating allowed pairs in a compatibility constraint,
denoted sc. Specific to CCSP, we are interested in generating combinations of pa-
rameter values for those activity parameters that control the amount of activity
a problem exhibits. These parameters are:

– density of activity, denoted da, is the probability of generating a non-initial
variable as a target variable.

– satisfiability of activation, denoted sa, is the probability of generating a value
in a domain as a condition value. The number of condition values in a domain
measures the satisfiability of the activation condition defined on that domain.

The three algorithms for solving CCSPs, CondBT, CondFC, and CondMAC,
were tested in experiments covering diverse populations of randomly generated
problems. The algorithms’ implementations handle binary constraints. This re-
striction is imposed by the binary CondMAC algorithm and the binary random
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Test suite design: problem of 10 variables,
with 8 values per domain, fixed satisfi-
ability of compatibility, sc = 0.25, den-
sity of activity, da = 0.3, and satisfiabil-
ity of activation, sa = 0.3. Compatibility
density, dc, varies in the range [0.1 . . . 0.4]
in increments of 0.02. For each of the 16
(dc, sc, da, sa) topological classes 100 in-
stances were generated.

Fig. 7. CondBT and CondFC execution time for variable compatibility density, dc

Fig. 8. CondFC and CondMAC execution time for variable satisfiability of activation,
sa and three values of density of activity: da = 0.1 (left), da = 0.2 (middle), and
da = 0.5 (right). Fixed compatibility topology: dc = sc = 0.2

CCSPs used during testing. The experimental analysis has two types of studies.
In the first category we measured execution time of each algorithm for finding
minimum size solutions, that is, solutions that have a minimum number of vari-
ables that are assigned values. In the second category we run the algorithms to
find all solutions, and we collected measures that are representative of algorithm
effort: number of backtracks and compatibility checks as well as some new mea-
surements specific to CCSP, such as number of condition checks, included and
excluded variables, activity constraints that redundantly set variables’ activity
status, and activity constraints whose action conflict with variables’ activity
status.

Relative time performance of CondBT and CondFC is shown in Figure 7. We
observe that CondFC runs one to two orders of magnitude faster than CondBT.
Relative time performance of CondFC and CondMAC has been studied on a
larger test suite that consists of 81 problem classes corresponding to all (da, sa)
activity parameter combinations, with da and sa varying in the [0.1 . . . 0.9] range
in 0.1 increments. Figure 9 shows time variation with sa for three da values.
Compatibility parameters are fixed: dc = sc = 0.2. There are 100 instances per
problem class, each of 10 variables with domains of 10 values. The main result
supported by the data is that CondMAC consistently outperforms CondFC.
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Fig. 9. Comparison between CondFC and CondFC effort measured as the number of
backtracks (left), compatibility checks (middle), and condition checks (right). Variation
of effort with density of compatibility, dc, and satisfiability of activation, sa. Fixed
sc = 0.3 and da = 0.2

Finally, the experimental study in Figure 9 evaluates algorithm efficiency
measured by counting the number of backtracks, compatibility checks, and condi-
tion checks performed by CondBT and CondFC when searching for all solutions.
The problem space considered for this study, as defined by (dc, sc, da, sa), had
2,025 problem classes: 5 dc values in [0.4 . . . 0.8] range, 5 sc values in [0.1 . . . 0.4],
and 81 da and sa combined values in [0.1 . . . 0.9] range. Figure 9 synthesizes
CondBT vs. CondFC comparison results for only 45 classes, with fixed sc = 0.3
and da = 0.2. The study results show that CondFC outperforms CondBT on
all measures and for all problem topologies. Similar to standard CSP solvers, all
effort measures counted for CondBT and CondFC increase with problem satis-
fiability, sc, and decrease with problem density, dc. As problems exhibit more
conditionality (larger da and sa), CondBT and CondFC perform more condi-
tion checks, obviously, but fewer backtracks. CondFC is better than CondBT by
one to two orders of magnitude on the number of backtracks and compatibility
checks, and up to three orders of magnitude on the number of condition checks.

5 Reformulation

The prominence and maturity of the constraint satisfaction classical paradigm
motivates our interest in reformulating the conditional CSP representation into
a standard CSP. This reformulation requires the addition of a special value,
called “null”, to the domains of non-initial variables, and the transformation
of compatibility and activity constraints into ordinary constraints [2,1,13,9]. A
null-based reformulation of conditional CSPs is presented and studied in depth
in [1,9]. However, this transformation is limited in the following key respects:

1. it does not transform multiple activations of the same variables,
2. it does not preserves locality of change: when the original problem changes

with the addition of another activity constraint to a multiple activation
cluster, which has already been reformulated, the reformulation cannot be
updated locally,

3. it does not handle activity cycles.
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To address these three limitations of the null-based reformulation, we have de-
veloped two alternative transformations. One removes the first two limitations;
the other removes the third. Both algorithms synthesize non-binary ordinary
constraints whose arity increases with the number of activity constraints in a
multiple activation cluster or in an activity cycle.

Given the reformulation algorithms that overcome the limitations with mul-
tiple activations, locality of change, and activity cycles, we are interested in eval-
uating the relative efficiency of solving with standard methods the reformulated
problem. The test suite we designed for this purpose has random conditional
CSPs of 8 variables with domains of 6 values. The problems are organized in
nine classes, each corresponding to a sc value in [0.1 . . . 0.9]. The other three
problem generation parameters were fixed. Conditional CSPs were solved with
CondMAC. Their non-binary null-based reformulations, obtained with the re-
formulation algorithm that handles activity cycles, were first transformed into a
binary constraint representations and then were solved with the MAC algorithm
for binary CSPs. The execution time results are shown in Figure 10, on a normal
scale (left) and logscale (right). We observe that solving binary null-based refor-
mulations is much slower, up to two orders of magnitude, than solving original,
conditional CSPs directly. Two conclusions can be drawn from these findings.
First, greater efficiency in solving conditional CSPs lies with algorithms that
operate on the original representation. Second, much has to be learned about
what is specific to null-based reformulations and how standard methods can
more efficiently exploit these representations.

0
20
40
60
80

100
120
140
160

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e 
(s

ec
)

sc

RefMAC
CondMAC

0.01

0.1

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e 
(s

ec
 -

 lo
gs

ca
le

)

sc

RefMAC
CondMAC

Fig. 10. Execution time of CondMAC and RefMAC - standard MAC for solving equiv-
alent null-based, standard reformulations. Original conditional CSPs have 8 variables
and 6-value domains. 100 problem instances per topological class: variable satisfiability
of compatibility, sc, in [0.1 . . . 0.9] and fixed dc = 0.15, da = sa = 0.3

6 Conclusion and Future Work

CCSPs are extensions to standard CSPs that have proved useful in represent-
ing configuration and diagnosis problems. In contrast to other CSP extensions,
CCSP has not benefited from adaptations of efficient CSP solving algorithms to
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improve CCSP solving. Moreover, experimental analysis of the efficiency of avail-
able CCSP solvers has been extremely limited. In this paper we presented two
advanced algorithms for CCSP that adapt forward checking and maintaining arc
consistency to keep track of variables’ activity status and to enforce local con-
sistency along compatibility and activity constraints. We studied their efficiency
experimentally and shown an improvement of up to two orders of magnitude
over plain backtrack search. An alternative approach to directly solving CCSP
is to reformulate it into an equivalent standard CSP. We studied a null-based
reformulation of CCSPs, addressed its limitations, and provided experimental
evidence that the proposed direct methods are more efficient.

We envision two directions for our future work. Real-life configuration and di-
agnosis problems are formulated as non-binary CCSPs. We want to generalize the
current implementations of CondFC and CondMAC to handle non-binary con-
straints and take advantage of efficient non-binary local consistency algorithms
[19,22,23]. In [1,10] a reformulation method has been proposed that generates
a set S of standard CSPs equivalent to the original CCSP. Conventional local
consistency methods are then applied on intermediate problems generated along
the way to producing S in order to reduce S and solve its members more effi-
ciently with CSP solving algorithms. The method can be further improved with
a hybrid approach that interleaves CSP solving, rather than just preliminary lo-
cal consistency, with reformulation2. We are interested in a more comprehensive
study of CCSP solving that will include this hybrid approach and facilitate new
advances in solving and reformulating CCSPs.
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19. Bessière, C., Régin, J.C.: Arc consistency for general constraint networks: prelim-
inary results. In: Proceedings IJCAI’97, Nagoya, Japan (1997) 398–404

20. Mohr, R., Henderson, T.: Arc and path consistency revisited. Aritificial Intelligence
28 (1986) 225–233

21. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence 58
(1992)
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Abstract. Interleaved planning and scheduling employs the idea of ex-
tending partial plans by regularly heeding to the scheduling constraints
during search. One of the techniques used to analyze scheduling and
resource consumption constraints is to compute the so-called resource-
envelopes. These envelopes can then be used to derive effective heuristics
to guide the search for good plans and/or dispatch given plans optimally.
The key to the success of this approach however, is in being able to re-
compute the envelopes incrementally as and when partial commitments
are made. The resource-envelope problem in producer-consumer models
is as follows: A directed graph G = 〈X , E〉 has X = {X0, X1 . . . Xn} as
the set of nodes corresponding to events (X0 is the “beginning of the
world” node and is assumed to be set to 0) and E as the set of directed
edges between them. A directed edge e = 〈Xi, Xj〉 in E is annotated
with the simple temporal information [LB(e), UB(e)] indicating that a
consistent schedule must have Xj scheduled between LB(e) and UB(e)
seconds after Xi is scheduled (LB(e) ≤ UB(e)). Some nodes (events)
correspond physically to production or consumption of resources and
are annotated with a real number r(Xi) indicating their levels of pro-
duction or consumption of a given resource. Given a consistent sched-
ule s for all the events, the total production (consumption) by time
t is given by Ps(t) (Cs(t)). The goal is to build the envelope func-
tions g(t) = max{s is a consistent schedule}(Ps(t) − Cs(t)) and h(t) =
min{s is a consistent schedule}(Ps(t) − Cs(t)). In this paper, we provide
efficient incremental algorithms for the computation of g(t) and h(t),
along with flexible consistent schedules that actually achieve them for
any given time instant t.

1 Introduction

Interleaved planning and scheduling employs the idea of extending partial plans
by regularly heeding to the scheduling constraints during search. One of the
techniques used to analyze scheduling and resource consumption constraints in
the context of the currently maintained partial plan is to compute the so-called
resource-envelopes. These can then be used to guide the search for a good plan
in a variety of ways (see [2] and [4]).

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 664–678, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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First, they provide sanity checks for early backtracking when it is possible to
examine the envelopes and determine that no consistent schedule for the current
set of constraints could possibly satisfy all the resource contentions. Second,
they provide a heuristic value for estimating the constrainedness of a partial plan.
Third, they provide a search termination criterion when it is possible to examine
the envelopes and determine that any consistent schedule for the current set of
constraints would be successful in satisfying the resource contentions. Fourth,
they provide important subroutines for designing approximation algorithms in
optimal dispatching/scheduling of plans.

The resource-envelope problem in producer-consumer models is as follows: A
directed graph G = 〈X , E〉 has X = {X0, X1 . . . Xn} as the set of nodes corre-
sponding to events (X0 is the “beginning of the world” node and is assumed to
be set to 0) and E as the set of directed edges between them. A directed edge e =
〈Xi, Xj〉 in E is annotated with the simple temporal information [LB(e), UB(e)]
indicating that a consistent schedule must have Xj scheduled between LB(e) and
UB(e) seconds after Xi is scheduled (LB(e) ≤ UB(e)). Some nodes (events) cor-
respond physically to production or consumption of resources and are annotated
with a real number r(Xi) indicating their levels of production or consumption of
a given resource. Given a consistent schedule s for all the events, the total pro-
duction (consumption) by time t is given by Ps(t) (Cs(t)). The goal is to build
the envelope functions g(t) = max{s is a consistent schedule}(Ps(t)−Cs(t)) and
h(t) = min{s is a consistent schedule}(Ps(t)− Cs(t)).

The producer-consumer model captures several realities associated with rea-
soning about actions and plans. A partial plan typically consists of a set of
actions, a set of open conditions (sub-goals that still need to be achieved), a
set of established causal links, a set of temporal constraints between various
events that include the beginning and end points of actions, and a set of re-
source requirements associated with the execution of individual actions (see [6]).
An action A can consume (produce) a resource in a variety of ways that includes:
(1) A holding wA amount of resource at the beginning of its execution and re-
turning it at the end, (2) A holding wA amount of the resource at the beginning
of its execution and not returning it at the end, (3) A producing wA amount
of the resource at the end of its execution etc. All these can be expressed using
the producer-consumer model and although continuous consumption and pro-
duction of resources during execution of individual actions needs to be handled
in a more general framework, the producer-consumer model is fairly expressive
and the techniques that are shown in this paper to analyze them are illustrative
of more complex resource production and consumption models.

Some attempts for computing the envelopes in producer-consumer models
have been made in [2] and [4]. This paper improves upon them in a number of
ways. First, the estimation of the envelopes provided in [2] is conservative, while
it is tight in [4] and in the algorithms provided in this paper. Tightness in the
estimates of g(t) and h(t) is extremely important because a tight bound can save
us a potentially exponential amount of search through early backtracking and
solution detection when compared to a looser bound. Tight bounds also provide
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better heuristic estimates for the constrainedness of a problem during search. Sec-
ond, our algorithms are constructive in the sense that we can determine a flexible
schedule s that actually achieves g(t) or h(t) for any given time instant t. This
ensures good performance at bottleneck points (as argued in [3]) and is better
than determining an arbitrary fixed schedule because flexible schedules tend to
be robust in dealing with exogenous events and uncertainty of execution. Third,
and most important, our algorithms are incremental—that is, they effectively
reuse computation for determining the envelopes as and when search proceeds
by making partial commitments and refining plans. Incremental computation is
extremely important because the envelopes must be computed at every point
in the search space and even a small saving in the complexity saves us an ex-
ponential amount of work. In the context of interleaved planning and execution
monitoring for example, execution of a (partial) plan may not always result in the
intended outcome and fast re-planning is necessary. Incremental computation of
resource envelopes then becomes extremely important for an active management
of planning and execution monitoring. We show that the incremental complexity
of our algorithms is significantly lesser than re-computation from scratch—hence
saving us a total amount of work that is proportional to this difference times the
size of the search space. Fourth, we show how our algorithms can be adapted to
reuse computation even within a single instance of the problem when envelopes
need to be recalculated at discontinuities.

Throughout the paper, we will concentrate on (incremental) algorithms for
computing the envelope function g(t) only. The computation of h(t) can be
done in a directly analogous fashion by simply reversing the role of consumers
and producers. This is because h(t) = min{s is a consistent schedule}(Ps(t) −
Cs(t)) = −max{s is a consistent schedule}(Cs(t) − Ps(t)). We will assume that
the temporal constraints specified in E are consistent1 and will denote the set of
all production events (all events u ∈ X such that r(u) > 0) by P and the set of
all consumption events (all events u ∈ X such that r(u) < 0) by C.

2 Computing the Envelopes

In this section, we provide efficient algorithms for computing the profile function
g(t) given an instance of the resource-envelope problem. Figure 1 shows the
algorithm for computing g(t) at a specified time instant t, along with a flexible
consistent schedule s that actually achieves it. Figure 2 shows the algorithm
for computing g(t) for all t and Figure 3 shows a small example. A series of
Lemmas are presented that prove the correctness of the algorithms. Central to
the algorithms is the notion of a distance graph associated with a set of simple
temporal constraints (see step 1 of Figure 1). An edge 〈Xi, Xj〉 in the distance
graph is annotated with a real number w (instead of temporal bounds) and
encodes the constraint Xj −Xi ≤ w.
Lemma 1: A consistent schedule exists for X1, X2 . . . Xn in G = 〈X , E〉 if and
only if D(G) does not have any negative cycles (see step 1 of Figure 1).
1 Any possible inconsistency is caught in higher level routines of a refinement planner.
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ALGORITHM: UPPER-ENVELOPE-AT-T
INPUT: An instance of the resource-envelope problem, and a time instant t.
OUTPUT: g(t) and a flexible consistent schedule s that achieves it.

1. Construct the distance graph D(G) on the nodes of G as follows:
a. For every edge e = 〈Xi, Xj〉 in E :

i. Add the edge 〈Xi, Xj〉 annotated with UB(e).
ii. Add the edge 〈Xj , Xi〉 annotated with −LB(e).

2. For every Xp ∈ P and Xc ∈ C:
a. Compute the shortest distance from Xp to Xc in D(G) (denoted

dist(Xp, Xc)).
b. Construct a (directed) size-2 conflict between Xp and Xc (denoted Xc →

Xp)
if and only if dist(Xp, Xc) < 0.

3. Build a directed graph E(G) as follows:
a. The nodes of E(G) correspond to events in P ∪ C.
b. The weight on Xi is set to |r(Xi)|.
c. A directed edge 〈Xp, Xc〉 in E(G) encodes a size-2 conflict Xc → Xp.

4. Construct a graph M(G) from E(G) as follows:
a. Remove a production node Xp ∈ P and all its adjacent edges if and only if

t + dist(Xp, X0) < 0.
b. Remove a consumption node Xc ∈ C and all its adjacent edges if and only

if
dist(X0, Xc) − t < 0.

5. Compute Q = {u1, u2 . . . uk} as the largest weighted independent set in M(G).
6. RETURN:

a. g(t) =
∑

yi∈P |r(yi)|(yi ∈ Q) −∑
yi∈C |r(yi)|(yi /∈ Q).

b. s = D(G)∪ {〈X0, ui〉 annotated with t if ui ∈ P ∩Q} ∪ {〈ui, X0〉 annotated
with −t if ui ∈ C ∩ Q}.

END ALGORITHM

Fig. 1. Shows the computation of g(t) for a given time instant t, along with a flexible
consistent schedule s that achieves it.

Proof: If there is a negative cycle Xi1 , Xi2 . . . Xik
, the following are true of the

constraints specified in E : Xi2−Xi1 ≤ w1, Xi3−Xi2 ≤ w2 · · ·Xik
−Xik−1 ≤ wk−1,

Xi1 −Xik
≤ wk. Summing over these inequalities, we have 0 ≤

∑k
i=1 wi. This is

false since
∑k

i=1 wi is known to be negative. This means that there cannot exist
any consistent schedule for Xi1 , Xi2 . . . Xik

. Conversely, if there are no negative
cycles in D(G), then a consistent schedule exists for X1, X2 . . . Xn, one of which
is given by Xi = d0i where d0i is the shortest distance from X0 to Xi in D(G).
Such a schedule satisfies all constraints in D(G). An edge Xj−Xi ≤ wij in D(G)
is satisfied by Xj = d0j and Xi = d0i because d0j ≤ wij + d0i (since wij + d0i

accounts for only one of the paths from X0 to Xj).
Definition 1: A production event p ∈ P can contribute +|r(p)| to the total
production at time t, or not contribute at all. A consumption event c ∈ C can
contribute −|r(c)| to the total production at time t, or not contribute at all. An
event is said to be p-active if it contributes its maximum to the total production
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ALGORITHM: UPPER-ENVELOPE-ALL-T
INPUT: An instance of the resource-envelope problem.
OUTPUT: g(t) for all t.

1. For all Xp ∈ P:
a. Insert −dist(Xp, X0) into list L.

2. For all Xc ∈ C:
a. Insert +dist(X0, Xc) into list L.

3. Sort L in ascending order 〈d1, d2 . . . d|L|〉.
4. For i = 1, 2 . . . |L| − 1:

a. Compute g(di) = UPPER-ENVELOPE-AT-T at time di.
b. Set g(t) = g(di) for all t in the interval [di, di+1).

5. Set g(t) = g(d|L|) for t in the interval [d|L|, +∞).
6. Set g(t) = 0 in the interval (−∞, d1).

END ALGORITHM

Fig. 2. Shows the computation of g(t) for all t.

by time t. This means that a production event p can be made p-active at time t
if it is scheduled before (or at) t and a consumption event c can be made p-active
at time t if it is scheduled after t.
Lemma 2: A schedule that achieves g(t) at time t is also the one that maximizes∑

y∈P∪C |r(y)|p-active(y, t).
Proof: We know that for any schedule s, Ps(t)−Cs(t) =

∑
p∈P |r(p)|(s(p) ≤ t)−∑

c∈C |r(c)|(s(c) ≤ t). Maximizing this is the same as maximizing
∑

c∈C |r(c)|+∑
p∈P |r(p)|(s(p) ≤ t)−

∑
c∈C |r(c)|(s(c) ≤ t) because the additional term is inde-

pendent of s. Combining the first and the third terms, we have
∑

p∈P |r(p)|(s(p)
≤ t)+

∑
c∈C |r(c)|(s(c) > t). The last two terms yield

∑
y∈P∪C |r(y)|p-active(y, t)

as required.
Lemma 3: A production event p ∈ P can be made p-active at time t if the
addition of the edge 〈X0, p〉 annotated with t does not result in a negative cycle
in D(G). A consumption event c ∈ C can be made p-active at time t if the addi-
tion of the edge 〈c,X0〉 annotated with −t does not result in a negative cycle in
D(G).
Proof: By definition, a production event p can be made p-active at time t if it is
possible to schedule it before t. Retaining the semantics of the distance graph—
that a constraint Xb −Xa ≤ w is specified as the edge 〈Xa, Xb〉 annotated with
w—this corresponds to the addition of the edge 〈X0, p〉 annotated with t to the
distance graph without causing an inconsistency. Similarly, a consumption event
c can be made p-active at time t if it is possible to schedule it after t, and this
corresponds to the addition of the edge 〈c,X0〉 annotated with −t without caus-
ing an inconsistency. The truth of the Lemma then follows from the fact that
inconsistencies correspond to negative cycles as stated in Lemma 1.
Definition 2: A conflict is a set of events all of which cannot be made p-active
simultaneously at a given time t. A minimal conflict is a conflict no proper sub-
set of which is also a conflict.
Lemma 4: A set of events can be simultaneously made p-active at time t if
there is no subset of them that constitutes a minimal conflict.
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Fig. 3. Shows an instance of the resource-envelope problem cast as a bipartite matching
problem. The top left diagram shows the original problem where nodes are annotated
with their levels of production/consumption. The top right diagram shows the distance
graph, and the bottom left diagram shows an encoding of the size-2 conflicts as a bipar-
tite graph (the size-1 conflicts are represented using intervals annotating the nodes).
The two other diagrams illustrate the change in the set of size-1 conflicts with t.

Proof: By definition of a conflict, a set of events can be simultaneously made
p-active at time t, if and only if there is no subset of them that constitutes a
conflict. Further, the truth of the Lemma follows from the fact that a set of
events constitutes a conflict if and only if some subset of them constitutes a
minimal conflict.
Lemma 5: The size of a minimal conflict is ≤ 2.
Proof: A set of production events {p1, p2 . . . pk} and a set of consumption events
{c1, c2 . . . cl} can be attempted to be made simultaneously p-active at time t if
for all pi, we can add the edge 〈X0, pi〉 annotated with t, and for all cj , we can
add the edge 〈cj , X0〉 annotated with −t, to the distance graph D(G) without
creating a negative cycle. Let these edges be referred to as “special” edges and
let D′(G) refer to the resulting distance graph. Knowing that D(G) does not
have any negative cycles (because E is consistent), a negative cycle can occur
in D′(G) only if it involves a “special” edge. Since all “special” edges have X0
as an end point, a negative cycle must involve X0. Further, since a fundamental
cycle can have any node repeated at most once, at most 2 “special” edges can
be present in a negative cycle in D′(G). Finally, since special edges correspond
to p-activation of events, the size of a minimal conflict is ≤ 2.
Lemma 6: A size-2 conflict is independent of t.
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Proof: Continuing the arguments in the proof of Lemma 5, when the size of a
minimal conflict is 2, the negative cycle in D′(G) must involve an “incoming”
“special” edge to X0 (say 〈cj , X0〉) with weight −t and an “outgoing” “special”
edge from X0 (say 〈X0, pi〉) with weight t. The weight of the negative cycle con-
taining exactly these two “special” edges is therefore dist(pi, cj) + t− t. This is
independent of t and is negative if and only if dist(pi, cj) is negative (dist(pi, cj)
is the shortest distance from pi to cj in D(G)).
Lemma 7: A production event p ∈ P constitutes a size-1 conflict at time t when
t + dist(p,X0) < 0, and a consumption event c ∈ C constitutes a size-1 conflict
at time t when dist(X0, c)− t < 0.
Proof: Continuing the arguments in the proof of Lemma 5, when the size of a
minimal conflict is 1 and it involves an “outgoing” “special” edge from X0, it
must be of the form 〈X0, pi〉 (pi ∈ P) with dist(pi, X0) + t < 0 (indicating that
pi cannot be p-active at time t). In the case that the minimal conflict involves
an “incoming” “special” edge to X0, it must be of the form 〈cj , X0〉 (cj ∈ C)
with dist(X0, cj)− t < 0 (indicating that cj cannot be p-active at time t).
Lemma 8: g(t) and s are as computed in step 6 of Figure 1.
Proof: M(G) incorporates the deletion of all size-1 conflicts and the computation
of an independent set incorporates the absence of all size-2 conflicts. The com-
putation of the largest weighted independent set in M(G) therefore takes care
of all minimal conflicts and targets the maximum possible p-activity at time t.
Step 6(a) measures the total production corresponding to this p-activity and the
required flexible consistent schedule s (computed in step 6(b)) corresponds to
the addition of edges required to p-activate the qualifying events.
Lemma 9: g(t) is piecewise constant and changes only at a polynomial number
of time points.
Proof: By Lemma 8, g(t) is the weight of the largest weighted independent set
in the graph M(G). Since M(G) is computed from E(G) by deleting all size-1
conflicts at time t, the number of times g(t) changes is equal to the number of
times the set of size-1 conflicts changes in M(G). Since dist(X0, c) (c ∈ C) and
−dist(p,X0) (p ∈ P) respectively mark the membership of a consumption event
c and a production event p in this set, the potential number of transition points
for the piecewise constant function g(t) is O(|P|+ |C|).

The complexity of the steps in Figure 1 that are independent of t (and can
therefore be done just once) is dominated by the computation of shortest paths
in the presence of negative cost edges using the Bellman-Ford algorithm. This
is equal to O(|X ||E||P||C|). The time-dependent complexity is dominated by the
computation of maxflow in a bipartite graph and is equal to O((|P|+|C|)2.5). The
complexity of the algorithm in Figure 2 is therefore equal to O(|X ||E||P||C| +
(|P|+ |C|)3.5).

3 Maximum Weighted Independent Set Computation

In this section, we present a polynomial-time algorithm for the computation of
the largest weighted independent set in a bipartite graph (see Figure 4). A series
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ALGORITHM: MAX-WT-IND-SET
INPUT: A bipartite graph B = 〈P, C, E〉 with pi ∈ P having weight |r(pi)| and
ci ∈ C having weight |r(ci)|.
OUTPUT: Maximum weighted independent set I∗ in B.

1. Construct a directed graph D = 〈U, Y 〉 as follows:
a. U = P ∪ C ∪ {S, T}.
b. For all pi ∈ P : Y contains the edge S → pi with capacity |r(pi)|.
c. For all cj ∈ C: Y contains the edge cj → T with capacity |r(cj)|.
d. For all 〈pi, cj〉 ∈ E: Y contains the edge pi → cj of infinite capacity.

2. Compute a maxflow F (with residual graph RF ) in D from S to T .
3. Compute H = {〈S, pi〉|pi ∈ P and pi is unreachable from S in RF } ∪ {〈ci, T 〉|

ci ∈ C and ci is reachable from S in RF }.
4. Compute V = {pi|〈S, pi〉 ∈ H} ∪ {ci|〈ci, T 〉 ∈ H}.
5. RETURN: I∗ = P ∪ C\V .

END ALGORITHM

Fig. 4. Shows the algorithm for computing the maximum weighted independent set in
a bipartite graph.

of Lemmas are presented that prove the correctness of the algorithm (see [1]).
To keep the proofs of these Lemmas simple, we first deal with the case when all
nodes have unit weight (imagine setting |r(pi)| and |r(ci)| to 1 in steps 1(b) and
1(c) of Figure 4). We then provide a single concluding Lemma that generalizes
the correctness of the algorithm to the weighted version as required. We make
use of the standard result that when all edges have integral capacities in an
instance of the maxflow problem, a maxflow with integral amount of flow on all
edges can be efficiently computed (see [1]).
Definition 3: A matching M in a bipartite graph B is a set of edges that do
not share a common end-point. The size of a matching (denoted |M |) is the
number of edges in it, and a maximum matching (denoted M∗) is a matching of
maximum size. A vertex cover V in B is a set of nodes such that at least one
end point of every edge is in it. A minimum vertex cover is one such that the
total weight on all the nodes is minimized.
Lemma 10: If M∗ is the maximum matching in B, then |M∗| = F .
Proof: For an integral flow, there cannot exist two edges of the form 〈pi, cj1〉
and 〈pi, cj2〉 both with non-zero flows. This is because the edge 〈S, pi〉 has unit
capacity and the flow has to be conserved at pi. Similarly, there cannot exist two
edges of the form 〈pi1 , cj〉 and 〈pi2 , cj〉 both with non-zero flows because 〈cj , T 〉
is of unit capacity. Therefore, an integral flow in D defines a matching in B of
the same size and a maxflow F in D defines a maximum matching M∗ in B of
the same size, hence making |M∗| = F .
Lemma 11: If V ∗ is the minimum vertex cover in B, then |V ∗| ≥ |M∗|.
Proof: For any edge in M∗, at least one of its end points must be in V ∗. Also,
since no two edges in M∗ share a common end point, they cannot be covered by
the same element in V ∗. This means that |V ∗| ≥ |M∗|.
Lemma 12: |V | = F (F is the maxflow in D and V is the vertex cover for B
constructed in step 4 of Figure 4).



672 T.K. Satish Kumar

Proof: From the construction of V , pi ∈ P is in V if and only if 〈S, pi〉 is in H
and cj ∈ C is in V if and only if 〈cj , T 〉 is in H. This means that |V | = |H|.
Since H is formed out of considering all edges that have one end reachable from
S and the other unreachable in RF , it constitutes a minimum cut between S
and T in D. From the maxflow-mincut Theorem, |H| = F , and hence |V | = F
as required.
Lemma 13: For the bipartite graph B, if V ∗ is the minimum vertex cover, then
|V | = |V ∗| (where V is the vertex cover constructed for B in step 4 of Figure 4).
Proof: From the above Lemmas, we have that |V | = F , |V ∗| ≥ |M∗| and
|M∗| = F . This means that |V ∗| ≥ |V |. Since V ∗ is the optimal vertex cover by
definition, we have that |V | = |V ∗| and is the required minimum vertex cover.
Lemma 14: If I∗ is the largest independent set, then |I∗| + |V ∗| = |P ∪ C|.
Moreover, P ∪ C\V is an optimal independent set.
Proof: Consider any vertex cover U . P ∪ C\U does not contain any two nodes
of the form pi ∈ P and cj ∈ C such that there is an edge 〈pi, cj〉 between them.
This means that P ∪ C\U is an independent set. Also, since P ∪ C\U and U
form a partition of P ∪ C, we have that |P ∪ C\U |+ |U | = |P ∪ C|. When U is
the minimum vertex cover V ∗ we have that |I∗|+ |V ∗| = |P ∪ C|. Finally since
V computed in step 4 of Figure 4 is optimal (Lemma 13), we have that P ∪C\V
is the required largest independent set in B.
Lemma 15: The algorithm presented in Figure 4 works for arbitrary positive
weights |r(yi)| > 0.
Proof: From the foregoing Lemmas, we know that the algorithm works for unit
weights—i.e. |r(yi)| = 1 for yi ∈ P ∪ C. Now suppose that the weights were
positive integers (still not the general case). Conceptually, a new bipartite graph
can be constructed where node yi (in P ∪ C) with weight |r(yi)| is replicated
|r(yi)| times—each of unit weight and independent of each other. An edge pi → cj

entails all copies of pi (denoted p′
i1

, p′
i2

. . . p′
i|r(pi)|) to have an edge to all copies of

cj (denoted c′
j1

, c′
j2

. . . c′
j|r(cj)|). The staged maxflow in D will then have all copies

of yi behaving identically. Also since all edges of the form 〈p′
ik

, c′
jl
〉 have infinite

capacity, we can replace the group of edges 〈S, p′
i1
〉, 〈S, p′

i2
〉 . . . 〈S, p′

i|r(yi)|〉 (each of
unit capacity) with a single edge 〈S, pi〉 of capacity |r(pi)|, and similarly replace
all edges of the form 〈c′

j1
, T 〉, 〈c′

j2
, T 〉 . . . 〈c′

j|r(cj)| , T 〉 (each of unit capacity) with
a single edge 〈cj , T 〉 of capacity |r(cj)|. All intermediate edges are of infinite
capacity and are defined (as previously) using the idea of directed size-2 conflicts.
Now consider the most general case where |r(yi)| is positive but need not be an
integer. In such a case, the idea is to conceptually scale all the weights by a
uniform factor L to convert all of them to integers. We can then find the largest
independent set using the scaled weights and since uniform scaling does not
affect the largest weighted independent set, the same computed set can then be
used after scaling down the weights by L. Computationally however, the idea of
scaling is not reflected anywhere except in the fact that the weights r(yi) can be
used as they are to define capacities on the edges in D.
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4 Incremental Computation

A refinement planner proceeds by refining and extending partial plans. The
refinement operators used to extend partial plans include the addition of new
actions to satisfy open conditions or sub-goals, and the addition of new temporal
constraints to resolve threats between actions (see [6]). Because the resource-
envelopes need to be computed at each stage to guide the search for a good plan,
incremental computation becomes extremely important. In general, there are two
places where incremental computation can be leveraged: (1) in the computation
of the envelopes across points of discontinuity (for the same set of events and
constraints), and (2) in the computation of the envelopes as and when new events
and constraints (reflecting the refinement of partial plans) are added. The second
case is more general and we deal with it directly.

4.1 Incremental maxflow in Bipartite Graphs

Because the computation of the envelopes involves computing the maxflow in
bipartite graphs, we will first show how to make this incremental—i.e., we will
show how we can reuse the computation for one instance of the maxflow prob-
lem on bipartite graphs into solving another instance. The complexity of this
incremental algorithm is analyzed in terms of the parameters that characterize
the difference between the two instances.

We will denote a staged maxflow problem in bipartite graphs by 〈P,C,E, S, T 〉.
Here, P is the set of production events, C is the set of consumption events, E
is the set of edges between P and C (each of them assumed to be of infinite
capacity as is indeed so in the context of computing envelopes), and S and T are
respectively the source and terminal nodes. The incremental maxflow problem
is then to solve 〈P,C,E, S, T 〉 given the solution for 〈P ′, C ′, E′, S, T 〉.

Figure 5 shows the incremental computation of maxflow for 〈P,C,E, S, T 〉
using the residual graph carried over from the computation of maxflow for
〈P ′, C ′, E′, S, T 〉. Figure 6 illustrates the working of this algorithm on a small
example. Central to the algorithm is the exploitation of the fact that the com-
plexity of solving a maxflow problem can be characterized both by the topology
of the graph (like it is easier in bipartite graphs than in general) and the value
of the maxflow itself (independent of the topology). The algorithm makes use of
calls to maxflow on changed instances of the problem (steps 6 and 9 in Figure 5)
which are assumed to be solved directly using greedy flow augmentation meth-
ods within a complexity of O(m|f∗|) (|f∗| is the value of the maxflow and m is
the number of edges in the graph) (see [1]). These changed instances are assured
of having a “small” |f∗|, hence making the complexity of the algorithm much
better than re-computation from scratch. A series of Lemmas are presented that
establish the correctness of the algorithm.
Lemma 16: A feasible flow F for 〈Pnew, Cnew, Dnew, S, T 〉 is also feasible for
〈P,C,E, S, T 〉 if its associated residual graph RF has residual capacity 0 on all
edges of the form {〈u, v〉|u ∈ C ′\C or v ∈ P ′\P} (see Figure 5).
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ALGORITHM: INCR-MAX-FLOW
INPUT: 〈R′, f ′, M ′〉 for 〈P ′, C′, E′, S, T 〉, and a new instance 〈P, C, E, S, T 〉.
OUTPUT: 〈R, f, M〉 for 〈P, C, E, S, T 〉.

01. Create a bipartite graph 〈Pnew, Cnew, Dnew〉 such that:
a. Pnew = P ∪ P ′.
b. Cnew = C ∪ C′.
c. Dnew = {〈S, u〉 with capacity |r(u)| s.t. u ∈ P\P ′} ∪ {〈v, T 〉 with capacity

|r(v)| s.t. v ∈ C\C′} ∪ {〈u, v〉 with infinite capacity s.t. u ∈ P\P ′ or
v ∈ C\C′

and 〈u, v〉 ∈ E} ∪ {〈u, v〉 with capacity R′(〈u, v〉)|〈u, v〉 is an edge in R′}.
02. For all edges 〈u, v〉 in Dnew:

a. Set fback(〈u, v〉) = R′(〈u, v〉), if u ∈ C′\C or v ∈ P ′\P .
b. Set fback(〈u, v〉) = 0, otherwise.

03. For all edges 〈u, v〉 in Dnew:
a. Set Rback(〈u, v〉) = 0, if {u, v} ∩ (C′\C ∪ P ′\P ) �= {}.
b. Set Rback(〈u, v〉) = R′(〈u, v〉), otherwise.

04. For all nodes u in Pnew ∪ Cnew:
a. Set ex(u) =

∑
〈v,u〉∈Dnew

fback(〈v, u〉) −∑〈u,v〉∈Dnew
fback(〈u, v〉).

05. Create a directed graph Gmorph from Rback as follows:
a. Add new nodes S′ and T ′.
b. For all nodes u ∈ Pnew ∪ Cnew:

i. If ex(u) > 0, add the edge 〈S′, u〉 with capacity ex(u).
ii. If ex(u) < 0, add the edge 〈u, T ′〉 with capacity −ex(u).

c. Add edges 〈S, T 〉 and 〈T, S〉 of infinite capacities.
06. Solve for 〈Rcons, fcons, Mcons〉 = maxflow on Gmorph from S′ to T ′.
07. For all edges e ∈ Dnew:

a. Set flegal(e) = fcons(e) + fback(e).
08. Create a graph Gfinal from Rcons as follows:

a. Remove S′ and T ′.
b. Remove all edges of the form 〈u, v〉 where {u, v} ∩ {S′, T ′} �= {}.
c. Remove the edges 〈S, T 〉 and 〈T, S〉.

09. Solve for 〈Rfinal, ffinal, Mfinal〉 = maxflow on Gfinal from S to T .
10. Build a graph Rreturn from Rfinal by removing all nodes u and their asso-

ciated
edges when u ∈ P ′\P ∪ C′\C.

11. For all edges 〈u, v〉 in E ∪ {〈S, u〉 s.t. u ∈ P} ∪ {〈v, T 〉 s.t. v ∈ C}:
a. Set freturn(〈u, v〉) = Rreturn(〈v, u〉).

12. Set Mreturn =
∑

u∈P
freturn(〈S, u〉).

13. RETURN: 〈Rreturn, freturn, Mreturn〉.
END ALGORITHM

Fig. 5. Shows the algorithm for incremental maxflow in bipartite graphs. The idea is
to reverse the flow on edges that are not present in the new instance by first computing
the amount by which such a reverse flow would violate the conservation constraints
at intermediate nodes. After the excess at each node is measured, a maxflow is staged
between two auxiliary nodes S′ and T ′ to regain conservation consistency. A subsequent
maximization phase is carried out that respects this consistency. R, f and M are
respectively used to denote the residual graph, the maximum flow vector and the value
of the maximum flow.
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Fig. 6. Illustrates an example for the working of the algorithm in Figure 5 (all edges not
explicitly annotated with their capacities are assumed to be of infinite capacities). (A)
shows the staged maxflow on a bipartite graph with two extra nodes S and T , which are
also the source and terminal nodes for the maxflow respectively. A maxflow computation
on this problem results in a residual graph as shown in (B). (C) shows a slightly different
problem compared to that in (A). The dark lines indicate the addition of extra elements
and the dotted lines indicate deletions. The idea is to solve this instance by making
use of the residual graph in (B). (D) illustrates the idea of reversing the flow on illegal
edges by computing the excess at each node and deleting the illegal edges as indicated
by the dotted lines. (E) indicates the result of a maxflow computation between S′ and
T ′ to regain feasibility. Finally, (F) shows the computation of a maxflow between S
and T without pushing back any flow on the illegal edges, as required.

Proof: A feasible flow for 〈Pnew, Cnew, Dnew, S, T 〉 is also so for 〈P,C,E, S, T 〉
if no flow is pushed through any of the edges in Dnew that are not present
in 〈P,C,E, S, T 〉. If there were such an edge, then it must have been of the
form 〈u, v〉 with u ∈ P ′\P or v ∈ C ′\C, and its utilization would create a
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positive residual capacity in the opposite direction—viz. in 〈v, u〉. The truth of
the Lemma then follows from the contrapositive of this implication.
Lemma 17: flegal (see step 7) is a feasible flow for 〈Pnew, Cnew, Dnew, S, T 〉.
Proof: A flow is feasible when (1) all capacity constraints are satisfied, and (2)
at every node (except S and T ) conservation constraints are preserved—i.e. the
total incoming flow to that node = total outgoing flow from that node. Condition
(1) holds because fback(e) is set to either R′(e) or 0 (see step 2). In the former
case, Rback(e) is set to 0 and hence fcons(e) (which is a feasible flow for Gmorph

obtained from the residual graph Rback) is 0. Together, fback(e) + fcons(e) ≤
R′(e) as required. In the latter case, Rback(e) is set to R′(e) (see step 3) and
fcons(e) + fback(e) = fcons(e) which we know is ≤ Rback(e) = R′(e) (from the
feasibility of fcons for Gmorph) as required. Now consider condition (2). The
flow fback does not heed to conservation constraints, but we will prove that
the projection of fcons on all edges except those that involve S′ or T ′, exactly
compensates for this. Step 4(a) first accounts for the excess at every node—viz.
net inflow−net outflow. Now suppose that fcons saturated all edges of the form
〈S′, u〉 and 〈v, T ′〉. Then by construction, the net inflow (w.r.t. fcons) to a node u
with positive excess = net outflow = ex(u). Now if we take the projection of fcons

on all edges except those that involve S′ or T ′, we have that the net inflow = 0
and net outflow = ex(u), exactly compensating for fback(e). A similar argument
holds when ex(u) is negative. It is easy to observe that in fact, all edges of the
form 〈S′, u〉 and 〈v, T ′〉 are saturated after step 6. This is because the edges 〈S, T 〉
and 〈T, S〉 are made to be of infinite capacities in step 5(c), and the consistency
of R′ for 〈P ′, C ′, E′, S, T 〉 ensures that R′(〈u, S〉) ≥ |ex(u)| when ex(u) > 0 and
R′(〈T, v〉) ≥ |ex(v)| when ex(v) < 0.
Lemma 18: flegal is a feasible flow for 〈P,C,E, S, T 〉.
Proof: From the above two Lemmas, it suffices to prove that Rcons has residual
capacity 0 on all edges of the form {〈u, v〉|u ∈ C ′\C or v ∈ P ′\P}. Since all
these edges and those of the form {〈v, u〉|u ∈ C ′\C or v ∈ P ′\P} are made to
have capacity 0 before computing flegal (step 3), the final residual capacity on
these edges remains 0 as required.
Lemma 19: Gfinal is the residual graph for flegal on 〈P,C,E, S, T 〉 (see step 8
in Figure 5).
Proof: Since fcons works on Gmorph (derived from Rback) directly, the projection
of Rcons on all edges that do not involve S′ or T ′ (viz. Gfinal) is the residual
graph for fcons + fback = flegal on 〈P,C,E, S, T 〉.
Lemma 20: Rreturn is the required residual graph for 〈P,C,E, S, T 〉.
Proof: From the previous Lemma, Gfinal is the residual graph for flegal. flegal

is just a legal flow and is not necessarily the maxflow. Step 9 ensures that any
further flow that can be augmented between S and T is indeed done so by
maintaining the legality constraints of using a capacity of 0 for all edges of the
form 〈u, v〉 or 〈v, u〉 with u ∈ C ′\C or v ∈ P ′\P (step 3). Rreturn is then the
required residual graph for 〈P,C,E, S, T 〉 given that it is the projection of Rfinal

on {S, T} ∪ P ∪ C (the legal nodes in the new instance).
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ALGORITHM: INCR-SHRT-PATHS
INPUT: D′ and Π ′ for G′ =
〈X ′, E ′,P ′, C′〉, and a new instance G =
〈X , E ,P, C〉, with X ′ ⊆ X , E ′ ⊆ E ,
P ′ ⊆ P, and C′ ⊆ C.
RESULT: D and Π for G.

1. For all i ∈ X and p ∈ P ∪ {X0}:
a. Set dp,i = d′

p,i.
b. Set πp,i = π′

p,i.
2. For each edge 〈u, v〉 ∈ E\E ′:

a. RELAX-EDGE(u, v,P ′).
3. For each edge 〈u, v〉 ∈ E :

a. RELAX-EDGE(u, v,P\P ′).
END ALGORITHM

ALGORITHM: RELAX-EDGE
INPUT: edge 〈u, v〉 and a set of pro-
duction events P .
RESULT: modifications in D and Π.

1. If P = {} RETURN.
2. For all p ∈ P :

a. If dp,v > dp,u + weight(〈u, v〉):
i. dp,v = dp,u + weight(〈u, v〉).
ii. πp,v = u.

b. Else:
i. Remove p from P .

3. For all edges 〈v, y〉:
a. RELAX-EDGE(v, y, P ).

END ALGORITHM

Fig. 7. Shows the incremental computation of shortest paths required for posing new
bipartite matching problems as and when search proceeds. dp,i is the current best
estimate of the shortest path from node p to node i, and πp,i is the predecessor node
of i in the shortest path from p to i. D and Π are the corresponding 2D arrays.

Lemma 21: freturn and Mreturn are the required maximum flow and its value
correspondingly.
Proof: Given that Rreturn is the required residual graph, the flow on any edge
〈u, v〉 is given by the residual capacity in the opposite direction and is computed
in step 11. Similarly, Mreturn is the sum of the flows on all edges outgoing from
S, and is computed in step 12.

The complexity of the incremental maxflow algorithm in Figure 5 is domi-
nated by steps 6 and 9. Step 6 has a complexity of O(m|fcons|) and step 9 has a
complexity of O(m|ffinal|). By construction, |fcons| ≤

∑
{yi∈P ′\P∪C′\C} |r(yi)|

and |ffinal| ≤
∑

{yi∈P\P ′∪C\C′} |r(yi)|. When the computation of the resource
envelopes needs to be done frequently, the sets P\P ′, P ′\P , C\C ′ and C ′\C
are very small, and the complexity of the algorithm is only about O(m). This
is significantly lesser than the complexity of recomputing the envelopes from
scratch—viz. O(n2.5). The total amount of work that we save is therefore equal
to this difference (at each step) times the size of the search space (which is
usually exponential).

4.2 Incremental Shortest Path Computation

All other incremental computation required to be done to pose a new bipartite
maxflow problem as and when search proceeds by making partial commitments,
can be done using algorithms similar to the Bellman-Ford algorithm for comput-
ing shortest path distances. Figure 7 illustrates this computation. Because of its
similarity to the standard Bellman-Ford algorithm (see [1]), we do not provide
a rigorous proof of its correctness in this paper. At any stage, the set of size-1
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conflicts is given by all p ∈ P such that dp,X0 < −t, and all c ∈ C such that
dX0,c < t. The set of size-2 conflicts is given by all c→ p such that dp,c < 0.

The complexity of the incremental shortest path computation is
O(|E\E ′||E||P ′|+ |P\P ′||E|2). When the computation of the resource envelopes
needs to be done frequently, the sets P\P ′ and E\E ′ are very small, and the
complexity of the algorithm is only about O(|E|2). This is significantly lesser
than the complexity of recomputing the shortest path distances from scratch—
viz. O(|P||E|2). The total amount of work that we save is therefore equal to
this difference (at each step) times the size of the search space (which is usually
exponential).

5 Conclusions and Future Work

We described efficient algorithms for the incremental computation of resource en-
velopes in producer-consumer models. This is important in all contexts where the
computation of resource envelopes can potentially be used to guide the search for
a good plan. In the context of interleaved planning and scheduling, a refinement
planner proceeds by making partial commitments and the resource envelopes
need to be recomputed at each point in the search space. In the context of inter-
leaved planning and execution monitoring, execution of a plan may not always
result in the intended outcome and fast re-planning is necessary. Incremental
computation of resource envelopes then becomes extremely important for an
active management of planning and execution monitoring. The algorithms pre-
sented in this paper are also constructive in that they yield flexible consistent
schedules that actually achieve g(t) or h(t) for any given time point. This ensures
both good performance at bottleneck points (as argued in [3]) and robustness
with respect to exogenous events and uncertainty of execution.

We are also currently working on interesting approximation algorithms for
optimal plan scheduling that use the resource envelope computation as an im-
portant subroutine. Future work will also pursue empirical verification of using
resource envelopes within the general framework of interleaved planning and
scheduling, and interleaved planning and execution monitoring.
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Abstract. While global constraints give a broader view on the entire
problem and therefore allow more effective constraint propagation, the
development of efficient generalized arc-consistency (GAC) algorithms
for global constraints is frequently prevented by the fact that the as-
sociated decision problems are NP-hard. A prominent example for this
is the Knapsack Constraint. On the other hand, there exist approxi-
mation algorithms for many NP-hard problems. By introducing the con-
cept of approximated consistency for a special class of global constraints,
so-called optimization constraints, we show how existing approximation
algorithms can be exploited for the development of efficient filtering al-
gorithms for Knapsack Constraints. As our main result, we show how ε-
GAC for Knapsack and Bounded Knapsack Constraints can be achieved
in time O(n log n + n

ε2
) or O(n log n + n

ε3
), respectively.

Keywords: global constraints, optimization constraints, cost-based fil-
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1 Introduction

When dealing with discrete optimization problems, it is of utmost importance
to obtain a global view on the problem that allows to assess what solution qual-
ity can still be achieved in a given subtree. To obtain a more global view, in
constraint programming it has been suggested to incorporate so-called optimiza-
tion constraints that link the objective function with some other constraints of
the problem [2,4,6]. For many optimization constraints, efficient filtering algo-
rithms have been developed (see [3,11,13,14] for examples). However, frequently
no polynomial time bounded generalized arc-consistency (GAC [1,7]) algorithm
can be developed for optimization constraints, because it is NP-hard to decide
whether a feasible and improving solution still exists after a variable takes a spe-
cific value. We find ourselves in the same unsatisfactory situation when dealing
with Knapsack Constraints that are defined as follows:
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Definition 1. Let n, w1, . . . , wn, C, p1, . . . , pn, B ∈ IN. B denotes the objective
value to be exceeded, C the capacity of the knapsack, n the number of items,
and wi the weight of item i with profit pi ∀1 ≤ i ≤ n. Given n binary variables
X1, . . . , Xn, we define:

– The Knapsack Problem consists in maximizing∑
i≤n

piXi s.t.
∑
i≤n

wiXi ≤ C.

– A Knapsack Constraint KP (X1, . . . , Xn, w1, . . . , wn, C, p1, . . . , pn, B) is
true, iff ∑

i≤n

wiXi ≤ C and
∑
i≤n

piXi > B.

To achieve GAC for a Knapsack Constraint, we have to eliminate all items
(i.e. remove value 1 from the corresponding domain) that cannot be part of any
feasible solution with profit greater than B, and we have to permanently include
all items (i.e. remove value 0 from the corresponding domain) that are included
in all feasible solutions with profit greater than B. However, since the Knapsack
Problem (KP) is NP-hard, so is the problem of achieving GAC for Knapsack
Constraints.

Two alternative filtering algorithms for Knapsack Constraints have been pro-
posed in the literature. In [15], Trick develops a pseudo-polynomial time GAC
algorithm for Subset-Sum Constraints. These constraints are special Knapsack
Constraints where profit and weight of each item are equal. The algorithm uses a
dynamic programming scheme for solving the Subset-Sum Problem to optimal-
ity and then exploits the information gathered for domain filtering. Addressing
the general case where weights and profits can be chosen arbitrarily, Fahle and
Sellmann [3] propose to drop the requirement that GAC must be achieved for
the Knapsack Constraint. Instead, they introduce a notion of relaxed consis-
tency for optimization constraints and use bounds based on linear programming
relaxations for polynomial time domain filtering.

While the latter approach is more appealing with respect to the worst-case
running time of the filtering procedure, the effectiveness of the algorithm is
highly determined by the quality of the bounds that are used. In [3], different
filtering algorithms are presented that are based on previously developed integer
programming bounds for KP. While these bounds might often be rather tight in
practice, their relative error could be arbitrarily close to a factor of 2.

Our aim is to provide filtering algorithms for Knapsack Constraints that are
based on bounds with guaranteed accuracy. To achieve this goal, we exploit
existing approximation algorithms for the Knapsack Problem. With the term
“approximation algorithm” we refer to an algorithm that computes a solution
to a problem with guaranteed accuracy in polynomial time. A family of approx-
imation algorithms that, for each ε > 0, provides an algorithm that computes a
solution with relative error at most ε and that runs in time polynomial in the
input length and in 1/ε, is called a fully polynomial time approximation scheme
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(FPTAS). We will show how existing FPTAS for the Knapsack Problem can
be used for cost-based filtering with respect to bounds of arbitrary accuracy,
whereby the ε-parameter allows us to trade time for filtering effectiveness.

The remaining presentation is organized as follows: In Section 2, we review
the literature on approximation algorithms for KP. Then, in Section 3, we define
the notion of approximated consistency for optimization constraints. Finally, in
Sections 4 and 5, we develop efficient filtering algorithms for Knapsack Con-
straints and Bounded Knapsack Constraints.

2 Knapsack Approximation

To obtain provably tight bounds on the Knapsack Problem, we can use the
existing polynomial time bounded approximation algorithms that solve the KP
with arbitrary relative precision ε > 0. The best currently known FPTAS for
KP runs in time O(n log 1

ε + 1
ε2+2δ ), where δ = α

1+α , with α ∈ O(C) [9]. This
result strengthens and is based on the research presented in [5,8,12]. We briefly
review the main ideas presented in [5] that we will use as a basis for the filtering
algorithms that we develop later.

When reviewing the GAC algorithm for Subset-Sum Constraints in [15], we
were already reminded that there exist pseudo-polynomial time algorithms for
KP that are based on dynamic programming. One of these algorithms is pseudo-
polynomial in the optimal objective value P ∗: We set up a matrix M with 2P0+1
rows and n + 1 columns (both starting with index 0), where P0 is such that
P0 ≤ P ∗ ≤ 2P0

1. Now, in Mq,k we store the minimum knapsack capacity that is
needed to achieve exactly profit q when using only items in {1, . . . , k}. Clearly,
M0,k = 0 ∀k, and Mq,0 = ∞ ∀q > 0, and the following recursion equation holds:

Mq,k = min{Mq,k−1, Mq−pk,k−1 + wk}. (1)

By filling the matrix M row by row from left to right and examining the greatest
value q such that Mq,n ≤ C, we can solve the KP in time O(nP ∗). Now, we can
reduce the running time by scaling down the profit values. We set pi := 	pi

K 
 for
some scaling factor K ≥ 1 and get a running time in O(nP

∗
) = O(nP∗

K ). It is
easy to show that we achieve an ε-approximate solution for the original problem
when we set K := εP0

n , where P0 is the value of a 2-approximate solution as
before2. Consequently, we can compute an ε-approximate solution to KP in time
O(n2

ε
P∗
P0

) = O(n2

ε ).
The running time can be further reduced in n by partitioning the items into

two sets: the set L of large items that contains all items with a profit value
greater than some threshold value T ≥ 1, and the set S of small items that
contains all items i with profit pi ≤ T . We approximate the large item KP by
scaling the profit vector and applying the dynamic programming scheme in (1).
1 The value P0 can be computed in linear time [8].
2 Actually, we set K := max{ εP0

n
, 1} of course, but here and in the following we assume

that the scaling factor K is always greater or equal 1 without further mentioning it.
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As a result, for each scaled profit value 0 ≤ q ≤ 	 2P0
K 
, we get the minimum

knapsack capacity Mq,|L| that is needed to achieve profit q in the scaled large
item KP. Now, for all q, we try to fill the remaining capacity C−Mq,|L| with small
items. We do this by inserting the small items in order of decreasing efficiency
pi

wi
until we reach the first item that exhausts the remaining capacity. We denote

the profit that is added by the small items with φ(C − Mq,|L|). When we take,
out of all the 	 2P0

K 
 + 1 different knapsacks that were computed, the solution
with maximum value Kq+φ(C −Mq,|L|), it can be shown that the relative error
that we make is bounded by K

T + T
P∗ . Therefore, we achieve an ε-approximation

by setting K := ε2P0
4 and T := εP0

2 [8]. In order to perform the filling process of
the remaining capacities with small items, we can sort the small items according
to their efficiency first. Then, the entire algorithm requires time

O(n log n +
P ∗

K
n) = O(n log n +

4n

ε2
P ∗

P0
) = O(n log n +

n

ε2
).

As stated before, the FPTAS can be strengthened further to give a worst-case
running time that is linear in n for any given constant approximation accuracy
ε > 0. However, the filtering algorithm that we develop later will make use
of efficiency and profit orderings. It therefore requires time Ω(n log n) anyway,
which is why we make no further effort here to base our filtering algorithm on
more sophisticated versions of the general procedure as sketched above.

3 Approximated Consistency

Our aim now is to exploit the existing approximation algorithms in order to
provide efficient filtering algorithms for Knapsack Constraints. As stated before,
we cannot hope to achieve GAC for Knapsack Constraints in polynomial time.
Therefore, we introduce a new measure for the consistency of an optimization
constraint.

Definition 2. Given n ∈ IN, let X1, . . . , Xn denote some variables with finite
domains D1 := D(X1), . . . , Dn := D(Xn). Furthermore, given a constraint ζ :
D1 × · · · × Dn → {0, 1}, and an objective function P : D1 × · · · × Dn → IN, let
xi ∈ Di ∀ 1 ≤ i ≤ n.

– Let B ∈ Q denote a lower bound on the objective P to be maximized. Then,
a function ϑζ,P [B] : D1 × · · · × Dn → {0, 1} with ϑζ,P [B](x1, . . . , xn) = 1 iff
ζ(x1, . . . , xn) = 1 and P (x1, . . . , xn) > B is called maximization constraint.

– Given a maximization constraint ϑζ,P [B] and some ε ≥ 0, we say that
ϑζ,P [B] is ε-GAC, iff for all 1 ≤ i ≤ n and xi ∈ Di there exist xj ∈ Dj

for all j �= i such that ϑζ,P [B − εP ∗](x1, . . . , xn) = 1, whereby P ∗ =
max{P (y1, . . . , yn) | yi ∈ Di, ζ(y1, . . . , yn) = 1}.
Clearly, the Knapsack Constraint is a maximization constraint. Note that

our notion of ε-GAC generalizes the notion of generalized arc-consistency in the
sense that GAC is equivalent to 0-GAC. To achieve a state of approximated
consistency for a Knapsack Constraint, we must ensure that
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1. all items that cannot be part of any feasible solution that achieves a profit
greater than B − εP ∗ have to be deleted (i.e. the value 1 must be removed
from the corresponding domain), and

2. all items that are included in all feasible solutions with profit greater than
B − εP ∗ have to be permanently inserted into the knapsack (i.e. value 0 has
to be removed from the corresponding domain).

That is, in contrast to GAC for a maximization constraint, we do not enforce
that all domain values are filtered that cannot be used in any improving solution,
but at least we want to remove all values for which the performance drops too
far below the critical objective value.

4 Cost-Based Filtering for Knapsack Constraints

A simple way to achieve a state of approximated consistency for the Knapsack
Constraint is to use the algorithm in [9] for probing. This filtering algorithm
then runs in time O(n2 log 1

ε + n
ε2+2δ ) with δ → 1 as C → ∞. In this section, we

develop a more sophisticated ε-GAC algorithm that runs in time O(n log n+ n
ε2 ).

4.1 Generalized Arc-Consistency for Knapsack Constraints

The basis of our algorithm is the approximation algorithm described in Section 2.
We start by giving a GAC algorithm for the Knapsack Constraint that is based
on the dynamic programming scheme in (1). The idea of our algorithm is similar
to that described in [15]. We define a weighted, directed, and acyclic graph
G = (V, E, v) by setting

– VM := {Mq,k | 0 ≤ q ≤ 2P0, 0 ≤ k ≤ n}.
– V := VM ∪ {t}.
– E0 := {(Mq,k−1, Mq,k) | k ≥ 1, Mq,k ∈ VM}.
– E1 := {(Mq−pk,k−1, Mq,k) | k ≥ 1, q ≥ pk, Mq,k ∈ VM}.
– Et := {(Mq,n, t) | q > B, Mq,n ∈ VM}.
– E := E0 ∪ E1 ∪ Et.
– v(e) := 0 for all e ∈ E0 ∪ Et.
– v(Mq−pk,k−1, Mq,k) := wk for all (Mq−pk,k−1, Mq,k) ∈ E1.

We consider the graph G because there is a one-to-one correspondence between
paths from M0,0 to t and variable instantiations that yield a profit greater than
B. Moreover, the length of such a path is exactly the weight of the corresponding
instantiation. Therefore, every path from M0,0 to t with length lower or equal
C defines a feasible, improving solution. Vice versa, every feasible, improving
solution also defines a path from M0,0 to t with length lower or equal C.

The algorithm proceeds as follows: We perform a shortest-path computation
on G and get the shortest-path distances from M0,0 to all other nodes as a
byproduct. If the minimum distance from M0,0 to t is greater than C, then there
exists no feasible, improving solution, and we can backtrack.
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Otherwise, following an idea presented in [6], we now reduce G by eliminating
all arcs that cannot be part of any path from M0,0 to t with length lower or equal
C. We can do this efficiently by computing the shortest-path distances to t. Then:

– Remove all edges (Mq,k−1, Mq,k) ∈ E0 for which

length(M0,0, Mq,k−1) + length(Mq,k, t) > C.

– Remove all edges (Mq−pk,k−1, Mq,k) ∈ E1 for which

length(M0,0, Mq−pk,k−1) + wk + length(Mq,k, t) > C.

Denote the reduced arc sets with ER
0 and ER

1 , respectively. To perform cost-
based filtering, we now examine all items 1 ≤ k ≤ n sequentially. Item k is
removed from the knapsack (i.e., value 1 is filtered from the domain Dk), iff
there exists no q such that there is an arc in ER

1 that ends in Mq,k. Analogously,
item k is added to the knapsack (i.e., value 0 is filtered from the domain Dk),
iff there exists no q such that there is an arc in ER

0 that ends in Mq,k.
The algorithm sketched above is correct and achieves a state of generalized

arc-consistency:

– Correctness: Assume our algorithm removes value 0 (or value 1) from
some domain Dk. Then, there exists no path from M0,0 to t in G with
length lower or equal C such that an arc (Mq,k−1, Mq,k) ∈ E0 (or an arc
(Mq−pk

, Mq,k) ∈ E1, respectively) is visited. Therefore, there also exists no
feasible and improving solution such that Xk = 0 (Xk = 1).

– GAC: Assume that, when setting Xk := 0 (or Xk := 1), there exists no
extension to a full instantiation of the variables that is feasible with re-
spect to the Knapsack Constraint. Then, there exists no feasible and im-
proving solution with Xk = 0 (or Xk = 1). Consequently, there also exists
no path from M0,0 to t in G with length lower or equal C that visits an arc
(Mq,k−1, Mq,k) ∈ E0 (or an arc (Mq−pk

, Mq,k) ∈ E1, respectively).

Regarding the time complexity: since shortest-path computations on directed
acyclic graphs can be performed in linear time, the algorithm requires time
proportional to the size of G. Now, the out-degree of each node in G is bounded
by 2. Therefore, the algorithm needs time O(|V | + |E|) = O(|V |) = O(|VM |) =
O(|M |) = O(nP ∗).

An example is given in Figure 1(a). We consider a Knapsack Constraint
with four variables X1, . . . , X4 with profits pT = (50, 40, 30, 20) and weights
wT = (3, 3, 4, 5). The knapsack’s capacity is C = 10, and the profit value to be
exceeded is supposed to be B = 81. We see that the value 0 can be removed from
the domains of the variables X1 and X2, because in the reduced arc set there are
no horizontal arcs left that end in their corresponding columns. Likewise, value
1 can be removed from D4. All remaining values cannot be filtered, because the
solutions X = (1, 1, 1, 0) and X = (1, 1, 0, 0) are both feasible and they improve
upon the value of the incumbent solution.
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Fig. 1. Both figures show the graph G that is defined for the GAC algorithm. We
assume that all arcs are directed from left to right, whereby the arrows are omitted to
improve the readability. The matrix structure that is given corresponds to the dynamic
programming schema M , whereby we do not show most cells, nodes and arcs that
cannot be reached from M0,0, again in order to improve the readability. The node-labels
are defined by their row and column number, the sink node t is marked separately. The
value of non-horizontal arcs that cross a vertical line is given under that line, horizontal
arcs have weight 0. Hollow nodes and dashed arcs mark those nodes and arcs that are
removed by the GAC algorithm, because there exists no path from M0,0 to t with
weight lower or equal C that visits them.

4.2 Scaling of Profits

We achieve a polynomial time algorithm for approximated consistency by scal-
ing the profit space and applying the previous algorithm on the scaled prob-
lem. We set K := εP0

n , pi := 	pi

K 
 for all 1 ≤ i ≤ n, and B := B−εP0
K ,

and we apply the GAC algorithm in Section 4.1 on the Knapsack Constraint
KP (X1, . . . , Xn, w1, . . . , wn, C, p1, . . . , pn, B).
This procedure is correct and achieves a state of ε-GAC:
– Correctness: Assume a value b ∈ {0, 1} is removed from some domain Dk

by the GAC algorithm on KP (X1, . . . , Xn, w, C, p, B). Then, for the optimal
feasible solution x with xk = b it holds:

pT x ≤ B =
B − εP0

K
.

With x∗, we denote the optimal feasible solution to the unscaled problem
with side constraint Xk = b. It follows

pT x∗ − εP0 = pT x∗ − Kn ≤ KpT x∗ ≤ KpT x ≤ B − εP0,

and therefore pT x∗ ≤ B. Thus, it is justified to remove b from Dk.
– ε-GAC: Let k ∈ {1, . . . , n}, b ∈ {0, 1}, define x and x∗ as before, and assume

pT x∗ ≤ B − εP ∗. Then,

pT x ≤ pT x

K
≤ pT x∗

K
≤ B − εP ∗

K
≤ B − εP0

K
= B.

Consequently, value b is removed from Dk.
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Regarding the time complexity: Clearly, the dominating step is the call to
the GAC algorithm that runs in time O(nP∗

K ) = O(n2

ε
P∗
P0

) = O(n2

ε ).

Let us consider the same example as in Section 4.1. Assume we are given ε =
0.1, and we determine a value P0 = 120. Then, the ε-GAC algorithm sets K = 3,
pT = (16, 13, 10, 6), and B = 23. The GAC algorithm for the modified knapsack
constraint then filters value 0 from D1 and value 1 from D4 (see Figure 1(b)).
Both is correct as we can see from the comparison with the GAC algorithm on
the original knapsack constraint. In contrast to the GAC algorithm, the ε-GAC
algorithm is not able to filter value 0 from D2. This is okay, though, because
there exists a feasible solution X = (1, 0, 1, 0) that has profit 50 + 30 = 80 >
69 = 81 − 120/10 = B − εP0.

4.3 Separation of Items

So far we have not achieved any gains over the brute-force probing method that
utilizes the best known approximation scheme for Knapsack Problems. For any
given constant approximation guarantee ε > 0, both algorithms require time
quadratic in n. We try to improve on this by separating the items in the style
of [5]. We set K := ε2P0

8 , T := εP0
2 , and define

S := {j1, . . . , j|S|} := {1 ≤ i ≤ n | pi ≤ T},

whereby we assume that the items in S are ordered with respect to decreasing
efficiency, i.e. pjl

wjl
≥ pjl+1

wjl+1
for all 1 ≤ l < |S|. Further, let

L := {i1, . . . , i|L|} := {1 ≤ i ≤ n | pi > T}

and set B := B − εP0, and pk := 	pik

K 
 for all 1 ≤ k ≤ |L|. Similar to Section 4.1,
we define a weighted, directed, and acyclic graph G = (V, E, v) by setting:

– VM := {Mq,k | 0 ≤ q ≤ 	 2P0
K 
, 0 ≤ k ≤ |L|}.

– V := VM ∪ {t}.
– E0 := {(Mq,k−1, Mq,k) | k ≥ 1, Mq,k ∈ VM}.
– E1 := {(Mq−pk,k−1, Mq,k) | k ≥ 1, q ≥ pk, Mq,k ∈ VM}.
– Et := {(Mq,|L|, t) | Mq,|L| ∈ VM}.
– E := E0 ∪ E1 ∪ Et.
– v(e) := 0 for all e ∈ E0.
– v(Mq−pk,k−1, Mq,k) := wik

for all (Mq−pk,k−1, Mq,k) ∈ E1.

To complete the definition, we still need to weight the remaining arcs in Et. We
do this be setting

v(Mq,|L|, t) := min{
s∑

l=1

wjl
| s ≤ |S|,

s∑
l=1

pjl
> B − Kq}

for all 0 ≤ q ≤ 	 2P0
K 
, whereby we define min ∅ := ∞.
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Again, we observe a correspondence between paths from M0,0 to t in G
and possible knapsack instantiations. While all combinations of large items are
possible, the selection of small items is restricted to collections of items with
highest efficiency. Note also that the length of a path from M0,0 to t, if it is
lower than infinity, gives the weight of the corresponding solution x. Then, when
we denote with uS the small item part and with uL the large item part of a
vector u, it holds:

pT x ≥ KpT
LxL + pT

SxS > B.

Therefore, any path from M0,0 to t with weight lower or equal C defines a feasible
solution with profit greater B.

Given ε > 0, we propose to use Algorithm 1 to achieve ε-GAC for the Knap-
sack Constraint KP (X1, . . . , Xn, w, C, p, B).

Theorem 1. Algorithm 1 is correct and achieves ε-GAC.

Proof. Define
f(x) := KpT

LxL + pT
SxS ,

and for all k ∈ {1, . . . , n} and b ∈ {0, 1} set

Fk,b := {y ∈ {0, 1}n | wT y ≤ C, yk = b}, and

Ak,b := {y ∈ Fk,b | ∀ l < |S|, jl �= k �= jl+1 : yjl
= 0 ⇒ yjl+1 = 0}.

Without formal proof, it is easy to see that our filtering procedure removes a
value b ∈ {0, 1} from some domain Dk (no matter whether k ∈ L or k ∈ S) iff
f(x) ≤ B for all x ∈ Ak,b.

1: Sort the items according to decreasing efficiency and compute a profit ordering of
the items.

2: Compute P0 such that for the optimal solution P ∗ it holds: P0 ≤ P ∗ ≤ 2P0. Then,
set B := B − εP0, K := ε2P0

8 , and T := εP0
2 .

3: Set up the graph G = (V, E, v) as defined above and compute the shortest-path
distances length(M0,0, s) for all s ∈ V .

4: If length(M0,0, t) > C, then set Dk := ∅ for all 1 ≤ k ≤ n and return.
5: Compute the shortest-path distances length(s, t) for all s ∈ V .
6: Remove all arcs from E0 and E1 that cannot be part of any path from M0,0 to t with

length lower or equal C. Denote the reduced arc sets with ER
0 and ER

1 , respectively.
7: For all items k ∈ L and b ∈ {0, 1}, remove b from Dk iff for all Mq,k ∈ VM there

exists no arc in ER
b that ends in Mq,k.

8: For all 0 ≤ q ≤ � 2P0
K

�, iterate over all items k = jr ∈ S in order of increasing profit
and compute
v(q, k, 0) := min{∑l≤s,l �=r wjl | s ≤ |S|, ∑

l≤s,l�=r pjl > B − Kq}
v(q, k, 1) := min{wk +

∑
l≤s,l �=r wjl | s ≤ |S|, pk +

∑
l≤s,l �=r pjl > B − Kq}.

9: For all k ∈ S, remove b ∈ {0, 1} from Dk iff for all 0 ≤ q ≤ � 2P0
K

�
length(M0,0, Mq,|L|) + v(q, k, b) > C.

10: Return.

Algorithm 1: ε-GAC Knapsack Filtering Algorithm.
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– Correctness: Assume a value b ∈ {0, 1} is removed from some domain Dk.
Denote with x a vector in Ak,b that achieves a maximum profit, i.e.:

f(x) := max{f(x) | x ∈ Ak,b} ≤ B − εP0.

Now, let x∗ ∈ Fk,b denote any feasible knapsack solution with x∗
k = b. Then,

since
∑

i∈L x∗
i ≤ pT

Lx∗
L

T , it holds:

pT x∗ = pT
Lx∗

L + pT
Sx∗

S < K(pT
Lx∗

L +
pT

Lx∗
L

T
) + pT

Sx∗
S . (2)

Further, we know that

f(x) ≥ f((x∗
L, xS)) = KpT

Lx∗
L + pT

SxT
S . (3)

Subtracting inequality (3) from inequality (2) yields:

pT x∗ − f(x) <
K

T
pT

Lx∗
L + pT

S (x∗
S − xS) ≤ K

T
2P0 + T = εP0.

Consequently,
pT x∗ − εP0 ≤ f(x) ≤ B − εP0,

and therefore pT x∗ ≤ B. Thus, value b is correctly filtered from Dk.
– ε-GAC: Assume there exist b ∈ {0, 1} and k ∈ {1, . . . , n} such that for all

x ∈ Fk,b: pT x ≤ B − εP0. Then, for all x ∈ Ak,b it holds that

f(x) = KpT
LxL + pT

SxS ≤ pT x ≤ B − εP0 = B.

Therefore, b is removed from Dk.
��

Regarding the time complexity: Step 1 takes time O(n log n), and step 2 then
can easily be performed in linear time (see [5]). The computations in steps 3–7
can be performed in time O(E) = O(n 2P0

K ) = O( n
ε2 ) (compare with Section 4.1).

Since we are considering the items in S in order of increasing profit, by using
the same analysis as in [3], we can show that the computations in step 8 can
be performed in time O(2n 2P0

K ) = O( n
ε2 ). Step 9 finally takes time O(2n 2P0

K ) =
O( n

ε2 ). Note that step 1 needs to be carried out only once when the filtering
algorithm is called several times with changing domains Dk. It follows:

Theorem 2. For a Knapsack Constraint KP (X1, . . . , Xn, w, C, p, B), and for
all ε > 0, ε-GAC can be achieved in time O(n log n + n

ε2 ). For Ω(log n) different
calls to the filtering routine with changing domains Dk ⊆ {0, 1}, the algorithm
runs in amortized time O( n

ε2 ) per call.

One may ask why our filtering algorithm is not based on the best known
approximation algorithm in [9], but uses the rather old approximation schema
in [5]. While the slightly different separation of items in [9] and the advanced
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scaling scheme in [8] could easily be integrated in our algorithm, for us they do
not result in an improved running time. The reason for this is twofold: First,
when filtering the items in the small item set in step 8, we make extensive use of
efficiency and profit orderings, and their computation takes time Θ(n log n) any-
way. Second, the advanced scaling scheme in [8] is proposed in order to reduce
the number of large items that need to be considered to find an optimal approx-
imation. However, we cannot reduce the number of large items with respect to
optimality considerations, because we are looking for improving solutions, but
not necessarily for optimal ones. Therefore, when filtering the large items in
steps 3–7, we need to consider all of them, no matter which scaling scheme is
used.

Regarding the practicability of our algorithm, for very large n and really small
ε, there is clearly a problem with respect to the memory requirements. While
in the previously developed FPTAS it is sufficient to store only one column of
the matrix M at a time, we require to store the entire graph G. Therefore, the
memory needed is in Θ( n

ε2 ). The asymptotic constants can be reduced, however,
by using an ε-approximate solution P1 instead of the 2-approximation P0 and
setting K := ε2P1

4 . Then, the size of M can be bounded by 4n
(1−ε)ε2 (instead

of 16n
ε2 ), and we can show that, for all 1

2 > ε > 0, we achieve ε-GAC in time
O(n log n + n

ε2 ).

5 Approximated Consistency
for Bounded Knapsack Constraints

To model more realistic problems, we now would like to rid ourselves of the
restriction that all variables must have binary domains. We can generalize the
results obtained by considering bounded knapsack constraints where each vari-
able is associated with a domain Dk = {0, . . . , uk}:

Definition 3. Let n, w1, . . . , wn, C, p1, . . . , pn, B, u1, . . . , un ∈ IN. B denotes the
value of the incumbent solution, C the capacity of the knapsack, n the number of
items, and wi the weight of item i with profit pi ∀1 ≤ i ≤ n. Given n variables
X1, . . . , Xn that can take values in Dk = {0, . . . , uk} for all 1 ≤ k ≤ n, we define
the Bounded Knapsack Constraint as follows:

BKP (X1, . . . , Xn, w1, . . . , wn, C, p1, . . . , pn, B) is true, iff∑
i≤n

wiXi ≤ C and
∑
i≤n

piXi > B.

Note that, even though in the definition we require the variables to have
domains that start at 0, this is no real restriction, because if some Xk is required
to take values in {lk, . . . , uk}, we can simply set B′ := B − lkpk, C ′ := C − lkwk,
and D′

k := {0, . . . , uk − lk} and consider BKP (X1, . . . , X
′
k, . . . , Xn, w, C ′, p, B′),

whereby now the variable X ′
k takes values in D′

k.
Generally, to approximate the Bounded (or even the Unbounded) Knapsack

Problem, we can follow the same procedure as described in Section 2. To cope
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with the large items, it has been suggested to introduce multiple copies for each
of them. And, in order to compute the profit gained by the small items, it was
proposed to sort the items according to their efficiency and then to try to add uk

copies of the current item until we reach the first item where this is not possible
anymore. Then, it is easy to compute the number of copies of this item that can
still be introduced without exceeding the knapsack’s capacity.

With respect to cost-based filtering, we also try to follow the procedure given
in Algorithm 1 very closely. However, the suggestions on how to treat large and
small items cannot easily be adapted. First of all, when introducing multiple
copies of the large items, the best we can hope for is the information that a
variable cannot take values greater than 0 anymore; or likewise, that a variable
must take its maximum value. However, we can never get a result that reduces
the domains of a variable without setting it to its minimum or maximum value
automatically. This effect is of course due to the fact that all copies of an item are
symmetric to each other. This means, if for one of the copies it is found that it
has to (or must not, respectively) be included in the knapsack, this automatically
holds for all other copies, too.

The other problem that we are facing regards the small items. A simple adop-
tion of the procedure given in Section 4 also gives us some trouble to determine
how many copies of an item we can afford to remove from (or to insert in, respec-
tively) our knapsack without losing too much profit. In what follows, we address
both problems and show how to tackle them efficiently.

5.1 Filtering of Large Items

Let us start by considering the set of large items. Instead of adding uk copies for
each item, we suggest to add a polynomial number of arcs to the graph defined in
Section 4.2. First, we observe that, for any large item k ∈ L, uk can be bounded
from above, because: uk

εP0
2 = ukT ≤ ukpk ≤ 2P0, and therefore, uk ≤ 4

ε .
Then, we recall that the edge set was partitioned into the sets E0, E1, and Et.

The last set contains all arcs that end in the sink node t, whereas the first two sets
were used to model the choice between insertion and not-insertion of an item. In
the same manner, we can introduce additional arc sets E2, . . . , Eu that model the
insertion of multiple copies of an item, whereby u := max{uik

| 1 ≤ k ≤ |L|} ≤ 4
ε .

Formally, we define:

El := {(Mq−lpk,k−1, Mq,k) | k ≥ 1, uik
≥ l, q ≥ lpk, Mq,k ∈ VM} ∀ 2 ≤ l ≤ u.

The newly added arcs are weighted by setting

v(Mq−lpk,k−1, Mq,k) := lwik
∀ (Mq−lpk,k−1, Mq,k) ∈ El, 2 ≤ l ≤ u.

With this setting, we are able to consider all possible instantiations to large
item variables by conducting shortest-path computations in G. To perform cost-
based filtering, we reduce the graph again in the usual way and check whether
there exist 1 ≤ k ≤ |L| and 0 ≤ l ≤ u such that ER

l does not contain arcs
anymore that end in some node Mq,k ∈ V .
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With respect to the worst case running time, we lose a factor of 1
ε because now

|E| ∈ O( 1
ε |V |). Therefore, the filtering of the large items now takes time O( n

ε3 ).

5.2 Filtering of Small Items

Now let us consider the items in the set S. Recall from Algorithm 1 (steps 8
and 9) that, in order to filter values for small items, for all 0 ≤ q ≤ 2P0

K we
have to find out whether we can still close the profit-gap between Kq and
B with the help of the remaining available capacity C − length(M0,0, Mq,|L|)
when a certain variable takes a specific value. If we use the same approach as
presented in Algorithm 1, for bounded knapsack constraints this requires time
Θ(n max{uk | k ∈ S}). Now, in contrast to the large items, the small item’s
domains cannot tightly be bounded from above. Therefore, this procedure has
pseudo-polynomial/exponential running time.

We can do much better though, and we can even rid ourselves from the
necessity to compute a profit ordering of the items: Assume all items in S (for
simplicity, let us assume S = {1, . . . , n}) are ordered with respect to decreasing
efficiency ei := pi

wi
for all 1 ≤ i ≤ n. We consider the items sequentially. Denote

the current item with k. If there is still capacity in the current knapsack X
(recall from Section 4.2 that we need to consider a sequence of knapsacks) left, we
insert uk copies of item k. Let sX denote the first item where this is not possible
anymore. Then, we add as many copies of sX as is still possible; the number of
copies of sX that are inserted is denoted with cX

s . Furthermore, we denote the
value that the small items achieve in this way by φX(CX), whereby CX denotes
the current knapsack’s capacity. Likewise, we denote with φX

s (W ) the capacity
that the remaining items can achieve (whereby at most usX − cX

s copies of item
sX are allowed) by exploiting some given capacity W in the same manner as
described for φX . Now, denote with RX := (usX − cX

s )wsX +
∑n

i>sX uiwi the
total weight of the remaining items. Then, for a given profit value BX that has
to be exceeded by the small items, and for all 1 ≤ k < sX , we define

ΔX
k := max{W ≤ RX | φX(CX) + φX

s (W ) ≥ BX + 1 + Wek}.

With this setting, ΔX
k reflects the total weight of an item k that we can afford

to lose while still achieving a total profit of at least BX +1. Note that this total
weight is allowed to exceed the actual weight of all copies of an item k, which
is exactly ukwk. Now, assume ΔX

k ≥ ukwk. Then, for all item k < sX in the
current knapsack X, we can afford to use no copy of item k at all, and therefore,
no reduction of the domain Dk can take place. However, if ΔX

k < ukwk for some

k < sX , then we cannot afford to lose more than ΔX
k

wk
copies of item k. Then, we

set DX
k :=

{⌈
ukwk−ΔX

k

wk

⌉
, . . . , uk

}
.

Likewise, for all k > sX , we define

ΓX
k := max{W ≤ CX | φX(CX − W ) ≥ BX + 1 − Wek},

and, if ΓX
k < ukwk, we set DX

k :=
{

0, . . . ,
⌊

Γ X
k

wk

⌋}
.
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The important observation is, that there is some monotonicity among the
ΔX

k and ΓX
k . Since the items are ordered with respect to decreasing efficiency,

it holds

ΔX
k+1 ≥ ΔX

k ∀ 1 ≤ k < sX and ΓX
k+1 ≥ ΓX

k ∀ sX < k ≤ n.

Therefore, by using a similar routine to that described in [3], once an efficiency
ordering of the items is known, the computation of the different DX

k can be
done in time O(n). To complete the computation, eventually we determine the
minimal DX

sX separately, which can also be done easily in time O(n) once the
efficiency ordering of the items is known.

After having computed DX
k for all 1 ≤ k ≤ n and for all small item knap-

sacks X that need to be considered, we can finally set

Dk :=
⋃
X

DX
k .

Since there are O( 1
ε2 ) knapsacks that need to be considered, the entire filter-

ing process for the small items takes time O(n log n + n
ε2 ).

Putting the results for the large and the small items together, we have shown

Theorem 3. For a Bounded Knapsack Constraint BKP (X1, . . . , Xn, w, C,
p, B), and for all ε > 0, ε-GAC can be achieved in time O(n log n + n

ε3 ). For
Ω(log n) different calls to the filtering routine with changing domains of the
form Dk = {lk, . . . , uk}, the algorithm runs in amortized time O( n

ε3 ) per call.

6 Conclusion and Future Work

Since achieving a state of generalized arc-consistency for many global constraints
is an NP-hard task, we introduced the notion of approximated consistency for
optimization constraints. This notion allows to determine the filtering power
of a propagation algorithm by the guaranteed approximation quality of the
bounds that are used. Most importantly, by trading time for effectiveness, the
ε-parameter allows to tune the filtering algorithm with respect to the specific
constraint optimization problem that has to be solved.

For Knapsack Constraints, we have shown how existing approximation al-
gorithms for the Knapsack Problem can be exploited for the development of
efficient filtering algorithms. We presented an algorithm that achieves ε-GAC
for Knapsack Constraints. For all constant ε > 0, that algorithm runs in lin-
ear time for Ω(log n) different calls with changing variable domains. It therefore
improves clearly upon the filtering algorithms developed in [3]. Moreover, we
developed an extension of our algorithm that can cope with Bounded Knapsack
Constraints and that achieves ε-GAC in amortized time O( n

ε3 ).
The filtering algorithms described in this paper are currently being imple-

mented. We shall soon be able to evaluate their practical performance and to
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perform experiments that give an insight regarding good choices of the approxi-
mation accuracy. Since we can smoothly vary the filtering effectiveness, we hope
that these experiments will eventually establish a better understanding of the
frequently observed duality between inference and search.
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Abstract. Many real world problems, e.g. in personnel scheduling and transporta-
tion planning, can be modeled naturally as Constrained Shortest Path Problems
(CSPPs), i.e., as Shortest Path Problems with additional constraints.A well studied
problem in this class is the Resource Constrained Shortest Path Problem. Reduc-
tion techniques are vital ingredients of solvers for the CSPP, that is frequently
NP-hard, depending on the nature of the additional constraints. Viewed as heuris-
tics, until today these techniques have not been studied theoretically with respect
to their efficiency, i.e., with respect to the relation of filtering power and running
time. Using the concepts of Constraint Programming, we provide a theoretical
study of cost-based filtering for shorter path constraints on acyclic, on undirected
and on directed graphs that do not contain negative cycles.

Keywords: constrained shortest paths, problem reduction, optimization con-
straints, relaxed consistency

1 Introduction

Real world problems can frequently be modeled as Shortest Path Problems with addi-
tional constraints. The best known Constrained Shortest Path Problem (CSPP) is prob-
ably the Resource Constrained Shortest Path Problem [1,3,6,14,16] that consists in the
combination of a Shortest Path Problem and capacity constraints on a set of resources.
Even on directed acyclic graphs (DAGs), for non-negative objective functions and for
only one resource that problem is known to be NP-hard [13].

Standard applications for the Resource Constrained Shortest Path Problem are route
planning in traffic networks and quality of service routing [29,21]. The Crew Scheduling
Problem is another example of a real world problem where CSPPs are used in many
successful approaches: In a column generation process, CSPPs have to be solved to
generate columns, which correspond to individual lines of work in this context [7,30].

Generally, CSPPs appear very often as subproblems in column generation approach-
es. Examples range from route guidance [15] and duty scheduling in public transit [4]
up to the scheduling of switching engines [19]. In [17], a general framework for con-
straint programming based column generation was developed that formalizes the use of
optimization constraints in this context.
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To solve Constrained Shortest Path Problems, state of the art solvers compute lower
and upper bounds on the problem and then close the duality gap. The latter task is carried
out by an enumeration procedure such as a tree search [3], dynamic programming [20]
or a k-shortest path algorithm [14]. Particularly in a tree search, but also in the other
approaches the tightening of (sub-)problems is vital for an effective gap closing proce-
dure. And therefore, it is essential for the overall performance and the practical success
of the entire approach.

The first tightening strategy that was proposed goes back to a work done by Aneja et
al. [1] for problem reduction of the Resource Constrained Shortest Path Problem. The
basic idea consists in identifying nodes and arcs that cannot be visited by any path that
obeys the given resource restrictions. The same method can also be used to identify nodes
and arcs that cannot be visited by any improving path, which gives a first cost-based
filtering algorithm for the problem. Dumitrescu and Boland [6] proposed a repeated
problem reduction procedure that has shown to be very successful for hard constrained
problems. Beasley and Christofides [3] have shown how a tighter global, Lagrangian
relaxation based bound can be used for the elimination of nodes and arcs.

Apparently, none of these heuristics has been classified with respect to its filtering
abilities. Moreover, the reduction techniques used all focus on the removal of nodes
and arcs, but those arcs and nodes that must be visited by all paths of a certain quality
remain undetected. However, with respect to the additional constraints of the CSPP this
information can be very valuable as it may prove useful for an additional simplification
of the problem.

Constraint Programming theory provides means for the state of consistency that a
domain filtering algorithm achieves. In [8], we extended the notion of generalized arc-
consistency (GAC) to the concept of relaxed consistency for optimization constraints.
It allows to measure and compare heuristic filtering algorithms not only with respect to
their running time, but also to their filtering power that is determined by the quality of
the relaxation used. With respect to shorter path constraints, we study the complexity of
achieving GAC. Since the problem is NP-hard in the general case, we introduce shortest-
path relaxations and develop and compare different filtering algorithms for different
graph classes.

Particularly, in Section 2, we review the notion of relaxed consistency, and in Sec-
tion 3, we define shorter path constraints formally. In Section 4, we investigate the
problem of achieving GAC for a shorter path constraint on undirected graphs, where it
is shown to be NP-hard. We introduce a shortest-path relaxation and formulate a linear
time algorithm that achieves a state of relaxed consistency. Finally, in Section 5, we
develop cost-based filtering algorithms for shorter path constraints on directed acyclic
and general directed graphs with non-negative costs or graphs that at least do not contain
negative weight cycles.

2 Definitions and General Observations

Within a tree search, during the course of optimization we compute a sequence of fea-
sible solutions. We refer to the best known feasible solution as the incumbent solution.
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Obviously, once we have found a solution of a certain quality, we are searching for im-
proving solutions only. Thus, we impose a restriction on the objective. That restriction in
combination with other side-constraints of the original problem forms an optimization
constraint [7,10,11,17,22], which is the core concept that we will be using throughout
this paper. It was developed by a community that has been working on the integration
of constraint programming (CP) and operations research (OR) in recent years. Though
never explicitly stated as constraints, in the OR world optimization constraints are fre-
quently used for bound computations and variable fixing. From a CP perspective, they
can be viewed as global constraints that link the objective with some other constraints
of the problem:

Given n ∈ IN, let X1, . . . , Xn denote variables with finite domains D1 := D(X1),
. . . , Dn := D(Xn). Further, given a constraint ζ : D1 × · · · × Dn → {0, 1}, and an
objective function Z : D1 × · · · ×Dn → Q, let xi ∈ Di ∀ 1 ≤ i ≤ n.

Definition 1. Let B ∈ Q denote an upper bound on the objective Z to be minimized.
A function ϑζ,Z [B] : D1 × · · · × Dn → {0, 1} with ϑζ,Z [B](x1, . . . , xn) = 1 iff

ζ(x1, . . . , xn) = 1 and Z(x1, . . . , xn) < B is called minimization or, more generally,
optimization constraint.

The purpose of optimization constraints is twofold: first, they can be used for pruning
by computing a lower bound on the objective, which is the common idea in branch and
bound algorithms. Second, they may also be used to remove those values from variable
domains that cannot be part of any improving solution, which may be viewed as a
generalization of the variable fixing technique (for problems containing binary variables
only, variable fixing and domain filtering are of course the same).

2.1 On the Complexity of Cost-Based Domain Filtering Problems

In order to achieve generalized arc-consistency (GAC) [2,18] of an optimization con-
straint, we have to find and remove all assignments that cannot be extended to an im-
proving solution that is feasible with respect to ζ. That is, if ζ is the only constraint of
a combinatorial optimization problem (we call that optimization problem and the opti-
mization constraint corresponding to or associated with each other), a GAC algorithm
allows us to compute improving solutions in a backtrack-free search. Consequently, if the
original problem is NP-hard, so is the problem of achieving GAC for the corresponding
optimization constraint. As an example, consider e.g. the Knapsack Problem [8].

If the optimization problem associated with an optimization constraint is polynomial,
then the problem of achieving GAC may also be polynomial. For example, consider
the AllDifferent constraint with costs. The corresponding optimization problem is the
Weighted Bipartite Matching Problem (WBMP) for which there exists a polynomial time
algorithm. Now, since the removal of an edge or two nodes (when the edge between the
nodes is chosen to be part of the matching) does not change the structure of the problem
(i.e., the subproblem is again a WBMP), achieving GAC for the AllDifferent with costs
can obviously be done in polynomial time [24,25].

The situation may change, however, if the problem structure is not preserved when a
variable is forced to take a specific value. Consider a Shortest Path Problem in an arbitrary
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network, where we use a binary variable for each edge (whereby a value 1 means that
the edge is chosen to be on the path, and a value 0 represents that the edge is not on the
path). The problem of finding a shortest path is of course solvable in polynomial time.
However, if we are to compute the set of edges that must or cannot be part of any simple
path that does not exceed a certain length, we are facing an NP-hard problem, which is
easy to see by reduction to the Two Vertex Disjoint Paths Problem [9].

2.2 Degrees of Consistency

The discussion shows that we cannot always hope for an efficient cost-based domain
filtering algorithm that achieves GAC. Therefore, we may consider to develop less effec-
tive but polynomial time bounded filtering algorithms that may only achieve a weaker
degree of consistency.

Regarding cost-based filtering, an idea that has been developed in OR to perform
variable fixing on linear integer problems is the reduced cost filtering method: when
solving the continuous relaxation bound on a linear combinatorial optimization problem
with the help of a general LP solver (such as the simplex algorithm or interior point
methods), we get dual information and reduced cost data for free. That data can be used
to compute a lower bound on the loss of performance that we have to accept when adding
a new constraint of the form X = x (usually this is done by performing one dual simplex
re-optimization step). And of course, if the loss is too large, we can deduce that x must
be removed from the domain of X . In [8], we strengthened and generalized the basic
idea by coupling optimization constraints and relaxations:

Definition 2. Given a minimization constraint ϑζ,Z [B] : D1 × · · · × Dn → {0, 1},
let Δ := D1 × · · · × Dn. Further, denote with 2Δ the set of all subsets of Δ, and let
L : 2Δ → Q such that for all Mi ⊆ Di, 1 ≤ i ≤ n,

L(M1×· · ·×Mn) ≤ min{Z(x1, . . . , xn) | ζ(x1, . . . , xn) = 1, xi ∈Mi, 1 ≤ i ≤ n},

where min ∅ = ∞. We call L a relaxation of ϑζ,Z and say that ϑζ,Z [B] is relaxed L-
consistent, iff for any given 1 ≤ i ≤ n and xi ∈ Di, L(D1×· · ·×{xi}×· · ·×Dn) < B.

As one would expect, the definition states that relaxed L-consistency can the easier
be achieved the weaker the relaxation L is. For L ≡ −∞, there is no work to do to
achieve relaxed L-consistency, whereas GAC is enforced when L(M1 × · · · ×Mn) =
min{Z(x1, . . . , xn) | ζ(x1, . . . , xn) = 1, xi ∈Mi, 1 ≤ i ≤ n}. That is, the choice of
L determines the degree of domain filtering.

In practice, L is usually chosen as a fairly tight bound that can still be computed
quickly. For example, linear programming relaxations can be used, as it was done in [8].
Generally, within a tree search there is a trade-off between the time spent per search
node and the total number of search nodes. Thus, the favorable choice of the accuracy of
the relaxation is always subject to the optimization problem at hand. We introduced the
concept of relaxed consistency because it allows to compare domain filtering algorithms
not only with respect to the running time but also with respect to the degree of consistency
they achieve.
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3 Shorter Path Constraints

Definition 3. Denote with G = (V,E, c) a weighted (directed or undirected) graph
with ||c||∞ ∈ O(poly(|E|, |V |)) 1, and let h ∈ IN.

– A sequence of nodes P = (i1, . . . , ih) ∈ V h with (if , if+1) ∈ E for all 1 ≤ f < h
is called a path from i1 to ih in G.

– A path P is called simple iff P visits every node at most once. For all i, j ∈ V ,
denote with π(i, j) the set of all simple paths from i to j.

– For all paths P , nodes i ∈ V and edges (i, j) ∈ E, we write i ∈ P or (i, j) ∈ P
iff P visits node i or the edge (i, j), respectively. For a set of nodes or edges S, we
write S ⊆ P , iff s ∈ P for all s ∈ S. Correspondingly, we write P ⊆ S iff s ∈ S
for all s ∈ P .

– The cost of a path P = (i1, . . . , ih) is defined as cost(P ) :=
∑

1≤j<h cijij+1 .
Accordingly, for any set S ⊆ E we define cost(S) :=

∑
(i,j)∈S cij .

Definition 4. Let G = (V,E, c) denote a (directed or undirected) graph with n = |V |
and m = |E|, a designated source v1 ∈ V and sink vn ∈ V , and arc costs cij ∈ Z.
Further, assume we are given binary variables X1, . . . , Xm, and an objective bound
B ∈ Z.

– A constraint SPC(X1, . . . , Xm, G, v1, vn, B) that is true, iff
1. the set {ei | Xi = 1} ⊆ E determines a simple path in the graph G from the

source v1 to the sink vn, and
2. the cost of the path defined by the instantiation of X is lower than B

is called a shorter path constraint.
– We call every simple path in G from source to sink with costs less than B admissible.

Obviously, the shorter path constraint is an optimization constraint. Now, to ease
the notation, for the remainder of this section we assume that a shorter path constraint
is associated with a set variable Y ⊆ E that represents the set of edges ei for which
Xi = 1. The (current) domains of the variables X will be represented by two sets: the set
of possible members pos(Y ), and the set of required members req(Y ) of Y . In the subtree
of the search rooted at the current choice point, we require req(Y ) ⊆ Y ⊆ pos(Y ).
That is, req(Y ) represents the set of variables for which it has been set Xi = 1, and
the set E \ pos(Y ) represents the set of variables for which it has been decided to set
Xi = 0 already. Then, in the current choice point, we have to search for admissible
paths P such that req(Y ) ⊆ P ⊆ pos(Y ). Note that we use the set variable Y only
to ease the presentation. It has no impact on the implementation that is assumed to use
only the variables X . Especially, the didactic use of a set variable has no impact on the
state of GAC that we try to achieve2. To achieve GAC of a shorter path constraint, we
must ensure:

1 This is the common similarity assumption that states that the largest cost is bounded by some
polynomial in |E| and |V |.

2 Note that we could also model the shorter path constraint with a set variable instead of m binary
variables. Then, GAC for the binary model corresponds to bound-consistency in the set model.
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– For all e ∈ pos(Y ), there exists an admissible path P with req(Y ) ∪ {e} ⊆ P ⊆
pos(Y ), and

– for all e /∈ req(Y ), there exists an admissible path with req(Y ) ⊆ P ⊆ pos(Y ) \
{e}.

That is, we have to find the set of all edges that must or cannot be part of all/any paths
with length lower than B.

Obviously, whether there exists an admissible path at all can be decided by applying
a shortest path algorithm. However, to decide whether there exists a simple path that
visits a set of edges is already an NP-hard task which can be shown by a simple reduction
to the Two Vertex Disjoint Path Problem. Consequently, the problem of achieving GAC
for the general shorter path constraint is also NP-hard.

4 Shortest Path Problems on Undirected Graphs

First, we consider shorter path constraints on undirected graphs with non-negative edge
weights. Obviously, on the existence of an admissible path can be decided by applying
a shortest path algorithm. However, it is easy to see that to decide whether there exists
a simple path that visits a set of edges is an NP-hard task. Therefore, in the following
we develop a cost-based filtering algorithm that achieves relaxed consistency rather than
generalized arc-consistency. In order to introduce the relaxation we want to use, we start
with

Definition 5. Denote with G = (V,E, c) a weighted (directed or undirected) graph.

– A path P is called a k-simple path in G iff for all j ∈ V the path P visits j at most
k times. Note that a 1-simple path is a simple path in G.

– With P (i, j) ∈ π(i, j) we refer to a shortest path from i to j (with respect to c).
Then, to ease the notation, we set c(i, j) := cost(P (i, j)).

– Given a shorter path constraint, a k-simple path P from v1 to vn is called a k-
admissible path iff cost(P ) < B.

Note that, in a graph with non-negative edge weights, a shortest admissible path is also
a shortest 2-admissible path. Now, instead of checking for admissible paths only, we
consider the following shortest path relaxation (see Definition 2): Denote with D(Y )
the domain of Y represented as the pair of sets (req(Y ), pos(Y )). We set H := {P | P ∈
π(v1, vn) with P ⊆ pos(Y )} and Ff := {P | P is a 2-simple path from v1 to vn with
f ∈ P} for all f ∈ E. Then, we define

L1(D(Y )) := max{ min{cost(P ) | P ∈ H},
maxf∈req(Y ){min{cost(P ) | P ∈ Ff}}.

Lemma 1. L1 is a shortest path relaxation.

Proof: According to Definition 2, we have to show that

L1(D(Y )) ≤ min{cost(P ) | P ∈ π(v1, vn), req(Y ) ⊆ P ⊆ pos(Y )}.
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Let P ∈ π(v1, vn) denote a shortest path in G with req(Y ) ⊆ P ⊆ pos(Y ). Obviously, it
holds that P ∈ H and P ∈ Ff for all f ∈ req(Y ).And therefore, L1(D(Y )) ≤ cost(P ).

��
The big advantage of the above relaxation is that it allows to be checked for consis-

tency very easily, as we shall see below. Note, however, that L1 does not require that
the 2-admissible paths must visit all nodes in req(Y ) simultaneously. Of course, this
weakens the relaxation. In practice, we can reduce the negative effects by improving the
probability that a 2-admissible path visits the edges in req(Y ): we set cij := 0 for all
{i, j} ∈ req(Y ) and subtract cost(req(Y )) from B.

According to the definition, a shorter path constraint is relaxed L1-consistent, iff

1. for all f ∈ pos(Y ), there exists a 2-admissible path P ∈ Ff , and
2. for all f /∈ req(Y ), there exists an admissible path P ∈ H with f /∈ P .

In the following two sections, we show how relaxed L1-consistency can be achieved
efficiently.

4.1 Removing Edges from the Possible Set

First, for all edges in E, we have to check whether there exists a 2-admissible path in
G that visits an edge {i, j} ∈ E. We observe that the shortest 2-simple path from v1 to
vn that visits {i, j} is either (P (v1, i), P (j, vn)) with costs c(v1, i) + cij + c(j, vn) or
(P (v1, j), P (i, vn)) with costs c(v1, j) + cij + c(i, vn). Therefore, to check whether an
edge has to be removed from pos(Y ) with respect to the relaxation L1 it is sufficient
to know the shortest-path distances from the source and to the sink of all nodes. Both
values can be computed for all nodes by only two shortest-path computations in G in time
O(m+n log n) by using Dijkstra’s algorithm in combination with Fibonacci heaps [12].
In a random access machine (RAM) model, shortest paths on undirected graphs can be
computed in time O(m + n) when using the algorithm of Thorup (see [28] and the
recent extension of Pettie and Ramachandran in [23]). Thus, the set of edges that has to
be removed from pos(Y ) to achieve relaxed L1-consistency can be computed in time
O(m + n log n), and in time O(m + n) on a RAM.

4.2 Adding Edges to the Required Set

After having removed all edges from G that cannot be part of any 2-admissible path, the
edges that must be visited by all such paths can be characterized by

Theorem 1. Assume that all edges in G are part of at least one 2-admissible path. Then,
an edge {r, s} ∈ E must be visited by all admissible paths, iff {r, s} ∈ P (v1, vn), and
{r, s} is a bridge in G 3.

We can prove the above theorem with the help of the following two lemmas:

Lemma 2. Assume that all edges in G are part of at least one 2-admissible path. Let
{r, s} ∈ E denote an edge that must be visited by all admissible paths and that can be
removed from G without disconnecting v1 and vn. Then, there exists an edge {k, l} ∈ E
such that

3 A bridge is an edge whose removal disconnects the graph.
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Fig. 1. The figure schematically shows an edge {k, l} ∈ E that must exist according to Lemma 2.
Solid lines mark edges in E, dashed lines parts of the shortest path between v1 and vn. The dotted
line between l and vn indicates that there exists a path between the two nodes that does not visit
the edge {r, s}. The dashed lines between l and r indicate that the shortest path from l to vn visits
node r. The numbers on top of the nodes give their corresponding DFS numbers, and triangles
mark DFS subtrees.

1. ∃ P ∈ π(v1, vn) : {k, l} ∈ P and {r, s} /∈ P ,
2. k is a shortest-path predecessor of r, and
3. {r, s} ∈ P (l, vn).

Proof: (See Fig. 1.) Assume we compute a shortest path P = (i1, . . . , ih) ∈ π(v1, vn).
Then, i1 = v1, ih = vn and if = r, if+1 = s for some 1 ≤ f < h. Next, we change the
graph representation of G such that {ig, ig+1} is the first outgoing edge of node ig for
all 1 ≤ g < h. For all nodes j ∈ V , denote with dj ∈ {1, . . . , n} the ordering in which
the nodes are first visited by a depth first search using the modified graph representation
of G. Then, dig

= g for all 1 ≤ g ≤ h. Since the removal of {r, s} does not disconnect
v1 and vn, there exists a forward edge {k, l} ∈ E with dk < f and dl > f + 1. This
implies the Statements 1 and 2.

It remains to show that {r, s} ∈ P (l, vn). By assumption, there exists a 2-admissible
path R through the edge {k, l}. There are two possibilities: either R visits node k or
node l first, which corresponds to:

a) c(v1, k) + ckl + c(l, vn) < B, or
b) R visits l before k and c(v1, l) + ckl + c(k, vn) < B.

In the first case, because {r, s} /∈ P (v1, k) and {r, s} must be visited by all admissible
paths, it holds that {r, s} ∈ P (l, vn), and we are done.

So let us consider the second case. Let Q ∈ π(v1, l) denote a shortest path from v1
to l with {r, s} /∈ Q. Without loss of generality we may assume that k and l are chosen
such that {k, l} ∈ Q. We observe that {r, s} ∈ P (v1, l), because otherwise this implies
that {k, l} ∈ Q = P (v1, l). But then the 2-admissible path visits node k before node l.
Now, because k is a shortest-path predecessor of r and {r, s} ∈ P (v1, l), it holds that
k ∈ P (v1, l). And then,

c(v1, k) + ckl + c(l, vn) ≤ c(v1, k) + ckl + c(l, k) + c(k, vn)
= c(v1, k) + c(k, l) + ckl + c(k, vn)
= c(v1, l) + ckl + c(k, vn)
< B,

which reduces this case to (a). ��
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Fig. 2. The figure schematically shows an edge {i, j} ∈ E that must exist according to Lemma 3.
Solid lines mark edges in E, dashed lines mark parts of the shortest path between v1 and vn. Dashed
lines indicate parts of the shortest path from v1 to a node, dotted lines parts of the shortest path from
a node to vn. The proof of Theorem 1 shows that the path (P (v1, r), P (r, i), P (j, s), P (s, vn))
is two admissible and does not visit the edge {r, s}.

Lemma 3. Assume that all edges in G are part of at least one 2-admissible path. Let
{r, s} ∈ E denote an edge that must be visited by all admissible paths and that can be
removed from G without disconnecting v1 and vn. Then, there exists an edge {i, j} ∈ E
such that {r, s} ∈ P (i, vn) and {r, s} /∈ P (j, vn), and {r, s} /∈ P (v1, i) and {r, s} ∈
P (v1, j).

Proof: (see Fig. 2.) Denote with {k, l} ∈ E an edge as in Lemma 2. Then, there exists
a path P ∈ π(l, vn) with {r, s} /∈ P and {r, s} ∈ P (l, vn).

1. Due to {r, s} /∈ P (vn, vn), there exists an edge {i, j} ∈ P such that {r, s} ∈
P (i, vn) and {r, s} /∈ P (j, vn).

2. By assumption, there is a 2-admissible path that visits j. Since {r, s} /∈ P (j, vn),
it follows that {r, s} ∈ P (v1, j), because {r, s} must be visited by all admissible
paths. Finally, assume that {r, s} ∈ P (v1, i). Then, the shortest path visiting node
i has costs

c(v1, r) + crs + c(s, i) + c(i, r) + crs + c(s, vn).

But the path from v1 via r, i and s to vn has costs

c(v1, r) + c(r, i) + c(i, s) + c(s, vn),

which is lower or equal to the cost of the shortest path visiting i. This implies that
it is a shortest path visiting node i, too. But it does not visit some edges with zero
costs. Particularly, it does not visit the edge {r, s}. Therefore, we may assume that
{r, s} /∈ P (v1, i).

��
Proof of Theorem 1:

⇐ Let {r, s} be a bridge on the shortest path P ∈ π(v1, vn). Then, the removal of {r, s}
disconnects the graph G. Since the node pairs (v1, r) and (s, vn) are still connected,
the removal of {r, s} also disconnects v1 and vn. Thus, for all P ∈ π(v1, vn), it
holds that {r, s} ∈ P . Therefore, also all admissible paths must visit {r, s}.

⇒ Obviously, if there exists any admissible path, then P (v1, vn) is admissible, too.
Thus,{r, s} ∈ P (v1, vn). Now assume that the removal of{r, s}does not disconnect
v1 and vn. Then, according to Lemma 3, there exists an edge {i, j} ∈ E such that
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{r, s} ∈ P (i, vn), {r, s} /∈ P (j, vn), {r, s} /∈ P (v1, i) and {r, s} ∈ P (v1, j).
By assumption, there exists a 2-admissible path R visiting {i, j}. Without loss of
generality we may assume that R visits node i before node j, because

c(v1, j) + cij + c(i, vn) = c(v1, r) + crs + c(s, j) + cij

+c(i, r) + crs + c(s, vn)
≥ c(v1, r) + c(r, i) + cij + c(j, s) + c(s, vn)
≥ c(v1, i) + cij + c(j, vn).

But this implies that {r, s} /∈ R, which is a contradiction to the assumption that
every admissible path must visit {r, s}.

��
Using Theorem 1, after having removed all edges that cannot be part of any 2-

admissible path, we can compute all edges that must be visited by all admissible paths
in time O(m + n): first, we compute a shortest path P ∈ π(v1, vn) and mark all edges
on this path. Then, we compute all bridges in G (which can easily be done in linear time,
see [5]) and check which ones are visited by P . It follows:

Corollary 1. On undirected graphs with non-negative edge weights, relaxed L1-con-
sistency of a shorter path constraint can be achieved in time O(m + n log n), and in
time O(m + n) on a RAM.

5 Shortest Path Problems on Directed Graphs

On acyclic graphs, it is easy to see that arc-consistency can be achieved in linear time by
computing shortest-path distances from the source and to the sink, and be determining
bridges in the undirected version of the graph after the removal of arcs.

So let us consider general directed graphs with non-negative arc weights. In the end
of this section, we will also give two theorems that we can prove for graphs that may
contain negative arc weights but no negative cycles.

As for undirected graphs, achieving arc-consistency for shorter path constraints in
general directed networks is NP-hard. Regarding the removal of arcs from the possible
set, relaxed L1-consistency on directed graphs with non-negative arc weights can be
achieved in the same way as on undirected graphs. However, with respect to arcs that
must be visited by all admissible paths, the situation is even more complicated. Recall the
result from Section 4: After having removed the infeasible edges, in undirected graphs
the edges that have to be required are exactly the ones on the shortest path that must be
visited by all paths from v1 to vn.

Unfortunately, this classification does not hold for directed graphs as can be seen in
Figure 3. Thus, for all arcs (i, j) ∈ P (v1, vn), we have to recompute the shortest-path
value when removing (i, j) from E, which may require n−1 shortest-path computations
in the worst case. It follows:

Theorem 2. On directed graphs with non-negative arc weights, relaxed L1-consistency
can be achieved in time O(n(m + n log n)).
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Fig. 3. A directed graph with non-negative arc weights. Assume we are given an upper bound
B = 8. All arcs in the graph are part of an admissible path with costs lower than B. And every
admissible path with costs lower than B must visit the arc (1, 2). However, there exists a path
(v1, 3, v4) that does not visit this arc.

Since the computation time of the algorithm sketched in the above may not be efficient
enough to be of profit when being applied in a tree search, in the following we consider
another shortest path relaxation. Let T ⊆ E denote a shortest-path tree in G rooted at
v1. Without loss of generality, we may assume that every node in G can be reached from
v1. Obviously, when e ∈ E is removed from T , the nodes in V are partitioned into two
sets: the set v1 ∈ Se ⊂ V of nodes that are still connected with v1 in T \ {e}, and the
complement of Se in V , SC

e (see Fig. 4).
Obviously, SC

e �= ∅ iff e ∈ T . We set

J := {P | P is a 2-simple path from v1 to vn with
P ⊆ pos(Y ) or, if e ∈ P \ pos(Y ), then there
exists an arc (i, j) ∈ P \ T such that
i ∈ Se and j ∈ SC

e }.
And we define

L2(D(Y )) := max{ min{cost(P ) | P ∈ J},
maxf∈req(Y ){min{cost(P ) | P ∈ Ff}}.

To understand the above shortest path relaxation better, we make the following obser-
vations:

– Obviously, because H ⊆ J , L2 is dominated by L1, i.e., L2 ≤ L1. And therefore,
L2 is also a shortest path relaxation.

– The difference between relaxations L1 and L2 only consists in the set J that is used
instead of H to determine the arcs that have to be required to achieve a state of
relaxed consistency. In contrast to H , the set J also contains paths P that are not
simple and that may visit arcs e /∈ pos(Y ). However, if e ∈ P \ pos(Y ), then we
enforce that P must also visit another arc (i, j) /∈ T that connects Se with SC

e .
This implies e ∈ T , as otherwise SC

e = ∅. Moreover, it holds that cost(P ) ≥
min{c(v1, i) + cij + c(j, vn) | (i, j) ∈ (Se × SC

e ) \ T}.
– Like L1, also L2 does not force the 2-admissible paths to visit the nodes in req(Y )

simultaneously. Again we can improve the effectiveness of the filtering algorithm
by setting cij := 0 for all (i, j) ∈ req(Y ) and by subtracting cost(req(Y )) from
B.

– A shorter path constraint is relaxed L2-consistent, iff
1. for all f ∈ pos(Y ), there exists a 2-admissible path P ∈ Ff , and
2. for all f /∈ req(Y ), there exists a 2-admissible path P ∈ J with f /∈ P , or there

exists an arc e ∈ P \ T such that e ∈ Sf × SC
f .



Cost-Based Filtering for Shorter Path Constraints 705

vn

Se
C

v1 r

Se

ji

s
e

Fig. 4. The figure schematically shows a shortest-path tree T rooted at v1. Solid lines denote arcs
in G, dashed lines mark parts of the shortest path P (v1, vn) from v1 to vn. The triangles symbolize
shortest-path subtrees. For an edge e = (r, s) ∈ P (v1, vn), the nodes in V are partitioned into
two non-empty sets Se and SC

e . If e is removed from the graph, the shortest path from v1 to vn

must visit an edge (i, j) ∈ (Se × SC
e ) \ T .

We have seen that the relaxation L2 is dominated by L1. Nevertheless, we can show
that cost-based filtering that achieves relaxed L2-consistency is still at least as strong as
ordinary reduced cost filtering:

Lemma 4. If a shorter path constraint is relaxed L2-consistent, reduced cost filtering
is ineffective4.

5.1 Relaxed L2-Consistency

As relaxations L1 and L2 do not differ with respect to the definition of Ff , f ∈ E, to
remove arcs from pos(Y ) we can simply follow the procedure sketched in Section 4.

Regarding the identification of arcs that have to be added to req(Y ) so as to achieve
relaxed L2-consistency, for all e ∈ pos(Y ) \ req(Y ) we have to compute the cost of the
shortest 2-simple path P from v1 to vn such that e /∈ P or such that there exists an edge
(i, j) ∈ P \ T with (i, j) ∈ Se × SC

e , where T is a shortest-path tree in G rooted at v1.
First, we compute the shortest paths from v1 to vn and vn to v1 in the reverse of

G in time O(m + n log n). As a byproduct, we get T ⊆ E and shortest-path distances
c(v1, i), c(i, vn) for all i ∈ V . If c(v1, vn) ≥ B, the current choice point is inconsistent,
and we can backtrack. Otherwise, candidates to be added to req(Y ) are only the arcs
e ∈ P (v1, vn). Since v1 ∈ Se and vn ∈ SC

e , the shortest 2-simple path P from v1 to vn

with e /∈ P must contain an arc (i, j) ∈ Se×SC
e .And since T ∩Se×SC

e = {e}, we have
that (i, j) /∈ T . Therefore, it is sufficient to compute, for all e ∈ P (v1, vn), the costs of
the shortest 2-simple path P from v1 to vn that contains some (i, j) ∈ (Se × SC

e ) \ T .
Let P (v1, vn) = (r1, r2, . . . , rh, rh+1), h ∈ IN, r1 = v1 and rh+1 = vn, and denote

with (e1, . . . , eh) the sequence of arcs that P (v1, vn) visits, whereby ek = (rk, rk+1)
for all 1 ≤ k ≤ h. Further, for all 1 ≤ k ≤ h, denote with Qk a shortest 2-simple path
from v1 to vn with (i, j) ∈ Qk for some (i, j) ∈ (Sek

× SC
ek

) \ T . Then,

cost(Qk) = min{c(v1, i) + ci,j + c(j, vn) | (i, j) ∈ (Sek
× SC

ek
) \ T}.

A brute force approach requires time Θ(nm) to determine these values. However, we
can do better when we compute the values cost(Qk) for all 1 ≤ k ≤ h sequentially.
Note that Se1 ⊆ · · · ⊆ Seh

and SC
eh
⊆ · · · ⊆ SC

e1
. We keep the nodes j in the current set

SC
ek

in a min-heap, whereby the associated value of j in the heap is defined as
4 The proof is omitted due to space restrictions. A full version of the paper can be found in [26].
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xj := min{c(v1, i) + ci,j + c(j, vn) | i ∈ Sek
and (i, j) ∈ E \ T}.

Obviously, the smallest xj in the heap determines cost(Qk). In the transition from one
shortest-path arc ek to the next ek+1, the nodes i ∈ Sek

\Sek+1 have to be removed from
the heap, and the values xj must be updated. For each node i ∈ Sek

\ Sek+1, we iterate
over all outgoing arcs and perform a decrease-key on the adjacent nodes if necessary.
Then, i is removed from the heap. Since every node in V leaves the heap at most once
and never re-enters it, for all 1 ≤ k ≤ h this procedure requires at most m decrease-key
operations and n delete-min operations. Therefore, when using a Fibonacci heap, the
values cost(Qk) for all 1 ≤ k ≤ h can be determined in time O(m + n log n). Then,
ek is added to req(Y ) iff cost(Qk) ≥ B. It follows

Theorem 3. On directed graphs with non-negative arc weights, relaxed L2-consistency
of a shorter path constraint can be achieved in time O(m + n log n).

Finally, we would like to note that the results can be extended for directed graphs
with no negative cycles (see [26] for proofs):

Theorem 4. On directed graphs without negative cycles, relaxed L1-consistency of a
shorter path constraint can be achieved in time O(n(m + n log n)).

Theorem 5. On directed graphs without negative cycles, relaxed L2-consistency of a
shorter path constraint can be achieved in time O(nm). For Ω(log n) calls to the filtering
procedure with changing variable domains, relaxed L2-consistency can be achieved in
amortized time O(m + n log n).

6 Conclusion

We summarize the results that we achieved (see Table 1): On arbitrary directed and
on undirected graphs, achieving GAC is an NP-hard task. Therefore, we introduced
the notion of relaxed consistency and developed two shortest path relaxations L1 and
L2. Both relaxations are based on the class of 2-simple paths. We showed that L1
dominates L2, and cost-based filtering based on L2 is superior to reduced cost filtering.
On undirected graphs with non-negative edge weights, relaxed L1-consistency (and
therefore also relaxed L2-consistency) can be achieved in time O(m + n log n) and in
time O(m + n) on a RAM. On DAGs, generalized arc-consistency can be achieved
in linear time. On general directed graphs with non-negative arc weights, relaxed L1-
consistency can be obtained in time O(n(m + n log n)), and a state of relaxed L2-
consistency can be achieved in time O(m+n log n). Finally, in the presence of negative
arc weights, we achieve relaxed L1-consistency in time O(n(m + n log n)), and L2-
consistency in time O(nm) or O(m + n log n) for Ω(n) calls of the filtering algorithm
with changing variable domains.

Note that these results are superior to the heuristics in [1], since we can also identify
arcs that must be visited, which is a valuable information with respect to other constraints
that may be present. With respect to the idea of an iterated reduction procedure as
suggested in [6], we may assume that this is given by embedding the cost-based filtering
algorithms in a CP solver. Regarding the tightening of lower bounds with respect to
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Table 1. The table gives an overview of the findings in this paper.

Degree of Consistency
Graph Type GAC L1 L2 RedCost

undirected, c ≥ 0 NP-hard O(m + n log n), [RAM ]O(m + n)
DAG O(m + n)

directed, c ≥ 0 NP-hard O(n(m + n log n)) O(m + n log n)
directed, NP-hard O(n(m + n log n)) O(nm)

no negative cycles amort.[Ω(n)]: O(m + n log n)

other linear constraints, e.g. as proposed in [3] for the Resource Constrained Shortest
Path Problem, we refer the reader to the concept of CP-based Lagrangian relaxation
presented in [27]. Finally, note that the algorithms we developed are all practicable and
easy to implement (except of course the linear time shortest path algorithm on undirected
graphs). Therefore, we expect this work to be relevant for many applications and practical
approaches in the field of discrete optimization.
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Abstract. We propose a new method for solving Valued Constraint
Satisfaction Problems based both on backtracking techniques - branch
and bound - and the notion of tree-decomposition of valued constraint
networks. This mixed method aims to benefit from the practical efficiency
of enumerative algorithms while providing a warranty of a bounded time
complexity. Indeed the time complexity of our method is O(dw++1) with
w+ an approximation of the tree-width of the constraint network and d
the maximum size of domains.
Such a complexity is obtained by exploiting optimal bounds on the sub-
problems defined from the tree-decomposition. These bounds associated
to some partial assignments are called “structural valued goods”. Record-
ing and exploiting these goods may allow our method to save some time
and space with respect to ones required by classical dynamic program-
ming methods. Finally, this method is a natural extension of the BTD
algorithm [1] proposed in the classical CSP framework.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful frame-
work for representing and solving efficiently many problems. In particular, many
academic or real problems can be formulated in this framework which allows
the expression of NP-complete problems. However, in this formalism, we can’t
express some notions like possibility or preference because the constraints are
either satisfied or violated. In other words, there is no graduation in violation.
To avoid this drawback, many extensions of the CSP formalism have been pro-
posed (for instance [2,3,4]). In this paper, we focus on the valued CSP formalism
(VCSP [4]) which allows the violations of some constraints by associating a cost
(called a valuation) to each violated constraint. Solving the problem then con-
sists in finding a complete assignment which optimizes a given criterion about
the cost of constraint violations. Generally, we are interested by finding a com-
plete assignment which minimizes the cost of all the violations. So, thanks to
the VCSP framework, we can express optimization problems.

The basic method for solving VCSP is the Branch and Bound algorithm.
Many improvements have been proposed from the CSP framework [4,5,6,7,8].

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 709–723, 2003.
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On the other hand, some methods based on dynamic programming ([9,10]) often
provide good results on such problems.

In this article, we propose a new enumerative method for solving VCSPs.
This method, called BTDval, is a natural generalization of the BTD method [1]
defined in the classical CSP framework. Such a generalization requires the exten-
sion of the theoretical frame used for BTD and the classical CSPs. Nevertheless,
like BTD, BTDval relies on backtracking techniques (branch and bound) and the
notion of tree-decomposition of valued constraint graphs. Such an hybrid method
aims to benefit from the advantage of the two approaches, namely the practical
efficiency of enumerative algorithms and the time complexity bounds of struc-
tural decomposition methods. Thanks to the tree-decomposition notion, BTDval

divides the initial problem into several subproblems. Then, it solves each sub-
problem and records the optimal valuation of each subproblem. These optimal
valuations associated with some assignments are called structural valued goods.
Structural valued goods are then exploited in order to solve each subproblem
only once, what allows BTDval to provide time complexity bounds better than
ones of classical enumerative methods. Indeed, the time complexity of BTDval

is O(ns2m log(d).dw++1) while the space complexity is O(nsds) with w+ + 1 an
approximation of the tree-width of the constraint graph, s the size of the biggest
minimal separator, n the number of variables and d the size of the largest do-
main. These bounds only depend on the used tree-decomposition (i.e. on some
structural parameters). In [1], experimental results show that on classical CSPs,
BTD clearly outperforms an approach founded on dynamic programming like
Tree-Clustering [11,12]. So, for VCSPs, we can hope that this behaviour will be
confirmed in practice.

The paper is organized as follows. Section 2 introduces the main definitions
about the VCSP formalism. Section 3 is devoted to the tree-decomposition no-
tion. Then, section 4 describes the method we propose and present some theo-
retical results. Finally, in section 5, we discuss about some related works, before
concluding in section 6.

2 Valued CSPs

A constraint satisfaction problem (CSP) is defined by a quadruplet (X,D,C,R).
X is a set {x1, . . . , xn} of n variables. Each variable xi takes its values in the
finite domain dxi

from D. Variables are subject to constraints from C. Each
constraint c is defined as a set {xc1 , . . . , xck

} of variables. A relation rc (from R) is
associated with each constraint c such that rc represents the set of allowed tuples
over dxc1

× · · · × dxck
. Given Y ⊆ X such that Y = {x1, . . . , xk}, an assignment

of variables from Y is a tuple A = (v1, . . . , vk) from dx1 ×· · ·×dxk
. A constraint

c is said satisfied by A if c ⊆ Y, (v1, . . . , vk)[c] ∈ rc, violated otherwise. We note
the assignment (v1, . . . , vk) in the more meaningful form (x1 ← v1, . . . , xk ← vk).

Definition 1 ([4]) A valuation structure is a 5-tuple (E,�,⊕,⊥,4) with
E a set of valuations which is totally ordered by � with a minimum element
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noted ⊥ and a maximum element noted 4. ⊕ is a monotonous, commutative,
associative closed binary operation on E such that ⊥ is an identity element and
4 an absorbing element.

The elements of E express different levels of violation. ⊥ characterizes the
satisfaction of a constraint and 4 an unacceptable violation. ⊕ allows to com-
bine (aggregate) several valuations. Note that, in some cases, it can have some
additional properties like idempotency or strict monotonicity. Thanks to the
valuation structure, one can formally define the notion of valued CSP [4]:

Definition 2 A valued CSP (VCSP) P = (X,D,C,R, S, φ) consists of a clas-
sical CSP (X,D,C,R) with a valuation structure S = (E,�,⊕,⊥,4) and an
application φ from C to E which associates a valuation to each constraint of C.
A VCSP is called binary if each constraint of C involves at most two variables.

The valuation of an assignment A on X is obtained by aggregating the val-
uations of the constraints violated by A:

Definition 3 Let P be a VCSP and A an assignment on X. The valuation of
A with respect to P is defined by VP(A) =

⊕
c∈C|A violates c

φ(c).

Given an instance P, the VCSP problem consists in finding an assignment on X
with a minimum valuation according to �. This optimal valuation is called the
VCSP valuation and is denoted α∗

P . Determining the valuation of a VCSP is an
NP-hard problem. For instance, let us consider the VCSP whose constraint graph
is presented in figure 1(a). We suppose that each domain dx is equal to {1, 2, 3}
and each constraint cxy means ”x < y” if the letter represented by x precedes
one represented by y in the alphabetical order (for example cAB represents the
constraint A < B). We exploit the valuation structure S = (N, <,+, 0,+∞). For
each constraint c, the associated valuation is 1. For this VCSP, we obtain α∗

P = 2.
(A ← 1, B ← 1, C ← 2, D ← 2, E ← 3, F ← 2, G ← 2, H ← 3, I ← 3, J ← 3)
is the best assignment. It violates the constraints cAB and cCF . The assignment
valuation notion can be extended to partial assignments:

Definition 4 Let P be a VCSP and A an assignment on Y ⊂ X. The local
valuation of A with respect to P is defined by vP(A) =

⊕
c∈C|c⊆Y and
A violates c

φ(c).

The following property establishes the link between the valuation of a complete
assignment and the local valuation:

Property 1 Let P be a VCSP, A an assignment on X and B ⊆ A. vP(B) �
vP(A) = VP(A).

So the local valuation can provide a lower bound of the global valuation. The
main interest of the local valuation consists in its computation which can be
achieved incrementally.
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The basic method for solving VCSPs is the branch and bound algorithm
(noted BB). This enumerative method exploits the local valuation of the current
assignment as a lower bound and the valuation of the best known solution as a
upper bound. If the lower bound doesn’t exceed the upper one, it extends the
current assignment by assigning a new variable. Otherwise, it backtracks to the
last assigned variable and then it tries to assign a new value to this variable. If
all the values have been tried, it backtracks again. Many improved methods have
been proposed from the classical CSP framework like valued Forward-Checking
(noted vFC [4]), Nogood Recording [5], . . . The use of the arc-consistency no-
tion has been studied too ([6,7,8]). On the other hand, some methods based on
dynamic programming, like the Russian Dolls Search (noted RDS) or the struc-
tural method proposed by Koster [10], often provide good results. These methods
divide the problem into different subproblems and solve the initial problem by
exploiting some informations recorded during the resolution of each subproblem.

3 Tree-Decomposition

The only guarantees which can exist in terms of theoretical complexity before
solving a problem are offered by structural decomposition methods. These meth-
ods proceed by isolating the parts intrinsically exponential (i.e. intractable in
polynomial theoretical time) to induce a second step which guarantees a polyno-
mial time of resolution. These methods generally exploit topological properties
of the constraint graph and are based on the notion of tree-decomposition of
graphs as defined below by Robertson and Seymour [13].

Definition 5 ([13]) Let G = (X,E) be a graph. A tree-decomposition of G
is a pair (C, T ) with T = (I, F ) a tree and C = {Ci : i ∈ I} a family of subsets
of X, such that each cluster Ci is a node of T and verifies:

1. ∪i∈ICi = X,
2. for all edge {x, y} ∈ E, there exists i ∈ I with {x, y} ⊆ Ci, and
3. for all i, j, k ∈ I, if k is in a path from i to j in T , then Ci ∩ Cj ⊆ Ck

The width of a tree-decomposition (C, T ) is equal to maxi∈I |Ci| − 1. The tree-
width of G is the minimal width over all the tree-decompositions of G.

For the reader who isn’t familiar with these notions, note that the above
definition refers to a tree T = (I, F ) where F is a set of edges which is required
to satisfy the part (3) of this definition.

Even if finding an optimal tree-decomposition is an NP-Hard problem [14],
many works have been developed in this direction [15], which often exploit equiv-
alent definitions of this notion, including one based on an algorithmic approach
related to triangulated graphs. The link between triangulated graphs and tree-
decomposition is obvious. Indeed, given a triangulated graph, the set of maximal
cliques C = {C1, C2, . . . , Ck} of (X,E) corresponds to the family of subsets asso-
ciated with a tree-decomposition. As any graph G = (X,E) is not necessarily
triangulated, a tree-decomposition can be approximated by a triangulation of
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Fig. 1. (a) A constraint graph on 10 variables. (b) A tree-decomposition of this con-
straint graph.

G which computes a triangulated graph G′. The width of G′ is equal to the
maximal size of cliques minus one in the resulting graph G′. The tree-width of
G is then equal to the minimal width over all triangulations.

The graph in figure 1(a) is already triangulated. The maximum size of cliques
is three and the tree-width of this graph is two. In figure 1(b), a tree whose
nodes correspond to maximal cliques of the triangulated graph is a possible
tree-decomposition for the graph of figure 1(a). So, we get C1 = {A,B,C},
C2 = {A,D,E}, C3 = {B,C, F}, C4 = {B,G,H}, C5 = {F, I} and C6 = {C, J}.

The notion of tree-decomposition is exploited in the classical CSPs frame-
work by many structural decomposition methods (see [16] for a survey about
such methods and a theoretical comparison). These methods have the advan-
tage of providing the best known bounds for the theoretical time complexity.
For instance, the CSP decomposition method called Tree-Clustering [11,12] is
generally presented using an approximation of an optimal triangulation. It has
a time complexity in O(m.dw++1) with w+ + 1 the size of the biggest cluster
(w+ +1 ≤ n). However, the space complexity is in O(n.s.ds) with s the maximal
size of minimal separators (i.e. the size s ≤ w+ of the biggest intersection be-
tween two clusters). Finally, note that for every decomposition which induces a
value w+, we have w ≤ w+ with w the tree-width of the initial constraint graph.

The BTD method [1] solves classical CSPs by using the tree-decomposition
notion jointly with backtracking techniques. Then, it benefits from a practical
efficiency (thanks to enumerative techniques) while providing time complexity
bounds equivalent to ones of structural decomposition methods (thanks to the
tree-decomposition notion). Its time and space complexities are then similar to
Tree-Clustering’s ones. However, in practice, BTD obtains better results than
Tree-Clustering while performing either as good as classical enumerative meth-
ods or better.

In the VCSP framework, the dynamic programming approach proposed by
Koster [10] also exploits a tree-decomposition. It has a time complexity in
O(nd3(w++1)) and a space complexity in O(dw++1). In the both frameworks,
the required space can make the structural methods unusable in practice.

In the next section, we present an enumerative method for solving VCSPs
which, by exploiting a tree-decomposition, provides complexity bounds similar
to ones given above.
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4 The BTDval Algorithm for Solving VCSPs

4.1 Presentation

Like BTD, BTDval (for Backtracking with Tree-Decomposition) proceeds by an
enumerative search guided by a static pre-established partial order induced by a
tree-decomposition of the constraint network. So, the first step of BTDval con-
sists in computing a tree-decomposition or an approximation of a tree-decompo-
sition. The obtained partial order allows to exploit some structural properties
of the graph, during the search, in order to prune some branches of the search
tree. Hence, BTDval differs from other techniques in the following points:

– the variable assignment order is induced by a tree-decomposition of the con-
straint graph,

– some subproblems won’t be visited again if it we have computed yet their
optimal valuation (notion of structural valued good).

Although our method is called BTDval for Backtracking with Tree-Decomposi-
tion, we will see later that the enumerative search can be based on BB or vFC.

4.2 Theoretical Foundations

In the following, let us consider an instance P = (X,D,C,R, S, φ) and a tree-
decomposition (C, T ) (or an approximation) of the constraint graph (X,C). We
assume that the elements of C = {Ci : i ∈ I} are indexed with respect to the
notion of compatible numbering :

Definition 6 A numbering on C compatible with a prefix numbering of T =
(I, F ) with C1 the root is called compatible numbering NC.

Remark that in the previous definition, T = (I, F ) is a tree (according to
definition 5) with I the set of indices and F the set of edges. For example,
figure 1(b) presents a compatible numbering on C. We note Desc(Cj) the set of
variables belonging to the union of the descendants Ck of Cj in the tree rooted
in Cj , Cj included. For instance, Desc(C3) = C3 ∪ C4 ∪ C5 = {B,C, F,G,H, I}.
Note that the numbering NC defines a partial variable ordering that permits to
get an enumeration order on the variables of P:

Definition 7 A compatible enumeration order is an order �X on the vari-
ables of X such that ∀x, y ∈ X,x �X y if ∃Ci 8 x,∀Cj 8 y, i ≤ j.

For example, the alphabetical order A,B, . . . , I, J is a compatible enumera-
tion order. The tree-decomposition with the numbering NC permits to partition
the constraint set.

Definition 8 Let Ci be a cluster. The set EP,Ci
of proper constraints of

cluster Ci is defined by EP,Ci = {c ∈ C|c ⊆ Ci and c �⊆ Cp(i)} with Cp(i) the
parent cluster of Ci.
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The set EP,Ci
contains each constraint cxy = {x, y} with x and y two vari-

ables of Ci such that x and y don’t belong both to Cp(i) the parent cluster
of Ci. For instance, if we consider the problem described in figure 1, we ob-
tain EP,C1 = {cAB , cAC , cBC}, EP,C2 = {cAD, cAE , cDE}, EP,C3 = {cBF , cCF },
EP,C4 = {cBG, cBH , cGH}, EP,C5 = {cFI} and EP,C6 = {cCJ}.

Property 2 The sets (EP,Ci)i form a partition of C.

Proof: First, we are going to show that
⋃

Ci⊆X

EP,Ci
= C.

As
⋃

Ci⊆X

EP,Ci ⊂ C is obvious, we have to prove
⋃

Ci⊆X

EP,Ci ⊃ C.

Let c ∈ C. According to definition 5, there exists at less a cluster Ci such that
c ⊆ Ci. In particular, we necessarily have c ⊆ Ck where k = min{i|c ⊆ Ci}
and c �⊆ Cp(k). Therefore, c ∈ EP,Ck

. So we obtain
⋃

Ci⊆X

EP,Ci
⊃ C and then⋃

Ci⊆X

EP,Ci
= C

Now we have to prove that ∀Ci, Cj , EP,Ci ∩ EP,Cj = ∅.
Assume that there exists two clusters Ci and Cj such that EP,Ci ∩EP,Cj �= ∅. Let
c ∈ EP,Ci

∩ EP,Cj
. According to definition 8, we have c ⊆ Ci ∩ Cj .

Then, according to definition 5, there exists a path between Ci and Cj such that
if Ck belongs to this path, Ci ∩ Cj ⊆ Ck. The parent cluster of Ci or Cj ’s one
clearly belongs to this path. Therefore c ⊆ Cp(i) or c ⊆ Cp(j). So we obtain a
contradiction since c ∈ EP,Ci and c ∈ EP,Cj . So ∀i, j, EP,Ci ∩ EP,Cj = ∅

Hence, the sets (EP,Ci
)i form a partition of C. �

Note that this property becomes fundamental when ⊕ isn’t idempotent. Indeed,
in such a case, we must be careful not to take into account a constraint several
times. Exploiting the sets EP,Ci prevents such a problem from occurring and
so ensures that BTDval safely computes the valuation of assignments. Then, we
can define the notion of induced VCSP:

Definition 9 Let Ci and Cj be two clusters with Cj a son of Ci. Let A be an as-
signment on Ci ∩ Cj. PA,Ci/Cj

= (XPA,Ci/Cj
, DPA,Ci/Cj

, CPA,Ci/Cj
, RPA,Ci/Cj

, S, φ)
is the VCSP induced by A on the descent of Ci rooted in Cj (i.e. on Cj and
its descendants) with:

- XPA,Ci/Cj
= Desc(Cj),

- DPA,Ci/Cj
= {dx,PA,Ci/Cj

= {A[x]}|x ∈ Ci ∩ Cj} ∪ {dx,PA,Ci/Cj
= dx|x ∈

Desc(Cj)\(Ci ∩ Cj)},
- CPA,Ci/Cj

= EP,Cj ∪
⋃

Cd descendant of Cj

EP,Cd
,

- RPA,Ci/Cj
= {rc ∩

∏
x∈c

dx,PA,Ci/Cj
| c ∈ CPA,Ci/Cj

and rc ∈ R}.

The induced VCSP PA,Ci/Cj
corresponds to the VCSP P restricted to the sub-

problem rooted in Cj such that the domain of each variable x in Ci∩Cj is reduced
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to the value assigned to x in A. That is, we consider the subproblem whose vari-
ables are ones of Cj and its descendants. As for the constraint set of PA,Ci/Cj

, it
only contains the constraints which exclusively appear in Cj and its descendants.
For instance, given the assignment A = (B ← 2, C ← 2) on C1 ∩ C3, let us con-
sider PA,C1/C3 the VCSP induced by A on the descent of C1 rooted in C3. We have
XPA,C1/C3

= {B,C, F,G,H, I}, dB = dC = {2}, dF = dG = dH = dI = {1, 2, 3}
and CPA,C1/C3

= {cBF , cCF , cBG, cBH , cGH , cFI}. Note that the constraint cBC

doesn’t belong to the constraint set of PA,C1/C3 because it isn’t a proper con-
straint of C3 (cBC ⊆ C1 and C1 = Cp(3)). Now, from the sets EP,Ci , we can
introduce the notion of local valuation for a cluster:

Definition 10 Given a cluster Ci and an assignment A on Y ⊂ X with Y ∩Ci �=
∅. The local valuation for the cluster Ci of the assignment A with respect
to P (noted vP,Ci

(A)) is the local valuation of A restricted to the constraints of
EP,Ci

, that is to say vP,Ci
(A) =

⊕
c∈EP,Ci

|c⊆Y

and A violates c

φ(c)

In other words, the valuation local for a cluster Ci only takes into account the
constraints proper to Ci. Remark that the local valuation for a cluster can be
computed incrementally. This valuation presents many interesting properties.
First, its computation only depends on the variables of the considered cluster.

Property 3 Let Ci be a cluster and A an assignment on Y ⊆ X such that
Ci ⊆ Y . vP,Ci(A) = vP,Ci(A[Ci])

Proof:

vP,Ci
(A) =

⊕
c∈EP,Ci

|c⊆Y

and A violates c

φ(c) =
⊕

c∈EP,Ci
|c⊆Y ∩Ci

and A violates c

φ(c)

=
⊕

c∈EP,Ci
|c⊆Y ∩Ci

and A[Ci] violates c

φ(c) = vP,Ci
(A[Ci]) �

Then, the aggregation of local valuations for a cluster allows us to compute the
valuation of a complete assignment.

Property 4 Let A be an assignment on X.
VP(A) =

⊕
Ci⊆X

vP,Ci
(A)

Proof: Since the sets (EP,Ci
)i form a partition of C (property 2), each constraint

of C is taken into account only once. So, VP(A) =
⊕

Ci⊆X

vP,Ci(A). �

It follows from these two properties that we can compute the valuation of a
complete assignment A by exploiting only the local valuation for each cluster
Ci of the assignment A[Ci]. Finally, the next property ensures that the local
valuation for a cluster Cj of an assignment B with respect to P is preserved if
we considered an induced subproblem which contains Cj .
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Property 5 Let Ci and Cj two clusters with Cj a descendant of Ci. Let A be an
assignment on Ci ∩ Cp(i) and P ′ = PA,Cp(i)/Ci

. If B is an assignment on Cj such
that B[Cj ∩ Ci ∩ Cp(i)] = A[Cj ∩ Ci ∩ Cp(i)], vP,Cj (B) = vP′,Cj (B).

Proof: as EP,Cj = EP′,Cj vP,Cj (B) = vP′,Cj (B). �

Now, we are able to define the notion of structural valued good.

Definition 11 Let Ci and Cj two clusters with Cj a son of Ci. A structural
valued good of Ci with respect to Cj is a pair (A, v) with A an assignment on
Ci ∩ Cj and v the optimal valuation of the VCSP PA,Ci/Cj

.

For instance, if we consider the assignment A = (B ← 2, C ← 2) on C1 ∩
C3, we obtain the good (A, 2) since the best assignment on Desc(C3) is (B ←
2, C ← 2, F ← 3, G← 3, H ← 3, I ← 3). Note that this assignment violates the
constraints cBC , cGH and cFI , but cBC is discarded (since cBC �∈ EP,C3).

Given an assignment A on Ci, the following theorem expresses that we can
compute the valuation of the best assignment B on Desc(Ci) with B[Ci] = A by
exploiting the optimal valuation of each subproblem rooted in a son Cf of Ci and
induced by A[Ci ∩ Cf ]. Note that the optimal valuation of each subproblem is
provided either by solving the considered subproblem or by exploiting a struc-
tural valued good. Finally, remark that this optimal valuation can be computed
independently of ones of other subproblems.

Theorem 1 Let Ci be a cluster, A an assignment on Ci and
P ′ = PA[Ci∩Cp(i)],Cp(i)/Ci

.

min
B|XB=Desc(Ci)

and B[Ci]=A

vP′(B) = vP,Ci
(A)⊕

⊕
Cf son of Ci

α∗
PA[Ci∩Cf ],Ci/Cf

The proof of this theorem requires the following lemma:

Lemma 1 Let Ci be a cluster and A an assignment on Ci.
Let P ′ = PA[Ci∩Cp(i)],Cp(i)/Ci

.

Let λ = min
B|XB=Desc(Ci)

and B[Ci]=A

( ⊕
Cj∈Sons(Ci)

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

])
.

Let λ′ =
⊕

Cj∈Sons(Ci)

⎛⎝ min
B|XB=Desc(Cj)∪Ci

and B[Ci]=A

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

]⎞⎠.

We have λ = λ′.

Proof (lemma 1):

For each Cj son of Ci, we note λCj
= min

B|XB=Desc(Cj)∪Ci
and B[Ci]=A

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

]
. We

then have λ′ =
⊕

Cj∈Sons(Ci)
λCj

.
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For each Cj son of Ci, there exists an assignment BCj
on Desc(Cj)∪Ci such that

BCj
[Ci] = A and λCj

=
⊕

Ck⊆Desc(Cj)
vP′,Ck

(BCj
). Likewise, there is an assignment

Bλ on Desc(Ci) such that Bλ[Ci] = A and λ =
⊕

Cj∈Sons(Ci)

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ)

]
.

We want to prove that for each son Cj of Ci, we have⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ[Desc(Cj) ∪ Ci]) = λCj

.

Assume there exists a son Cs of Ci such that⊕
Ck⊆Desc(Cs)

vP′,Ck
(Bλ[Desc(Cs) ∪ Ci]) �= λCs

.

By definition of λCs , λCs ≺
⊕

Ck⊆Desc(Cs)
vP′,Ck

(Bλ[Desc(Cs) ∪ Ci])

=
⊕

Ck⊆Desc(Cs)
vP′,Ck

(Bλ)

Let B′ be an assignment on Desc(Ci) such that B′[Ci] = A and ∀Cj ∈ Sons(Ci),
B′[Desc(Cj) ∪ Ci] = BCj . Such an assignment exists since ∀Cj , Cj′ ∈ Sons(Ci),
Desc(Cj) ∩Desc(Cj′) ⊆ Ci.
Furthermore, we have λCs

=
⊕

Ck⊆Desc(Cs)
vP′,Ck

(B′[Desc(Cs) ∪ Ci]).

So,
⊕

Cj∈Sons(Ci)

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(B′)

]
=

⊕
Cj∈Sons(Ci)

λCj
= λ′

λ′ = λCs ⊕
⊕

Cj∈Sons(Ci)\{Cs}
λCj

≺
⊕

Ck⊆Desc(Cs)
vP′,Ck

(Bλ[Desc(Cs) ∪ Ci])

⊕
⊕

Cj∈Sons(Ci)\{Cs}

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ[Desc(Cj) ∪ Ci])

]

≺
⊕

Ck⊆Desc(Cs)
vP′,Ck

(Bλ)⊕
⊕

Cj∈Sons(Ci)\{Cs}

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ)

]
= λ

Hence, we obtain a contradiction with the definition of λ. So, for each son Cj of
Ci,

⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ[Desc(Cj) ∪ Ci]) = λCj . It ensues that λ = λ′. �

Proof (theorem 1):
We note M = min

B|XB=Desc(Ci)
and B[Ci]=A

vP′(B).

M =
property 1 min

B|XB=Desc(Ci)
and B[Ci]=A

VP′(B).

=
property 4 min

B|XB=Desc(Ci)
and B[Ci]=A

⎛⎝ ⊕
Cj⊆Desc(Ci)

vP′,Cj
(B)

⎞⎠
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= min
B|XB=Desc(Ci)

and B[Ci]=A

⎛⎜⎜⎝vP′,Ci
(B)⊕

⊕
Cj |j �=i,

Cj⊆Desc(Ci)

vP′,Cj
(B)

⎞⎟⎟⎠
=

property 3 min
B|XB=Desc(Ci)

and B[Ci]=A

⎛⎜⎜⎝vP′,Ci(B[Ci])⊕
⊕

Cj |j �=i,

Cj⊆Desc(Ci)

vP′,Cj (B)

⎞⎟⎟⎠
For every assignment B such that XB = Desc(Ci) and B[Ci] = A, we have
vP′,Ci(B[Ci]) = vP′,Ci(A). As vP′,Ci(A) is a constant, we have:

M = vP′,Ci
(A)⊕ min

B|XB=Desc(Ci)
and B[Ci]=A

⎛⎜⎝ ⊕
Cj |j �=i,

Cj⊆Desc(Ci)

vP′,Cj
(B)

⎞⎟⎠
= vP′,Ci(A)⊕ min

B|XB=Desc(Ci)
and B[Ci]=A

( ⊕
Cj∈Sons(Ci)

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

])

=
lemma 1 vP′,Ci

(A)⊕
⊕

Cj∈Sons(Ci)

⎛⎝ min
B|XB=Desc(Cj)∪Ci

and B[Ci]=A

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

]⎞⎠
M = vP′,Ci

(A)⊕
⊕

Cj∈Sons(Ci)

⎛⎝ min
B|XB=Desc(Cj) and

B[Ci∩Cj ]=A[Ci∩Cj ]

[ ⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

]⎞⎠
=

property 5 vP,Ci
(A)⊕

⊕
Cj∈Sons(Ci)

⎛⎝ min
B|XB=Desc(Cj) and

B[Ci∩Cj ]=A[Ci∩Cj ]

[ ⊕
Ck⊆Desc(Cj)

vP,Ck
(B)

]⎞⎠
=

property 4 vP,Ci(A)⊕
⊕

Cj∈Sons(Ci)

⎛⎝ min
B|XB=Desc(Cj)

and B[Ci∩Cj ]=A[Ci∩Cj ]

VPA[Ci∩Cj ],Ci/Cj
(B)

⎞⎠
= vP,Ci(A)⊕

⊕
Cj son of Ci

α∗
PA[Ci∩Cj ],Ci/Cj

�

From theorem 1, we deduce the following corollary. This corollary establishes
the link between the optimal valuation of a subproblem rooted in Ci and the
optimal valuation of each subproblem rooted in a son Cj of Ci.

Corollary 1 Let Ci be a cluster and A an assignment on Ci ∩ Cp(i).

α∗
PA,Cp(i)/Ci

= min
B|XB=Ci and

B[Ci∩Cp(i)]=A

(
vP,Ci

(B)⊕
⊕

Cj son of Ci

α∗
PB[Ci∩Cj ],Ci/Cj

)

4.3 The BTDval Algorithm

The BTDval method is based on the BB algorithm (note that we can also base
it on vFC). It explores the search space by exploiting a compatible order, which
begins with the variables of the root cluster C1. Inside a cluster Ci, it proceeds
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classically like BB by assigning a value to a variable, by maintaining and compar-
ing upper and lower bounds and by backtracking if a lower bound is greater than
(or equal to) the corresponding upper bound. However, unlike BB, BTDval uses
two kinds of bounds: local bounds and global ones. The local bounds only take
into account the subproblem rooted in Ci (namely the induced VCSP PA,Cp(i)/Ci

with A the current assignment on Ci∩Cp(i)). The local lower bound corresponds
to the valuation of the current assignment on Desc(Ci), that is to say, the local
valuation of the current assignment with respect to PA,Cp(i)/Ci

. The local up-
per bound is then defined by the valuation of the best known assignment B on
Desc(Ci) such that B[Ci ∩ Cp(i)] = A. In other words, it’s the valuation of the
best known solution for PA,Cp(i)/Ci

. The global bounds are similar to BB’s ones,
that is to say the local valuation of the current assignment for the lower bound
and the valuation of the best known solution for the upper one.

When every variable in Ci is assigned, if each lower bound is less than the
corresponding upper bound, BTDval keeps on the search with the first son of
Ci (if there is one). More generally, let us consider a son Cj of Ci. Given the
current assignment A on Ci, BTDval checks whether the assignment A[Ci ∩ Cj ]
corresponds to a valued structural good:

- if so, BTDval aggregates the valuation associated to this valued good with
each lower bound.

- else, it extends A on Desc(Cj) in order to compute the valuation v of the
best assignment B such that B[Ci ∩ Cj ] = A[Ci ∩ Cj ]. Then, it aggregates v
with each lower bound and it records the valued good (A[Ci ∩ Cj ], v).

If, after having proceeded the son Cj , the two lower bounds don’t exceed their
respective upper bound, BTDval keeps on the search with the next son of Ci. Re-
mark that by exploiting the structural valued goods, BTDval doesn’t solve again
some subproblems. So the variables of these subproblems aren’t assigned again.
Hence we call such a phenomenon a forward-jump (by analogy with backjump).
For instance, suppose that we use the alphabetical order as variable order and
that, after assigning the variable F in C3, we exploit a good on C3 ∩ C4. Then,
we try to assign I without exploring again Desc(C4). If every son has been pro-
ceeded and each lower bound doesn’t exceed its corresponding upper bound,
then a better solution for PA,Cp(i)/Ci

has been found. Finally, if a failure occurs,
BTDval tries to modify the current assignment on Ci.

In fact, due to the structural valued good definition, the global lower bound
is defined by the valuation of the best extension of A on every cluster which
precedes the current cluster in the used compatible enumeration. It’s the same
for the local lower bound, but we only consider the clusters belonging to the
descent of the current cluster. Remark that we consider an extension of A, and
not A, because A only contains the variables belonging to a cluster located on
the path between the root cluster and the current cluster. Finally note that the
global upper bound is the same as BB’s one, unlike the global lower bound which
is better than BB’s one.
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Figure 2 describes the BTDval algorithm. Given an assignment A and a
cluster Ci, BTDval looks for the best assignment B on Desc(Ci) such that
A[Ci\VCi ] = B[Ci\VCi ] and vPA[Ci∩Cp(i)],Cp(i)/Ci

(B) ≺ αCi , where:

- VCi
is the set of unassigned variables in Ci,

- αC1 is the valuation of the best known solution,
- ltot is the valuation of the best extension A′ of A on all the clusters which

precede Ci according to the compatible numbering (ltot = vP(A′) ≺ αC1),
- αCi

is the valuation of the best known assignment B′ on Desc(Ci) such that
A[Ci ∩ Cp(i)] = B′[Ci ∩ Cp(i)]

- lCi
= vP,Ci

(A) ≺ αCi
.

If BTDval finds such an assignment, it returns its valuation, otherwise it returns
a valuation greater than (or equal to) αCi

. The initial call is
BTDval(∅, C1, C1,⊥,4,⊥,4).

Theorem 2 BTDval is sound, complete and terminates.

BTDval(A, Ci, VCi
, ltot, αC1 , lCi

, αCi
)

1. If VCi
= ∅

2. Then
3. If Sons(Ci) = ∅ Then Return lCi
4. Else
5. F ← Sons(Ci)
6. α ← ⊥
7. While F �= ∅ and α ⊕ ltot ≺ αC1 and α ⊕ lCi

≺ αCi
Do

8. Choose Cj in F
9. F ← F\{Cj}
10. If (A[Cj ∩ Ci], v) is a good of Ci/Cj in G Then α ← α ⊕ v
11. Else
12. v ← BTDval(A, Cj , Cj\(Cj ∩ Ci), ltot ⊕ α, αC1 , ⊥, αCi

)
13. α ← α ⊕ v
14. Record the good (A[Cj ∩ Ci], v) of Ci/Cj in G
15. EndIf
16. EndWhile
17. Return α ⊕ lCi
18. EndIf
19. Else
20. Choose x ∈ VCi
21. d ← dx

22. While d �= ∅ and ltot ≺ αC1 and lCi
≺ αCi

Do
23. Choose a in d
24. d ← d\{a}
25. L ← {c = {x, y} ∈ EP,Ci

|y �∈ VCi
}

26. la ← ⊥
27. While L �= ∅ and ltot ⊕ la ≺ αC1 and lCi

⊕ la ≺ αCi
Do

28. Choose c in L
29. L ← L\{c}
30. If c violates A ∪ {x ← a} Then la ← la ⊕ φ(c)
31. EndWhile
32. If ltot ⊕ la ≺ αC1 and lCi

⊕ la ≺ αCi
33. Then αCi

← min(αCi
, BTDval(A ∪ {x ← a}, Ci, VCi

\{x}, ltot ⊕ la, αC1 , lCi
⊕ la, αCi

))
34. EndIf
35. EndWhile
36. Return αCi
37. EndIf

Fig. 2. The BTDval algorithm.
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Finally, we provide the time and space complexities of BTDval. We suppose that
a tree-decomposition (or an approximation) has been computed. Therefore the
parameters used in the next theorem are related to this decomposition. BTDval

obtains complexities similar to Tree-Clustering’s ones:

Theorem 3 BTDval has a time complexity in O(n.s2.m. log(d).dw++1) and a
space complexity in O(n.s.ds) with w+ + 1 the size of the biggest Ck and s the
size of the biggest intersection Ci ∩ Cj where Cj is a son of Ci.

5 Related Works

BTDval is mostly based on tree-decomposition. So, works like Tree-Clustering
and its improvements [11,12] or the dynamic programming approach of Koster
[10] are close to our approach. BTDval can be considered as an hybrid approach
realizing a tradeoff between practical time and space complexity. In [12], Dechter
and El Fattah present a time-space tradeoff scheme. This scheme allows them
to propose a spectrum of algorithms such that tree-clustering and cycle-cutset
conditioning (linear for space complexity) are two extremes in this spectrum.
Another interesting idea in their work is the possibility to modify the size of
separators to minimize space. This idea can also be exploited in BTDval.

BTDval presents a better time complexity than the dynamic programming
approach of Koster. Then, BTDval differs from this approach in computing a
tree-decomposition (or an approximation of a tree-decomposition). BTDval ex-
ploits a triangulation of the constraint graph, while the dynamic programming
approach uses a heuristic method and network flow techniques. Furthermore,
Koster proposes several pretreatments. In particular, one of these pretreatments
allows to reduce the size of the constraint graph, which may also reduce the time
complexity. So adding such pretreatments may be useful for our approach.

BTDval is close to a method like the russian dolls search [9]. Indeed, in or-
der to find the optimal valuation of a VCSP, BTDval solves many subproblems
according a pre-established compatible order. The BTDval’s clusters have a role
similar to one of variables in RDS. Nevertheless, the two methods exploit dif-
ferently the optimal valuations of subproblems. Like BTDval, the method Tree-
RDS [17] (a variant of RDS) takes advantage of the constraint graph in order to
determine whether some problems are independent or not. However, if the in-
dependence of subproblems is used similarly, the Tree-RDS’s subproblems differ
conceptually from BTDval’s ones. It’s the same for the adaptation [18] of the
algorithm Pseudo-Tree Search and its combination with a variant of RDS.

6 Conclusion

In this paper, we have defined a new method (called BTDval) for solving valued
CSPs. This method can actually be based on BB or on vFC. Thanks to the no-
tion of structural valued goods we have introduced, BTDval obtains complexity
bounds similar to (or better than) the best known ones. Indeed, the time com-
plexity of BTDval is O(ns2m log(d).dw++1) with w+ + 1 the size of the biggest
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cluster while the space complexity is O(nsds) with s the size of the biggest inter-
section between two clusters. Now, an experimental study is required to assess
the practical interest of our approach.

Among the possible extensions of this work, we must base our algorithm
on more efficient methods like the russian dolls search or algorithms which use
directional arc-consistency [19,20,21]. Using such methods seems natural since
BTDval exploits a compatible enumeration order.
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9. G. Verfaillie, M. Lemâıtre, and T. Schiex. Russian Doll Search for Solving Con-

straint Optimization Problems. In Proc. of the 14th AAAI, pages 181–187, 1996.
10. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis, University

of Maastricht, November 1999.
11. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial In-

telligence, 38:353–366, 1989.
12. R. Dechter and Y. El Fattah. Topological Parameters for Time-Space Tradeoff.

Artificial Intelligence, 125:93–118, 2001.
13. N. Robertson and P.D. Seymour. Graph minors II : Algorithmic aspects of tree-

width. Algorithms, 7:309–322, 1986.
14. S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity of finding embedding

in a k-tree. SIAM Journal of Discrete Mathematics, 8:277–284, 1987.
15. A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal

clique trees. Artificial Intelligence, 125:3–17, 2001.
16. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decom-

position Methods. Artificial Intelligence, 124:343–282, 2000.
17. P. Meseguer and M. Sánchez. Tree-based Russian Doll Search. In Proc. of Work-

shop on soft constraint. CP’2000, 2000.
18. J. Larrosa, P. Meseguer, and M. Sánchez. Pseudo-Tree Search with Soft Con-

straints. In Proc. of the 15th ECAI, pages 131–135, 2002.
19. R. Wallace. Directed arc consistency preprocessing. In Proc. of the ECAI-94

Workshop on Constraint Processing, LNCS 923, pages 121–137, 1994.
20. R. Wallace. Enhancements of Branch and Bound Methods for the Maximal Con-

straint Satisfaction Problem. In Proc. of AAAI, pages 188–195, 1996.
21. J. Larrosa and P. Meseguer. Exploiting the use of DAC in Max-CSP. In Proc. of

the 2nd CP, pages 308–322, 1996.



Consistency and Propagation with Multiset
Constraints: A Formal Viewpoint

Toby Walsh�

Cork Constraint Computation Center, University College Cork, Ireland
tw@4c.ucc.ie

Abstract. We study from a formal perspective the consistency and
propagation of constraints involving multiset variables. That is, variables
whose values are multisets. These help us model problems more natu-
rally and can, for example, prevent introducing unnecessary symmetry
into a model. We identify a number of different representations for mul-
tiset variables and compare them. We then propose a definition of local
consistency for constraints involving multiset, set and integer variables.
This definition is a generalization of the notion of bounds consistency for
integer variables. We show how this local consistency property can be
enforced by means of some simple inference rules which tighten bounds
on the variables. We also study a number of global constraints on set
and multiset variables. Surprisingly, unlike finite domain variables, the
decomposition of global constraints over set or multiset variables often
does not hinder constraint propagation.

1 Introduction

Set variables have been incorporated into most of the major constraint solvers
(see, for example, [1,2]). It is therefore surprising that few constraint solvers
permit multiset variables. The one exception is ILOG’s Configurator. However,
little is known from a theoretical perspective about such variables. The aim of
this paper is to correct this imbalance, to study formal notions of consistency and
propagation for multiset variables, and to discuss how they can be implemented.
Many problems naturally involve multisets. Consider the template design prob-
lem [3] (prob002 in CSPLib) in which we assign designs to printing templates. As
there are a fixed number of slots on each template, we can model this problem
with a variable for each slot, whose value is the design in this slot. However,
slots on a template are indistinguishable. This model therefore introduces an
unnecessary symmetry, namely the permutations of the slots. A “better” model
would remove this symmetry by having a variable for each template, whose value
is the multiset of designs assigned to that template. It is a multiset, not a set,
as the designs on a template can be repeated.

The paper is structured as follows. We start with the formal background (Sec-
tion 2). We then compare different ways to represent multiset variables (Section
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3) and define a notion of local consistency for multiset variables (Section 4). We
identify a number of primitive multiset constraints (Section 5) and show how
to enforce this local consistency property on such constraints (Section 6). We
also study a number of global multiset constraints (Section 7). We then give
some experimental results comparing different representations of multiset vari-
ables (Section 8). Finally we describe related work (Section 9) and end with
conclusions (Section 10).

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with some
domain of values, and a set of constraints specifying allowed values for subsets
of variables. A solution is an assignment of values to the variables satisfying the
constraints. To find such solutions, we can explore partial assignments enforcing
a local consistency like generalized arc-consistency (GAC). A constraint is GAC
iff, when a variable in the constraint is assigned a value, compatible values exist
for all the other variables in the constraint. GAC reduces to arc-consistency (AC)
for binary constraints. A constraint is bounds consistent iff, when a variable in
the constraint is assigned its maximum or minimum value, there exist compatible
values for all the other variables in the constraint.

We will also need vectors, sets and multisets. A vector is an ordered list of
elements, written 〈m0, . . . ,mn〉. A set is an unordered list of elements without
repetition, written {m0, . . . ,mn}. A multiset is an unordered list of elements
in which repetition is allowed, written {{m0, . . . ,mn}}. We assume that the el-
ements of vectors, sets and multisets are integers drawn from a finite domain.
Basic operations on sets generalize to similar operations on multisets. We let
occ(m,X) be the number of occurrences of m in the multiset X. Multiset union,
addition, intersection, difference, equality and inclusion are defined by the fol-
low identities: occ(m,X ∪ Y ) = max(occ(m,X), occ(m,Y )), occ(m,X 7 Y ) =
occ(m,X)+occ(m,Y ), occ(m,X ∩Y ) = min(occ(m,X), occ(m,Y )), occ(m,X−
Y ) = max(0, occ(m,X) − occ(m,Y )), X = Y iff occ(m,X) = occ(m,Y ) for all
m, and X ⊆ Y iff occ(m,X) ≤ occ(m,Y ) for all m. Finally, we write |X| for the
cardinality of the set or multiset X.

3 Representing Multisets

A naive method to represent a multiset variable is a finite domain variable whose
values are all the possible multisets. However, this will be computationally in-
tractable as the number of possible multisets is exponential.

3.1 Bounds Representation

A better representation for multiset variables is a generalization of the upper
and lower bounds used for set variables in [1,4]. For each multiset variable, we
maintain two multisets: a least upper and a greatest lower bound. The least
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upper bound is the smallest multiset containing all those values that can be in
the multiset, whilst the greatest lower bound is the largest multiset containing
all those values that must be in the multiset. We write lub(X) and glb(X) for
the least upper and greatest lower bound respectively. This representation is
compact but is unable to represent all forms of disjunction. Consider, for exam-
ple, a multiset variable X with two possible multiset values: {{0}} or {{1}}. To
represent this, we would need lub(X) = {{0, 1}} and glb(X) = {{}}. However, this
representation also permits X to take the multiset values {{}} and {{0, 1}}.

3.2 Occurrence Representation

Set variables can be represented by their characteristic function (a vector of
Boolean variables, each of which indicates whether a particular value is in the
set or not). A straightforward generalization to multisets is the occurrence vec-
tor. Each multiset variable X can be represented by a vector 〈X0, . . . , Xn〉 of
integer variables with Xi = occ(i,X). This representation is also compact but
again cannot represent all forms of disjunction. Consider again the example of a
multiset variable X with two possible multiset values: {{0}} or {{1}}. To represent
this, we would need an occurrence vector with X0 = {0, 1} (that is, the value 0
can occur zero times or once) and X1 = {0, 1} (that is, the value 1 can occur
zero times or once). Like the bounds representation, this also permits X to take
the multiset values {{}} and {{0, 1}}.

3.3 Fixed Cardinality

Set or multiset variables of a fixed cardinality are common in a number of prob-
lems. For example, the template design problem can be modelled as finding a
multiset of designs of fixed cardinality for each template. In such situations, we
can represent each of the members of the set or multiset with a variable whose
values are the possible set or multiset elements. This may appear to introduce
symmetry into the problem (via permutations of these variables). This is not the
case as we will post constraints on these variables which ignore their permutation.
This representation is again compact but again carries the penalty of not being
able to represent all forms of disjunction. Consider, for example, a multiset vari-
able X of cardinality 3 with two possible multiset values: {{0, 0, 0}} or {{1, 1, 1}}.
To represent this, we would need three variables: X1 = {0, 1}, X2 = {0, 1} and
X3 = {0, 1}. Each finite domain variable represents one of the possible elements
of the multiset. However, this representation also permits X to take the multiset
values: {{0, 0, 1}}, and {{0, 1, 1}}. If the set or multiset variables are not of a fixed
cardinality but there are upper bounds on their maximum cardinality, we can
use a similar representation but introduce an additional value which represents
no value being assigned to a particular variable.

3.4 Nested Sets and Multisets

We may want to find a set of sets or multisets, or a multiset of sets or multisets.
For example, in the template design problem we actually want to find a set of
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templates, each of which is a multiset of designs. To model such problems, we
can introduce set or multiset variables, whose elements themselves are sets or
multisets. How do our different representations cope with such variables? The
bounds representation handles such cases easily. The least upper and greatest
lower bounds are now (multi)sets of (multi)sets. The occurrence representation
is more problematic as we have to index over a potential exponential number of
sets or multisets. This will require exponential space in general. By comparison,
the fixed cardinality representation handles such cases easily. We introduce a
variable for each element of the set or multiset, and each of these variables is
itself a set or multiset variable.

3.5 Expressivity

We can compare the expressivity of these different representations. We say that
one representation is as expressive as another if it can represent the same
multiset values, more expressive if it is as expressive and there are multiset
values that it can represent that the other cannot, and incomparable if neither
representation is as expressive as the other.

Theorem 1 The occurrence representation is more expressive than the bounds
representation. The fixed cardinality representation is incomparable to both the
bounds and the occurrence representation.

Proof: Clearly the occurrence representation is as expressive as the bounds.
Consider a multiset variable X with two values: {{}} or {{0, 0}}. This can be
represented exactly with the occurrence variable X0 = {0, 2}. By comparison, a
bounds representation would need lub(X) = {{0, 0}} and glb(X) = {{}}, and this
permits the additional value {{0}}.

Consider a multiset variable X of cardinality 2 with six values: {{0, 1}}, {{0, 2}},
{{0, 3}}, {{1, 1}}, {{1, 2}}, or {{1, 3}}. The fixed cardinality representation can repre-
sent this exactly with two finite domain variables X1 = {0, 1} and X2 = {1, 2, 3}.
Both the bounds and the occurrence representations of this would also permit
the additional value {{2, 3}}. On the other hand, consider a multiset variable X of
cardinality 2 with three values: {{0, 1}}, {{0, 2}}, or {{1, 2}}. In the bounds repre-
sentation, we need lub(X) = {{0, 1, 2}} and glb(X) = {{}}. The only two element
multisets between these bounds are exactly {{0, 1}}, {{0, 2}}, or {{1, 2}} as required.
Similarly with an occurrence representation, we need X0 = X1 = X2 = {0, 1}.
The only two element multisets between these bounds are again the required
ones. A fixed cardinality representation cannot, on the other hand, represent
this exactly. We would need two finite domain variables with, say, X1 = {0, 1}
and X2 = {1, 2}. These would permit X to take the additional value {{1, 1}}. ♣

Note that if we restrict the occurrence representation to maintain just bounds
on the number of occurrences of a value in the multiset then we obtain a repre-
sentation that is as expressive as the original multiset bounds representation.
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4 Local Consistency

We now propose a new definition of local consistency that works with con-
straints involving multiset, set and/or integer variables. We want a definition of
local consistency over multiset, set and integer variables since constraints often
have a mixture of such variables. For example, channelling between the bounds
and occurrence representation of multiset variables uses constraints of the form
Xm = occ(m,X), where Xm is an integer variable representing the number of
occurrences of the value m, and X is a multiset variable. Cardinality and mem-
bership constraints can also involve both multiset, set and integer variables.

Given a constraint C over the variables X1, . . . , Xn, we write sol(Xi) for the
values for Xi which can be extended to the other variables. That is,

sol(Xi) = {di | C(d1, . . . , dn) ∧ ∀j . int(Xj)→ glb(Xj) ≤ dj ≤ lub(Xj) ∧
∀j . (mset(Xj) ∨ set(Xj))→ glb(Xj) ⊆ dj ⊆ lub(Xj)}

Where mset(X), set(X) and int(X) test for multiset, set or integer variables,
and glb(Xj) and lub(Xj) are the bounds on Xj (defined below).

We say that a constraint C(X1, . . . , Xn) is BC iff:
For each multiset or set variable, Xj in the constraint, sol(Xj) �= {} and:

lub(Xj) =
⋃

m∈sol(Xj)

m and glb(Xj) =
⋂

m∈sol(Xj)

m

And for each integer variable, Xi in the constraint, sol(Xi) �= {} and:

lub(Xi) = max({d ∈ sol(Xi)}) and glb(Xi) = min({d ∈ sol(Xi)})

This definition of local consistency might look rather expensive, being de-
fined over the set of all solutions. However, this set merely identifies support for
particular values in the set or multiset. When using BC to filter, we will identify
values which occur in no solutions and so can be pruned. Thus, we will not be
finding all solutions but merely identifying those values that occur in no solu-
tions (i.e. lack support). The following theorem justifies why BC can be called
“bounds consistency”.

Theorem 2 BC is equivalent to bounds consistency applied to the occurrence
representation.

Proof: Suppose that a constraint is BC. Consider any integer variable X in
this constraint. Then, the value lub(X) for X can be extended to some solution.
That is, it has support. Similarly the value glb(X) for X can be extended to some
other solution. That is, it also has support. Hence X is bounds consistent. On the
other hand, consider any multiset variable X in the constraint. We can construct
an equivalent occurrence representation. Suppose mmax = occ(m, lub(X)) and
mmin = occ(m, glb(X)). Then we let the variable Xm in the occurrence vector
have a domain [mmin,mmax]. Consider Xm = mmax. Then, from the definition of
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BC and the generalized multiset union operator, there must be a satisfying solu-
tion to the constraint in which occ(m,X) = mmax. If there are several, we choose
one non-deterministically. This solution is support for the bounds consistency of
this integer variable in the occurrence representation. A similar argument holds
for Xm = mmin, and for any set variable. Hence, BC implies bounds consistency
of the occurrence representation. The proof reverses directly. ♣

This theorem might appear to offer an easy and effective route to prune val-
ues from multiset variables: encode the problem into constraints on occurrence
variables and use “off the shelf” bounds consistency algorithms. However, the
occurrence representation greatly increases the number of variables in the prob-
lem. For example, suppose we have a constraint like X �= Y where X and Y are
multiset variables. This maps into a large disjunctive constraint in the occur-
rence representation over 2d integer variables where d is the maximum possible
cardinality of the two multisets. It is therefore worth developing specialized prop-
agation algorithms that exploit the semantics of set or multiset constraints. Such
algorithms can work on either a bounds or an occurrence representation. In the
next two sections, we show how to define such algorithms by means of some
simple inference rules. Note that a degenerate version of this last theorem is
that BC on a constraint containing just integer variables is equivalent to bounds
consistency on these variables. Some other properties also follow immediately
from this result.

Theorem 3 If a set of constraints are satisfiable, there are unique least upper
and greatest lower bounds for each variable that makes the constraints BC.

Proof: Immediate from the last result, and the fact that bounds consistency
on integer variables returns an unique answer. ♣

5 Multiset Constraints

What sort of constraints can be posted on multiset variables? We assume con-
straints on multisets and set variables are defined as follows. A constraint is
of the form X ⊆ Y , X ⊂ Y , X = Y , X �= Y , |X| = N , occ(N,X) = m or
occ(m,X) = N where X and Y are set or multiset expressions, N is an integer
variable, and m is an integer. A set of multiset expression is, in turn, either a
ground set or multiset, a set or multiset variable, or an expression of the form
X ∪Y , X 7Y , X ∩Y , or X−Y where X and Y are again set or multiset expres-
sions. To make constraint propagation easier, we decompose constraints into a
flattened normal form in which constraints are at most ternary and only of the
form: X ⊆ Y , X = Y ∪Z, X = Y 7Z, X = Y ∩Z, X = Y −Z, X �= Y , |X| = N ,
occ(N,X) = m or occ(m,X) = N where X and Y are either set or multiset vari-
ables or ground sets or multisets, N is an integer variable, and m is an integer.
This decomposition takes any nested set or multiset expression and replaces it
by a new equality constraint. For example, (X ∪ Y ) ⊆ Z is normalized to give
XY = X ∪ Y and XY ⊆ Z where XY is a new multiset variable. A similar
decomposition of set constraints was used in [4]. In general, such decomposition
hinders constraint propagation.
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Theorem 4 BC on a set of constraints is strictly stronger than BC on the
equivalent set of constraints decomposed into normal form.

Proof: Clearly it is as strong. For strictness, we consider each type of multiset or
set constraint in turn. For a set not-equals constraint, consider X∪(Y ∩Z) �= (X∪
Y ) ∩ (X ∪ Z) with X = Y = Z = {} :: {0}. BC determines that this constraint
has no solution. But in the decomposition, with Y Z = Y ∩Z, XY Z = X ∪ Y Z,
XY = X ∪ Y , XZ = X ∪ Z, XY XZ = XY ∩ XZ and XY Z �= XY XZ, the
domains X = Y = Z = Y Z = XY Z = XY = XZ = XY XZ = {} :: {0} make
the dec omposed constraints BC. Similar arguments hold for the other types of
constraints. ♣

Under the simple restriction that there are no repeated occurrences of vari-
ables, decomposition does not hinder constraint propagation.

Theorem 5 BC on a set of constraints, none of which contains a repeated oc-
currence of variables, is equivalent to BC on the equivalent set of constraints
decomposed into a normal form.

Proof: The proof uses induction on the number of auxiliary variables introduced
and the structure of the multiset expressions which they replace, followed by
extensive case analysis. Consider, for example, the multiset constraint X−Y ⊂ Z
and the decomposition: XY = X−Y , XY ⊂ Z. Suppose each of the decomposed
constraints is BC but the original undecomposed constraint is not BC. There
are six possible cases. In the first, glb(X) is too small and we can add at least
one value m to it. This is only possible if m is a member of glb(Y ) or of glb(Z).
In either case, the original pair of decomposed constraints could not be BC. The
other five cases are similar. ♣

6 Enforcing Local Consistency

We now give some simple constraint propagation rules that enforce BC on multi-
set constraints in normal form. The equivalent inference rules for set constraints
can be obtained by treating the operators in the rules as set and not multi-
set operations. Similarly, for mixed constraints involving both set and multiset
variables, we need merely treat operators as appropriate set or multiset opera-
tions. Each rule tightens an upper and/or lower bound on a variable. The rules
therefore terminate either with domains at a fixed point or by flagging failure.
The rules can be applied in any order, though some orders may be quicker than
others (especially when the constraints cannot be made BC). Similar rules for
set variables are given in [4].

Multiset Inclusion Rules:

X ⊆ Y

glb(X) ∪ glb(Y ) ⊆ Y

X ⊆ Y

X ⊆ lub(X) ∩ lub(Y )
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Multiset Equality Rules:

X = Y ∪ Z

glb(X) ∪ (glb(Y ) ∪ glb(Z)) ⊆ X ⊆ lub(X) ∩ (lub(Y ) ∪ lub(Z))

X = Y ∪ Z

Y ⊆ lub(Y ) ∩ lub(X)

X = Y ∪ Z

Z ⊆ lub(Z) ∩ lub(X)

X = Y 7 Z

glb(X) ∪ (glb(Y ) 7 glb(Z)) ⊆ X ⊆ lub(X) ∩ (lub(Y ) 7 lub(Z))

X = Y 7 Z

glb(Y ) ∪ (glb(X)− lub(Z)) ⊆ Y ⊆ lub(Y ) ∩ (lub(X)− glb(Z)

X = Y 7 Z

glb(Z) ∪ (glb(X)− lub(Y )) ⊆ Z ⊆ lub(Z) ∩ (lub(X)− glb(Y )

X = Y ∩ Z

glb(X) ∪ (glb(Y ) ∩ glb(Z)) ⊆ X ⊆ lub(X) ∩ (lub(Y ) ∩ lub(Z))

X = Y ∩ Z

glb(Y ) ∪ glb(X) ⊆ Y

X = Y ∩ Z

glb(Z) ∪ glb(X) ⊆ Z

X = Y − Z

glb(X) ∪ (glb(Y )− lub(Z)) ⊆ X ⊆ lub(X) ∩ (lub(Y )− glb(Z))

X = Y − Z

glb(Y ) ∪ (glb(X) 7 glb(Z)) ⊆ Y ⊆ lub(Y ) ∩ (lub(X) 7 lub(Z))

X = Y − Z

glb(Z) ∪ (glb(Y )− lub(X)) ⊆ Z ⊆ lub(Z) ∩ (lub(Y )− glb(X))

Multiset Inequality Rules:

X �= Y, glb(Y ) = lub(Y ) = glb(X), |lub(X)| = |glb(X)|+ 1
X = lub(X)

X �= Y, glb(Y ) = lub(Y ) = lub(X), |lub(X)| = |glb(X)|+ 1
X = glb(X)

X �= Y, glb(X) = lub(X) = glb(Y ), |lub(Y )| = |glb(Y )|+ 1
Y = lub(Y )

X �= Y, glb(X) = lub(X) = lub(Y ), |lub(Y )| = |glb(Y )|+ 1
Y = glb(Y )
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Multiset Cardinality Rules:

|X| = N

max(min(N), |glb(X)|)) ≤ N ≤ min(max(N), |lub(X)|)
|X| = N,min(N) = max(N) = |glb(X)|

X = glb(X)
|X| = N,min(N) = max(N) = |lub(X)|

X = lub(X)
Multiset Membership Rules:

occ(N,X) = m, occ(min(N), glb(X)) > m

N > min(N)

occ(N,X) = m, occ(min(N), lub(X)) < m

N > min(N)
occ(N,X) = m, occ(max(N), glb(X)) > m

N < max(N)
occ(N,X) = m, occ(max(N), lub(X)) < m

N < max(N)
occ(N,X) = m,max(N) = min(N)

glb(X) ∪ {N, . . . , N︸ ︷︷ ︸
m times

} ⊆ X ⊆ lub(X)− {N, . . . . . . , N}︸ ︷︷ ︸
max(0, occ(N, lub(X)) − m)

occ(m,X) = N

max(min(N), occ(m, glb(X))) ≤ N ≤ min(max(N), occ(m, lub(X)))
occ(m,X) = N

glb(X) ∪ {m, . . . . . . ,m︸ ︷︷ ︸
min(N) times

} ⊆ X ⊆ lub(X)− {m, . . . . . . ,m}︸ ︷︷ ︸
max(0, occ(m, lub(X)) − max(N))

Failure Rules: Each of the inference rules given so far tightens the bounds for
a variable. We fail whenever this rules out all possible values for the variable.
The following additional inference rules also lead to failure:

X ⊆ Y, glb(X) �⊆ lub(Y )
Fail

X = Y ∪ Z, glb(X) �⊆ lub(Y ) ∪ lub(Z)
Fail

X = Y ∪ Z, glb(Y ) ∪ glb(Z) �⊆ lub(X)
Fail

X = Y 7 Z, glb(X) �⊆ lub(Y ) 7 lub(Z)
Fail

X = Y 7 Z, glb(Y ) 7 glb(Z) �⊆ lub(X)
Fail
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X = Y ∩ Z, glb(X) �⊆ lub(Y ) ∩ lub(Z)
Fail

X = Y ∩ Z, glb(Y ) ∩ glb(Z) �⊆ lub(X)
Fail

X = Y − Z, glb(X) �⊆ lub(Y )− glb(Z)
Fail

X = Y − Z, glb(Y )− lub(Z) �⊆ lub(X)
Fail

X �= Y, glb(X) = lub(X) = glb(Y ) = lub(Y )
Fail

|X| = N,max(N) < |glb(X)|)
Fail

|X| = N, |lub(X)| < min(N)
Fail

occ(N,X) = m,∀y . occ(y, lub(X)) < m ∨ m < occ(y, glb(X))
Fail

occ(m,X) = N,max(N) < occ(m, glb(X))
Fail

occ(m,X) = N, occ(m, lub(X)) < min(N)
Fail

Properties. It is easy to see that the application of these rules terminates
either with domains that are at a fixed point or with failure. Indeed, these rules
terminate either with the unique BC domains or, if the problem cannot be made
BC, fail, in both cases independent of the order of application of the rules.

Theorem 6 If a set of constraints in normal form can be made BC, these infer-
ence rules reach an unique fixed point in which domains are BC. If the constraints
cannot be made BC, the inference rules terminate with failure. Both take at most
O(enm2) time where e is the number of constraints, n is the number of variables
and m is the maximum cardinality of the multiset variables.

Proof: (Outline) Each inference rule tightens the upper and lower bounds of a
variable or flags failure. The rules must therefore reach a fixed point or fail.

Suppose that we reach some fixed point applying these rules to a set of
constraints in normal form. The proof uses case analysis on the type of constraint.
Consider, for example, a constraint of the form X = Y ∪ Z. We consider each
of the multiset variables in turn and show that their domains are BC. For the
variable X, as the inference rule tightening X’s upper and lower bound is at a
fixed point, it must be the case that glb(Y )∪glb(Z) ⊆ glb(X), lub(X) ⊆ lub(Y )∪
lub(Z) and glb(X) ⊆ lub(X). The assignment X = glb(X), Y = lub(Y )∩glb(X)
and Z = lub(Z)∩glb(X) will satisfy the constraint X = Y ∪Z and the conditions
that glb(Y ) ⊆ Y ⊆ lub(Y ) and glb(Z) ⊆ Z ⊆ lub(Z). Similarly, the assignment
X = lub(X), Y = lub(Y ) ∩ lub(X) and Z = lub(Z) ∩ lub(X) will satisfy the
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constraint X = Y ∪ Z and the conditions that glb(Y ) ⊆ Y ⊆ lub(Y ) and
glb(Z) ⊆ Z ⊆ lub(Z). Hence X’s domain is BC. Similar arguments hold for the
domains of Y and Z, as well as for the other types of constraints. Hence, if the
rules terminate at a fixed point, the resulting domains are BC.

We now prove that, if the domains in the problem can be made BC, the
rules terminate at this fixed point. Consider a problem that can be made BC,
and its unique BC domains. The proof again uses extensive case analysis on the
type of constraint. Consider, for instance, the constraint X = Y ∪Z and the BC
domains for X, Y and Z. To prove that the rules terminate at this fixed point, we
assume that an inference rule can still narrow a domain or flag failure. There are
five cases corresponding to the five different inference rules associated with this
constraint. In the first, the inference rule narrows the least upper bound of Y by
removing one or more values. Suppose one of these removed values is m. Let Xm,
Ym and Zm be the number of occurrences of m in X, Y and Z respectively. As
m is pruned by this inference rule, max(Ym) > max(Xm). The original multiset
variables are not therefore BC (which is a contradiction). Hence, there can be
no value m removed and this inference rule is at a fixed point if the domains are
BC. Similar arguments hold for the other 4 inference rules.

These rules therefore terminate at a fixed point iff the resulting domains are
BC. As the rules must terminate either at a fixed point or by flagging failure, it
follows that the rules flag failure iff the problem cannot be made BC. As each rule
tightens the bounds on a multiset, set or finite domain occurrence variable, the
worst case is when the rules tighten each bound by just one element at a time.
We may therefore have to apply O(nm) rules. To find which rule applies, we
may have to go through each of the e constraints in turn. Associated with each
type of constraint, a fixed number of rules can be tried. The cost of applying the
inference rules is thus at most O(enm) multiplied by the cost of applying a single
inference rule. This last cost is dominated by the O(m) cost to test (dis)equality
or inclusion, and the O(m) cost to perform one of the basic operations like union
or difference. Hence, the total cost is O(enm2) in the worst case. ♣

7 Global Constraints

An important aspect of constraint programming is global (or non-binary) con-
straints [5,6]. Such constraints capture common patterns and often come with
efficient and effective propagation algorithms. An important question about such
constraints is whether decomposition hurts. Consider a global constraint on finite
domain variables like the all-different constraint [5]. This can be decomposed into
binary not-equals constraints, but this decomposition hinders constraint propa-
gation. For instance, GAC on an all-different constraint is strictly stronger than
arc-consistency (AC) on the decomposed binary not-equals constraints [7]. We
therefore have to develop a specialized propagation algorithm to achieve GAC on
an all-different constraint. Surprisingly, the decomposition of global constraints
involving set or multiset variableos often does not hinder constraint propaga-
tion. This is good news. We can provide global constraints on set and multiset
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variables to help users compactly specify models. However, we do not need to
develop complex algorithms for reasoning about them as is the case with finite
domain variables. We can simply decompose such global constraints into primi-
tive constraints and use the inference rules given in the last section. In the rest of
this section, we give results to show that decomposition on the occurrence repre-
sentation often does not hinder GAC, and that decomposition on the occurrence
or bounds representation does not hinder BC.

Disjoint Constraint. The constraint disjoint([X1, . . . , Xn]) ensures that the
multiset variables are pairwise disjoint. This global constraint can be decomposed
into the binary constraints: Xi∩Xj = {{}} for all i �= j. Such decomposition does
not hinder constraint propagation.

Theorem 7 GAC (resp. BC) on a disjoint constraint is equivalent to AC (resp.
BC) on the binary decomposition.

Proof: Clearly GAC (resp. BC) on a disjoint constraint is as strong as AC
(resp. BC) on the decomposition. To show the reverse, suppose that the binary
decomposition is AC (resp. BC). If the disjoint constraint is not GAC or BC
then there must be at least two multiset variables, Xi and Xj with a value m
in common. That is, Xim ≥ 1 and Xjm ≥ 1. However, in such a situation, the
decomposed constraint min(Xim, Xjm) = 0 would neither be AC nor BC. ♣

Partition Constraint. The constraint partition([X1, . . . , Xn], X) ensures that
the multiset variables, Xi are pairwise disjoint and union together to give X. By
introducing new auxiliary variables, it can be decomposed into binary and union
constraints of the form: Xi ∩ Xj = {{}} for all i �= j, and X1 ∪ . . . ∪ Xn = X.
Decomposition again causes no loss in pruning.

Theorem 8 GAC (resp. BC) on a partition constraint is equivalent to GAC
(resp. BC) on the decomposition.

Proof: Clearly GAC (resp. BC) on a partition constraint is as strong as GAC
(resp. BC) on the decomposition. To show the reverse, by Theorem 7, we need
focus just on the union constraints. Suppose that the decomposition is GAC
(resp. BC). If the partition constraint is not GAC or BC then there must be
one value m that does not occur frequently enough in the upper bounds of
the multiset variables. But, in this case, the decomposed constraint (which is
equivalent to

∑n
i=1 Xim = Xm) would neither be GAC nor BC. ♣

This result continues to hold even if the union constraint is decomposed
into the set of ternary union constraints by introducing new auxiliary variables:
X1∪X2 = X12, X12∪X3 = X13, . . . , X1n−1∪Xn = X. We can also consider the
non-empty partition constraint which also ensures that each multiset variable is
not empty. Decomposition now hinders constraint propagation.

Theorem 9 GAC (resp. BC) on a non-empty partition constraint is strictly
stronger than GAC (resp. BC) on the decomposition.
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Proof. Clearly it is as strong. For strictness, consider 3 multiset variables with
glb(X1) = glb(X2) = glb(X3) = {{}}, lub(X1) = lub(X2) = {{1, 2}} and lub(X3) =
{{1, 2, 3}}. The decomposition is both GAC and BC. However, enforcing GAC or
BC on the non-empty partition constraint gives glb(X3) = lub(X3) = {{3}}. ♣

Distinct Constraint. Consider the constraint distinct([X1, . . . , Xn]) which
ensures that all the multisets are distinct from each other. This decomposes into
pairwise not equals constraints: Xi �= Xj for all i �= j. Decomposition in this
case hinders constraint propagation.

Theorem 10 GAC (resp. BC) on a distinct constraint is strictly stronger than
AC (resp. BC) on the decomposition.

Proof: Clearly it is as strong. For strictness, consider a distinct constraint on
3 multiset variables with glb(X1) = glb(X2) = {{}}, lub(X1) = lub(X2) = {{0}},
glb(X3) = {{0}}, and lub(X3) = {{0, 0}}. The decomposition is both AC and BC.
But enforcing GAC or BC on the distinct constraint gives glb(X3) = lub(X3) =
{{0, 0}}. ♣

8 Experimental Results

Our preliminary experiments show that the choice of representation for multiset
variabls can make a large difference even on relatively easy problems. Table 1
shows results for the template design problem (prob002 in CSPLib). The model
is relatively easy to solve when the multiset variables are represented via the
occurrence representation. However, despite the fact that the multiset variables
in this problem represent the contents of each template and these are of fixed
size, the model is difficult to solve when the multiset variables are represented
via the fixed cardinality representation.

When constraint programming with multiset variables, a number of issues
arise which we are currently exploring. For example, which of the different rep-
resentations for multiset variables is best? Is it simply enough to find the rep-
resentation in which the constraints are “easy” to express? When do we go for
multiple representations with channelling between them? We also need to de-
velop new variable and value ordering heuristics for multiset variables. The fail
first principle for variable ordering translates into: branch on the multiset vari-
able X in which |lub(X)− glb(X)| is smallest. However, when we have both set,
multiset and integer variables, we need heuristics to choose between them. We
must also decide what sort of branching decision to make. For example, do we
branch on the number of occurrences or try to split the difference between lower
and upper bounds?

9 Related Work

ILOG’s Configurator has an IlcBagPort variable to model the multiset of com-
ponents connected to a particular component. This uses an occurrence repre-
sentation for the multisets, as well as integer variables for the cardinality of the
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Table 1. Solutions to the template design problem modelled using multiset variables.
The objective is the production run length. Multiset variables are represented with
either the occurrence or fixed cardinality representations. The objective is the produc-
tion run length. All solutions are optimal for the given number of templates. Runtimes
are for OPL Studio 3.5.1 on a Pentium III 1.2 GHz with 512 MB of RAM running
Windows XP. Entries marked “*” are not solved within 3 hours.

Problem Number of Objective Goal Occurrence rep Fixed card rep
templates value fails runtime/sec fails runtime/sec

cat food 1 550 find 8 0.00 371 0.03
prove 0 0.00 389 0.03

2 418 find 1173 0.12 3397750 502.40
prove 5708 0.43 * *

3 409 find 48721 5.63 * *
prove * * * *

herbs 1 115 find 142 0.01 * *
prove 31 0.00 * *

2 96 find 54 0.01 * *
prove 132788714 10386.20 * *

multiset and for the number of values in the multiset. The only multiset con-
straints that appear to be supported are equality, inclusion and their negations.
The domain of a set or multiset variable can include the IlcWildCard value, rep-
resenting any possible extension of the set or multiset. It would be interesting
to study the theoretical properties of this extension.

Set variables have been integrated into the ECLIPSE constraint logic pro-
gramming language using a bounds representation [4]. Our definition of bounds
consistency generalizes the local consistency property given in [4] for set vari-
ables. For example, a subset constraint S1 ⊆ S2 is locally consistent iff glb(S1) ⊆
glb(S2) and lub(S1) ⊆ lub(S2), whilst a cardinality constraint l ≤ |S1| ≤ u is
locally consistent iff l ≤ |glb(S1)| and |lub(S)| ≤ u. Another advantage of our
definition is that it works with any type of constraint, and is not restricted to
those types of constraint considered in [4].

Theorem 11 A subset constraint S1 ⊆ S2 is locally consistent iff it is BC. A
cardinality constraint l ≤ |S1| ≤ u is locally consistent iff it is BC.

Proof: Suppose S1 ⊆ S2 is BC and lub(S1) �⊆ lub(S2). Then there must be
a ∈ lub(S1) with a �∈ lub(S2). Hence there exists S ∈ sol(S1) with a ∈ S, but for
all S ∈ sol(S2) there is no a ∈ S. The value S for S1 cannot then have support
in the constraint S1 ⊆ S2. Hence lub(S1) ⊆ lub(S2). By an analogous argument,
glb(S1) ⊆ glb(S2). The proof reverses easily.

Suppose l ≤ |S1| ≤ u is BC. Then for S ∈ sol(S1), l ≤ |S|. Hence l ≤ |glb(S)|.
By an analogous argument, |lub(S1)| ≤ u. The proof reverses easily. ♣

The constraint logic programming language {Log} provides sets and multi-
sets as basic types [8]. Sets and multisets are axiomatically defined and solved
using a mixture of unification and rewriting. However, computational efficiency
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is not a major goal as {Log} is more concerned with expressivity, e.g. being able
to represent and reason about partially specified and nested sets. Our goals,
however, are more computational. We wish to augment constraint solving with
efficient constraint propagation techniques for dealing with multiset variables.
Some other systems like CLPS [9] also build sets into their unification procedure
but are again more concerned with expressivity than efficiency.

10 Future Work and Conclusions

We have formally studied the role of multiset variables in constraint program-
ming. We identified a number of different representations for multiset variables
and compared them. We proposed a definition of local consistency for constraints
involving multiset, set or integer variables. This definition is a generalization of
the notion of bounds consistency for integer variables. We showed how this local
consistency property can be enforced by means of some simple inference rules
which tighten bounds on the variables. We also studied a number of global con-
straints on set and multiset variables. Surprisingly, unlike finite domain variables,
the decomposition of global constraints over set or multiset variables often does
not hinder constraint propagation.
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Pruning while Sweeping over Task Intervals

Armin Wolf

Fraunhofer FIRST, Kekuléstraße 7, D-12489 Berlin, Germany

Abstract. Overload checking, forbidden regions, edge finding, and not-
first/not-last detection are well-known propagation rules to prune the
start times of tasks which have to be processed without any interruption
and overlapping on an exclusively available resource, i.e. machine. We
show that these rules are correct and that “sweeping” over task intervals
is an efficient and sufficient technique to achieve maximal pruning with
respect to all these propagation rules. All the presented algorithms have
quadratic time and linear space complexity with respect to the number of
tasks. To our knowledge, this is the first presentation where the correct-
ness of all these rules is proved and where it is shown and proved that
the combination of these algorithms achieves the same pruning of the
start times achieved by other algorithms with cubic time and quadratic
space complexity.

1 Introduction

Recent publications [4,5] have shown that “sweeping” originated and used widely
in computational geometry [11] is also an efficient pruning technique when
adapted and applied to finite domain constraint solving problems.

This paper presents different kinds of sweeping over “task intervals” (cf. [7])
to apply the well-known pruning rules efficiently for non-preemptive one-machine
constraint problems: overload checking, forbidden regions, edge finding, and not-
first/not-last detection (e.g. (re-)presented in [3,4]).

In detail, the main contributions of the paper are:

– The correctness proofs of all the presented pruning rules (see Section 3–6).
– The proofs that the consideration of (generalised) task intervals instead of ar-

bitrary subsets of tasks is sufficient to yield maximal pruning with these rules
(see Section 3–6), reducing time complexity from exponential to quadratic.

– The proof that the combination of edge finding and forbidden regions, both
with quadratic time and linear space complexity, results in the same pruning
as the processing over task intervals presented in [7] having cubic time and
quadratic space complexity (see Section 5, especially Theorem 2).

– The presentation of high-efficient pruning algorithms resulting from these
theoretical results, all based on sweeping over task intervals (see Section 7).

– Experimental results made with these algorithms on some well-known job-
shop scheduling benchmark problems (see Section 8).

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 739–753, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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2 The Non-preemptive One-Machine Constraint Problem

Informally, the non-preemptive one-machine constraint problem is the problem
of finding a serialisation of non-interruptible tasks to be processed on a sin-
gle machine such that they are not overlapping. More formally, the problem is
defined as follows:

Definition 1. A task t is a non-interruptible activity having a non-empty set of
potential start times St, i.e. a finite integer set which is the domain of its variable
start time. Furthermore, a task t has a fixed duration d(t), i.e. a positive integer
value1.

Given a finite set of tasks T = {t0, . . . , tn} with at least two elements (n > 0),
the problem is to find a solution, i.e. some start times s(t0) ∈ St0 , . . . , s(tn) ∈ Stn

such that either s(ti) + d(ti) ≤ s(tj) or s(tj) + d(tj) ≤ s(ti) holds for 0 ≤ i <
j ≤ n — or equivalent, that there is a permutation δ : {0, . . . , n} → {0, . . . , n}
satisfying s(tδ(i−1)) + d(tδ(i−1)) ≤ s(tδ(i)) for i = 1, . . . , n. Both conditions force
a total order on the set of tasks T .

Thus, a non-preemptive one-machine constraint problem is determined by
a set of tasks T which is solvable if there is such a solution and unsolvable,
otherwise2.

Assuming that the (average) size of all sets of potential start times is m,
the determination of some/all solutions has in general an exponential time com-
plexity of O(mn). To reduce this complexity, Constraint Programming (CP)
uses constraint propagation, i.e. the iteration over algorithms pruning the vari-
ables’ domains such that within a reasonable time some – ideal all – values are
eliminated that are not part of any solution. Considering the non-preemptive
one-machine constraint problem, we know from complexity theory that there is
no efficient propagation that prunes the tasks’ start times ideally. However, there
are several pruning rules, i.e. overload checking, forbidden regions, edge finding
and not-first/not-last detection that prune the tasks’ start times considerably
in the non-preemptive one-machine constraint problem in polynomial time and
space.

In the following, we only consider non-preemptive one-machine constraint
problems. Thus, it is always implicitly assumed that a set of tasks T with at
least two elements is given such that each task t ∈ T has a well-defined set of
start times St and a well-defined duration d(t). For each task t ∈ T a feasible
start time s(t) ∈ St, i.e. a solution, has to be determined.

Furthermore, we identify for each task t ∈ T its earliest start time est(t) and
its latest completion time lct(t). Given the actual set of start times St of a task
t ∈ T it holds est(t) ≤ min(St) and lct(t) ≥ max(St) + d(t).

For any task t the primed set of potential start times S′
t identifies an update

of this set, i.e. the effect of any pruning operation resulting in a subset of St.

1 A generalisation with sets of potential durations that may be zero is possible, too.
2 Empty or singleton sets of tasks determine trivial problems.
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Given a non-empty subset of tasks M ⊆ T we define:

d(M) :=
∑
t∈M

d(t) est(M) := mint∈M (est(t)) lct(M) := max
t∈M

(lct(t)) .

In the following we focus on “special” subsets of tasks called task intervals:

Definition 2. Given a set of tasks T = {t0, . . . , tn} then for each i ∈ {0, . . . , n}
and for each j ∈ {0, . . . , n} with est(ti) ≤ lct(tj) we define the task interval

[ti, tj ] := {t ∈ T | est(ti) ≤ est(t) ∧ lct(t) ≤ lct(tj)} .

3 Overload Checking

A necessary condition for the solubility of a non-preemptive one-machine con-
straint problem determined by a non-empty set of tasks T = {t0, . . . , tn} is that
each set of tasks M ⊆ T is not overloaded, i.e. the “slack” lct(M)−est(M)−d(M)
is non-negative:

Proposition 1. A non-preemptive one-machine constraint problem determined
by a set of tasks T is unsolvable, if there is a non-empty set of tasks M ⊆ T
such that lct(M)− est(M) < d(M).

Proof. Let M = {ti0 , . . . , tik
} be a non-empty subset of T = {t0, . . . , tn} such

that lct(M)− est(M) < d(M) holds. Now, we assume that there is a solution of
the non-preemptive one-machine constraint problem determined by T , i.e. there
are s(t0) ∈ St0 , . . . , s(tn) ∈ Stn

such that after an appropriate renaming of the
tasks s(ti−1) + d(ti−1) ≤ s(ti) for i = 1, . . . , n holds, especially

s(tij−1) + d(tij−1) ≤ s(tij
) for j = 1, . . . , k.

Obviously, it follows that s(tik
) ≥ s(ti0) +

∑k−1
j=0 d(tij ). Thus, by definition it

holds lct(tik
) ≥ s(tik

) + d(tik
) ≥ s(ti0) + d(M) ≥ est(M) + d(M) > lct(M)

contradicting lct(tik
) ≤ lct(M). Consequently, the assumption is wrong, i.e. there

is no solution of the considered constraint problem. ��

A naive overload checking of all 2n+1− 1 non-empty subsets of T is not nec-
essary. It is sufficient to consider the at most (n+ 1)2 well-defined task intervals
[ti, tj ] (i, j ∈ {0, . . . , n}):

Proposition 2. Given a non-empty set of tasks M ⊆ {to, . . . , tn} such that
lct(M)− est(M) < d(M). Then, there is a well-defined task interval [ti, tj ] with
i, j ∈ {0, . . . , n} such that lct([ti, tj ])− est([ti, tj ]) < d([ti, tj ]) holds.

Proof. We choose a task ti ∈ M such that est(ti) = est(M) and a task tj ∈
M such that lct(tj) = lct(M) holds. Obviously, M ⊆ [ti, tj ] and d([ti, tj ]) ≥
d(M) holds. By definition, it follows immediately that lct([ti, tj ])−est([ti, tj ]) =
lct(M)− est(M) < d(M) ≤ d([ti, tj ]) holds. ��
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4 Forbidden Regions

Consider a non-preemptive one-machine constraint problem determined by a set
of tasks T . A forbidden region of a task t ∈ T is an integer interval I such that
for any start time s(t) ∈ I it is impossible to schedule another task r ∈ T \ {t}
either before or after the task t: The application of the pruning rule

∀t ∈ T ∀r ∈ T \ {t} : lct(r)− d(r)− d(t) + 1 ≤ est(r) + d(r)− 1
⇒ s(t) �∈ [lct(r)− d(r)− d(t) + 1, est(r) + d(r)− 1] (1)

i.e. S′
t = St \ [lct(r)− d(r)− d(t) + 1, est(r) + d(r)− 1]

determines the forbidden regions of each task t ∈ T locally with respect to
another task r ∈ T \ {t}. The updating of the start times of the task t (cf. S′

t)
will prune the search space of all feasible schedules correctly:

Proposition 3. Given a non-preemptive one-machine constraint problem de-
termined by a set of tasks T and two different tasks t ∈ T , r ∈ T \ {t}. Further,
let lct(r)− d(r)− d(t) + 1 ≤ est(r) + d(r)− 1. Then, there is no solution of the
given constraint problem with s(t) ∈ [lct(r)− d(r)− d(t) + 1, est(r) + d(r)− 1].

Proof. Assuming that there is a solution of the given constraint problem with
s(t) ∈ [lct(r)−d(r)−d(t)+1, est(r)+d(r)−1] then the task r is either scheduled
before the task t or after it. If r is before t it holds s(r) + d(r) ≤ s(t) ≤ est(r) +
d(r)− 1 contradicting s(r) ≥ est(r). If r is after t it holds s(t) + d(t) ≤ s(r) or
equivalently: lct(r)− d(r)− d(t) + 1 ≤ s(t) ≤ s(r)− d(t) contradicting lct(r)−
d(r) ≥ s(r). Thus, the assumption is wrong, i.e. there is no solution of the given
constraint problem with s(t) ∈ [lct(r)− d(r)− d(t) + 1, est(r) + d(r)− 1]. ��

A naive consideration for all (n + 1)n pairs of different tasks r �= t is not
necessary for any pruning. If the intervals from their earliest start times to their
latest completion times minus one are disjoint, the forbidden regions Ft,r :=
[lct(r) − d(r) − d(t) + 1, est(r) + d(r) − 1] and Fr,t := [lct(t) − d(r) − d(r) +
1, est(t)+d(t)−1] (if existing, i.e. i ≤ j in [i, j]) are neither pruning the potential
start times of these two tasks nor the search space:

Lemma 1. Let two tasks r and t be given with

[est(r), lct(r)− 1] ∩ [est(t), lct(t)− 1] = ∅ then Ft,r ∩ St = Fr,t ∩ Sr = ∅ .

Proof. Without any loss of generality, we assume that lct(r) ≤ est(t) holds
(otherwise rename r and t). It follows that est(r) + d(r) ≤ est(t) holds. Thus,
Ft,r ∩ St = ∅ holds. Furthermore, it follows that lct(t) − d(t) ≥ lct(r) holds.
Thus, lct(t)− d(t)− d(r) ≥ lct(r)− d(r) follows, i.e. Fr,t ∩Sr = ∅ holds, too. ��

5 Edge Finding

Considering a non-preemptive one-machine constraint problem determined by
a set of tasks T . Edge finding [1,6] checks whether a task t ∈ T must be after
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respective before all the tasks in a non-empty set of tasks M ⊆ T \ {t}. With
respect to recent publications on constraint-based scheduling [2,3], “. . . the fol-
lowing rules capture the ‘essence’ of the edge finding bounding technique:”

∀t ∈ T ∀M ⊆ T \ {t},M �= ∅ : lct(M)− est(M ∪ {t}) < d(M) + d(t)
⇒ s(t) ≥ max

∅�=N⊆M
(est(N) + d(N)) i.e. (2)

S′
t = St ∩ [ max

∅�=N⊆M
(est(N) + d(N)),+∞)

∀t ∈ T ∀M ⊆ T \ {t},M �= ∅ : lct(M ∪ {t})− est(M) < d(M) + d(t)
⇒ s(t) + d(t) ≤ min

∅�=N⊆M
(lct(N)− d(N)) i.e. (3)

S′
t = St ∩ (−∞, min

∅�=N⊆M
(lct(N)− d(N))− d(t)].

Whenever the pruning rule (2) applies, i.e. there is a task t ∈ T and a non-
empty set of tasks M ⊆ T \ {t} such that lct(M)− est(M ∪ {t}) < d(M) + d(t),
the value

α(t) := max
∅�=N⊆M⊆T\{t}

{est(N) + d(N) | lct(M)− est(M ∪ {t}) < d(M) + d(t)}

is well-defined and the updating S′
t = St∩ [α(t),+∞) will prune the search space

of all feasible schedules correctly:

Proposition 4. Given a non-preemptive one-machine constraint problem de-
termined by a set of tasks T and a task t ∈ T such that α(t) is well-defined.
Then, for all solutions of the given constraint problem it holds s(t) ≥ α(t).

Proof. Assuming that there is a solution of the given problem with s(t) < α(t),
it follows that there are sets of tasks N ′,M ′ with ∅ �= N ′ ⊆ M ′ ⊆ T \ {t} such
that lct(M ′)− est(M ′ ∪ {t}) < d(M ′) + d(t) and α(t) = est(N ′) + d(N ′) holds.

The total order determined by the solution defines an according numbering
on the tasks in M ′; i.e. let M ′ = {r0, . . . , rm} such that s(ri−1)+d(ri−1) ≤ s(ri)
holds for i = 1, . . . ,m. From s(t) < est(N ′) + d(N ′) it follows that there is at
least one task r ∈ N ′ where N ′ = {ri0 , . . . , rik

} ⊆ M ′ which is after the task t,
i.e. s(t) + d(t) ≤ s(r). Otherwise, it would hold that s(rij ) + d(rij ) ≤ s(t) for
j = 0, . . . , k and thus est(N ′)+d(N ′) ≤ s(ri0)+

∑k
j=0 d(rij

) ≤ s(rik
)+d(rik

) ≤
s(t).

From the existence of such a task r ∈ M ′ it follows that s(rm) + d(rm) −
min(s(r0), s(t)) ≥ d(M ′)+d(t) holds and thus lct(M ′)−est(M ′∪{t}) ≥ d(M ′)+
d(t) because by definition we know that lct(M ′) ≥ s(rm) + d(rm) and est(M ′ ∪
{t}) ≤ min(s(r0), s(t)). This contradicts lct(M ′)− est(M ′∪{t}) < d(M ′)+d(t).
Thus the assumption is wrong, i.e. there is no solution with s(t) < α(t). ��

With respect to the task t a naive consideration of all 2n − 1 non-empty
subsets of T \ {t} and all of its subsets for any pruning based on the pruning
rule (2) is not necessary. It is sufficient to consider at most (n + 1)2 well-defined
task intervals [ti, tj ] with ti, tj ∈ [ti, tj ]:
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Theorem 1. Given a non-preemptive one-machine constraint problem deter-
mined by a set of tasks T and a task t ∈ T such that α(t) is well-defined,
i.e. there are two sets of tasks N ′ and M ′ with ∅ �= N ′ ⊆M ′ ⊆ T \{t} such that:

lct(M ′)− est(M ′ ∪ {t}) < d(M ′) + d(t) and α(t) = est(N ′) + d(N ′) .

Now, if there is no overloading (cf. Section 3), i.e. for each non-empty set of
tasks M ⊆ T it holds lct(M)− est(M) ≥ d(M) then there are well-defined task
intervals [v, w] and [u,w] with u, v, w ∈ T such that lct(w) < lct(t), N ′ ⊆ [v, w],
M ′ ⊆ [u,w], [v, w] ⊆ [u,w] ⊆ T \ {t}, and

lct([u,w])− est([u,w] ∪ {t}) < d([u,w]) + d(t) (4)
α(t) = est([v, w]) + d([v, w]) . (5)

Proof. Assuming that lct(t) ≤ lct(M ′) holds, it follows immediately (from non-
overloading) that lct(M ′) − est(M ′ ∪ {t}) = lct(M ′ ∪ {t}) − est(M ′ ∪ {t}) ≥
d(M ′∪{t}) = d(M ′)+d(t), contradicting the precondition. Thus, lct(t) > lct(M ′)
holds.

Let u,w ∈ M ′ such that est(u) = est(M ′) and lct(w) = lct(M ′). Obviously,
it holds lct(w) < lct(t), M ′ ⊆ [u,w], t �∈ [u,w], and est([u,w] ∪ {t}) = est(M ′ ∪
{t}) = min(est(u), est(t)). Additionally, it holds d(M ′) ≤ d([u,w]) because M ′ ⊆
[u,w]. Consequently, the condition (4) holds.

Let v ∈ N ′ such that est(v) = est(N ′). Obviously, it holds N ′ ⊆ [v, w] ⊆
[u,w] and thus d([v, w]) ≥ d(N ′) and est(N ′) + d(N ′) ≤ est([v, w]) + d([v, w]).
Considering the choice of N ′, i.e. est(N ′) + d(N ′) is maximal, it holds that
d(N ′) = d([v, w]). Consequently, the condition (5) holds. ��

Symmetrical statements are also valid for the pruning rule (3). Due to lack
of space, their formulations and proofs are omitted.

Considering [7], two other propagation rules are applicable whenever a task
t is detected to be after/before a task interval M not containing t: These rules
are based on the knowledge that each task r ∈ M must be before/after the
task t, i.e. it must be completed before the latest start time respective begin
after the earliest completion time of the task t. However, a naive application of
these rules for pruning the start times requires the consideration of O(n) tasks
in O(n2) task intervals, resulting in a time complexity of O(n3).

In the following we show that the pruning resulting from the application of
these rules is covered by the pruning performed by the forbidden regions rules
(see Section 4) which has a time complexity of O(n2).

Theorem 2. Given a non-preemptive one-machine constraint problem deter-
mined by a set of tasks T . After applying the pruning rules (2) and (3) let
est(t) := min(St) and lct(t) := max(St) + d(t) for each task t ∈ T . Then, after
the application of the pruning rule (1) it holds:

∀t ∈ T ∀M ⊆ T \ {t},M �= ∅ : lct(M)− est(M ∪ {t}) < d(M) + d(t)
⇒ ∀r ∈M : s(r) + d(r) ≤ lct(t)− d(t) (6)

∀t ∈ T ∀M ⊆ T \ {t},M �= ∅ : lct(M ∪ {t})− est(M) < d(M) + d(t)
⇒ ∀r ∈M : s(r) ≥ est(t) + d(t) (7)
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Proof. Let a task t ∈ T and a non-empty set of tasks M ∈ T \ {t} be given such
that lct(M)− est(M ∪ {t}) < d(M) + d(t) holds. We assume that s(r) + d(r) >
lct(t)−d(t) holds for an arbitrary task r ∈M . Thus, with lct(r) ≥ s(r)+d(r) >
lct(t)− d(t) it holds lct(M) > lct(t)− d(t) because r ∈M .

Further, we assume that est(t) + d(t) ≤ lct(M) holds. By the definition
of est(t), especially after the application of the pruning rule (2), it holds that
est(t) ≥ est(M) + d(M). It follows immediately that est(M) + d(M) + d(t) ≤
est(t)+d(t) ≤ lct(M) holds and thus d(M)+d(t) ≤ lct(M)−est(M) ≤ lct(M)−
est(M∪{t}) because est(M) ≥ est(M∪{t}) holds by definition. This contradicts
the precondition, i.e. est(t) + d(t) > lct(M) holds.

Combining both results, the interval [lct(t)−d(t)−d(r)+1, est(t)+d(t)−1]
is the non-empty forbidden region of the task r with respect to t containing at
least lct(M) (cf. Figure 1). Remembering our assumption, it holds that s(r) ≥
est(t) + d(t) > lct(M). This contradicts lct(M) ≥ lct(r) ≥ s(r) + d(r) ≥ s(r).
Thus the assumption is wrong, i.e. it holds s(r) + d(r) ≤ lct(t) − d(t) for each
task r ∈M (cf. the rule (6)).

Let a task t′ ∈ T and a non-empty set of tasks M ′ ∈ T \ {t′} be given such
that lct(M ′ ∪ {t′})− est(M ′) < d(M ′) + d(t′) holds. Accordingly, it is provable
that s(r′) ≥ est(t′) + d(t′) holds for each task r′ ∈M ′ (cf. the rule (7)). ��

est(t)

est(N) d(N) lct(N)

est(M) lct(M)

est(t) lct(t)d(t)

min. forbidden region 
for any task r in M

d(M)

Fig. 1. After edge finding the forbidden region rule prunes the latest start times of all
tasks r ∈ M sufficiently.

Concluding the presented results, it is sufficient to prune the forbidden re-
gions after edge finding to perform the same pruning as proposed in [7] in O(n2)
time instead of O(n3).

6 Not-First/Not-Last-Detection

We prove the correctness of the not-first/not-last detection rules proposed in [3].
Furthermore, we show that the consideration of generalised task intervals is
sufficient for the exclusion of infeasible start times performed by these rules
which are formulated for arbitrary sets of tasks.

6.1 The Not-First Detection Rule

Consider a non-preemptive one-machine constraint problem determined by a set
of tasks T . The not-first rule checks whether a task t ∈ T cannot be before all
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the tasks in a non-empty set of tasks M ⊆ T \ {t}. If t is not before all these
tasks it must be after at least one task r ∈M :

∀t ∈ T ∀M ⊆ T \ {t},M �= ∅ : lct(M)− est(t) < d(M) + d(t)
⇒ s(t) ≥ min

r∈M
(est(r) + d(r)) i.e. (8)

S′
t = St ∩ [min

r∈M
(est(r) + d(r)),+∞) .

Whenever this rule applies, i.e. there is a task t ∈ T and a non-empty set of
tasks M ⊆ T \ {t} such that lct(M)− est(t) < d(M) + d(t) holds, the value

α(t) := max
∅�=M⊆T\{t}

(min
r∈M

({est(r) + d(r) | lct(M)− est(t) < d(M) + d(t)}))

is well-defined and the updating S′
t = St∩ [α(t),+∞) will prune the search space

of all feasible schedules correctly:

Proposition 5. Given a non-preemptive one-machine constraint problem de-
termined by a set of tasks T and a task t ∈ T such that α(t) is well-defined.
Then, for all solutions of the given constraint problem it holds s(t) ≥ α(t).

Proof. Assuming that there is a solution of the given constraint problem with
s(t) < α(t) it follows that there is a non-empty set of tasks M ′ ⊆ T \ {t} such
that lct(M ′)− est(t) < d(M ′) + d(t) and α(t) = minr∈M ′(est(r) + d(r)) holds.

Furthermore, there is a task r′ ∈M ′ having minimal earliest completion time
which defines α(t):

est(r′) + d(r′) ≤ est(r) + d(r) ∀r ∈M ′ and α(t) = est(r′) + d(r′) .

The total order determined by the solution defines an according numbering on
the tasks in M ′; i.e. let M ′ = {r0, . . . , rm} such that s(ri−1) + d(ri−1) ≤ s(ri)
holds for i = 1, . . . ,m. From s(t) < est(r′) + d(r′) it follows that each task
ri ∈M ′ is after the task t, i.e. s(ri) ≥ s(t) + d(t) for i = 0, . . . ,m. Otherwise, it
would hold that s(t) ≥ s(r)+d(r) for a task r ∈M ′ and thus s(t) ≥ est(r′)+d(r′)
because est(r′) + d(r′) is the earliest completion time of all tasks in M ′.

It follows that s(rm) + d(rm)− s(t) ≥ d(M ′) + d(t) holds and thus lct(M ′)−
est(t) ≥ d(M ′) + d(t). This contradicts lct(M ′) − est(t) < d(M ′) + d(t). Thus
the assumption is wrong, i.e. there is no solution with s(t) < α(t). ��

With respect to the task t a naive consideration of all 2n − 1 non-empty
subsets of T \ {t} and all of its members for any pruning based on the detection
rule (8) is not necessary. It is sufficient to consider at most (n + 1)2 generalised
task intervals ]ti, tj ] with ti, tj ∈ ]ti, tj ]:

Theorem 3. Given a non-preemptive one-machine constraint problem deter-
mined by a set of tasks T and a task t ∈ T such that α(t) is well-defined,
i.e. there is a non-empty set of tasks M ′ ⊆ T \ {t} and a task r′ ∈M ′ such that:

lct(M ′)− est(t) < d(M ′) + d(t)
est(r′) + d(r′) = α(t) = min

r∈M ′
(est(r) + d(r)) .
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Then, there is a task s ∈M ′ such that for the generalised task interval

]r′, s] := {u ∈ T | est(r′) + d(r′) ≤ est(u) + d(u) ∧ lct(u) ≤ lct(s)}

it holds M ′ ⊆ ]r′, s] \ {t} and lct( ]r′, s] \ {t}) − est(t) < d( ]r′, s] \ {t}) + d(t),
i.e. the generalised task interval ]r′, s] triggers the pruning rule (8).

Proof. Choose a task s ∈ M ′ such that lct(s) = lct(M ′) holds and let an arbi-
trary task v ∈ M ′ be given. By the definition of M ′ it holds that v �= t. By the
definition of r′ and the choice of s it holds that est(r′) + d(r′) ≤ est(v) + d(v)
and lct(v) ≤ lct(s), thus v ∈ ]r′, s] \ {t} and consequently M ′ ⊆ ]r′, s] \ {t}.

By definition it holds lct( ]r′, s] \ {t}) = lct(s) = lct(M ′) and thus lct( ]r′, s] \
{t})−est(t) = lct(M ′)−est(t). Further, it holds d(M ′)+d(t) ≤ d(]r′, s]\{t})+d(t)
because M ′ ⊆]r′, s]\{t} holds. Consequently, lct(]r′, s]\{t})−est(t) = lct(M ′)−
est(t) < d(M ′) + d(t) ≤ d( ]r′, s] \ {t}) + d(t) is proven. ��

6.2 The Not-Last Detection Rule

Consider a non-preemptive one-machine constraint problem determined by a set
of tasks T . The not-last rule checks whether a task t ∈ T cannot be after all the
tasks in a non-empty set of tasks M ⊆ T \ {t}. If t is not after all these tasks it
must be before at least one task r ∈M :

∀t ∈ T ∀M ⊆ T \ {t},M �= ∅ : lct(t)− est(M) < d(M) + d(t)
⇒ s(t) + d(t) ≤ max

r∈M
(lct(r)− d(r)) i.e. (9)

S′
t = St ∩ (−∞,max

r∈M
(lct(r)− d(r))− d(t)] .

This rule is symmetrical to the not-first rule (8). Thus, symmetrical statements
are valid, too3.

7 Sweeping over Task Intervals

Sweeping means iterating over chronological ordered events and performing some
event-driven actions. In our case, these events are the boundaries of well-defined
(generalised) task intervals: the chronological ordered earliest start and latest
completion times of a set of tasks T determining a non-preemptive one-machine
constraint problem (cf. Figure 2). During the iteration, information is gathered
in a data structure called the sweep line which is in our case an initial empty
sequence of already considered tasks, i.e. we “swept” over.

Therefore, for each task t ∈ T an event is generated for its actual earliest
start time est(t) := min(St) and another event for its actual latest completion
time lct(t) := max(St)+d(t). Then, all events are sorted in ascending order such
that for any two tasks s, t ∈ T with est(s) = lct(t) it holds that est(s) is before
lct(t) within this order.
3 Again, due to lack of space, their formulations and proofs are omitted.
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7.1 Forbidden Regions while Sweeping

For the detection and pruning of forbidden regions, it is assumed that the tasks
in T are numbered t0, . . . , tn with respect to the ascending order of their earliest
start times, i.e. est(t0) ≤ · · · ≤ est(tn). Then, we are sweeping forward, i.e. in
ascending order, over the sorted events:

If the next event is est(tj) (0 ≤ j ≤ n) then

– append tj at the end of the sweep line.

If the next event is lct(tj) (0 ≤ j ≤ n) then

– iterate forward over the tasks tl0 , . . . , tlk in the sweep line – for i = l0, . . . , lk:
• if i �= j and lct(ti)− d(ti)− d(tj) + 1 ≤ est(ti) + d(ti)− 1 then

let Stj
:= Stj

\ [lct(ti)− d(ti)− d(tj) + 1, est(ti) + d(ti)− 1].
• if i �= j and lct(tj)− d(tj)− d(ti) + 1 ≤ est(tj) + d(tj)− 1 then

let Sti := Sti \ [lct(tj)− d(tj)− d(ti) + 1, est(tj) + d(tj)− 1].
• remove tj from the sweep line.

The algorithm works as follows: During the forward iteration over the sweep
line, all tasks ti �= tj with est(ti) ≤ lct(tj) ≤ lct(ti) are considered. If there is
a forbidden region of tj with respect to ti or vice versa, then the precondition
of the pruning rule (1) is satisfied and the correspondent start times are pruned
accordingly. Considering Lemma 1, the algorithm performs all the pruning pos-
sible with the pruning rule (1). Furthermore, the performed pruning is at least
as strong as the disjunctive propagation proposed in [3].

Given n tasks the time complexity of this algorithm is O(n2): O(n log n) for
sorting the 2n events, iteration over these 2n events and consideration of at most
n tasks for each event. Obviously, the space complexity is O(n).

sweep line

t0

t1

est lct
dur

sum

Fig. 2. Sweeping over task intervals.

7.2 Overload Checking and Edge-Finding while Sweeping

To perform pruning based on the edge finding rule (2) while sweeping over task
intervals, it is assumed that the tasks in T are numbered t0, . . . , tn with respect
to the ascending order of their earliest start times, i.e. est(t0) ≤ · · · ≤ est(tn).
Then, we are sweeping forward, i.e. in ascending order, over the sorted events:
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If the next event is est(tj) (0 ≤ j ≤ n) then

– append tj at the end of the sweep line and set σj := 0.

If the next event is lct(tj) (0 ≤ j ≤ n) then

– if there are k + 1 tasks in the sweep line then let δk+1 := −∞
– iterate backward over the tasks t0, . . . , tk in the sweep line – for i = k, . . . , 0:
• if est(tj) ≥ est(ti) then
∗ let σi := σi + d(tj),
∗ let δi := max(δi+1, est(ti) + σi),
∗ if δi > lct(tj) then there is no feasible schedule; exit.

– iterate forward over the tasks t0, . . . , tk in the sweep line – for i = 0, . . . , k:
• if σi > 0 then let δk+1 := max(δk+1, est(ti) + σi).
• if lct(ti) > lct(tj) then
∗ if est(ti) + σi + d(ti) > lct(tj) then let Sti

:= Sti
∩ [δi,+∞).

∗ if δk+1 + d(ti) > lct(tj) then let Sti
:= Sti

∩ [δ0,+∞).

The algorithm works as follows: During the backward iteration over the sweep
line for i = k, . . . , 0, some approximations of the durations d([ti, tj ]) ≥ σi are
calculated for all non-empty task-intervals [ti, tj ]. However, sweeping over all
talks guarantees that there are always tasks t′j such that lct(t′j) = lct(tj) and
d([ti, tj ]) = d([ti, t′j ]) = σi. Further, δi ≤ max({est(tl) + d[tl, tj ] | [tl, tj ] �= ∅, l ∈
{k, . . . , i}}) are calculated. If δi > lct(tj) holds then there is an overloading:
d[ti, tj ] ≥ δi − est(ti) > lct(tj)− est(ti) holds. The algorithm stops accordingly.

During the forward iteration over the sweep line for i = 0, . . . , k the approx-
imation δk+1 ≤ max({est(tl) + d[tl, tj ] | [tl, tj ] �= ∅, l ∈ {0, . . . , i}}) is calculated
which is further used to check whether the precondition of the pruning rule (2) is
satisfied. Now, if the necessary condition lct(ti) > lct(tj) for an optimal pruning
is satisfied (cf. Theorem 1), two cases are distinguished:

If est(ti) + σi + d(ti) > lct(tj) holds, then lct([ti, tj ]) − est([ti, tj ] ∪ {ti}) ≤
lct(tj)− est(ti) < σi + d(ti) ≤ d[ti, tj ] + d(ti) holds, too. Thus, the precondition
of the rule (2) is satisfied, i.e. the start time is pruned with δi ≤ max({est(tl) +
d[tl, tj ] | ∅ �= [tl, tj ] ⊆ [ti, tj ]}.

If δk+1 + d(ti) > lct(tj) holds, then lct([tl, tj ])− est([tl, tj ]∪ {ti}) ≤ lct(tj)−
est(tl) < δk+1 − est(tl) + d(ti) ≤ d([tl, tj ]) + d(ti) holds for an l ∈ {0, . . . , i}
because est(tl) ≤ est(ti). Furthermore, lct([t0, tj ])−est([t0, tj ]∪{ti}) ≤ lct(tj)−
est(tl) < δk+1− est(tl) + d(ti) ≤ d([tl, tj ]) + d(ti) holds because est(t0) ≤ est(tl)
by construction of the sweep line. Thus, the precondition of the rule (2) is sat-
isfied with respect to the task interval [t0, tj ]), i.e. the start time is pruned with
δ0 ≤ max({est(tl) + d[tl, tj ] | ∅ �= [tl, tj ] ⊆ [t0, tj ]}.

In both cases, sweeping over all talks guarantees that there are always tasks
t′j such that lct(tj) = lct(t′j) and δi = max({est(tl) + d[tl, t′j ] | ∅ �= [tl, t′j ] ⊆
[ti, t′j ]}) = max({est(tl) + d[tl, tj ] | ∅ �= [tl, tj ] ⊆ [ti, tj ]}) holds during the con-
sideration of t′j , i.e. maximal pruning with respect to [ti, tj ] is performed.

The correctness of the given algorithm follows directly from Theorem 1 be-
cause overload checking (see Section 3, especially Proposition 2) is integrated.
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Furthermore, the algorithm performs all the pruning possible with the rule (2):
For each task t ∈ T and each non-empty set of tasks M ⊆ T \ {t} with
est(t) > lct(M) the application of the rule (2) performs no further pruning:
In fact the precondition of the rule is satisfied because lct(M)−est(t) < 0 holds,
however, est(N) + d(N) ≤ lct(N) ≤ lct(M) < est(t) ≤ s(t) holds for each
non-empty set of tasks N ⊆M , if there is no overloading.

The given algorithm is a refinement of the algorithm given in [3]: Only the
necessary tasks (which are in the sweep line) are considered.

Due to lack of space, the analogous algorithm to perform pruning based on
the edge finding rule (3) while sweeping over task intervals is omitted4.

Given n tasks the time complexity of edge finding is O(n2): O(n log n) for
sorting the 2n events, iteration over these 2n events and consideration of at most
n tasks for each event. Obviously, the space complexity is O(n).

7.3 Not-First/Not-Last-Detection while Sweeping

To perform pruning based on the not-first rule (8) while sweeping over task
intervals, it is assumed that the tasks in T are numbered t0, . . . , tn with respect to
the descending order of their latest completion times, i.e. lct(t0) ≥ · · · ≥ lct(tn).
Then, we are sweeping backward, i.e. in descending order, over the sorted events:

if the next event is lct(tj) (0 ≤ j ≤ n) then

– append tj at the end of the sweep line.

if the next event is est(tj) (0 ≤ j ≤ n) then

– if there are k + 1 tasks in the sweep line then let σk+1 := 0 and δk+1 := +∞
– iterate backward over the tasks t0, . . . , tk in the sweep line – for i = k, . . . , 0:
• if est(ti) + d(ti) ≥ est(tj) + d(tj) then let σi := σi+1 + d(ti)

else let σi := σi+1.
• if σi > 0 then let δi := min(δi+1, lct(ti)− σ(ti)) else let δi := δi+1.

– iterate forward over the tasks t0, . . . , tk in the sweep line – for i = 0, . . . , k:
• if est(ti) + d(ti) < est(tj) + d(tj) then
∗ if est(ti) + d(ti) > δ0 then let Sti := Sti ∩ [est(tj) + d(tj),+∞).

• else if either est(ti) + d(ti) > δi+1 or est(ti) > δ0 then
let Sti

:= Sti
∩ [est(tj) + d(tj),+∞).

The algorithm works as follows: During the backward iteration over the sweep
line for i = k, . . . , 0, the durations σi := d( ]tj , ti] \ {ti−1, . . . , t0}) are calculated
for all the tasks ti in the sweep line, i.e. for all well-defined generalised task
intervals ]tj , tk] ⊆ · · · ⊆ ]tj , t0]. Furthermore, for i = k, . . . , 0 the values δi :=
min({lct(tl)−d( ]tj , tl]\{ti−1, . . . , t0}) | ]tj , tl] �= ∅, l ∈ {i, . . . , k}} are calculated.
These values are used to check whether the precondition of the not-first rule is
satisfied during the forward iteration over the sweep line: If est(ti) + d(ti) <
est(tj) + d(tj) holds then ti �∈ ]tj , tl] holds for l = k, . . . , 0. If further est(ti) +
4 The necessary adaptations are left to the interested reader.
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d(ti) > δ0 then est(ti) + d(ti) > lct(tl) − d( ]tj , tl] \ {tl−1, . . . , t0}) respective
lct(tl) − est(ti) < d( ]tj , tl] \ {tl−1, . . . , t0}) + d(ti) holds for the smallest l ∈
{k, . . . , 0} with lct(tl) < lct(tl−1). Thus, d( ]tj , tl] \ {tl−1, . . . , t0}) = d( ]tj , tl]) =
d( ]tj , tl] \ {ti}) is valid.

Otherwise, if est(ti) + d(ti) ≤ est(tj) + d(tj) and est(ti) + d(i) > δi+1 then
est(ti) + d(ti) > lct(tl) − d( ]tj , tl] \ {tl−1, . . . , t0}) respective lct(tl) − est(ti) <
d( ]tj , tl] \ {tl−1, . . . , t0}) + d(ti) holds for the smallest l ∈ {k, . . . , i + 1} with
that lct(tl) < lct(tl−1) ≤ lct(ti), i.e. ti �∈ ]tj , tl]. Thus, d( ]tj , tl]\{tl−1, . . . , t0}) =
d( ]tj , tl]) = d( ]tj , tl] \ {ti}) is valid.

Finally, if est(ti) + d(ti) ≤ est(tj) + d(tj) and est(ti) + d(i) ≤ δi+1 but
est(ti) > δ0 then est(ti) > lct(tl)− d( ]tj , tl] \ {tl−1, . . . , t0}) respective lct(tl)−
est(ti) < d( ]tj , tl] \ {tl−1, . . . , t0}) holds for the smallest l ∈ {i + 2, . . . , 0} with
lct(ti) ≤ lct(tl) < lct(tl−1), i.e. ti ∈ ]tj , tl]. Thus, d( ]tj , tl] \ {tl−1, . . . , t0}) =
d( ]tj , tl]) = d( ]tj , tl] \ {ti}) + d(ti) is valid.

In all three cases the precondition of the rule (8) is satisfied and the start
times of ti are pruned accordingly.

The correctness of the given algorithm follows immediately from Theorem 3.
Furthermore, the algorithm performs all the pruning possible with the rule (8):
For each task t ∈ T and each non-empty set of tasks M ⊆ T \ {t} with lct(t) <
est(M) the pruning rule (8) is not applicable because the precondition of the
rule is not satisfied: it holds est(t) + d(t) ≤ lct(t) < est(M) + d(M).

The given algorithm is a refinement of the algorithm given in [3]: Only the
necessary tasks (which are in the sweep line) are considered.

Due to lack of space, the analogous algorithm to perform pruning based on
the not-last rule (9) is omitted5.

Given n tasks the time complexity of not-first/not-last is O(n2): O(n log n)
for sorting the 2n events, iteration over these 2n events and consideration of at
most n tasks for each event. Obviously, the space complexity is O(n).

8 Experimental Results

For runtime and performance comparisons we implemented the disjunctive con-
straint propagation as recommended in [3] (Section 2.1.2.). This propagation
technique is realized by two nested loops iterating over the tasks. We also imple-
mented the pruning algorithms presented in Section 7 considering Theorem 2. All
implementations are integrated in our own constraint programming engine called
firstcs realized in pure Java6. We applied both – disjunctive constraint propa-
gation and sweeping over task intervals – on some classical job-shop scheduling
benchmark problems from abz5–abz9 [9], ft06–ft10 [8], la01–la40 [10], orb01-
orb10 [1], swv01–20 [12], and yn1–yn4 [13]. We measured the maximal make-
spans where the insolubility of the problems are detected by pruning without any
search (columns 2 and 4). The experiments were performed on a PC Pentium 4

5 Again, the necessary adaptations are left to the interested reader.
6 A detailed presentation of firstcs is in the pipeline.
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with 2.8 GHz running Microsoft Windows XP Professional and Java 1.4.0. Fur-
thermore, for each benchmark we compared the reduction of all domains at the
better approximation of the lower bound of the make-span. This is the greater
value of both maximal make-spans where inconsistencies are detected plus one,
i.e. 854 for the ft10 problem. The results are presented in the following table:

benchmarkdisjunctive constraint propagation sweeping over task intervals domain reduction [%]
problem max. make-span time [msecs.]max. make-spantime [msecs.]disjunctive sweeping

abz5 999 31 1102 62 68.17 71.39
abz6 831 31 854 62 67.39 69.07
abz7 637 47 650 93 54.79 64.82
abz8 565 47 596 78 61.81 69.06
abz9 605 47 616 109 58.55 60.24
ft06 52 31 52 46 62.11 64.00
ft10 795 31 853 78 57.20 64.39
ft20 1163 31 1163 47 18.35 18.55
la01 665 16 665 31 37.36 40.95
la02 654 16 654 31 35.06 35.77
la10 957 31 957 31 23.68 23.73
la20 835 31 849 62 63.32 64.92
la40 1068 31 1169 62 63.73 67.06
orb01 927 31 928 47 55.58 57.12
orb02 732 16 799 62 63.19 63.28
orb10 867 16 898 47 59.14 67.30
swv01 1365 31 1365 46 33.24 33.48
swv02 1474 31 1474 62 31.56 31.84
swv10 1559 32 1568 94 48.39 48.69
swv20 2822 47 2822 78 15.97 16.00
yn1 736 78 771 140 75.12 75.95
yn2 749 79 818 140 70.68 74.08
yn3 738 78 792 93 72.17 75.30
yn4 817 62 870 94 68.18 69.17

These results show that sweeping over task intervals is slower but performs
equal or better than disjunctive propagation with respect to the considered
benchmark set and their lower bounds. For instance, the approximation of the
lower bound of the make-span of the ft10 problem found with disjunctive con-
straint propagation is 796. However, sweeping performs a much better approxi-
mation: 854. Even the consideration of the pruning at the better approximation
(see the last two columns) shows that sweeping yields a better reduction of the
domains of the tasks’ start times. For example, the domains of the start times
of the ft10 problem, that are initial the integer intervals from 0 to 854 minus the
task’s duration are reduced by 64.39%. This is much better than the reduction
of 57.20% resulting from disjunctive propagation.

Finally, the experiments have shown that the application of all presented
pruning rules are not idempotent, i.e. there are problems in the considered bench-
mark set, where the re-application of the rules performs a further pruning of the
potential start times. We therefore iterated over the algorithms presented in
Section 7 until a fix-point was reached.

9 Conclusion

In this paper, a survey of all well-known pruning rules for non-preemptive one-
machine constraint problems are re-considered. These rules are theoretically ex-
amined and new, more efficient algorithms based on sweeping over task intervals
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are deduced from the theoretical results: all pruning is possible with quadratic
time and linear space complexity. Last but not least, the algorithms are suc-
cessfully applied to well-known benchmark problems yielding some encouraging
results. However, the experiments also shows that more pruning requires more
calculations, i.e. run-time. Thus for practical applications, we decided to intro-
duce switches to activate or deactivate the pruning algorithms separately.
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Abstract. In this paper, we address the task of finding the minimal network of
a Temporal Constraint Satisfaction Problem (TCSP). We report the integration of
three approaches to improve the performance of the exponential-time backtrack
search (BT-TCSP) proposed by Dechter et al. [6] for this purpose. The first ap-
proach consists of using a new efficient algorithm (�STP) [21] for solving the
Simple Temporal Problem (STP), an operation that must be executed at each node
expansion during BT-TCSP. The second approach improves BT-TCSP itself by
exploiting the topology of the temporal network. This is accomplished in three
ways: finding and exploiting articulation points (AP), checking the graph for new
cycles (NewCyc), and using a new heuristic for edge ordering (EdgeOrd). The third
approach is a filtering algorithm, �AC, which is used as a preprocessing step to
BT-TCSP, and which significantly reduces the size of the TCSP [22]. In addition
to introducing two new techniques, NewCyc and EdgeOrd, this paper discusses
an extensive evaluation of the merits of the above three approaches. Our experi-
ments on randomly generated problems demonstrate significant improvements in
the number of nodes visited, constraint checks, and CPU time.

1 Background and Motivation

A Simple Temporal Problem (STP) is defined by a graph G = (V,E, I) where V is a
set of vertices i representing time points pi; E is a set of directed edges ei,j representing
constraints between two time points pi and pj ; and I is a set of constraint labels for the
edges, see Fig. 1 (left). A constraint label Ii,j of edge ei,j is an interval [a, b], a, b ∈ R,

1,2e

= {[3, 5], [6, 9], ...}1,2I
1,2e

I = [3, 5]1,2

2

1

2

1

Fig. 1. Left: STP. Right: TCSP.

and denotes a constraint of bounded difference a ≤ (pj − pi)≤ b. Note that Ii,j = [a, b]
⇔ Ij,i = [−b,−a]. A Temporal Constraint Satisfaction Problem (TCSP) is defined by a

similar graph G = (V,E, I), where each edge label Ii,j= {l(1)ij , l
(2)
ij , . . ., l(k)

ij } is a set of
disjoint intervals denoting a disjunction of constraints of bounded differences between i

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 754–768, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Improving Backtrack Search for Solving the TCSP 755

and j, see Fig. 1 (right). We assume that the intervals in a label are disjoint and ordered
in a canonical way. The following is a typical example:

Tom has class at 8:00 a.m. He can either make breakfast for himself (10-15
minutes), or get something to eat from a local store (less than 5 minutes). After
breakfast (5-10 minutes), he goes to school either by car (20-30 minutes) or by
bus (at least 45 minutes). Today, Tom gets up between 7:30 a.m. and 7:40 a.m.

We wish to answer queries such as: “Can Tom arrive at school in time for class?”, “Is it
possible for Tom to take the bus?”, “If Tom wanted to save money by making breakfast
for himself and taking the bus, when should he get up?”, and so on. This temporal
problem can be represented as a temporal graph.

Let p0 be a reference time-point (e.g., 6:00 am), p1 the time point Tom gets up, p2
the time point he starts his breakfast, p3 the time point he finishes it, and p4 the time
point he arrives at the school. Fig. 2 shows the temporal graph of this TCSP.

 [20, 30] [45,       ]

[5, 10]0

2

[0, 120]

1[90, 100]

p
p

p
3

p

p
4

[0, 5] [10, 15]

Fig. 2. A TCSP example.

Dechter [5] described a backtrack search procedure (BT-TCSP) for solving a TCSP,
which is an NP-hard problem. To this end, the TCSP is expressed as a ‘meta’ Constraint
Satisfaction Problem (meta-CSP). The variables of the meta-CSP are the edges ei,j of G.
Their number depends on the density of the temporal graph. The domain of a variable ei,j

is its label, Ii,j= {l(1)ij , l(2)ij , . . ., l(k)
ij }. A partial solution is a set {(eij , l

(h)
ij )} of variable-

value pairs (vvps) that form a consistent STP, which is a global constraint. A complete
solution is a consistent STP in which all the edges of G appear. The minimal network
of the TCSP is the union of all complete solutions. Each node in the tree generated by
BT-TCSP is an STP P ′ that has E′ edges, a subset of the edges of the original network
(E′ ⊆ E), each labeled with a unique interval from its domain. When P ′ is consistent,
the node is expanded by adding to P ′ an edge from (E − E′) labeled with an interval
from its domain. This yields a new STP that is checked again for consistency. Fig. 3
illustrates the tree corresponding to the example of Fig. 2, where edges are considered
in their lexicographical order.

In this paper, we combine the following techniques to improve the performance of
BT-TCSP, and demonstrate their effectiveness on randomly generated problems:

1. Every node in the tree is an STP that needs to be solved before the search can
proceed. Hence, the performance of a TCSP solver depends critically on that of the
STP solver. We compare for the first time the performance of various known STP
solvers, including a new one, )STP, that we proposed in [21]. We show that it
outperforms all others. Note that the performance of the STP solver does not affect
the number of nodes visited in BT-TCSP.
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Fig. 3. The search tree for the example of Fig. 2.

2. One well-known technique to improve the performance of a CSP is to decompose
it into sub-problems using its articulation points [9,11,6], and to solve the sub-
problems independently. We provide for the first time an empirical evaluation of the
effectiveness of this technique.

3. Further exploiting the topology of the temporal network, we show how to avoid
running an STP-solver by checking for the existence of new cycles (NewCyc) in the
network as edges are added along a given path in the tree. In the example of Fig. 3,
the first four consistency checks are unnecessary because there are no cycles in the
respective networks and the corresponding STPs are always consistent.

4. Another way to improve the performance of BT-TCSP is to find a good variable-
ordering heuristic for the search. This corresponds to a sequencing of E, the edges
of G, as they are added along a given path in the tree. A good sequence reduces
unnecessary backtracking and also the number of constraint checks. We introduce
a new ordering heuristic (EdgeOrd) that exploits the adjacency of existing triangles
in the graph to determine the ordering of their edges in the tree.

5. We reduce the domains of the variables of the meta-CSP by using the efficient
filtering algorithm,)AC, described in [22].

The contributions of this paper can be summarized as follows:

1. A new technique for saving constraint checks (NewCyc) and a new ordering heuristic
(EdgeOrd).

2. The combination of the above listed techniques (i.e., an STP-solver, AP, NewCyc,
EdgeOrd, and)AC) to find all the solutions of the TCSP.

3. Empirical evaluation and analysis of the effectiveness of these techniques and their
combinations to demonstrate their significance.

This paper is structured as follows. Section 2 reviews the STP-solvers used. Section 3
discusses the three improvements exploiting the topology of the temporal network. Sec-
tion 4 summarizes a filtering algorithm used as a preprocessing step. Section 5 describes
our experiments and observations. Finally, Section 6 concludes this paper.
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2 Algorithms for Solving the STP

TCSP is NP-hard and is solved with backtrack search. Every node expansion in the
search tree needs to check the consistency of an STP. Thus a good STP solver is critical
for solving the TCSP. We test the following STP solvers: Directed Path Consistency DPC
[7], Partial Path Consistency PPC [2], and Triangle-STP)STP [21].

2.1 Solving the STP Using Directional Path Consistency (DPC)

A basic algorithm to solve an STP is the Floyd-Warshall algorithm (F-W), which com-
putes all-pairs shortest-paths in a distance graph [4]. F-W guarantees consistency, mini-
mality, and decomposability and has a complexity of Θ(n3). Montanari showed thatF-W
is a special case of the Path Consistency (PC) algorithm [15]. Dechter et al. propose the
Directed-Path Consistency (DPC) algorithm [7]. This algorithm is never more costly than
F-W, runs in O(n3), and can determine the consistency of an STP in O(n(W ∗(d))2),
where W ∗(d) is the induced width of the graph along a given ordering d.DPC determines
the consistency of the STP, but does not necessarily yield the minimal and decomposable
network. Since only the consistency of an STP matters during BT-TCSP, we use DPC
instead of F-W because of its lower cost.

2.2 Solving the STP Using Partial Path Consistency (PPC)

Bliek and Sam-Haroud introduced Partial Path-Consistency (PPC), an algorithm appli-
cable to general CSPs (and not restricted to temporal networks) [2]. PPC works on a
triangulated graph, unlike the PC algorithm which requires a complete graph. Further,
Bliek and Sam-Haroud showed that when the constraints are convex, the PC algorithm
(operating on the complete graph) and the PPC algorithm (operating on the triangulated
graph) yield equivalent results: the same labeling for the edges common to both graphs
and the minimality and decomposability of the STP. PPC never requires more constraint
checks than PC, which is advantageous when the (triangulated) graph is sparse. This is
particularly attractive in BT-TCSP, which requires solving an STP at each node.

PPC requires that the graph be triangulated, which may result in new edges being
added to the graph. We triangulate the temporal network using the algorithm devised in
[17]. We represent the new edges as universal constraints in the original constraint graph
and set their label to (−∞,∞).

In the tree generated by BT-TCSP, each node represents an STP whose graph adds
exactly one edge to the graph of the parent of the node (and must be triangulated to be
used by PPC). Assuming a static ordering in the tree, the total number of graphs that
appear along any given complete path is exactly equal to the number of edges in the
original problem. Further, all nodes at a given level of the search tree have the same
graph (only the edge labelings may vary). Thus, under static ordering, the number of
possible graphs considered during the BT-TCSP process is exactly equal to the total
number of edges in the temporal network.

We test two methods for accessing the triangulations of the STPs given a static
variable ordering, Fig. 4. In the first method, Plan A, we pre-compute all the STPs
needed in search, triangulate them, and store their triangulations for use during search.
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All-triangulated-subgraphs (G0, d)
G ← nil
TriSubGs ← nil
E0 ← all edges in G0 using ordering d
For e ∈ E0 do

Push(e, G)
Push(Triangulate(G), TriSubGs)

Return Reverse(TriSubGs)

Induced-subgraphs (Gt, Gi)
Et ← edges of Gt

Ni ← all nodes ∈ Gi

Ei ← nil
Forall ei,j ∈ Et

When i ∈ Ni and j ∈ Ni

Then Push(ei,j , Ei)
Return Ei

Fig. 4. Left: List of triangulated subgraphs given an ordering. Right: Inducing a subgraph from
the triangulated original graph.

In the second method, Plan B, we triangulate the entire network only once. We then
induce from the triangulated graph the subgraph whose vertices form the STP under
consideration. Since the original graph is triangulated, each induced subgraph is also
triangulated.

– Plan A: Given a variable ordering d, the list of the graphs considered during BT-
TCSP is generated as shown in Fig. 4 (left). Push adds an item to a list, Reverse
reverses a list, and Triangulate triangulates a graph. We use the ith element of
TriSubGs list as the triangulated subgraph for the node at the ith level of the tree.

– Plan B: Here we compute the triangulated graph only once and induce from it the
subgraph needed at every step. Fig. 4 (right) shows the algorithm where Gt is the
triangulated graph of the original network and Gi is the subgraph considered at level
1 ≤ i ≤ |E| in the search. Note that this technique may end up considering denser
graphs than necessary, which increases the cost of solving the STP.

Our experimental results show that Plan A always outperforms Plan B in terms of the
number of constraint checks and CPU time. Note that neither of these two plans affects
the number of backtracks (the number of nodes visited) in BT-TCSP.

2.3 �STPAlgorithm Used with TCSP Algorithm

)STP algorithm yields the same minimal network as F-W and PPC. It uses the idea of
triangulation and considers the temporal graph as composed of triangles instead of edges.
Constraint propagation is ‘triangle-based’ rather than ‘edge-based.’ As a finer version
of PPC, )STP can find the minimal network with less cost than F-W and PPC. When
density is low,)STP is even cheaper than DPC, which does not guarantee the minimal
network. Similar to PPC, the pre-requisite condition for)STP is to first triangulate the
temporal graph. We have introduced two plans to obtain triangulated subgraphs in the
previous subsection. We will use Plan A for its lower cost in practice.

When solving a TCSP with search, the STP examined at each node in the search
tree is a subgraph of the original TCSP. Since the STPs we need to check always have
lower density than the original TCSP, the outstanding performance of)STP under low
density makes it even more attractive to use for solving the TCSP.
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3 Exploiting the Topology of the Constraint Network

We propose three topology-based techniques to enhance the performance of search.
While the first technique is applied prior to search to decompose the problem into
independent components, the last two are intertwined with the search process.

3.1 Decomposition Using Articulation Points

The existence of articulation points in the graph of the temporal network can be used to
decompose the network into its biconnected components, which can be solved indepen-
dently. Finding the articulation points can be done in O(|E|) [4]. This method provides
an upper bound to the search effort in the size of the largest biconnected component [11].
It can effectively reduce the number of constraint checks in BT-TCSP and the number of
nodes visited in its tree. A solution to the entire network is a combination of any of the
solutions of the biconnected components. The total number of solutions is: S =

∏n
i=1 si,

where si is the number of solutions for component i. This conjunctive decomposition of
the temporal network [12] allows us to solve the sub-problems in parallel, as in a multi-
agent system. Articulation points usually appear only when the density is low or when
the TCSP has a special topology. Note that even in the absence of articulation points, we
could ‘induce’ such decompositions by removing some edges of the graph, in a manner
similar to the cycle-cutset method of Dechter and Pearl [8]. We have implemented the
mechanism for finding and using existing articulation points but not yet explored how
to induce their existence.

3.2 New Cycle Check

The inconsistency of an STP is detected by the existence of a negative cycle in its distance
graph. When the graph of an STP has no cycles, the STP is necessarily consistent.

Proposition 1. A tree-structured constraint network is necessarily globally consistent.

Note that is a stronger result than using the tree-structure of the constraint graph, which
requires ensuring 2-consistency [10]. In BT-TCSP, nodes are expanded by adding one
edge at a time. When the addition of a new edge does not yield a new cycle in the graph,
a consistent STP remains consistent regardless of the labeling chosen for the new edge.
We exploit this observation to save unnecessary consistency checks.

Corollary 1. When the addition of an edge to a globally consistent STP yields no new
cycles, the resulting STP is globally consistent.

1

2

3

4

5

Fig. 5. Simple constraint graph.
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Fig. 6. Comparison of STP checks using the new-cycle check heuristic.

Consider the example of Fig. 5. Suppose that search adopts the following ordering of the
edges: e1,2, e2,3, e1,3, e3,4, e2,4, and e4,5. Fig. 6 shows the configurations of the STPs
checked for consistency at each level in the search.

Along a given path, as the tree generated by search is being explored in a depth-first
manner, two strategies can be adopted at a given level: (1) Always check the STP for
consistency, and (2) check the consistency of the STP only when a new cycle has been
added to the network. At levels 1 and 2, no cycles exist in the graph, and the STP is
necessarily consistent, Fig. 6. At levels 4 and 6, no new cycles have been added to the
graph of levels 3 and 5 respectively, and the corresponding STPs remain necessarily
consistent regardless of their labeling. As illustrated above, checking for new cycles
saves us unnecessary operations. Further, when the addition of a new edge yields a new
cycle, two biconnected components of the previous level are necessarily merged into a
new biconnected component at the current level. We need to check only the consistency
of the newly formed biconnected component, and we can safely ignore the rest of the
temporal network. This allows us to localize the effort of consistency checking to the
necessary part of the network.

Corollary 2. When the addition of an edge to a globally consistent STP yields a new
cycle, the resulting STP is globally consistent if and only if the newly formed biconnected
component is a consistent STP.

The application of this new heuristic, NewCyc, significantly enhances the performance
of solving the meta-CSP with search. To apply it, we need to identify, between two
levels of the search tree, (1) that a new cycle has been introduced and (2) the two
biconnected components that were merged as a result. This is done by running the
O(|E|) algorithm for finding articulation points at each level, checking whether the
number of biconnected components was reduced between two levels, and identifying
the component to be checked as that containing the new edge.

3.3 Ordering Heuristic for the Meta-CSP

Variable ordering is an effective heuristic for improving the performance of search. In
general, it is governed by the ‘fail first principle.’ The shallower the node pruned in the
tree, the larger the pruned subtree, and the larger the cost savings. For the meta-CSP,
a node is pruned when it corresponds to an inconsistent STP. Thus, the ordering of the
edges (which are the variables of the meta-CSP) affects how quickly an inconsistent STP
is found and also the effectiveness of constraint propagation in the STP.
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As stated in Corollary 1, along a given path, no inconsistency may occur between
one level and the next unless at least one new cycle is formed in the temporal graph.
Consequently, a reasonable ordering heuristic is to first consider those edges that form
triangles with edges existing in the STP. This may allow us to uncover inconsistencies
as early as possible. It also increases the effectiveness of backtracking, because it is
more likely to undo an inconsistency by changing the labeling of an edge in the same
triangle as the one that yielded the inconsistency than that of a random edge. Our new
edge-ordering heuristic orders the edges of the temporal graph in such a way that the
network is expanded triangle by triangle ‘around’ the existing edges. The algorithm,
given in Fig. 7, returns the list of edges in the order to be used by the search. It uses basic
operations on lists. Append concatenates two lists in the order provided. Pop removes
and returns the first item in a list. It requires that each edge be associated with the number

EdgeOrd (G)
E0 ← all edges of G
E ← nil
While E0 do

ei,j ← Edge of E0 appearing in the largest number of triangles in E0

E ← Append (E, {ei,j})
Q ← nil
While ei,j do

Forall k such that ijk is a subgraph of G do
Q ← Append (Q, {ei,k, ej,k}), E ← Append (E, {ei,k, ej,k})
E0 ← E0\ {ei,j , ei,k, ej,k}, ei,j ← Pop(Q)

Return E

Fig. 7. Edge ordering heuristic.

of triangles in which it appears in G, which is bounded by (n−1), where n is the number
of nodes in G (i.e., the time points). We obtain these numbers as a by-product of the
implementation of the triangulation algorithm.

Based on the topology of the network, we choose the edge that participates in the
largest number of triangles and schedule the edges of those triangles for a priority
instantiation during the search. Fig. 8 illustrates the first steps of the application of
the algorithm starting from edge I. First, the triangles in which edge I participates are
explored. From there, we reapply iteratively the same process to each of the edges
explored, i.e. edges II, III, and IV, gradually covering all the edges in the biconnected
component. The modification of the label of any these edges propagates through these
triangles. Thus, inconsistencies and deadends are likely to be more quickly detected
during search, and backtrack remains locally contained.

We can show that this process stops when all the edges in the biconnected component
have been visited. Then EdgeOrd restarts from an unvisited edge from the original graph
and repeats the process until all edges of the original network have been visited. The
function returns a list in which the edges that are in a given biconnected component
appear in sequence. As a result, this ordering heuristic implicitly enables search to
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IV

III

I

II

Fig. 8. Illustrating the exploration of the edges of a graph by the edge ordering heuristic.

examine the biconnected components of the graph in isolation, and thus decompose the
graph automatically. The advantages of this mechanism are:

1. Localized backtracking: Neighboring levels in the search tree are likely to correspond
to edges that form a triangle and thus are topologically related. When it encounters a
deadend, search will backtrack to an edge that is more likely the culprit than another
edge taken randomly from the graph.

2. Automatic decomposition of the graph into its biconnected components: This or-
dering heuristic implicitly guarantees that articulation points in the graph (if any),
are exploited, as if the network was decomposed into its biconnected components
without using the special algorithm necessary for this purpose (see Section 3.1).

We believe, but still need to show, that these features make EdgeOrd a more effective
heuristic than a dynamic variable-ordering heuristic based only on domain size.

4 �Arc-Consistency

When solving a CSP, it is common to run a domain filtering mechanism (such as arc-
consistency, AC) as a preprocessing step to search, and to interleave search with a
lookahead strategy (such as forward-checking, FC [13]). Consistency checking may
reduce the domain of the variables, thus reducing the size of the CSP and the search
effort.

The size of the meta-CSP is exponential in the size of the TCSP. If k is the number
of intervals in the label of an edge in the TCSP, |E| is the number of edges, and n is
the number of nodes where |E| ≤ n(n−1)

2 , the size of the meta-CSP is in O(k|E|). Thus
it is important to explore mechanisms to reduce the size of the meta-CSP by removing
‘inconsistent’ intervals from the edge labels. The only constraint in the meta-CSP is
a global constraint that requires all variable-value pairs of the meta-CSP to form a
consistent STP. Thus, for the meta-CSP, AC is the generalized arc-consistency of this
unique constraint, which is NP-hard [22]. In [22], we introduce the concept of )Arc-
Consistency as an approximation of the generalized arc-consistency of the meta-CSP. We
also introduce an efficient algorithm, )AC, that implements )Arc-Consistency. This
algorithm ensures that for every interval l

(x)
ij in the domain of a meta-CSP variable ei,j

there exist an interval l(y)
ik in the domain of the meta-CSP variable ei,k and an interval l(z)

kj

in the domain of the meta-CSP variable ek,j such that l(x)
ij ∩ (l(y)

ik ◦ l
(z)
kj ) �= ∅, where ∩ is
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interval intersection and ◦ is interval composition [5]. We establish that the complexity
of)AC is O(degree(G) ×|E| × k3) = O(n|E|k3). The value of)AC lies in the data
structures it uses, reminiscent of AC-4 [14] and AC-2001 [1], to save significantly the
number of constraint checks1. We have not yet used )AC in a lookahead strategy, but
plan to do so in the future.

5 Experimental Results

Fig. 9 shows the TCSP solvers we tested, with and without pre-processing by)AC.

AC

AC

STP-TCSP

PPC

DPC

STP

PPC-A-TCSP

PPC-B-TCSP

Triangulation plan

DPC-TCSP

Plan A + EdgeOrd (automatic decomposition) + NewCyc

PPC+AP-B-TCSP

PPC+AP-A-TCSP

Without 

With              or

STP Solver

Preprocessing

Points (AP)
Exploiting Articulation

TCSP Solvers

Cycles (NewCyc)
DPC+AP-TCSP

Checking for New

DPC+AP+NewCyc-TCSP

PPC+AP+NewCyc-A-TCSP

PPC+AP+NewCyc-B-TCSP

Fig. 9. TCSP solvers tested.

The STP solvers we used are DPC, PPC, and)STP all as described in Section 2. The
network is triangulated only prior to PPC and )STP. We combined these STP solvers
with the techniques proposed in Section 3 (i.e., AP, NewCyc, and EdgeOrd). Since we
have not yet implemented a lookahead strategy, all the TCSP solvers tested use a static
variable ordering. By default, and except for)STP-TCSP (where we use EdgeOrd), it
is a lexicographical ordering of the lexicographically sorted tuples naming the edges by
their two endpoints. We compared the performance of the TCSP solvers in terms of the
number of nodes visited NV, constraint checks CC, and CPU time. Since all CPU time
curves have almost exactly the same shapes as the CC curves, they are omitted to save
space but are all available upon request. We carried out our tests on randomly generated,
(guaranteed) connected problems. Our generator, described in [22], guarantees that at
least 80% of these problems have at least one solution. The TCSP instances generated
have the following characteristics: n = 8, k randomly chosen between 1 and 5, density
of the temporal network (d = |E|−|Emin|

|Emax|−|Emin| ) varies in [0.02, 0.1] with a step of 0.02
and in [0.2, 0.9] with a step of 0.1. The number of variables in the meta-CSP, for
which we find all solutions, varies from 7 to 26. The size of the meta-CSP varies on
average between 1.6×105 and 5.2×1015. We averaged the results of over 100 samples.
The goal of our experiments was to study the effects on the various solvers of the
improvements we proposed2 (i.e.,)STP,AP, NewCyc, EdgeOrd,)AC), and to establish
their effectiveness. An extensive comparison of the the performance of the various STP
solvers can be found in [21].

1 We are investigating an improvement that may establish its optimality.
2 Note that although decomposition according to articulation points is a well-known technique,

to the best of our knowledge, it has not been yet assessed experimentally.
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Section 5.1 discusses the number of solutions of the problems tested. Naturally,
all solvers find the same solutions. Section 5.2 shows the effect of our techniques on
the shape of the tree by measuring the number of nodes visited. Section 5.3 shows the
effect of our techniques on the various TCSP solvers (i.e., DPC, PPC, and )STP) on
the number of constraint checks. In Sections 5.2 and 5.3 we also show how filtering the
meta-CSP with )AC dramatically improves the performance of search. The effect of
this preprocessing is clearly visible in comparisons of the scale of the vertical axis of
the charts without and after preprocessing. While the benefits of this filtering algorithm
are discussed in [22], we confirm here that it is useful in every TCSP solver we tested.

5.1 Solutions to the TCSP

When density is low, there are few constraints, any partial solution is likely to be extended
to a global solution, and there are many solutions to the meta-CSP as is seen in Fig. 10.
Indeed, under low density, the temporal network (which is guaranteed connected by

Fig. 10. The number of solutions of the meta-CSP.

construction) has almost no cycles. Thus, almost any combination of intervals in the label
of the edges is a solution to the meta-CSP (see Proposition 1). The number of solutions
quickly drops as density rises. When d=0.9, there are only one or two solutions, one of
which is guaranteed by construction.

5.2 Effects on the Size of the Search Tree

The effects of AP and EdgeOrd on the ‘shape’ of the tree can be assessed by the number
of nodes visited NV by search. They are shown in Fig. 11.

Note that the effects of NewCyc on the various STP solvers (i.e., DPC, PPC, and
)STP) are irrelevant to this measurement. Indeed, they aim at reducing the cost of
checking the consistency of the STP at a node in the tree once search has effectively
reached the node. The ‘∗’ in the legend of Fig. 11 indicates that these results hold for all
STP solvers tested. Fig. 11 shows that AP reduces significantly NV when density is low.
When density is high, almost no articulation point exists, hence AP does not impact NV.
The effect of EdgeOrd is quite dramatic across all values for density because it allows
BT-TCSP to quickly identify dead-ends, as a good ordering heuristic is supposed to do.
Moreover, and thanks to )AC, we start to notice the existence of a phase transition
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Fig. 11. Nodes visited by BT-TCSP. Left: without preprocessing. Right: after filtering with �AC.

Fig. 12. Constraint checks for DPC-TCSP.

that appears around d = 0.1 and becomes increasingly visible as we move toward more
effective TCSP solvers.

5.3 Effects on the Number of Constraints Checks (Same as CPU Time)

Here we discuss the effects of our techniques on the various TCSP solvers: DPC, PPC,
and )STP. We show the benefits of AP and NewCyc on DPC (Fig. 12). We show the
benefits of AP, NewCyc on PPC for both Plan A (Fig. 13) and Plan B (Fig. 14) Finally,
we show the benefits of EdgeOrd and NewCyc under Plan A on)STP (Fig. 15).

Exploiting Articulation Points: For DPC (Fig 12) and PPC (Fig. 13 and 14), AP is again
particularly effective for low density graphs but useless for high density ones.

New Cycle Check: NewCyc dramatically reduces CC across all density values (even
though it has no effect on the number of nodes visited, as stated in Section 5.2).

Triangulation Plans: The triangulation of an STP during search, required for PPC
solver, is carried out according to Plan A (Fig. 13) and Plan B (Fig. 14) of Section 2.2.
By comparing the scale of the vertical axis of these two figures, we conclude that Plan A
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Fig. 13. Constraint checks for PPC-TPCS using Plan A.

Fig. 14. Constraint checks for PPC-TCSP using Plan B.

is superior to Plan B. This can be explained as follows. Plan A triangulates, before search,
all the networks that will be checked for consistency during search (there are exactly
|E| such graphs). Plan B finds the triangulation of an STP at a given node during search
by inducing a subgraph from the triangulated original STP. Hence, Plan B triangulates
the network only once, while Plan A carries out as many triangulation operations as
the number of edges in the network (and levels in the search). However, the induced
subgraphs in Plan B end up much denser than the ones used by Plan A, thus requiring
more effort from PPC, the STP solver. Further, the fact that Plan A yields no denser
graphs than Plan B becomes an even more desirable feature when TCSP is dense. This
explains the significant differences in behavior between Plan A and Plan B under high
density TCSPs.

The Winning Combination: In [21] we compared the performances of F-W, DPC, PPC,
and )STP for solving an STP. We found that DPC, PPC, and )STP consistently out-
perform F-W, the Floyd-Warshall algorithm. Further, )STP consistently outperforms
PPC. Indeed, the former is a finer version of the latter. Importantly, when the density of
the temporal graph is below 0.4,)STP (which guarantees minimality) outperforms DPC
(which does not). For sensibly high densities, we found DPC to be more effective. Since
in the search for solving the meta-CSP we consider subgraphs of the original network,
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Fig. 15. Constraint checks for �STP-TCSP.

the networks at the different levels of the tree are more likely to be sparse than dense.
This shows that even when the TCSP is dense, )STP is a good choice for the STP
solver. Hence, among the techniques tested, the best combination one could use to solve
a TCSP is the one we called)STP-TCSP (Fig. 9). Indeed)STP outperforms all TCSP
solvers including the one based on DPC (compare Fig. 12 and 15).

6 Conclusions

At the beginning of our investigations, the best mechanism known to date for solving
the meta-CSP3 was one based on DPC. We introduced)STP, enhanced it with NewCyc
and EdgeOrd, and showed empirically that it results in dramatic improvements. Indeed,
in comparison to the original DPC, the best combination of our techniques reduces the
number of constraint checks by a factor of 500 (median) and 40,000 (average) and that
of CPU by a factor of 320 (median) and 1,200 (average).

Further, we showed that our techniques uncover the existence of a phase-transition-
like phenomenon for solving the TCSP as the density of the network varies4. This is
most visible with )STP-TCSP. This observation calls for more detailed investigations
in this direction. As directions for future research, we plan to:

1. Exploit)AC in a lookahead strategy for solving the meta-TCSP. And,
2. Evaluate empirically how to improve BT-TCSP with dynamic bundling [3].

Beyond the TCSP, )STP is directly applicable for solving the disjunctive temporal
problem (DTP) with backtrack search [19,16,20], but requires triangulating the STP
incrementally at each node in the tree. We believe that NewCyc is also applicable as
long as the constraint added applies to two points that are not yet constrained in the
current path in the tree. These directions require further investigation and evaluation.

3 Note that we do not include in our comparison algorithms that tighten these intervals in the
labels of the edges. Those may not terminate in the general case and are prohibitively expensive
in the integral case [18].

4 Schwalb and Dechter [18] report a similar phenomenon when varying the number of variables
and the tightness of the constraints.
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Abstract. Constraint problems with incomplete or erroneous data are often sim-
plified to tractable deterministic models, or modified using error correction meth-
ods, with the aim of seeking a solution. However, this can lead us to solve the
wrong problem because of the approximations made. Such an outcome is of little
help to a user who expects the right problem to be tackled and reliable informa-
tion returned. The certainty closure framework we present aims to provide the
user with reliable insight by: (1) enclosing the uncertainty using what is known
for sure about the data, to guarantee that the true problem is contained in the
model so described, (2) deriving a closure, a set of possible solutions to the un-
certain constraint problem. In this paper we first demonstrate the benefits of re-
liable constraint reasoning on two different case studies, and then generalise our
approaches into a formal framework.

1 Motivation

Data uncertainties are inherent in real-world Large Scale Combinatorial Optimisation
problems (LSCOs). The uncertainty can be due to the dynamic and unpredictable nature
of the commercial world, but also due to the information available to those modelling
the problem. In this paper we are concerned with the latter form of uncertainty, which
can arise when the data is not fully known or is even erroneous.

Our work is motivated by practical issues we faced when addressing two real-world
applications: energy trading [10] and network traffic analysis [11]. In both applications
the data information is incomplete or erroneous. In the energy trading problem, the
demand and cost profiles had evolved due to market privatisation; thus the existing sim-
ulation or stochastic models did not help address the actual problem, since no valid data
trends were available. Further, the obsolete data was inconsistent with the constraint
model. In the network traffic analysis problem, the overwhelming amount of informa-
tion forced us to use partial data. Further, due to practical measurement difficulties (e.g.
unrecorded packet loss), the data acquired in the problem was frequently erroneous.

When addressing the energy trading problem, we understood that the customer did
not need nor want a solution to an approximation of his problem, but rather a guarantee
that the model built was reliable, and that from it informed decisions could be made.
Informally, a model and solution are reliable with respect to the state of the world if
they accurately reflect the true problem and its possible solutions. The uncertain data
is represented using what is known for sure about it, without any approximation, and
no potential solutions are excluded. Our goal was to build such a model and to provide

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 769–783, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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effective insight into the set of possible solutions. It became clear that further research
was necessary to extend the potential of constraint programming to meet this goal.

Indeed, in the face of data uncertainty, existing CP approaches come from quite a
different perspective. Models and methods have been proposed to tackle incomplete and
dynamic data by seeking robust solutions to the problem, i.e. solutions that hold under
the maximum number of possible states of the world [8]; or by reasoning upon prob-
abilistic data distributions [5, 21]. These approaches are suited for applications where
data trends are available and realistic, or where robustness is sought after: for example,
dynamic scheduling problems. However, they are less suited for the reliable reasoning
our motivational problems demand.

In this paper we focus on uncertainty due to incomplete or erroneous data. With the
aim of providing the user with reliable insight, our threefold objective is:

1. To create a reliable model of the LSCO, i.e. remove approximations about the data
and enclose the true problem in the model.

2. To compute the full closure, i.e. the set of all possible solutions to the model; or a
subset of it as the user specifies. By possible, we mean a solution that holds for at
least one realisation of the data.

3. To propose two resolution forms to solve uncertain CSPs, and give instances over
specific constraint classes.

In Sect. 2, we first show on two different uncertain LSCOs how we can attain such
an objective in practice. We then generalise the case studies as instances of the certainty
closure framework, in Sect. 3 and 4. The framework, based on the CSP formalism, al-
lows us to reason about uncertain problems by modelling explicitly what is known about
the uncertain data in terms of an uncertain constraint satisfaction problem (UCSP). We
define a UCSP and its full closure. Then, we formally describe two resolution forms
that can derive closures in a practical way, and we give examples of the forms for vari-
ous classes of UCSPs. In Sect. 5 we review and contrast with related work, and finally
we conclude in Sect. 6.

2 Case Studies

Despite the presence of incompleteness or errors, we assume that those modelling the
problem do have some definite knowledge about the data. We use this knowledge to
enclose the uncertainty within an interval or a set of values. We assume further that
knowledge about the data is only refined (e.g. to a subset of the initial possible values).
Since the closure excludes no possible solution, we guarantee that the true solution lies
in the closure whatever the state of the world. However, the closure might comprise of
a large set of solutions. A key issue therefore is how informative it is in practice, and
how complex it is to derive and represent.

In this section we investigate the practical benefits of reliable constraint reasoning
by considering two quite different case studies which address real-world problems. The
first case study is the network traffic analysis problem introduced earlier; the second is
a planning problem in the aerospace domain. In both, an uncertain CSP is presented,
together with a solution operator used to derive the closures. Both problems were mod-
elled and solved using the ECLiPSe CLP platform [13].
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2.1 Network Traffic Analysis

The network traffic analysis problem poses a diagnosis question. The problem is: for a
known network with incomplete and possibly erroneous traffic measurements at routers,
determine guaranteed bounds for each end-to-end traffic flow. The true problem must
be satisfiable, because the network exists and is executing. The complexity lies in ade-
quately handling the data, in guaranteeing that the right problem is being solved, and in
seeking tight bounds. We illustrate our approach on an example fragment of a network.

75

80

D C

90

A B

55

30

180150 40

Fig. 1. Traffic flow in a network fragment

Initial Model. Consider the frag-
ment of a network shown in
Fig. 1. Four nodes, correspond-
ing to routers and designated A–
D, are shown, together with the
bidirectional traffic flow on each
link. Each router makes decisions
on how to direct traffic it receives,
based on a routing algorithm.

The network was initially modelled as a classical CSP, as follows. The variables
correspond to the traffic flow between any two end-points, and their domains are the
non-negative reals: Vij ∈ R+ is the volume of traffic entering the network at node i
and leaving it at node j. The constraints form a linear flow model. They state that the
volume of traffic through each link in each direction is the sum of the traffic entering
the link in that direction. There is also an upper bound (here, 64) on the flows that use
only a single link, such as VAB or VAD.

The traffic volume data is collected by reading router tables at each node over a
given time interval (e.g. 20 minutes). As a result, the data information obtained is erro-
neous. On the link D→C, for example, the flow might measure as 70 at D and as 80 at
C, whereas the true value, equal at both nodes, is presumably somewhere in between. A
common approach therefore is to use the median value.

Another source of uncertainty comes from traffic routing. In 90% of cases, the traffic
is known to be split equally when two paths are of equal cost (from the perspective of
the routing algorithm). In our running example we consider this to be the case for flows
between any two non-consecutive nodes, e.g. from A to C. To simplify the model, it was
first assumed that the traffic is split equally in all such cases. For example, on the link
A→D the traffic flow constraint generated is:

A→D VAD + 0.5VAC + 0.5VBD = 150 (1)

The generated CSP model was unsatisfiable. Thus a data correction procedure (min-
imising deviation on the link traffic volumes) was employed in order to reach a sat-
isfiable, deterministic model. The resulting model was solved using the most suitable
techniques; in this case standard Linear Programming (LP). Maximum and minimum
bounds were derived for each flow variable Vi by solving two linear programs, with
objectives maxVi and min Vi respectively.

Certainty Closure Approach. The first approach amalgamated data uncertainty and con-
straint satisfiability issues. Our aim was to investigate whether the approach was leading
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to the true problem, and hence whether the bounds obtained were reliable. We therefore
removed the approximations made: we represented the uncertain flow measurements
explicitly, and we modelled the splitting of traffic, actually known to be anywhere be-
tween 30–70%. We modelled the problem as an uncertain CSP. For example, on the link
A→D we have the following constraint (in which [a, a] denotes an interval):

A→D VAD + [0.3, 0.7]VAC + [0.3, 0.7]VBD = [135, 160] (2)

Uncertain coefficients thus represent (i) percentage of traffic going through each route,
and (ii) measured flow volume on each link.

Implementation and Solving. We modelled and solved the problem using the ic inter-
val constraint library from the ECLiPSe platform [13]. The library provides a bounded
real datatype: an interval representing an unknown real value; and interval constraint
solvers over numerical constraint systems of arbitrary combinations of integer and
bounded real variables. Using ic, we can model constraints such as (2) simply by:
VAD + 0.3__0.7 VAC + 0.3__0.7 VBD = 135__160.

To calculate the closure, we first tried to solve the uncertain CSP as is, using interval
and quantified CSP methods (e.g. [4, 15]). The methods proved costly or unsuited to
producing tight bounds when compared with the presented method. We then considered
a transformation of the uncertain model to an equivalent certain CSP, in order to benefit
from existing resolution methods for standard CSPs. We defined a transform operator
and proved its correctness using methods from interval linear programming [7]. A full
description of the transformation can be found in [22].

Hereafter, we illustrate the transform in the three variable case for simplicity. Let
V1, V2 and V3 be variables with domains in R+. Then the constraints have the form c:
a1V1+a2V2+a3V3 ≤ a4, where ai = [ai,ai] are real, closed intervals. Each uncertain
flow constraint c can be transformed into a certain constraint τ(c) as follows:

τ(c) =

⎧⎪⎨
⎪⎩

a1V1 + a2V2 + a3V3 ≤ a4 if a3 ≥ 0
a1V1 + a2V2 + a3V3 ≤ a4 if 0 ∈ a3

a1V1 + a2V2 + a3V3 ≤ a4 if a3 < 0
(3)

By convexity, it suffices to operate on the bounds of the data values. The transfor-
mation operates only on linear inequalities. Thus as a prelude to the transform, each
equality constraint is replaced by a pair of inequalities; the decision variables remain
unchanged. For example, the constraint (2) above is transformed to:

(VAD + 0.3VAC + 0.3VBD ≤ 160) ∧ (VAD + 0.3VAC + 0.3VBD ≥ 160) (4)

The resulting model, like the initial model, describes a standard LP problem. Thus
we can solve it using the same method, but now we obtain guaranteed bounds. For
the example above, we obtain the following intervals, which represent the projection
of the closure onto the variable domains: VAC ∈ [0, 150], VAD ∈ [30, 64], VBD ∈
[0, 133], VBA ∈ [0, 20], VDC ∈ [0, 40], VDB ∈ [32, 200], VCA ∈ [0, 133], VCB ∈
[17, 64] (omitting the four single-link flows in the clockwise direction).
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Outcome. Compared to the initial approach to the problem, the certainty closure has
lead to more reliable quantitative results and to improved understanding of the relation-
ship between network topology and traffic flow. For instance, if the closure is empty,
we can infer that the problem is unsatisfiable due to the constraint network and not due
to the data: since no approximation is considered but the data enclosure. Treating the
data adequately reveals the true reasons for unsatisfiability.

2.2 Planning for Aerospace Equipment

The second case study arises in the aerospace domain, where future systems will be ex-
pected to achieve more complex missions with less human intervention [20]. The sys-
tem must continuously operate in a changing, ill-known environment; command com-
plicated equipment; and simultaneously fulfill mission goals and satisfy system require-
ments, e.g. timeliness and safety. On the whole, however, existing aerospace component
design does not integrate uncertainty into autonomous planning functions [20].

Fig. 2 shows an example automaton, representing the behaviour of a thruster sub-
system (a satellite ‘engine’). The goal is to achieve a certain thrust performance in
a given time window, while maintaining the internal temperature within given limits.
Temperature, however, evolves in an ill-known way according to the heating (thrust)
and cooling states. We model the thruster as a non-deterministic finite state automa-
ton (FSA) where temperatures are attached to transitions and states of the automaton.
The data uncertainty concerns the temperature increments, which are subject to both
measurement errors and incomplete information. We associate with the automaton the
following constraint model.

Model. Our constraint model is again an uncertain CSP. Here it is simplified for the
sake of clarity; a full description is found in [23]. The variables are all finite domain
integers. A path in the automaton is specified by transition and timing variables. The
transitions Si ∈ [0, N ] are a sequence of states, where S0 is the initial state. The timings
Ti ∈ N specify the duration spent in each state. We write i ∈ [0, H ] to index the states
on the path, and j ∈ [0, N ] for the value of the jth state: i.e. j = Si. Associated with
the path are edge boolean variables Ej ∈ {0, 1}, which specify whether an edge is ever
taken on the path. Finally, the temperature is modelled with variables Θi ∈ [0, 100], and
the uncertain temperature increments with coefficients Δj ∈ [−100, 100].

Heat

Nominal temp.

Thrust

Alarm

4. Emergency
cooling

Reset

6. Reseting

0. Boost

1.Nominal thrust

3. Warning

2. Heat limit

5. Cool down
T6

T1

T0

T4

Θ ≥ Θcritical

Θ < Θcritical

Fig. 2. Discrete automaton representing the behaviour of a thruster sub-system. The temperature
increments are uncertain in the two thrusting states and in the two cooling states.
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The main constraints are of three types. The first two types are certain. Constraint (5)
states flow conservation on the edge variables. For example, for state 5: E1 +E2 = E6.
Constraint (6) is an example of a constraint modelling a contingent event. Here it is
the event that the temperature exceeds the warning threshold, whereupon if in state 0
we must move to state 3. The final type of constraint describes the evolution of the
temperature, and is thus uncertain. For this automaton, (7) models a linear recursion.∑

k∈e+(j)

Ek =
∑

k∈e−(j)

Ek ∀j ∈ [0, N ] (5)

Θj ≥ Θcritical =⇒ Si+1 = j + 3 ∀j corresponding to state 0 (6)

Θi+1 = Ej × (Θi + TiΔj) ∀i ∈ [0, H ] (7)

Solving. The need to guarantee safe behaviour even in the worst case means that seeking
a single plan, however optimality is measured, is inadequate for our problem1. There-
fore, we chose to compute a covering set closure of feasible plans: a set containing at
least one plan for every feasible realisation. Ideally this set should be of minimal size,
because a smaller set in general is more compact to represent.

Given the heterogeneous nature of the constraints, we found no natural transforma-
tion from the UCSP to an equivalent CSP. We describe in [23] different enumeration
methods to compute a covering set closure. For space reasons, we will outline the most
efficient: enumeration using a decomposition method. The idea is to first derive a fea-
sible plan for a given realisation, and then decompose the remainder of the UCSP by
removing from future consideration all realisations covered by this plan. This decompo-
sition method is based on the conditional decision method for mixed CSPs with full ob-
servability [8]. It uses a technique called sub-domain subproblem extraction [9]. Given
a feasible plan (a solution), the extraction technique decomposes the set of realisations
into a disjunction of two sets: one containing precisely the realisations covered by the
plan. The decomposition approach is tractable because the data is discrete, and each
constraint contains at most one uncertain coefficient.

To give the intuition of the approach, consider the UCSP with just one uncertain
constraint: Y = X + T · Δ, where variables X, Y, T ∈ {0, 100} and Δ ∈ {−50, 50}
is an uncertain coefficient. We can find a covering set closure as follows. For each
possible value δ of Δ, form the realised CSP Pδ , and solve it to find a consistent tuple
for (X, Y, T ). For example, if δ = 20, the realised CSP is Y = X + T · 20, and a
consistent tuple is (10, 70, 3). A naive approach would require us to: (i) generate each
realised CSP Pδ , (ii) seek a solution to each, and (iii) take the union of all the solutions to
derive a covering set closure. The use of decomposition allows us to consider a smaller
number of realised CSPs, by eliminating realisations already covered as we progress.

Outcome. Contrasted to some current practice in aerospace design, the certainty clo-
sure approach enables a new expressiveness in planning and control of low-level com-
ponents, by allowing us to consider the uncertainty. As a result, aerospace component
behaviour can be adapted in a more reliable way to its environment, and so the be-
haviour and performance guarantees sought by aerospace designers can be reinforced.

1 Unless it holds under all realisations, or unless we rely on online plan repair.
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3 Uncertain CSP and Its Closures

The two case studies indicate the practical value and potential benefits of reliable rea-
soning. We now define the certainty closure framework to provide a comprehensive and
generic approach to reliable reasoning under uncertain data. After some preliminaries,
we define the concepts of an uncertain CSP and its closures.

3.1 Preliminaries

We consider the CSP formalism since it has the generality we desire to model LSCO
problems. Recall that a classical CSP is a tuple 〈V , D, C〉, where V is a finite set of
variables, D is the set of corresponding domains, and C = {c1, . . . , cm} is a finite
set of constraints. A solution is a complete consistent value assignment. We represent
a CSP by a conjunction of its constraints

∧
i ci (as opposed to the set of its allowed

tuples). Similarly, we represent a solution or set of solutions to a CSP by a conjunction
of constraints. These constraints should be from a simple class, e.g. unary equalities.

Recall that, with respect to a given computation domain, a constraint domain spec-
ifies the syntax and semantics of permitted constraints. It specifies the constants, func-
tions and constraint relations. The constants we will refer to as coefficients. A coefficient
may be certain (its value is known) or uncertain (value not known). In a classical CSP,
all the coefficients are certain. We assume the user has some knowledge of the possible
values for the coefficients, or bounds on their range. Call the set of possible values of a
coefficient λi its uncertainty set, denoted Ui. We say an uncertain constraint is one in
which some coefficients are uncertain. Note the coefficients in an uncertain constraint
are still constants; merely their exact values are unknown. For example, if the coefficient
λ1 has uncertainty set U1 = {2, 3, 4}, the constraint X > λ1 is uncertain.

Regarding the data, following Ben-Tal and Nemirovski [3], a data realisation is a
fixing of the coefficients to values; in related literature, the terms possible world and
context space are also used. The notation ·̂ will denote certainty. For an uncertain CSP
P , we will say that any certain CSP P̂ , corresponding to a data realisation of the coef-
ficients of P , is a realised CSP, and write P̂ ∈ P . Each uncertain constraint is made
certain by a realisation, thus P̂ = 〈V , D, Ĉ 〉, where Ĉ ∈ C denotes a set of realised
constraints. In the same way, a realisation of a constraint c will be denoted ĉ ∈ c. It
is worth noting that an uncertain constraint can have many realisations, as many as the
size of the Cartesian product of the uncertainty sets involved.

3.2 Uncertain Constraint Satisfaction Problem

A UCSP is a simple extension to a classical CSP with an explicit description of the data:

Definition 1 (UCSP). An uncertain constraint satisfaction problem 〈V , D, Λ, U , C〉 is a
classical CSP 〈V , D, C〉 in which some of the constraints may be uncertain. The finite
set of coefficients is denoted by Λ, and the set of corresponding uncertainty sets by U .

In this paper we assume the coefficients are either all discrete or all continuous.
We also assume the coefficients are independent. The uncertainty set U is then the
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Cartesian product of the uncertainty sets of the coefficients, i.e. the Cartesian product
of their possible values. Other than this, there is no requirement as to the nature of the
data or the representation of U .

Example 1. The constraints for the network traffic analysis problem form a UCSP with
the uncertainty specified by real intervals. Similarly, the constraints for the aerospace
planning problem form a UCSP with the uncertainty specified by finite sets. ��

For a certain CSP P̂ , recall that its complete solution set (or space) is the set of all
solutions to P̂ , which we will denote SP̂ . The extension of this concept to UCSPs will
play a key role. In line with our aim of reliable reasoning, we define the complete solu-
tion set SP of a UCSP P as the set of all solutions supported by at least one realisation.

3.3 Closures of a UCSP

A closure is the resolution to a UCSP model. Depending on his application, the user
might be interested in different types of closures. We distinguish several types of clo-
sures by the properties they hold. For example, a covering set is a set of solutions that
contains at least one solution (not necessarily all solutions) for each realisation. A most
robust solution is a solution that is supported by the greatest number of realisations. The
full closure of a UCSP P is the set of all solutions such that each is supported by at least
one realisation, i.e. the complete solution space SP . A closure in general is a subset of
the complete solution space:

Definition 2 (Closure). Let P be a UCSP 〈V , D, Λ, U , C〉. We say that a subset of the
complete solution space SP is a closure for P . If the closure is the entire solution space,
we say it is the full closure, denoted Cl(P ).

Let s denote a solution satisfying a realised CSP 〈V , D, Ĉ 〉 and 〈s 〉 be a conjunction
of constraints describing s. Then we can write the full closure of P as the constraint:

Cl(P ) =
∨
Ĉ∈C

∨
s satisfies Ĉ

〈s 〉 (�)

Example 2. Let X and Y be temperature variables with integer domains [1, 5] over the
following constraints: c1 : X > λ1, c2 : |X − Y | = λ2, and c3 : Y − λ1 �= 1. Let λ1
and λ2, which represent temperature increments, have uncertainty sets U1 = {2, 3, 4}
and U2 = 2 respectively. The full closure is (X, Y ) ∈ {(3, 1), (3, 5), (4, 2), (5, 3)}; a
covering set closure of minimal size is (X, Y ) ∈ {(3, 1), (5, 3)}, since this solution set
covers all three realisations. ��

The different closures form a lattice under inclusion. A simple hierarchy of closures
is shown in Fig. 3. The full closure is the top, and the empty closure (the empty set) the
bottom. The observation that the different closures fall into a lattice hierarchy allows us
to study how they relate to one another.

For example, consider the UCSP depicted in Fig. 4. The full closure at the top of the
lattice hierarchy is the set � = {a, b, c, d, e}. The most robust solution is b; and there
are two covering sets of minimal cardinality, {a, b} and {b, c}.
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Fig. 3. Simple hierarchy of closures. At the top of the lattice
is the full closure, at the bottom the empty closure. Illustrated
in the middle are a covering set (cs), a minimal covering set
(mcs), and the most robust solution (mrs)

P̂1 a b d

P̂2 a c

P̂3 b e

P̂4 b c

Fig. 4. Realised CSPs (de-
noted P̂1–P̂4) and their fea-
sible solutions (denoted a–e)

4 Resolution Forms

A UCSP adds expressive power and flexibility to a CSP but, depending on the closure
demanded, is harder to solve. Indeed, the complexity of deriving a closure from an
UCSP is in the worst case that of finding at least one solution to a realised CSP, times
the size of the Cartesian product of all the uncertainty sets2. Thus we cannot expect to
derive the full closure, for example, by a generic practical approach, unless we restrict
to a modest number of uncertain coefficients or accept approximation. Rather, we will
look at two resolution forms — two possibilities to move from a UCSP to a closure
— and we will instantiate the resolution forms to specific constraint domains. Where
possible, we would like to exploit existing methods for CSP solving. Each case study
in Sect. 2 is an instances of one of the resolution forms.

The first resolution form is to transform the UCSP: we find and then solve an equiv-
alent certain CSP. The set of all its solutions is the closure to the UCSP. The second
form, enumeration, applies when there are a finite number of realisations. Each realisa-
tion gives rise to a certain CSP, which we solve, and the closure is then the union of all
the solutions to the satisfiable CSPs. We show how this approach relates to methods for
handling disjunctions.

4.1 Comparing Uncertain and Certain Constraints

For both resolution forms, we reason about uncertain constraints in terms of certain
constraints. This section describes the algebraic structure over which we perform the
reasoning. The central idea is that uncertain constraints form a lattice:

Proposition 3 (Constraint lattice). Let C be the set of all constraints, certain and un-
certain, that can arise with respect to a computation domain. With conjunction and
disjunction as meet and join, C is a distributive lattice. With logical implication of con-
straints, C has a natural partial order. Let Ĉ ⊂ C be the subset of certain constraints;
then Ĉ forms a sublattice of C. ��

2 UCSP solving is a highly specialised case of quantifier elimination (i.e. computing an equiva-
lent, quantifier-free version of a first-order formula), which is known as an exceedingly difficult
problem in the general case [15].
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The conjunction, disjunction and implication operations, defined as usual for certain
constraints (i.e. on Ĉ), need to be extended to C. For space reasons, we will only present
the extension of the implication operation. In line with our aim for reliable reasoning,
we say that an assignment satisfies an uncertain constraint if it satisfies at least one
realisation. Hence implication is defined by: if every assignment that holds under some
realisation of c1 also holds under some realisation of c2 (not necessarily the same), then
c1 implies c2.

Recall that any UCSP can be represented by the conjunction of its constraints.
Prop. 3 tells us this conjunction is an element of a suitable constraint lattice. More-
over, since solutions to a CSP can also be represented by a conjunction of constraints,
every closure of a UCSP can likewise be described as an element of C. Depending on
the constraint class, this element may be a disjunction. For example, the full closure
Cl(P ) is described by the constraint (�). A well-chosen representation of a closure is
crucial in any practical application.

As a consequence, firstly and importantly, mappings from C to itself can encapsu-
late the solving process. Reliable solutions in the certainty closure framework will be
guaranteed by properties of the mappings. Secondly, knowledge refinement can be seen
in terms of a subsumed-by order on solutions. Should we learn more about the data, the
revised closure will be subsumed by the old. We say that a constraint c2 subsumes a
constraint c1 if the complete solution set of c2 contains that of c1:

Definition 4 (Order). Recall the subsumed-by partial order on Ĉ, defined by Tsang
[17]3. Let � be an extension of the order to C such that c2 ∈ C subsumes c1 ∈ C,
written c1 � c2, if and only if Cl(c2) subsumes Cl(c1).

This partial order is well-defined because Cl(c) is always a certain constraint. It is
compatible with and extends the natural order that arises from constraint implication.

Along with the lattice C, we need a notion of equivalence to be able to compare the
solution sets of UCSPs (which we seek) and CSPs (which we use to describe a closure).
The subsumed-by relation of Def. 4 provides this notion.

Example 3. Consider constraints c1: X > {2, 3, 4} and ĉ1: X > 2. c1 and ĉ1 are
equivalent under �: they describe the same set of possible values for X . Note that ĉ1 is
precisely the full closure of c1. ��

4.2 Solution Operators

Recall that a classical CSP is solved by propagation and search: one calculates the fixed-
point of some local consistency operators and (if necessary) explores the search space.
Since we wish to consider both discrete and continuous CSPs, we encapsulate fully
solving a CSP by a solution operator. The specific methods used to solve CSPs are not
relevant: the essential point is to guarantee that the inferences are correct.

We define a solution operator as a map from Ĉ to itself that provides the conjunction
of a set of solutions to a CSP P̂ . The conjunction may be empty, indeed must be if P̂ is
inconsistent. A complete solution operator is one that yields the set of all solutions.

3 Intuitively, ĉ1 ∈ Ĉ is subsumed-by ĉ2 ∈ Ĉ if for every satisfying tuple t1 to ĉ1 there exists a
satisfying tuple t2 to ĉ2 such that t1 is a projection of t2.
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Definition 5 (Solution operator). Let P̂ be a certain CSP. Let φ : Ĉ → Ĉ be a map
such that φ(C) describes a set of solutions to the CSP. If φ obeys:

1. Contraction The final state is a subset of the initial state: φ(C) � C
2. Monotone Subsumed-by order respected: C1 � C2 =⇒ φ(C1) � φ(C2)
3. Idempotence Further application of φ yields no further solutions

Then we say that φ is a solution operator4. If further φ(C) describes the set of all solu-
tions to P̂ , we say φ is complete for P̂ .

Example 4. Consider a solution operator for finite domain CSPs. Let φ1 be the map
that corresponds to naive backtrack search. If we insist that the whole search tree be
explored, then φ1 will give all solutions; this makes it complete. ��

Similarly, a solution operator for uncertain CSPs is a map that yields a closure
when given a UCSP P . A complete uncertain solution operator is one that yields the
full closure Cl(P ). Formally, it is defined as a mapping from C to Ĉ:

Definition 6 (Uncertain solution operator). Let P be a UCSP. An uncertain solution
operator is a map ρ : C → Ĉ such that ρ(C) ⊆ Cl(P ). An uncertain solution operator
ρ must obey the contraction, monotone and idempotence properties. If further ρ(C) =
Cl(P ), we say ρ is complete for P .

This definition is stated in a simple way because it builds on the results of Sect. 4.1;
the concept of a solution operator thus transfers naturally to UCSPs. Transformation to
an equivalent certain CSP is one way to build an uncertain solution operator; enumera-
tion is another. In the following sections we describe both resolution forms.

4.3 Solving an Equivalent CSP

The issues related to this approach are twofold: finding a CSP equivalent to the UCSP,
i.e. one whose set of all solutions coincides with the sought closure to the original prob-
lem; and then solving it efficiently. We achieve the first part by seeking a transformation
operator from UCSP to CSP which satisfies certain properties; for the second part we
can use any existing technique appropriate to the computation domain at hand.

Unless she specifies otherwise, by default we suppose the user desires the full clo-
sure, since it excludes no possible solution. For reasons of space, we now concentrate
the discussion to the case. The equivalent CSP is found using a CET:

Definition 7 (Certain Equivalence Transform). A map τ : C → Ĉ is a certain equiv-
alence transform if it: (1) preserves certainty, i.e. τ(ĉ) = ĉ ∀ĉ ∈ Ĉ; (2) is a closure
operator, i.e. is increasing, monotone and idempotent; and (3) distributes over meet.

Preservation of certainty and the closure properties ensure that a certain constraint
system is found. The third property governs the behaviour on conjunctions of con-
straints. Together, the properties which characterise a CET allow us to guarantee cor-
rectness of the uncertain solution operator. In other words, they ensure that the complete

4 Note the equivalents in other theoretical frameworks, e.g. Apt’s reduction functions [1].
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solution set of the equivalent CSP contains the full closure to the original problem. Fur-
ther, if the solution sets are equivalent, then τ is a tight CET. If τ is a non-tight CET,
we obtain only an outer approximation to the closure. There is often value in such an
approximation, if suitably close, since correctness is retained.

Prop. 8 sums up the result: an uncertain solution operator ρ can be defined as a
composition of a tight CET τ and a solution operator φ. The proof is omitted.

Proposition 8 (Closure by transformation). Let P be a UCSP. If τ is a tight CET and
φ is a solution operator complete for τ(C), then ρ = φ ◦ τ is an uncertain solution
operator, complete for P . ��

Example 5. Recall how resolution by transformation was applied to the network traffic
analysis problem. In Sect. 2.1 we gave a simplified form (3) of the CET τ used. It can
be shown to be tight and to have the properties of Def. 7. Our use of LP as the solution
operator φ likewise obeys the properties expected in Def. 5. Hence by Proposition 8,
the certainty closure framework derives an enclosure guaranteed to be reliable. ��

4.4 Enumerating Realised CSPs

Depending on the constraint class, it might not always be possible to find a CET. A sec-
ond means to derive closures is by enumeration. As an essentially exhaustive technique,
enumeration requires operationally there be only finitely-many, M < ∞, realisations
of the data. We generate and solve each realised CSP, forming the closure from the so-
lutions to all the good realisations. Contrasted with transformation, the cost of enumer-
ating and solving M possibly similar CSPs grows with M , which can be exponential in
the size of the UCSP. This said, in a given computation domain, it may be possible to
exploit knowledge of the structure of the realised problems (e.g. [16, Chapter 6]).

Example 6. Consider a UCSP with three variables: X, Y, T ∈ N, and constraints of the
form: Y = X +T ·Δ, where Δ ∈ Z is an uncertain coefficient. In Sect. 2.2 we showed
how to derive by enumeration a covering set closure for this class of UCSPs. ��

4.5 Approximation

In practice it might be desirable to approximate the closure, either because the user
seeks a different representation, or because the complexity of deriving or representing
the closure to the UCSP is too high. Approximation must not impair correctness, i.e.
omit elements of a closure (since it would no longer be a reliable resolution of a UCSP
model), but may forgo tightness, i.e. include non-elements of the closure. We must
balance complexity and closeness of the approximation.

For example, in the network traffic analysis problem, since the user’s interest is to
determine safe operating capacities, he will be satisfied by reliable intervals for the traf-
fic flow variables. Thus we can give a tight outer box approximation. This means we
need not calculate a general convex polytope, which could be computationally expen-
sive, but a simpler shape, an axis-parallel hyperbox.
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4.6 Instances of Resolution Forms

The choice of the resolution form is driven by the constraint class, variable domains
and nature of the uncertain data. We give some instances of the resolution forms for
four classes of UCSPs 〈V , D, Λ, U , C〉. We sketch how existing solution methods can
be leveraged to provide practical algorithms for deriving closures in each class.

Transformation for UCSPs with D = Rm, U = R� and C = {n-ary linear constraints}.
When the variable domains are nonnegative, i.e. D = (R+)m, the UCSP P is an in-
stance of a positive orthant interval linear system. The CET we saw in Sect. 2.1 trans-
forms P into an equivalent linear problem, solvable in polynomial time by LP.

A generalisation in operational research is to semi-definite problems5 with uncertain
data coefficients. In particular, for the class of UCSPs with ellipsoidal data and linear
constraints, the CET transforms the UCSP to an equivalent conic quadratic problem,
solvable in polynomial time by interior point methods [3].

Enumeration for UCSPs with D =Rm, U =R� and C ={n-ary negatable constraints}.
If reals are finitely represented (e.g. as in floating point arithmetic), enumeration is
applicable to continuous data. In the field of interval constraint solving, several works
seek complete, sound solution sets in the presence of universally quantified variables.
At present, the constraints must be able to be negated (which excludes equalities). The
combination of numerical constraint propagation and search can be thought of as a non-
naive enumeration. In [4], an exact method for a single uncertain coefficient is given;
in [15], an approximate method for many coefficients.

Transformation and Enumeration for UCSPs with D = Zm, U = Z� and C = {basic
constraints}. Over finite domains, consider the classes of basic constraints as defined
in [18]. A system of uncertain monotone constraints (e.g. binary inequalities) can be
transformed by a CET similar to (3) in Sect. 2.1. The constraints of the resulting CSP
are monotone, and their complete solution set can be found in linear time by computing
the 2D integer hull [12]. For other types of basic constraints, enumeration is available.

Enumeration for UCSPs with D = Zm, U = Z�. CSP algorithms have been extended
to derive robust solutions for mixed CSPs [8]. These algorithms can be adapted for the
discrete data case of UCSPs over finite domains, as Sect. 2.2 illustrated.

If we consider a UCSP P as a disjunction of its realised CSPs,
∨

i P̂i, then Cl(P )
is a constraint implied by the disjunction. Specifically, in constructive disjunction one
eliminates all domain values not supported in at least one of the disjuncts (i.e. not sup-
ported by at least one realisation) [19]. However, because each P̂i is itself a conjunction,
the constraints in P would have to be of simple form if the algorithms of constructive
disjunction are to be applied. In a similar way, generalised propagation can be thought
of as reasoning on a disjunction to infer a constraint that describes all solutions [14].
Depending, again, on the complexity of the constraints, the topological branch and
bound algorithm [14] can be used to derive the full closure to P by enumeration.

5 That is, optimisation problems with semi-definite constraint matrix.



782 Neil Yorke-Smith and Carmen Gervet

5 Related Work

Existing generic approaches to uncertain data in CP propose models and methods for
robust solutions to the problem. The mixed CSP framework [8] of Fargier et. al., de-
fined for discrete data and variables, seeks a solution that holds under the most possible
realisations of the data6; the stochastic CSP framework [21] of Walsh attaches a prob-
ability distribution to parameters and seeks a solution that maximises expectation. The
purpose of computing robust solutions is to ensure that whatever the real world situa-
tion, the solution holds under most cases. Robust solutions are semantically ideal for
dynamic changes but inadequate for handling data errors where one is certainly not
looking for a solution that satisfies as many erroneous models as possible.

In dealing with unsatisfiability, the potential data issue is not considered in CP. The
approach most widely used consists of reasoning at the constraint level: when the model
is unsatisfiable, the usual interpretation is that the problem is over-constrained. Thus,
most of the research has focused on relaxing constraints and setting priorities (e.g. [6]).

Besides work on quantified constraints over the reals [4], we are not aware of any
work in CP aimed at building reliable solution sets in the presence of uncertain data.
The closest parallels are the meta-solution reasoning of generalised propagation [14]
and constructive disjunction [19].

While our work is defined with CP modelling in mind, in concept it is more closely
related to work in control theory and operational research on continuous problems.
In particular, convex modelling (of which interval analysis over the reals is a simple
instance) is used to obtain a closure guaranteed to contain the true solution [2, 3, 7].

6 Discussion and Future Work

In this paper we have investigated how the successes of CP can be extended to real-
world problems with data uncertainty. We introduced the certainty closure as a generic
framework to allow the modelling of incomplete and erroneous data, both discrete and
continuous. It guarantees reliable reasoning in that, whatever the true value of the data,
the solution to the corresponding realised CSP is contained within the full closure.

A formal framework does not suffice unless its application to real LSCOs is practi-
cal. We derive a reliable solution set by solving standard CSPs, to make use of the most
appropriate specific resolution techniques for the problem at hand. We have demon-
strated the use of the framework by showing the benefits of reliable constraint reasoning
on case studies from network traffic analysis and aerospace planning.

Most models with data uncertainty presently assume independence of the data (e.g.
[8, 21]). For the certainty closure, assuming independence retains correctness but loses
tightness. Future work will include study of how to extend the framework to account for
dependency. We also wish to study new instances of the resolution forms for different

6 If we restrict to finite domains and discrete data, a UCSP 〈V,D, Λ,U , C〉 can be viewed as a
mixed CSP 〈Λ, L,V,D,K, C〉 with U being the complete solution set of the CSP 〈Λ, L,K〉 in-
duced by the parameters. However, as we discussed, the objectives (and algorithms, in general)
of the two frameworks are quite different.
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uncertain constraint classes. In particular we will consider the hybrid case where the
data uncertainty is both discrete and continuous.
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Abstract. We argue that the clp(X) framework is a suitable vehicle
for extending logic programming (LP) with probabilistic reasoning. This
paper presents such a generic framework, clp(pdf(Y)), and proposes two
promising instances. The first provides a seamless integration of Bayesian
Networks, while the second defines distributions over variables and em-
ploys conditional constraints over predicates. The generic methodology
is based on attaching probability distributions over finite domains. We
illustrate computational benefits of this approach by comparing program
performances with a clp(fd) program on a cryptographic problem.

1 Introduction

LP has been an integral part of symbolic problem solving. Its success with crisp
reasoning makes its extension to deal with statistical reasoning an appealing
proposition. To this direction, a number of approaches, which enhance LP with
the ability to reason under uncertainty, have been suggested. These have been
mainly based on Probability Theory. Invariably, a probabilistic measure, or in-
terval, is attached to LP clauses or specialised facts.

Such approaches are either based on Markov process principles [9,4,7] and
subordinate probabilistic reasoning to logical reasoning, or based on Bayesian
principles and subordinate the later form of reasoning to the former. In most
approaches, the use of a single clause to express both kinds of knowledge, leads
to an asymmetric symbiosis. In this paper we present an extension based on
constraint LP (CLP) principles. The use of techniques developed in the clp(X)
framework avoids overloading the clausal representation. In particular, we intro-
duce a generic formalism clp(pfd(Y)) which uses finite domains as basic objects
on which probability distributions can be attached. Furthermore, the store is
extended to hold probabilistic information such as conditional constraints and
probabilistic evidence. Uncertain and crisp reasoning is integrated further, by
considering predicates containing probabilistic variables as statistical events in
an intuitive probability space.

Preliminaries. Our notation follows [5]. Predicates, or atomic formulae, are
of the form r(t, A), r is a predicate name and t with A are first-order terms (t
a constant and A a logical variable). We extend first-order terms to also include
probabilistic variables. Names for logical and probabilistic variables start with

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 784–788, 2003.
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a capital letter. A logic program, P, is a set of definite clauses. A substitution
θ, e.g. {A/a}, is a set of variables to term pairs. Applying θ to a formula will
replace every occurrence of a variable in θ with its associated term, e.g. θr(t, A)
is equivalent to r(t, a). Store S is a set of constraints. We use PS(E) to denote the
probability of E in the context of P and S. Queries are of the form ?E1, E2, . . .
where each Ei is a predicate. ?E1, . . . succeeds iff P ∪ S : E1 ∧ E2 ∧ . . . (:
is the derives operator and ∧ the logical and). Each successful derivation often
provides a substitution θ, denoting that P∪S : θ(E1∧ . . .). We take P∪S : ¬Q
to be equivalent to P ∪ S �: Q. Note that in this case there is no associated θ.

2 Framework and Instances

In clp(pfd(Y)) a probabilistic variable V is introduced to the store with an
associated finite domain and a function operating over subsets of this domain.
The constraint store can, in addition to clp(fd) constraints, hold probabilistic
information about such variables. In a clp(pfd(Y)) store S, probabilistic inference
computes ψS(V ) = {(v1, π1), (v2, π2), . . . , (vn, πn)}. Each vi is an element of V ’s
finite domain and the πis should define a probability distributions, i.e. 0 ≤ πi ≤
1 and

∑
i πi = 1. We let PS(V = vi) be the probability attached to element vi

under store S. By definition PS(V = vi) = πi.
In probability theory an event is a subset of the space of all possible outputs

for an experiment. Treating the assignment of all possible values to probabilistic
variables as our space of possible outcomes, we can view predicates containing
such variables as events in this space. The main intuition is that the probability
assigned to events is proportional to the space covered by combinations leading
to successful derivations.

Let pvars(E) be the vector of probabilistic variables in predicate E, P be the
program defining E and S a constraint store. We use Ei to index the variables in
pvars(E). Also let e be a vector collecting one element from the finite domain
of each variable in pvars(E) and PS(Ei = ei) the probability attached to value
ei of variable Ei as defined above. E/e denotes predicate E with its probabilistic
variables replaced by their respective elements in e. The probability of predicate
E with respect to store S and program P is

PS(E) = P (E | P ∪ S) =
∑
∀e

P∪S�E/e

PS(E/e) =
∑
∀e

P∪S�E/e

∏
i

PS(Ei = ei)

For example, for program P1: lucky( iv, hd). lucky( v, hd). lucky( vi, hd).
and store S1 with variables D and C, with ψS1(D) = {(i, 1/6), (ii, 1/6), (iii, 1/6),
(iv, 1/6), (v, 1/6), (vi, 1/6)} and ψS1(C) = {(hd, 1/2), (tl, 1/2)}. The probability
of a lucky combination is PS1(lucky(D,C)) = 1/4.

The benefit of regarding predicates containing constraint variables as events
is threefold. Firstly the seamless integration of crisp and uncertain reasoning.
Secondly the provision of a time point marking prior to posterior distribution
transitions. Thirdly the algorithmic separation of crisp and uncertain inference,
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leading to accountability of resource usage. In comparison to clp(fd) its proba-
bilistic extension provides additional information about the elements in its do-
main. One important way in which this information can be exploited is during la-
belling. In clp(pfd(Y)) backtrackable predicate label(V, Select, ElPrb, PrbSum)
can be used to instantiate a probabilistic variable (V ) to an element of its finite
domain and ElPrb to the element’s probability. The order is dictated by Select
and PrbSum keeps the sum of the ElPrb encountered so far.

To fully instantiate clp(pfd(Y)) there are three choices to be made: (i) the
kind of probabilistic information provided when declaring a probabilistic vari-
able; (ii) the constraints that can be added to the store and (iii) the algorithms
for probabilistic inference, which use (i) and (ii) to derive probability distribu-
tions for the variables.

clp(pfd(bn)). The framework can be instantiated to a language that in-
troduces Bayesian Networks, BNs [6], reasoning to LP. The importance of such
integration has been highlighted in [8] and [3]. The first work embedded BNs to
abductive horn clauses. In [3] probability distributions are declared over skolem
functions and the emphasis is on machine learning tasks, rather than on proba-
bilistic reasoning. BNs are propositional in that only assignment events (X = x
for variable X and value x) are considered. Also, the relationships between vari-
ables are widely viewed in a causality context. The basic premise of a BN is that
it represents the full probabilistic knowledge of a field. Evidence about particu-
lar cases is weighted against the accumulated knowledge. What is sought, is the
probabilities of events which explain the evidence. Consider the example BN

A

CB

A = y A = n
B = y 0.80 0.10
B = n 0.20 0.90

A = y A = n
C = y 0.60 0.90
C = n 0.40 0.10

Marginal distributions are calculated from the potentials (conditional or joint
distribution tables) and the probability of specific cases based on relevant evi-
dence entered in the network. The existence of evidence about C may result to
changes in the distribution of B and vice versa. The direction in which BNs use
conditional probability is determined by the presence of evidence.

In clp(pfd(bn)) probabilistic variables correspond to nodes in a BN and are
introduced with their full conditional probability tables. A variable V with par-
ent nodes the list of variables Parents and conditional table Table is introduced
to the store with cpt(V, Parents, Table). In the example BN, variables are de-
clared as cpt(A, [], [y, n]), cpt(B, [A], [(y, y, .8), (y, n, .2), (n, y, .1), (n, n, .9)])

and cpt(C, [A], [(y, y, .6), (y, n, .4), (n, y, .9), (n, n, .1)])
BN algorithms weight currently available evidence, when computing the poste-
rior distributions of variables. In the example, evidence might suggest that the
distribution of A is {(y, .8), (n, .2)}. Using this and P (C|A) we can derive P (C).
In this case P (C) = {(y, .66), (n, .34)}. In clp(pfd(bn)) evidence are stored in the
constraint store. The example evidence is added by evidence(A, [(y, .8), (n, .2)]).
The important factor, in using the store for holding current evidence, is that
the introduction of evidence to the store provides a convenient time transition
point. The inference algorithms employed in clp(pfd(bn)) are those of probabil-
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ity or belief updating in BNs (see [6]). In BNs the most important predicate is
= and inference computes probability of specific values. In our framework this
is equivalent to finding the distribution of a probabilistic variable.

clp(pfd(c)). Another instantiation for clp(pfd(Y)) is to clp(pfd(c)) (see [1]
for more details). This uses functions over domains to designate basic probabilis-
tic behaviour and conditional constraints for dividing the constraint store into
probabilistic fragments. We term this instantiation clp(pfd(c)) in recognition of
the important role the conditional constraint plays. A probabilistic variable has
two parts: (i) a finite domain, which at each stage holds the collection of pos-
sible values that can be assigned to the variable and (ii) a probability assigning
function which is used to assign probabilities to the elements of the domain. The
probability function declares the basic statistical behaviour of the variable.

Let Fd be a list of distinct objects representing a finite domain, φV be a
probability function defined over all sublists of Fd and Args a list of ground
terms. Probabilistic variables are declared with V ∼ φV (Fd,Args). For a
subset T of Fd (T ⊆ Fd) the result of φV (T,Args) is a list of pairs, each pair
coupling an element of T to its associated probability. Each element of T should
be given a value and the sum of all given values should be one. Args parameterise
aspects of φV and if it is the empty list we shorten φV (Set, []) to φV (Set). We
will use this shorter form when φV is applied, since Args only play a role in
variable declarations. We will also drop the subscript from φV when the context
clearly identifies a particular V . In relation to the ψ notation, the following holds
for empty store ∅: φV (Fd) = ψ∅(V ).

For example, Heat ∼ finite geometric([l,m, h], 2) declares a finite geomet-
ric distribution for variable Heat. In this case the deterioration factor is 2. The
distribution in the absence of other information is ψ∅(Heat) = {(l, 4/7)(m, 2/7),
(h, 1/7)}. A distinct feature of clp(pfd(c)) is that the two constituents of a prob-
abilistic variable are kept separate. As a result, the variable is still capable
of participating in finite domain constraints, thus it is orthogonal to clp(fd)
while sharing information, and also probabilistic functions capture statistical
behaviour of variables in a manner which is, to a large extent, independent of
specific domain values. Adding clp(fd) constraint Heat �= m to the store, changes
the distribution of Heat to {(l, 2/3), (h, 1/3)}.

The probabilistic information added to the store is the conditional constraint.
Its main intuition is that of defining probability subspaces in which we know that
certain events hold. Conditional C is of the form: D1 : π1⊕ . . .⊕Dm : πm Q.
Each Di is a predicate and all should share a single probabilistic variable V . Q
is a predicate not containing V , and 0 ≤ πi ≤ 1,

∑
i πi = 1. V ’s distribution is

altered as a result of C being added to the store, see [1]. The distribution of V ac-
cording to conditional C, P{C}(V = v), is computed by considering all subspaces
(1 ≤ j ≤ i) and by applying φV within each subspace. clp(pfd(c)) instantiates the
proposed framework as follows. Probabilistic information at declaration time is
given by φV , which describes the probabilistic behaviour of the variable after all
finite domain pruning. Conditionals add probabilistic information to the store.
This information partitions the space to weighted subspaces within which differ-
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Fig. 1. clp(pfd(c)) versus clp(fd) timings comparison.

ent events hold. Inference uses these partitions and the application of functions
to compute updated probability distributions for the conditioned variables.

3 Comparative Example

To illustrate benefits from the additional information in clp(pfd(Y)) when com-
pared to clp(fd) we juxtapose performances of respective programs for a simple
Caesar encoding scheme. The two programs are identical bar: (i) distribution
over domains in clp(pfd(c)) based on the formula |freq(Ei)−freq(Di)|∑

k |freq(Ei)−freq(Dk)| for Ei

an encoded letter, Di a dictionary letter and freq() their respective frequencies
and (ii) labelling in clp(pfd(c)) uses a best-first algorithm. Execution times for
ten random sets at points in the range of 10-100 words drawn from a dictionary
are shown in Fig. 1. Both programs run on the SICStus engine. One was written
in clp(fd) [2] and one in a meta-interpreted implementation of clp(pfd(c)) (see
http://www.cs.york.ac.uk/˜nicos/sware/pfds/).
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Abstract. Constraint propagation is widely recognized as a fundamental rea-
soning component in constraint programming. In the last decade, the concept of
“global constraint” has attracted significant attention, since it is critical to achieve
reasonable pruning, and efficiency, in many applications. However, even if the
name “global constraint” carries a strong intuition in itself, there is no formal def-
inition of this important concept. This paper proposes various notions of globality
in order to understand this concept more thoroughly.

1 Introduction

Constraint technology is widely used to solve a large scope of combinatorial problems
arising in various application fields such as resource allocation, hardware verification,
diagnosis, scheduling, etc. Progresses in constraint technology usually come from two
close subareas traditionally named ‘constraint reasoning’ (or CSP), and ‘constraint pro-
gramming’(or CP). Thanks to common events such as the CP conference series, these two
communities became closer and closer, and their border became more fuzzy. Neverthe-
less, scientists from these two subfields often have different cultural origins, vocabulary,
and ways of approaching theoretical and practical issues. An example that illustrates
such differences appeared during the CP’02 conference, held at Ithaca NY. CP’02 fea-
tured a tutorial, whose title was “global constraints”. This tutorial gave rise to a heated
debate, not because of its content, but rather because nobody seemed to agree on the
definition of “global constraint”.

This paper tries to characterize the concept of “global constraint” formally. We
understand that proposing a definition for a concept already widely used is difficult and
inevitably controversial. We also understand that other definitions may be proposed and
that our definitions represent our own biases. However, we believe that this endeavour can
only increase our understanding of global constraints and thus benefits the community
as a whole. In particular, we believe that our definitions, which build on well-known
concepts, isolate some fundamental intuitions in the folklore of the communities, and
are consistent with the “practice of constraint programming”. In the worst case, these
definitions will be a first step toward a fundamental understanding of this important
concept.

� [1] contains a long version of this short paper.
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The starting point of this paper is the recognition that a constraint C is often called
“global” when “processing” C as a whole gives better results than “processing” any con-
junction of constraints that is “semantically equivalent” to C. Thus, the concept of global-
ity goes beyond “semantic equivalence” and seems to include operational and algorithmic
concepts. Consider the well-known example of the alldiff constraint: alldiff(x1, . . . , xk)
holds when all the xi’s are given different values. This constraint can easily be repre-
sented by a clique of binary inequalities on the xi’s. Hence, it may not be considered
“global”, since it can be decomposed into more primitive constraints. However, perform-
ing arc consistency on the clique does not usually prune as many values as performing
arc consistency directly on the alldiff constraint. Hence, the alldiff constraint can be
considered “global” wrt the filtering property, which is clearly one important criterion
for “globality” in constraint programming. More generally, this paper distinguishes be-
tween semantic globality (expressiveness), operational globality (quality of filtering),
and algorithmic globality (computational efficiency of the filtering).

The paper also addresses the issue of globality both from a CSP and CP standpoint.
The CSP standpoint does not restrict the constraint language and gives considerable
freedom in the choice of domains and constraints. But the CSP standpoint must harness
this freedom and imposes a natural, but strong, restriction on the nature of globality.
As a result, the CSP standpoint is best seen as a theory of globality for conjunctive
constraints. The CP standpoint takes the dual approach and restricts the language under
consideration. As a consequence, it makes it possible to encompass complex rewritings
in the definition of globality.

2 Background

Constraints are defined in a slightly unusual way in order to make them independent
from the constraint network in which they appear.

Definition 1 (Constraint). A constraint (or relation) R of arity k is a set of sequences
of k components. A component can be any entity/object in the world.

Example 1. The constraint alldiff of arity k is defined by the set of all the sequences of
k different components. If k = 3, alldiff is {(2, 3, 1), (cow, car, cup), . . .}.

We now define the notion of constraint instance, which is traditionally called “constraint”
in the CSP community. It links a constraint with its variables and their domains.

Definition 2 (Constraint Instance). An instance c of a constraint R is a triple (Xc, Dc,
Rc), where Xc is an ordered set (x1, . . . , x|Xc|) of variables, Dc = (Dc(x1), . . . ,
Dc(x|Xc|)) is an ordered set representing the domains of these variables. The set R ∩
Dc(x1)× · · · ×Dc(x|Xc|) is denoted by sol(c).

Example 2. The instance of the constraint alldiff posted on the three variables x1, x2,
and x3 of respective domains {a, b}, {a, b}, and {a, b, c, d} allows the solutions (a, b, c),
(a, b, d), (b, a, c), and (b, a, d) for the variables x1, x2, x3.
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Definition 3 (Constraint Network). A finite constraint network N is defined as a
triplet (XN , DN , CN ) where XN = {x1, . . . , xn} is a set of n variables, DN =
{DN (x1), . . . , DN (xn)} is a set of finite domains, and CN is a set of constraint in-
stances such that ∀ c ∈ CN : Xc ⊆ XN ,∀x ∈ Xc : Dc(x) = DN (x). Finally, the set
of constraint networks is denoted by N .

We now introduce the concept of constraint decomposition, which is fundamental in
characterizing global constraints.

Definition 4 (Constraint Decomposition). A constraint network N is a decomposition
of a constraint instance c if XN = Xc, DN = Dc, ∀e ∈ C, |Xe| < |Xc|, Re = Rc[Xe],
and sol(N) = sol(c).

Example 3. Let N = (X,D,C) be the network defined by X = {x1, x2, x3}, where
D(x1) = {a, b}, D(x2) = {a, b}, D(x3) = {a, b, c, d}, and C = {c12, c13, c23}, where
c12, c13, c23 are the binary inequality �= posted on (x1, x2), (x1, x3), and (x2, x3). N is
a decomposition of the alldiff instance posted on (x1, x2, x3) in Example 2.

A constraint decomposition scheme is simply a function which decomposes the instances
of a constraint. This concept simplifies subsequent definitions.

Definition 5 (Constraint Decomposition Scheme). Let R be a constraint and let C
be the set of instances of R. A constraint decomposition scheme for R is a function
δ : C → N such that δ(c) is a constraint decomposition of c.

3 Global Constraints

We now propose three notions of globality: semantic globality, operational globality, and
algorithmic globality. Semantic globality is the stronger notion (i.e., it implies the two
others) but it does not completely capture what is generally understood as “global” (at
least, in our opinion). Operational globality, which considers the quality of the filtering,
implies algorithmic globality.

Definition 6 (Semantic Globality). A constraint R is semantically global if there exists
no constraint decomposition scheme for R.

Operational globality considers both a constraint R and a consistency notion Φ. The
constraint is said to be “global” if there exists no decomposition scheme for which the
consistency notion removes as many local inconsistencies as on the original constraint.
This concept is important because it compares the pruning of the constraint and its
decompositions wrt a consistency notion. (In the following, Φ(N) denotes the closure
of the network N wrt to Φ.)

Definition 7 (Operational Globality). A constraint R is operationally Φ-global if there
exists no constraint decomposition scheme δ for R such that DΦ(c) = DΦ(δ(c)) for all
instances c of R.
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Example 4. The alldiff constraint is operationallyAC-global. Examples 2 and 3 show an
instance of a constraint for which there exists no decomposition on which arc consistency
performs the same amount of filtering.

When a constraint R is not operationally global wrt a local consistency Φ, this
means that, from a pruning standpoint, there is no advantage in using R in a problem
formulation on which Φ is the consistency notion used. However, it can be argued that it is
still beneficial to consider R wrt Φ if this provides complexity advantages. This justifies
algorithmic globality (see [1]). We present its definition in the section on languages,
where it is easier to introduce.

4 Constraint Programming Languages

Constraint languages raise interesting issues because they have a fixed vocabulary for
expressing constraints and domains. In addition, constraint languages have specific en-
codings of constraints and domains, which makes it easier to discuss some complexity
notions which are necessarily more abstract in the CSP community.

Definition 8 (Constraint Language). A constraint language L is a triplet (LC , LD, Lε)
where LC is the set of constraints supported in L, LD is the set of domains supported
in L, and Lε is an encoding scheme which specifies how constraints and domains are
represented in L. For simplicity, we often use L(R) and L(d) to denote Lε(R) and Lε(d).
We also use ‖L(R)‖ and ‖L(d)‖ to represent the size of the encoding of a constraint R
and of a domain d in L.

We now define which constraint networks can be expressed in a language. The extension
of decomposition and decomposition schemes definitions follow immediately.

Definition 9 (Language Embedding). Let L be a constraint language and N be a
constraint network. N is embedded in L if ∀ d ∈ DN : d ∈ LD and ∀ c ∈ CN : Rc ∈
LC . If N is embedded in L, L(N) denotes its encoding in L. The size of the encoding
L(N), denoted by ‖L(N)‖, is defined as∑

c∈CN

‖L(Rc)‖ +
∑

x∈XN

‖L(DN (x))‖.

Definition 10 (Language Decomposition). Let L be a constraint language, c be a
constraint instance, and N be a network. N is a L-decomposition of c if XN = Xc,
DN = Dc, c �∈ CN , sol(N) = sol(c), and N is embedded in L.

4.1 Globality in Languages

We are now in position to define globality in the context of constraint languages. The first
two notions, semantic globality and operational globality, are direct generalizations of
the CSP case.Algorithmic globality is defined in terms of the size of the encodings, which
captures the fact that domains and constraints are encoded, sometimes very efficiently,
in constraint languages.
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Definition 11 (Algorithmic Globality in a Language). Assume that a consistency no-
tion Φ can be enforced in time O(f(‖L(c)‖)) and space O(g(‖L(c)‖)) on all instances c
of a constraint R. R is algorithmically Φ-global wrt L if there exists no L-decomposition
scheme δ for R such that, for all instances c of R,

1. DΦ(c) = DΦ(δ(c));
2. Φ can be enforced in time O(f(‖L(c)‖)) and space O(g(‖L(c)‖)) on L(δ(c));
3. ‖L(δ(c))‖ is O(g(‖L(c)‖)).

The first two conditions are natural: the decomposition should preserve the pruning
(1) and the complexity bounds (2). The third condition imposes a bound on the space
complexity on the decompositions. This condition is critical to reflect the actual space
complexity of the decomposition, since the consistency algorithm receives δ(c) as an
input.

4.2 Strong Globality

Constraint programmers, or implementations of constraint programming systems, often
rewrite complex constraints in terms of simpler ones by introducing new variables. This
section generalizes the concepts to accommodate this important technique.

Definition 12 (Constraint Rewriting). A constraint network N is a rewriting of a
constraint instance c if Xc ⊆ XN , DN [Xc] = Dc, c �∈ CN , and sol(N)[Xc] = sol(c).

Example 5. Let y = 4 · x be a constraint instance on the variables x and y having
domains Dx = Dy = 1..10. The constraint network involving x, y, and the additional
variable z with Dz = 1..10, on which we post the constraint instances z = 2 · x and
y = 2 · z is a rewriting of y = 4 · x.

A language rewriting (L-rewriting) is simply a constraint rewriting which can be em-
bedded in the language. The notions of strong globality are direct generalizations of the
notions of globality, where L-decompositions are replaced by L-rewritings.

5 Illustrations

Example 6 (The Sum Constraint). Consider the language L containing constraints of
the form x1 + x2 = y and the (n + 1)-ary sum constraint

∑
i∈1..n xi = y, n > 2.

sum does not allow any decomposition scheme. There is no way to represent it with
smaller arity constraints on the same variables. Hence it is semantically global (and
thus operationally and algorithmically global). But sum is not strongly semantically
global wrt L. Indeed, it can be rewritten by adding n − 2 additional variables zj that
represent the sum of the j first xi’s in the following way: x1 + x2 = z2, z2 + x3 =
z3, . . . , zn−1 + xn = y. It is not strongly operationally AC-global wrt L, since arc
consistency on the rewriting removes the same values in the original variable domains
as the original constraint. But the sum constraint is strongly algorithmically AC-global
wrt L. Indeed, on the one hand, in order to enforce arc consistency on the rewriting,
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the domain sizes on the intermediary variables may become exponential in the sizes
of the original domains (either in the rewriting or during the consistency algorithm).
(If Dx1 = {0, 10, 20, . . . , 90} and Dx2 = {0, 1, 2, . . . , 9}, x1 + x2 takes values in
{0, 1, . . . , 99}.) On the other hand, there exists an AC algorithm which runs on sum in
linear space wrt the initial domains and in time O(sn), where s is the size of the largest
domain. Interestingly, the sum constraint is not strongly algorithmically BC-global,
since only intervals are needed to compute bound consistency.
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Abstract. We explore to what extent and how efficiently constraint pro-
gramming can be used in the context of automated reasoning for modal
logics. We encode modal satisfiability problems as constraint satisfaction
problems with non-boolean domains, together with suitable constraints.
Experiments show that the approach is very promising.

1 Introduction

In various branches of artificial intelligence, modal and modal-like formalisms
are used for reasoning about relational structures [3], such as transition systems.
Recently, there have been increased efforts to develop algorithms for solving the
satisfiability problem for modal logic. Some implementations use special purpose
algorithms for modal logic, such as DLP [11], FaCT [7], RACER [5], ∗SAT [12],
while others exploit existing tools or provers for either first-order (MSPASS [9])
or propositional logic (KSAT [4], KBDD [10]) through some encoding.

We follow the latter approach: we model and solve the modal satisfiabil-
ity problem via Constraint Programming (CP). We build on the fact that a
modal formula is satisfiable in the basic logic K only if it is so on a tree-like
model [2,1]. This property allows us to stratify K-satisfiability problems into
“layers” of propositional satisfiability problems. In [1] this layering was encoded
into a translation from modal into first-order logic. We build on the schema for
KSAT [4], following the intuitions in [1]. We encode modal input formula into lay-
ers of finite constraint satisfaction problems (CSPs) with additional non-Boolean
values; we show that any complete constraint solver for finite CSPs can be used
to solve them (and, hence, to determine modal satisfiability).

Our aim in this paper is to explore to what extent and how efficiently CP
can be used in the context of automated reasoning for modal logics. To the best
of our knowledge, our work constitutes the first attempt in this direction. The
novelty of the paper is two-fold: first, encoding modal satisfiability problems
as CSPs with enlarged domains; and second, solving such CSPs by means of
suitable propagation algorithms in a CP environment.
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We turn to modal logic matters in Section 2. In Section 3 we report on an
experimental assessment and comparison. We conclude in Section 4.

2 Modal Logic and CSPs

Modal Logic. We focus on the basic mono-modal logic K, even though our
results can easily be generalized to a multi-modal version. Let P be a finite set
of propositional variables. K-formulas are produced by the rule φ ::= p | ¬φ |
φ ∧ φ | φ ∨ φ | �φ, where p ∈ P . A formula is boxed if it is of the form �φ.

A modal model is a triple M = (W,R, V ) where W is a non-empty set (the
model’s domain), R is a binary relation on W , and V : P → 2W is a valuation,
assigning subsets of W to proposition letters. Satisfaction of a formula φ at a
state w in a model M (M, w |= φ) is defined by induction on φ: M, w |= p if
w ∈ V (p);M, w |= ¬φ iffM, w �|= φ;M, w |= φ∧ψ iffM, w |= φ andM, w |= ψ;
andM, w |= �φ iff for all v such that Rwv,M, v |= φ. A formula φ is satisfiable
if for some modelM and state w inM we have thatM, w |= φ. K-satisfiability
is the following problem: given a mono-modal formula φ, is φ satisfiable?

A tree model is a model M = (W,R, V ) such that (W,R) is a tree. K-
formulas satisfy the tree model property : they are satisfiable only if they are
satisfiable at the root of a tree model; see [3, Chapter 2] for details.

Let ψ be a modal formula on P . A ψ subformula of the form p ∈ P or �ψ′

is a layer -0 variable (of ψ). A formula φ is a layer-0 proposition (of ψ) iff it is
a layer-0 variable of ψ or its negation, the conjunction or disjunction of layer-0
propositions of ψ. In general, a layer-(i + 1) variable θ (of ψ) is a subformula of
ψ of the form θ′ where �θ′ is a layer-i proposition. A layer-(i + 1) proposition
(of ψ) is a layer-(i+1) variable of ψ or its negation, a conjunction or disjunction
of layer-(i + 1) propositions of ψ.

μ := ∅;
Propositions := stack init([ψ]);
while not stack empty(Propositions) do

ψ := stack pop(Propositions);
sat(ψ, μ); % return μ �= ∅ else backtrack
Θ :=

∧ {θ : �θ = 1 in μ} ;
for each �ν = 0 in μ do
Propositions := stack push(¬ν ∧ Θ,Propositions);

The k sat Schema. The algorithm schema k sat on the right-hand side, on which
KSAT [4] is based, determines the satisfiability of formulas in K: the sat procedure
determines the satisfiability of ψ as a proposition by returning a propositional
assignment, if no exists backtracking takes place. Thus, the modal search space
is explored layer by layer, in a depth-first manner.

The KCSP Algorithm. Our next aim is to devise a modal decision procedure based
on the k sat schema, with CSP algorithms as the underlying propositional solver.
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Definition. Let φ be a modal formula and X the set of all layer-0 variables in
φ. Consider φ as a layer-0 proposition with variables in X ; then the CSP of the
modal formula φ is the CSP of the layer-0 proposition φ. Let us denote the CSP
of the modal formula φ with CSP(φ).

We instantiate sat with a complete constraint solver for finite CSPs in k sat
and transform ψ into CSP(ψ) before passing it on to the constraint solver; the
result is the KCSP algorithm.

KCSP is a decision procedure due to the fact that k sat is so if sat returns
a Boolean assignment whenever the input formula is satisfiable, otherwise the
empty assignment; see [4].

Theorem (Total Correctness of KCSP). KCSP is a decision procedure for K-
satisfiability.

The solver adopted as sat in our implementation of KCSP is backtracking search
interleaved with constraint propagation for generalized arc-consistency. Further-
more, the input formula is transformed into conjunctive normal form.

3 Experimental Assessment and Optimisations of KCSP

We provide an empirical evaluation of KCSP, using the Heuerding and Schwendi-
mann (HS) test set [6] that was used at the TANCS’98 comparison of systems
for non-classical logics [13]. The HS test set consists of classes of formulas for
K, which are either provably false (labelled with p) or satisfiable (labelled with
n). One tests formulas from each class, starting with the easiest instance, until
the satisfiability status of a formula can not be determined within 100 seconds.
The result from this class will then be a parameter (ranging from 0 to 21) of
the largest formula that can be solved within the time limit. It is important to
note that the formula size is exponential in this parameter. A linear speed-up in
processor or program speed does not change in essence the benchmark results.

Optimisations and Analysis. We implemented the KCSP algorithm in the Con-
straint Logic Programming (CLP) system ECLiPSe, version 5.5. We ran our
experiments on an AMD Athlon Processor (1 GHz), with 512MB RAM, under
Red Hat Linux 7.1. The HS formulas used in the experiments and the code for
KCSP are at available at http://www.cwi.nl/∼sbrand/Research/kcsp/.

We turn to a brief discussion of our optimisations and their impact. To get
partial Boolean assignments in KCSP so that the reasoning on the boxed formulas
is “delayed” (and possibly never done), we ensure that propositional variables
have as domains {0, 1}, while boxed formulas have as domains {0, 1, 2}, where 2
describes “irrelevance”. We add constraints to obtain a partial assignment with
a small number of boxed formulas “switched on” (i.e., with a value �= 2). We call
these the (assignment-) minimising constraints. We also add heuristics to reduce
the size of the KCSP search tree: the value 2 is preferred for boxed formulas,
and among them for positively occurring ones. Additionally, the instantiation
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ordering of boxed formulas is along their increasing modal depth, that is, shallow
boxed formulas are assigned first.

Minimising constraints make a substantial difference, especially in the case of
the so-called branch formulas within the HS test set: KCSP with total assignments
can only solve the first two formulas in branch p, whereas KCSP with minimising
constraints solves all of them in less than 2 seconds; a similar result holds for
branch n — see also the comparison table below.

Another optimization concerns disjunctive information. In the KCSP algo-
rithm, formulas are transformed in CNF form before being converted into CSPs;
in particular, every time 0 is assigned to a formula ¬�ψ, the subformula ¬ψ is
first transformed in CNF and then into CSP form. This CNF-conversion is not
an efficient choice; it can be avoided by treating ¬ψ as a disjunctive constraint
¬ψ =

∨n
i=1 φi. The clauses φi are reified by means of link variables Li, which are

constrained to contain at least one that is set to true. Avoiding CNF conversion
by means of disjunctive constraints has a substantial effect; e.g., ph n(4) — an
instance of the pigeon-hole problem — is now solved in a few seconds but with
CNF conversion KCSP halts due to a lack of memory.

Next, we added constraints for factoring. Consider a subformula �ψ of φ, the
input KCSP; suppose that �ψ occurs several times in φ, positively and negatively;
then, in the KCSP algorithm, each occurrence at position i is encoded as a different
variable in the corresponding CSP, say xi. To avoid this, we add a constraint
C�ψ on the CSP variables for �ψ which states that no two variables xi, xk

(representing �ψ) exist with xi = 0 and xk = 1. This form of factoring is
beneficial for formulas with the same boxed subformula occurring repeatedly.

Finally, we added simplifications. These take place only once, upon reading
the formula. We use standard simplification rules for propositional formulas, at
all layers, in a bottom-up fashion. Simplification makes an important different
in the case of the lin formulas in the HS test set.

branch d4 dum grz lin path ph poly t4p
n p n p n p n p n p n p n p n p n p

KSATC 8 8 5 8 > 11 > 17 3 > 8 4 5 5 12 13 18 10
KCSP 13 > 6 9 19 12 > 13 > > 11 4 4 4 15 10 7 10

Results and a Comparison. The table on the right-hand side displays a compar-
ison of KSATC with KCSP in which all the optimisations above are switched on;
from now on we refer to this as KCSP. The results for KSATC are taken from [8];
there KSATC was run on the Heuerding and Schwendimann test set, on a 350 MHz
PentiumII with 128 MB of main memory. In the table, we write > when all 21
formulas in the test set are solved within 100 CPU seconds, else we write the
number of the most difficult formula decided within the time out. For some
classes, KCSP clearly outperforms KSATC, for some it is the other way around,
and for yet others the differences do not seem significant. E.g., KCSP is superior
in the case of lin and branch formulas; branch n is often considered to be the
hardest “truly modal test class” for current modal theorem provers; thus adding
constraints to limit the number of boxed formulas to reason on, while still ex-
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ploring the truly propositional search space, seems to be a winning idea in this
case. In the case of t4, KSATC is superior to KCSP; notice, however, that KSATC
features a number of optimisations for early modal pruning that we have not
(yet) added to KCSP.

4 Finale

We have described a method for modeling and solving modal satisfiability prob-
lems using a constraint-based approach. Guided by the tree model property for
modal logic, the method works by stratifying modal satisfiability problems into
sequences of propositional satisfiability problems, each of which is encoded as
a non-Boolean CSP. Our implementation, KCSP, is competitive with the best
modal-theorem provers on the hardest “truly modal class” in the Heuerding and
Schwendimann test set, namely branch. An important advantage of KCSP is that
encoding optimisations (e.g., for factoring or partial assignments) can be done
very elegantly and compactly in our constraint-based setting.

Our ongoing and future work focuses on: CNF-free modelling, modal learning
heuristics, the use of stronger forms of constraint propagation, and an extension
of our CSP-based approach to more expressive modal-like logics.
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Abstract. A reason to distribute constraint satisfaction is privacy:
agents may not want to share their values, and they may wish to
keep constraints as private as possible. In this paper, we present the
Distributed Forward Checking algorithm, a natural successor of Asyn-
chronous Backtracking, where some privacy is achieved on agent values.
Regarding constraints, we introduce the Partially Known Constraints
model, which allow a constraint between two agents to be not completely
known by any of them. With these elements, we obtain new solving algo-
rithms that enforce privacy and maintain completeness. Empirical results
are provided.

1 Introduction

A distributed CSP (DisCSP) is a CSP where variables, domains and constraints
are distributed among agents. The variable-based DisCSP model assumes that
each variable belongs to one agent and constraints are shared between agents.
Following this approach, Yokoo et al. proposed the asynchronous backtracking
(ABT ) algorithm [4], using a total ordering among agents. Privacy ideally re-
quires that agents should not share their values, and constraints among agents
should be kept as private as possible. The ABT algorithm, usually taken as ref-
erence, does not satisfy these requirements because (i) agents share their values
with other agents, and (ii) a constraint is totally known by all agents involved.

In this work, we propose a new solving approach that considers the above
privacy requirements. First, we present a new algorithm, Distributed Forward
Checking (DisFC), based on ABT , that implements the following idea: instead
of an agent sending its value to other agents, it sends the effects that its value
has on other agents’ domains. This idea reproduces Forward Checking pruning
on future domains [3]. Second, we introduce the Partially Known Constraints
(PKC) model, where a constraint between two agents is replaced by two new
constraints, each known by one agent and unknown by the other.

Differently from the centralized case, DisFC does not improve ABT effi-
ciency, since the ability to accumulate pruning on future domains is lost (it is
an asynchronous algorithm). However, DisFC is able to achieve some privacy
� This research is supported by the REPLI project TIC-2002-04470-C03-03.
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on values and constraints. In this context, it is worth mentioning the approach
[5], that achieves a high level of privacy using encryption. DisFC is a simpler
approach that achieves a lower level of privacy without using encryption.

2 Privacy

Assuming binary DisCSP, with ABT solving there are two main privacy issues,

1. Values. Agents exchange the values of their variables when notifying their
assignments to other agents or when performing backtracking.

2. Constraints. An interagent constraint Cij is known by the agents owning its
related variables, that is, Cij is known by agents i and j.

However, this approach might be inappropriate for those applications for
which privacy is the main reason to be solved in a distributed form. In that case,
agents may desire to hide the actual values of their variables from other agents,
considered as potential competitors. For the same reasons, the information con-
tained in the problem constraints may be considered reserved, and agents could
not be willing to share it with other agents.

Regarding values, in ABT values exchanged are used with two purposes:

1. Consistency. The notification that a variable of a higher priority agent has
taken a new value allows receiver to change its own assignment in order to
make it consistent with the higher priority agent.

2. Detecting obsolescence. The agent view of each agent is composed by the
values that it believes that are assigned to variables in higher priority agents.
The agent view is used to detect obsolete backtracking messages.

Regarding constraints, ABT assumes that a constraint Cij is totally known
by the agents i and j [4]. In fact, it is required that rel(Cij) is totally known by
one agent only. We define the Totally Known Constraints (TKC) model when
the scope var(Cij) of each constraint is known by every related agent, but the
relation rel(Cij) is known by one agent only. It is clear that ABT follows the
TKC model. In addition, we introduce the Partially Known Constraints (PKC)
model of a DisCSP as follows. A constraint Cij is only partially known by its
related agents. From Cij , agent i knows the constraint Ci(j) with agent j as,

var(Ci(j)) = {xi, (xj)} rel(Cij) ⊆ rel(Ci(j))

where (xj) in var(Ci(j)) means that agent i knows little about the other variable
of the constraint. From constraint Cij , agent j knows the constraint C(i)j ,

var(C(i)j) = {(xi), xj} rel(Cij) ⊆ rel(C(i)j)

It is required that,
rel(Cij) = rel(Ci(j)) ∩ rel(C(i)j)
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How to develop the PKC model of any problem is currently an open question.
However, this idea can be directly applied to some problems which can naturally
formulate their constraints in this way. For instance, the n-pieces m-chessboard
problem (Section 4), consists of locating n chess pieces on a m×m chessboard
such that they do not attack each other. If each piece knows the identity of every
other piece below in the ordering, it follows the TKC model. If pieces do not
know any other piece, the problem can be formulated using the PKC model.

3 Distributed Forward Checking

The main feature of centralized Forward Checking (FC) [3] is the pruning of
future domains when the current variable is assigned. Applying this idea to
ABT , we obtain the Distributed Forward Checking (DisFC) algorithm, that
works as follows. When a variable xi is assigned, instead of sending its value
to the agent j connected by the constraint Cij , it sends to j the part of Dj

compatible with its value. Variable xj will choose a new value consistent with
xi, from the received filtered domain, but without knowing xi’s value.

To detect obsolete information, when xj receives a Back message including
xi, ABT requires that xj should know the current value of xi. Instead of the
current value, we propose to use the sequence number of xi, defined as follows.
Each variable keeps a sequence number that starts from 1 (or some random
value), and increases monotonically each time the variable changes its value. It
acts as a unique identifier for each value of the variable, so for privacy purposes
it can safely replace the actual value. Messages notifying a new value replace the
actual value by the sequence number of the sender variable. The agent view is
composed by the sequence numbers the agent believes are hold by variables in
higher priority agents. Consistently, nogoods contain variables and their sequence
numbers, in substitution of the actual values.

Combining these two strategies, sending filtered domains to other agent vari-
ables and replacing the own value by its sequence number, allows one agent to
exchange enough information with other agents to reach a global consistent so-
lution (or proving that no solution exists) without revealing its own assignment
at any time. And this can be done under the two models of constraints, totally
and partially known constraints.

3.1 DisFC with Totally Known Constraints

DisFC under the TKC model (DisFC-TKC) requires that each constraint Cij

is totally known by the highest priority agent in its scope. For simplicity of
presentation, we assume that DisFC-TKC is based on ABT0 [1], a version of
ABT where all possible links that ABT may add during search are added in a
preprocessing step, before the search begins. DisFC-TKC can be easily adapted
to other algorithms of the ABT family.

Like ABT , DisFC-TKC requires constraints to be directed and a compat-
ible total order among agents. Basically, DisFC-TKC considers two types of
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messages: Info and Back. An Info message informs receiver that sender has
changed its value. It includes the sequence number of the value taken by sender,
and the subset of receiver values which are compatible with the current assign-
ment of sender. A Back message, which is sent from lower to higher priority
agents, contains the nogood found by the sender and requests receiver to change
its value.

The DisFC-TKC algorithm has three differences with ABT0,

1. Consistency. A constraint Cij is checked by the higher priority agent when
sending the filtered domain to the lower priority agent.

2. Selecting a Value. When agent i receives an Info message, it also updates
the nogood store, adding one nogood for each domain value not included in
the filtered domain of the Info message. Then, a new value (if current value
is no longer valid) is selected. The new value have to be compatible with the
nogood store and with at least one value in domains of variables constrained
with i with lower priority.

3. Detecting obsolescence. Sequence numbers act as representative for values
assigned to variables. In that way, agents can detect obsolete information.

DisFC-TKC inherits the correctness and completeness properties of ABT0.

3.2 DisFC with Partially Known Constraints

In the PKC model, each constraint Cij is replaced by two constraints Ci(j) and
C(i)j , each known by the agents i and j respectively. DisFC under PKC model
(DisFC-PKC) performs a loop with two phases. Each phase is as follows,

– Phase I. Constraints are directed forming a DAG, and a compatible total
order of agents is selected. Then, a solution is found with respect to the
constraints Ci(j), where i has higher priority than j. If no solution is found,
the process stops.

– Phase II. The solution of Phase I is checked against constraints C(i)j . If they
are satisfied, this solution is a true solution and the process stops. Otherwise,
one or several nogoods are generated and search is resumed on Phase I.

Regarding unsolvable instances, Phase I will eventually detect that there is
no solution, after possibly several loop iterations involving Phase II execution.

Phase I is performed as explained in Section 3.1, wrt the Ci(j) constraints.
The innovative part is Phase II, specifically checking C(i)j and reacting if this
check is negative. This is done as follows. Since in DisFC a constraint is checked
by the high priority agent, and j is the only agent knowing C(i)j , j must have
a higher priority than i. This is obtained by reversing the direction of each
constraint in the directed constraint graph of Phase I. Given that the reverse of
a DAG is also a DAG, this transformation has no effect on the solving capacities
of DisFC. Once directed constraints are reversed, the high priority agent j
informs the lower one i of its filtered domain wrt xj value. If the value of xi is
allowed by C(i)j xi does nothing. Otherwise, xi sends a Back message to xj with
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a nogood that considers incompatible the current values of xi and xj (this is done
using their respective sequence numbers). When xj receives a Back message, xj

records the nogood in the nogood store and does nothing.
After sending all Info and Back messages, quiescence is detected, and di-

rected constraints are reversed again. Then, Phase I is resumed. From the end
of previous Phase I, the only agents that have changed their memory are the
receivers of a Back message in Phase II. They include a nogood that discard
their current value. But now these agents are low priority agents, so they have
to change their values to find a consistent assignment. In this way, nogoods found
in Phase II are used in Phase I to escape from incompatible assignments.

The main loop starts performing Phase I. If a solution has been found, the
directed constraint graph is reversed, Phase II is performed and the directed
constraint graph is reversed again. The loop ends when the empty nogood has
been produced (the problem is unsolvable), or when Phase II generates no Back
messages (the solution of Phase I satisfies the constraints of Phase II).

4 Experimental Results

DisFC-TKC and DisFC-PKC have been tested on a simulated environment
under GNU/Linux operating system. These algorithms have been compared on
two different problems: n-pieces m-chessboard and binary random DisCSP.

The n-pieces m-chessboard problem consists of locating n chess pieces on a
m×m chessboard, where no pieces attacks any other. We have tested two soluble
instances of this problem. The first instance has 9 pieces, 3 queens, 2 castles, 2
bishops and 2 knights, to be placed on a 8× 8 chessboard. The second instance
has 11 pieces, 3 queens, 3 castles, 2 bishops and 3 knights, to be located in a
10 × 10 chessboard. Under the TKC model, each piece knows the identity of
the pieces below it in the ordering. Under the PKC model, no piece knows the
identity of any other piece.

A binary random DisCSP class is characterized by 〈n, d, p1, p2〉, where n is
the number of variables, d the number of values per variable, p1 the network
connectivity defined as the ratio of existing constraints, and p2 the constraint
tightness defined as the ratio of forbidden value pairs. Using this model, we have
tested random instances of 16 agents and 8 values per agent with low connectivity
(p1 = 0.2). In the PKC model, every forbidden tuple of Cij is associated with
Ci(j) or with C(i)j but not both.

In both problems, the search cost is evaluated using the number of Info mes-
sages, Back messages, the total number of messages exchanged and the number
of constraint checks. As we expected, DisFC-PKC –which offers higher privacy–
requires more computational and communication effort. This is the price one has
to pay to keep some privacy on values and constraints.
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A New Class of Binary CSPs for which
Arc-Consistency Is a Decision Procedure
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Abstract. In this report weintroduce a new hybrid class for which arc-
consistency is a decision procedure.
This new hybrid class includes infinitely many instances whose tractabil-
ity is not assured by any tractable language or structural restriction, and
strongly motivates the search for a unifying principle for the tractable
constraint classes decided by arc-consistency.

1 Introduction

The class of Constraint Satisfaction Problems (CSPs) is NP-hard However, there
are certain restrictions that make it tractable. These tractable classes have a
polynomial decision procedure.

In this report we concentrate on those classes of constraint satisfaction prob-
lem instances for which arc-consistency (k = 2) is a decision procedure. We
will define a new hybrid class of binary constraint problem instances with a
non-Boolean domain for which arc-consistency is a decision procedure.

A constraint satisfaction problem instance (CSP) consists of a set of variables
which have to be assigned values from some domain. The set of allowed values
is restricted for certain subsets of the variables.

Definition 1. A CSP, is a triple 〈V,D,C〉, where:

– V is a finite set of variables;
– D is a finite set called the domain of P ;
– C is a set of constraints. Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where

σ = 〈v1, . . . , vk〉 is a list of variables from V , called the constraint scope,
and ρ is a subset of Dk called the constraint relation.

A solution to P = 〈V,D,C〉 is an assignment s of a value in D to each
variable v such that, for every constraint 〈σ, ρ〉, the projection of s onto σ is
contained in ρ. The set of solutions to P is denoted Sol(P ).

The general CSP (decision) problem is NP-complete [6] Naturally we want
to identify subproblems for which polynomial algorithms exist.

Most tractability results rely on restricting either the structure, or the un-
derlying language of the problem instances. We now define these concepts.
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Definition 2. The structure [5] of P = 〈V,D,C〉 is a hypergraph 〈V,E〉 whose
vertexes V are the set of variables of P , and whose hyperedges E are the sets
defined by the scopes of the constraints of P . That is:

E = {{x1, . . . , xk} | ∃〈〈x1, . . . , xk〉, ρ〉 ∈ C, }

A constraint language is a set of relations. The language [6] of P =
〈V,D,C〉 is the set, ΓP , of constraint relations occurring in P . That is:

ΓP = {ρ | ∃〈σ, ρ〉 ∈ C}

Lastly, we need to define what we mean when we say a CSP is arc-consistent.

Definition 3. Let P = 〈V,D,C〉 be a CSP instance.
For any subset W ⊆ V the restriction of P to W , denoted P ∗

W is the in-
stance with variables W and domain D, where the constraints are obtained from
the constraints of P by eliminating all the constraints with scope not contained in
W . That is, P ∗

W = 〈W,D,C ′〉 where 〈σ, ρ〉 ∈ C ′ if and only if 〈σ, ρ〉 ∈ C, σ ⊆W .
We say that P is (j, k)-consistent (0 ≤ j ≤ k) [3] if, for any sets of variables

W,W ′ with W ⊆W ′ ⊆ V , containing at most j and k variables respectively, any
solution to P ∗

W can be extended to a solution to P ∗
W ′ .

A problem is arc-consistent if it is (1, 2)-consistent.

For every CSP, P , there is a unique CSP1, A(P) which is arc-consistent and
has the same set of solutions as P . The problem of determining A(P) for any P
is polynomial [1].

2 When Arc-Consistency Is Enough

Sometimes establishing arc-consistency results in domain wipe-out. By this we
mean that A(P) has some variable with an empty unary constraint. In this case
it is clear that P cannot be solved.

We say that arc-consistency is a decision procedure for a class C of CSPs
if every CSP in C either has a solution or arc-consistency results in domain
wipe-out. Such a class is clearly tractable.

We have a characterisation of those structures for which arc-consistency is a
decision procedure. We also have a characterisation of those languages for which
there is some k > 1 for which (1, k)-consistency is a decision procedure.

Theorem 1. Let H be a class of hypergraphs. The class of CSPs whose structure
is in H has arc-consistency as a decision procedure exactly when all the dual
graphs are trees.

The result about (1, k)-consistency [3] requires a definition.
1 We assume an explicit representation of constraints as a set of allowed labellings.

For the uniqueness of A(P) we assume that we merge unary constraints.
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Definition 4. Let φ be a function from Dk to D. We say that a relation τ over
D is closed under φ if, whenever we take k (not necessarily distinct) rows of τ
and apply φ to them componentwise, we get a row of τ .

A set function on D is any function from the set of subsets of D to D.
A set function φ naturally generates a k-ary function φk for each k where
φk(x1, . . . , xk) = φ({x1, . . . , xk}). A relation τ is closed under the set function
φ when it is closed under each such φk.

A constraint language Γ is closed under a function φ when each τ ∈ Γ is
closed under φ.

Theorem 2. [3] Let Γ be a constraint language. There is some k > 1 for which
establishing (1, k)-consistency is a decision procedure for CSP(Γ ) exactly when
Γ is closed under a set function.

3 A Hybrid Case

In order to define our new hybrid class we need the notion of the complement
of the microstructure of a CSP. This is a hypergraph and is defined as follows.

Definition 5. The complement of the microstructure of the CSP, P =
〈V,D,C〉, denoted M(P ), is a hypergraph 〈W,F 〉.

The vertex set W is the set of all (variable, domain value) pairs for P .
The hyperedges of F are of two types.
Let s = {〈v1, d1〉, . . . , 〈vr, dr〉} be a set of vertexes of W . Suppose that there

is some r-ary constraint 〈σ, ρ〉 where σ = 〈v1, . . . , vr〉 and 〈d1, . . . , dr〉 �∈ ρ. Then
s is a hyperedge of F .

Alternatively, let s = {〈v, d1〉, 〈v, d2〉} be a pair of vertexes of W correspond-
ing to two assignments to some variable v. In this case also, s is a hyperedge of
F .

That is:

W =
⋃

v∈V

{v} ×D(v)

F = {{〈v, d〉, 〈v, e〉} | d �= e} ∪
{{〈v1, d1〉, . . . , 〈vr, dr〉} | ∃〈〈v1, . . . , vr〉, ρ〉 ∈ C, 〈d1, . . . , dr〉 �∈ ρ}

It is clear that solutions to P correspond exactly to independent sets in
M(P ) containing |V | vertexes. In this paper we will only be interested in the
complements of the microstructure of binary CSPs. It is worth noting that the
complement of the microstructure of a binary CSP is a graph.

Definition 6. Let P be a CSP. We say that P is triangulated if it is binary
and M(P ) is triangulated.

Let G be a graph and < be an ordering of the vertexes of G. We say that <
is an elimination ordering if, for any vertex v of G, the set of vertexes that
are smaller than, and connected to, v form a clique.
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A maximal cardinality ordering of the vertexes of G is constructed in
|V | steps as follows. At step 1, choose any vertex v1. At step i, for i < |V | we
have chosen v1, . . . , vi−1. Now choose for vi any vertex that is connected to the
largest set of previously numbered vertexes. We order vi < vj if i < j.

We can prove the following.

Theorem 3. The class of triangulated CSPs is tractable, and arc-consistency
is a decision procedure.

Proof. Proof omitted for brevity. The proof relies on the fact that a maximal
cardinality ordering of a triangulated graph is an elimination ordering [7], and
that it is tractable to determine whether a graph is triangulated [8].

We end this section by describing the language of all triangulated CSPs.

Definition 7. Let ρ be a binary relation. The Boolean configuration for
〈a, b, c, d〉 of ρ is the induced relation on 〈a, b〉 × 〈c, d〉.

The two configurations {〈a, c〉, 〈b, d〉} and {〈a, d〉, 〈b, c〉}, are called permu-
tations.

Lemma 1. Let Γ be the language of triangulated CSPs. The relation ρ is in Γ
if and only if it has no Boolean configurations that are permutations.

Proof. Straightforward, omitted for brevity

4 When Arc-Consistency Is a Decision Procedure

In this section we will compare the class of triangulated CSPs with other known
classes for which arc-consistency is a decision procedure.

Definition 8. Two CSP instances are renamably equivalent if one may be
transformed into the other by renaming the variables and the domain elements.

A tractable class of instances S is subsumed by another class T if all but
finitely many instances of S are renamably equivalent to CSPs in T .

Two tractable classes are incomparable if neither subsumes the other.

Lemma 2. The equals relation occurs in no triangulated CSP.

Proof. Follows directly from Lemma 1.

Proposition 1. The language, Γ , of the class of triangulated CSPs is NP-
complete.

Proof. Omitted for brevity. Relies on the (triangulated) binary relations XD =
{ρa | a ∈ D} where ρa allows all tuples except 〈a, a〉, and a reduction from graph
colourability.

Proposition 2. Triangulated CSPs are not structurally tractable.
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Proof. Any CSP where every relation is the “allows everything” relation is tri-
angulated. This includes a CSP with every structure,

Theorem 4. The class of triangulated CSPs is incomparable with any structural
or relational class decided by arc-consistency.

Proof. Follows directly from Proposition 1, Proposition 2, Theorem 1, Theo-
rem 2, and Lemma 2

We have shown that triangulated CSPs are indeed a hybrid class. In order
to show that they are a novel class decided by arc-consistency we have to show
that they are not subsumed by any known hybrid class.

There are two families of hybrid classes decided by arc-consistency. The first
comes from the satisfiability community and includes examples such as the ex-
tended Horn class [2]. Clearly none of these Boolean classes can subsume trian-
gulated CSPs which are in general, non-Boolean.

The other family is the approximately max-closed class [4]. These are the
instances where some (independent) permutation of each domain can make them
max-closed. A case by case analysis of the known tractable approximately max-
closed classes shows that triangulated CSPs are incomparable with any of them.

5 Discussion

In this paper we have identified a new class of CSP instances decided by arc-
consistency. The apparent similarity between the algorithms for solving ACI
based instances, tree-structured instances and triangulated instances suggests
that there may a single reason underlying the tractability of these three classes.
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Abstract. Constraint programming is a technology which is now widely used to
solve combinatorial problems in industrial applications. However, using it requires
considerable knowledge and expertise in the field of constraint reasoning. This
paper introduces a framework for automatically learning constraint networks from
sets of instances that are either acceptable solutions or non-desirable assignments
of the problem we would like to express. Such an approach has the potential to be
of assistance to a novice who is trying to articulate her constraints. By restricting
the language of constraints used to build the network, this could also assist an
expert to develop an efficient model of a given problem.

1 Introduction

Over the last 30 years, considerable progress has been made in the field of Constraint
Programming (CP). However, the use of CP still remains limited to specialists in the
field. Modelling a problem in the constraint formalism requires significant expertise in
constraint programming. Indeed, humans usually find it difficult to articulate their con-
straints. While the human user can recognize examples of where their constraints should
be satisfied or violated, they cannot articulate the constraints themselves. However, by
presenting examples of what is acceptable, the human user can be assisted in developing
a model of the set of constraints she is trying to articulate. This can be regarded as an
instance of constraint acquisition. One of the goals of our work is to assist the, possi-
bly novice, human user by providing semi-automatic methods for acquiring the user’s
constraints.

Furthermore, even if the user has sufficient experience in CP to encode her problem,
a poor model can negate the utility of a good solver based on state-of-the-art filtering
techniques. For example, in order to provide support for modelling, some solvers provide
facilities for defining constraints extensionally (i.e., by enumerating the set of allowed
tuples). Such facilities considerably extend the expressiveness and ease-of-use of the
� [1] contains a long version of this paper.
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constraints language, thus facilitating the definition of complex relationships between
variables. However, a disadvantage of modelling constraints extensionally is that the
constraints lose any useful semantics they may have which can have a negative impact
on the inference and propagation capabilities of a solver. Therefore, another goal of our
work is to facilitate the expert user who wishes to reformulate her problem (or a part of
it that is suspected of slowing down the resolution). Given sets of accepted/forbidden
instantiations of the (sub)problem (that can be generated automatically on the initial
formulation), the expert will be able, for instance, to test whether an optimised constraint
library associated with her solver is able to model the (sub)problem in a way which lends
itself to being efficiently solved.

However, constraint acquisition is not only important in an interactive situation in-
volving a human user. Often we may wish to acquire a constraint model from a large
set of data. For example, given a large database of tuples defining buyer behaviour in
a variety of markets, for a variety of buyer profiles, for a variety of products, we may
wish to acquire a constraint network which describes the data in this database. While
the nature of the interaction with the source of training data is different, the constraint
acquisition problem is fundamentally the same.

Our contribution is an algorithm (named Conacq ), that extends version space ma-
chine learning techniques [3] to deal with the specificity of learning constraints. It takes
solutions (positive instances) and non solutions (negative instances), called a training set,
as input, and generates a (set of) constraint network(s) consistent with the training set.
Using version spaces we can maintain the whole set of possible ‘target’networks during
the learning process. This set is represented by the tightest (specific bound) and loosest
(general bound) networks consistent with the training data. We adapted the classical
version space technique to maintain a reasonably low space complexity by representing
the general bound as a set of clauses. In the following, we just give an overview of the
learning framework, and discuss preliminary experiments and the issues they raise. A
comprehensive description of the Conacq algorithm can be found in [1].

2 The Fundamental Problem

As a starting point, we assume that the user knows the set of variables of her problem and
their domains of possible values. She is also assumed to be able to provide or classify
both positive (a solution) and negative (non-solution) examples. Therefore, the available
data are the set X of the variables of the problem, their domains D, a subset E+ of the
solutions of the problem, and a set E− of non-solutions.

In addition, from the ’assisting the expert’ perspective, the aim is to encode the
problem efficiently, using only efficient constraint relations between these variables;
i.e. a library of constraints with efficient propagation features is assumed to be known.
Indications can also be given revealing the possible location of the constraints, by defining
variables between which constraints must be found (learned), or by restricting ourselves
to binary constraints only. These semantical and structural limitations define the inductive
bias:

Definition 1 (Bias). Given a setX of variables and the setD of their domains, a bias B
on (X ,D) is a sequence (B1, . . . , Bm) of local biases, where a local bias Bi is defined
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by a sequence var(Bi) ⊆ X of variables, and a set L(Bi) of possible relations on
var(Bi).

The set L(Bi) of relations allowed on a set of variables var(Bi) can be any library
of constraints of arity |var(Bi)|.

Definition 2 (Membership of a Bias). Given a set X of variables and the set D of
their domains, a sequence of constraints C = (C1, . . . , Cm) belongs to the bias B =
(B1, . . . , Bm) on (X ,D) if ∀Ci ∈ C, var(Ci) = var(Bi) and rel(Ci) ∈ L(Bi). We
note C ∈ B.

The problem consists in looking for a sequence of constraints C belonging to a given
bias B, and whose solution set is a superset of E+ containing no element of E−.

Definition 3 (Constraint Acquisition Problem). Given a set of variables X , their do-
mainsD, two sets E+ and E− of instances onX , and a bias B on (X ,D), the constraint
acquisition problem consists in finding a sequence of constraints C such that:

C ∈ B,
∀e− ∈ E−, e− is a non solution of (X ,D, C), and,
∀e+ ∈ E+, e+ is a solution of (X ,D, C).

If the sets E+ and E−, called the training data, are provided by an interaction with
the user, then the acquisition problem can be regarded as the modelling phase for the
user’s problem. Otherwise, it can be regarded as an assistance to the expert for an auto-
matic reformulation of her problem.

As stated in the introduction, a version space does not only provide one consistent
hypothesis, but all constraint sequences belonging to a bias that are consistent with the
training data:

Definition 4 (Version Space). Given (X ,D) a set of variables and their domains, E+

and E− two training data sets , and B a bias on (X ,D), the version space is the set:

V = {C ∈ B/E+ ⊆ Sol(X ,D, C), E− ∩ Sol(X ,D, C) = ∅}

3 Experiments and Observations

We report here on some preliminary experiments to evaluate the learning capabilities of
our approach. Rather than focusing on techniques for minimising the number of inter-
actions, our focus here is on studying a number of properties of the Conacq algorithm
which provide motivation for our research agenda.

We performed experiments with a simulated teacher, which plays the role of the
user, and a simulated learner. The teacher has the knowledge of a randomly generated
(target) network, represented by the triple < 50, 8, C >, defining a problem involving
50 variables with domains {1, ..8}, and a number C of constraints. Each constraint is
randomly chosen from the bias {<,=, >,≤, �=,≥}. The teacher provides the learner
with solutions and non solutions. The learner acquires a version space for the problem
using the Conacq algorithm [1].
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Table 1. Effect of the timing of the introduction of positive instances

Introduction date for positives 0 (a) 50 (b) 90 (c)
Computing time (in sec.) 3.3 5.1 8.6
log(|V |) 2,234 2,234 2,234

Table 2. Effect of the partial instances

Nb of variables involved in instances of E− 50 10 5 2
log(|V |) 2,234 2,233 2,225 2,144
|K| (104 meta-variables) 7.6 6.1 3.2 0

3.1 Experiment 1: Effect of the Order of the Instances

In this following experiment, we assess aspects of the runtime characteristics of the
Conacq algorithm. In particular, we study computing time and the size of the version
space while varying the order in which examples are presented. Instances from a set E
of size 100 are given by the teacher to the learner based on a < 50, 8, 50 > network.
The set E contains 10 positive and 90 negative instances.

Table 1 presents the time needed by the learner to acquire the version space, V , for
the example set while varying the arrival time of the 10 positive instances. The positive
instances were presented at the beginning (a), middle (b), and end (c) of the interaction
between teacher and learner.

We observe that “the sooner, the better” seems to be the good strategy for the
introduction of positive instances. Indeed, the specific bound rises quickly with positive
instances, reducing the size of the version space. Because of that, the CPU time needed
is also reduced when positive instances arrive at the beginning. But we can see that the
final size of the version space is not affected by the order of the instances. This is due to
the commutativity property of version spaces.

3.2 Experiment 2: Partial Instances

In some cases, the user can reject an instance while justifying it by a negative sub-
instance. For example, in a real-estate setting the customer (teacher) might reject an
apartment citing the reason that “this living-room is too small for me”. The estate agent
(learner) knows that the violation is due to the variables defining the living room, which
can being very helpful for handling negative examples. The usefulness of such justified
rejections can be measured by providing our learner with partial instances. In the fol-
lowing experiment (Table 2), the teacher provides the learner with 90 partial negative
instances (after 10 complete positive ones) in the training data. We consider partial in-
stances involving 2, 5, 10 variables, and report the size of the version space and of the set
of clauses K (effective space used to represent the general bound) after 100 instances
have been given.

We observe that partial instances speed up the process of convergence of the version
space. The smaller are these partial instances, the more helpful they are. This opens a
promising way of helping the learning process: asking the user to justify why she rejects
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some instances can assist in reducing the length of the dialog with the teacher. This is a
critical issue if we are learning in an interactive setting from a human user.

4 Aspects of Our Research Agenda

In this paper we have presented an approach to acquiring models of constraint satisfaction
problems from examples. There is significant scope for research in this area. Here we
give some insights into some aspects of our research in this area.

Standard version space learning algorithms are senstive to noise in the training data
and, as a consequence, are brittle to false positives and negatives provided to the algo-
rithm. However, some recent work from the machine learning community gives us a
basis for making our approach more robust to such errors [2].

Another issue for which we did not show experiments because of space limitations,
is that of implicit constraints and redundancy. An implicit constraint is one that does not
belong to a network but that could be detected by inference. For example, if we have
X1 = X2 and X2 = X3 in a networkN , the constraint X1 = X3 is an implicit constraint
forN . The general phenomenon of constraints that can be inferred by other constraints
can prevent the version space from converging to the smallest possible one. Applying
some levels of local consistency seems to be a promising approach for improving the
reduction of the version space, by adding implicit constraints to the learned network.
When we will deal with partial instances, this will have some interesting implications,
such as the effect that the order in which examples are provided has on the representability
of a particular problem in the given constraint language.

Finally, we considering the effect that various models of interaction can have on
the speed with which we can learn the target problem, particularly from the perspective
of minimising the number of interactions with the user. Some preliminary results have
already been reported on this issue [4,5].
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1 Introduction

Large Neighborhood Search (LNS) [8] is a local search paradigm based on two
main ideas to define and search large neighborhoods. The first key idea of LNS
is to define its neighborhoods by fixing a part of an existing solution. The el-
ements of the solution that are fixed are usually explicit or implicit variables
of the model. For example, in a scheduling model, one may choose to fix the
values of the start times of each activity (explicit variables) or one may add
additional constraints that force one activity to be scheduled before another
(implicit disjunctive variables). The rest of the variables are released : they are
free to change values. The neighborhood is hence defined by all possible exten-
sions of the fixed partial solution. Because a number of variables are released
at a time, the neighborhoods defined are usually large, larger than typical local
search neighborhoods.

Because of their size, the so-defined neighborhoods require a powerful algo-
rithm to be explored; one cannot rely on enumeration or simple heuristics. The
second key idea of LNS is to use some form of tree search, constraint program-
ming (CP) or mixed integer programming (MIP) to search its neighborhoods,
i.e., to solve its sub-problems. The tree search is most often truncated with a
possibly adaptive time limit, node limit or discrepancy limit.

The large size of the neighborhoods and the powerful algorithm used to solve
sub-problems provide LNS with inherent diversification and intensification prop-
erties, respectively. Therefore the essential question in LNS, even more than in a
typical local search algorithm, is how to define the neighborhoods, that is which
variables to choose and fix together. The rule to define a promising neighbor-
hood is to free simultaneously related variables. First, the problem might be
so constrained that, even when freeing a number of randomly chosen variables,
there might exist no other extension of the so-defined partial solution than the
current solution. It is therefore essential to free related variables because they
allow each other to change values. Next, the essence of LNS is to compute more
complex moves that yield a new solution further away from the current solution
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than when exploring smaller neighborhoods. This provides diversification and
this allows us to solve difficult core sub-problems. But LNS will succeed only if
the neighborhood it defines corresponds to a sub-problem that is not a concate-
nation of smaller and independent sub-problems but a consistent core problem
in itself. One hopes indeed that the gain obtained by simultaneously computing
new values for the released variables will be greater than the gain obtained by
changing the value of each variable independently. It is therefore essential to free
related variables because they allow each other to take more meanigful values.

In the literature, choosing related variables is most often achieved by taking
advantage of the known high level structure of the specific problem at hand. Re-
cently, a new algorithm called Relaxation Induced Neighborhood Search
(RINS) [5] was introduced: it is a form of LNS that only relies on the con-
tinuous relaxation of the MIP model of the problem to define its neighborhood.
It can be used on any MIP model without any other input than the model itself.
Unlike all previous LNS algorithms, it is therefore unstructured.

The aim of this paper is to compare relaxation induced neighborhood search
and a structured large neighborhood search approach tailored to a particular
and difficult problem. On the one hand, we want to evaluate how powerful LNS
approaches are — structured or unstructured. On the other hand, we want to
investigate how a generic approach like RINS compares to a domain-dependent
approach. We have chosen for these aims the job-shop scheduling problem with
earliness and tardiness costs. The exact problem description and a state of the
art are given in a more detailed version of this paper [4].

2 Unstructured LNS in Mixed Integer Programming

We use the classical MIP model of Applegate and Cook [1] based on the dis-
junctive variables that state if a job is scheduled before or after another job on
a given machine.

In order to find better integer solutions, we use the generic MIP heuristic
Relaxation Induced Neighborhood Search (RINS) [5]. RINS is based on the in-
tuition that decisions (i.e., instantations of variables) common to the incumbent
(which is integral but not optimal) and the continuous relaxation (which is op-
timal but not integral) form a partial solution that is likely to be extended
towards a complete solution that achieves integrality and reaches or comes near
to optimality. Therefore, it focuses attention on those variables that differ in
the continuous relaxation and in the incumbent, which are intuitively the ones
that appear to merit further attention. Our RINS algorithm is thus simple. At
every f node of the global branch-and-cut tree, the variables that have the same
value in the incumbent and in the current continuous relaxation are fixed and a
sub-MIP is solved on the remaining variables with a node limit nl. Parameters
f and nl can be set to a wide range of values without degrading performances.
We use f = 100, nl = 1000.
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3 Structured LNS in Constraint Programming

Our structured LNS algorithm develops as follows. At each LNS iteration, a
neighborhood of the current solution is first built, according to one randomly
chosen scheme among the five kinds of neighborhood described thereafter. The
rank of all activities not included in this neighborhood is then fixed and the
remaining activities are ranked with a dedicated CP algorithm. The start times
of all activities are last assigned with an LP-based algorithm [3].

We have implemented five structured neighborhoods. The random neighbor-
hood is completely unstructured and generic. It releases randomly chosen activ-
ities. The resource based neighborhood releases all activities on given resources.
The random time window neighborhood releases activities scheduled within dif-
ferent time windows on different resources; there is no correlation between the
time windows selected for different resources. The consecutive pair neighbor-
hood releases pairs of consecutive activities, i.e. that are scheduled on the same
resource one after the other in the current solution. These very simple neighbor-
hoods can be applied directly to any scheduling problem with unary resources
and extended easily to resources with capacity greater than one. Note that they
rely heavily on randomness in their definition. Our last structured neighborhood
is dedicated to the earliness/tardiness ojective function. We select two jobs p
and q that are not scheduled on time in the current solution and release each
activity of job p and q, plus some other activities scheduled after or before each
in the current solution, depending on whether the corresponding job is early or
late. The aim is to allow the corresponding job to be pushed left or right in order
to decrease its tardiness or its earliness cost.

4 Computational Results

The unstructured LNS approach uLNS presented in Section 2 uses a modified
version of CPLEX 8.1. The structured LNS approach sLNS presented in Sec-
tion 3 uses ILOG Solver 5.3, ILOG Scheduler 5.3 and ILOG CPLEX 8.1. All
experiments were done on a 1.5GHz Pentium IV system.

The first benchmark [2] consists of 90 randomly generated problems, divided
in three sets depending on the value of the looseness parameter (see [6] for a
discussion on the influence of this parameter). For all problems with looseness
1.3 and 1.5, sLNS and uLNS find (and prove for the latter) the optimal solu-
tions very easily. We concentrate therefore on the more difficult 30 1.0-looseness
problems for which we now report the sum of the cost of the solutions obtained
and the GMR (geometric mean of the ratio: cost of the solution obtained/cost of
the best known upper bound). We also report results obtained on the same test
system with the same time limit by other algorithms: default CPLEX on the ba-
sic model of uLNS, a simple constraint programming approach (default CP) [2],
CRS-All [2] and HLS [3]1. The best column gives the best known upper bounds,
that were found either by one of our algorithms or by CRS-All. The LB column
1 HLS results were obtained on a 4 to 5 times slower computer.
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gives the lower bound obtained by our MIP-based approach. Note that our un-
structured LNS approach embbeded in constraint programming is an incomplete
method, it neither provides lower bounds nor optimality proofs.

uLNS sLNS Default Default CRS-ALL HLS best LB
CPLEX CP [2] [2] [3]

GMR 3.35 1.43 18.59 26.56 10.60 13.98
SUM 156,001 52,307 654,290 1,060,634 885,546 478,181 36,459 11,407

The second benchmark [7] has been used in several studies of scheduling with
genetic algorithms (GA). We compare our results otained in two hours on our
test system to the best results obtained by various GAs as reported in [9]2. For
each algorithm, we provide the GMR over the whole set (GMR 12) and over the
five largest instances (GMR 5) that are still open.

uLNS sLNS GA-best
GMR 12 1.08 1.07 1.41
GMR 5 1.21 1.16 1.21

5 Conclusion

In this paper we have shown that large neighborhood search is a powerful
paradigm to solve hard combinatorial problems. Both our approaches of struc-
tured and unstructured LNS have proved to be effective and robust — out-
performing a variety of existing algorithms on two benchmarks for the job-shop
scheduling problem with earliness and tardiness costs. Note in particular that our
structured LNS embedded in constraint programming dramatically improves on
pure constraint programming by defining a specific neighborhood that exploits
the structure of the earliness/tardiness objective. This allows to attack success-
fully a sum objective, on which constraint propagation was traditionnally very
weak.

Our structured and unstructured LNS approaches yield competitive results
on every benchmark, each approach outperforming the other on some bench-
marks and vice versa. We propose four elements to explain the difference of
performance between the two approaches. The first is how neighborhoods are
defined, using explicitly the high level structure of the problem or not. The sec-
ond is how the neighborhoods are explored, using constraint programming or
branch-and-cut. The third explanation we propose is that RINS defines neigh-
borhoods in a deterministic manner, whereas our structured LNS approach relies
heavily on randomization. This allows to diversify the search in a simple yet effec-
tive way. Finally, our fourth explanation is that our unstructured LNS approach
not only consists in RINS but also in exploring a global branch-and-cut tree as
when solving any MIP. Therefore not the whole computation time is devoted to
finding upper bounds, but a significant part of the time is spent in branching
and solving continuous relaxations at each node of the global branch-and-cut
2 The time limit used by the genetic algorithms is not mentioned.
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tree. In turn, this allows to compute lower bounds and to produce optimality
proofs, which is not possible with our structured LNS approach.

It should finally be noted that none of our approaches is totally generic. This
is obvious for structured LNS: its neighborhoods depend heavily on the specific
problem at hand. Though less apparent, this is also true for RINS. RINS uses
not other input than the MIP model itself, and hence is generic to any MIP. But
the improvement of our results with successive versions of our MIP model [4]
show that tightening the MIP model is a important element of the unstructured
LNS strategy. For RINS, the problem-specific part of the work is the definition
of the MIP model instead of the definition of the tailored neighborhoods as in
structured LNS.
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Abstract. Local search algorithms have been very successful for solv-
ing constraint satisfaction problems (CSP). However, a major weakness
has been that local search is unable to detect unsolvability and is thus
not suitable for highly constrained or overconstrained problems. In this
paper, we present a scheme where a local search algorithm, the break-
out algorithm, is used to identify hard or unsolvable subproblems and to
derive a variable ordering that places the hardest subproblems first.

1 Introduction

The breakout algorithm is an efficient, local search algorithm for solving Con-
straint Satisfaction Problems (CSPs). The roots of the algorithm go back to
Minton et al. ([4]) and Morris ([5]).

The strengths of the breakout algorithm are simplicity, robustness, low mem-
ory requirement and high efficiency for solving underconstrained problems. These
properties are extremely useful when dealing with large scale constraint satis-
faction problems. The major weak point of the breakout algorithm is its incom-
pleteness: it cannot guarantee termination, even when a solution exists, and it
will not terminate when no solution exists. In this paper we present a hybrid
algorithm where we combine an incomplete, local search algorithm, the break-
out algorithm, with a systematic, complete search algorithm, backtracking. By
combining the breakout algorithm with backtracking, we compensate its weak-
nesses: incompleteness and difficulty to deal with tightly- and overconstrained
problems. Moreover, we discover that the combination of the two algorithms
leads to synergies. By using the weight information that is generated during the
local search process, we can locate and order particularly hard or unsolvable
subproblems. These can guide the complete search process such that variables
of the hardest subproblems come first, providing a powerful fail-first heuristic
for systematic search. The scheme is also useful for generating explanations of
unsolvability. The longer version of this paper can be found at [2].
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2 Preliminaries

2.1 Definitions

Definition 1 (Constraint Satisfaction Problem P ). A finite, binary con-
straint satisfaction problem is a tuple P =< X,D,C > where:

– X = {x1, .., xn} is a set of n variables,
– D = {d1(x1), .., dn(xn)} is a set of n domains, and
– C = {c1, .., cp} is a set of p constraints, where each constraint cl(xi, xj)

involves two variables xi and xj.

A solution of P is a variable value assignment where all constraints are satisfied.

Definition 2 (Subproblem Pk). A subproblem Pk of a problem P with k
variables is defined as a tuple Pk =< XPk

⊆ X,DPk
⊆ D,CPk

⊆ C > with the
additional constraint that CPk

contains all and only constraints between variables
in XPk

. We define the size of a subproblem size(Pk) as the number of constraints
|CPk
|.

Definition 3 (Unsolvable Subproblems). A subproblem Pk is unsolvable if
there is no value assignment to variables in XPk

that satisfies all constraints in
CPk

. An unsolvable subproblem Pk is minimal if it becomes solvable by removing
any one of its variables.

The breakout algorithm ([5]) is a further development of the min-conflicts
algorithm ([4]) and is the basis for our work. In the breakout algorithm, every
constraint has an associated weight that is used to escape from local non solution
minima:

Definition 4 (Constraint Weight w). Each constraint is assigned a weight
w(c(xi, xj)) or in short wi,j. All weights are positive integer numbers and are
set to 1 initially.

Conflict minimization consists of choosing a variable and a new value that
reduces as much as possible the conflicts in the current state. If no improvement
is possible, the algorithm is in a local minimum. In this case, the algorithm
increases the weight of each violated constraint by 1, and again attempts to
compute the possible improvements. For the breakout algorithm, we can observe
the following:

Lemma 1. After m breakout iterations, the sum of the constraint weights
wsum =

∑
c(xi,xj)∈CPk

wi,j of an unsolvable subproblem Pk with |CPk
| = q con-

straints must be greater than or equal to m + q.

Proof. If a subproblem is unsolvable, then in every breakout step, one or more of
the subproblem constraints must be violated and the corresponding constraint
weight is increased. The lower bound for wsum can be derived by assuming that
in every iteration only one constraint is violated. In this case the weight sum
must be equal to m + q.



824 Carlos Eisenberg and Boi Faltings

Thus, if after m iterations the breakout algorithm has not found a solution,
and we suspect that the problem contains an unsolvable subproblem with 3
constraints, then we only have to consider subproblems whose weight sum is at
least m + 3. If we apply this constraint in the problem of Figure 1, we find that
the constraints of w1, w9, w10, whose sum is 103, are the only three constraints
that satisfy the sum constraint and indeed describe an unsolvable subproblem
of size 3, colouring a graph of 3 nodes with only 2 colours.

Fig. 1. The weight graph of an unsolvable graph colouring problem containing three
unsolvable subproblems of size 3 (x1, x2, x9), 4 (x3, x4, x5, x6) and 5 (x1, x2, x7, x8, x9),
after 0 and 100 breakout steps.

3 The Scheme and Hybrid Solver BOBT

The observed properties of the breakout algorithm inspired us to use the con-
straint weight information, which is generated by the breakout algorithm, for
localizing the critical problem variables and thus hard or unsolvable subprob-
lems. This idea is based on the observation that the constraint weights are also
violation counters, which are incremented whenever the search is in a local min-
imum. Increasing the weights only in local minimum states is an advantage; in
this state the noise level, generated by constraints not belonging to a hard or un-
solvable subproblem is the lowest. We are now going to present a hybrid scheme
where we first apply the breakout algorithm, and then switch to backtrack search
when no solution has been found after a given iteration limit.

When the local search method does not find a solution, we terminate and
sort the variables according to the constraint weights and the graph structure.
Intuitively, variables which cause the greatest conflict and thus describe the
hardest part of the problem will therefore be located at the top of the ordered
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variable list. The subsequent complete search method will then consider those
first.

The hybrid solver BOBT, Algorithm 1, begins by searching for a solution
using the standard breakout method. If after a bounded number of breakout it-
erations, the local search process has not found a solution, the process is aborted
and the constraints are sorted according to their weights. Constraints with a
high weight are most likely to belong to an unsolvable subproblem. Therefore,
the constraint with the highest weight is selected and its variables make up the
first candidate subproblem P .

The algorithm then iterates the following steps. First, it attempts to solve the
subproblem P by a systematic backtrack search. If the search finds a solution,
then either it has found a solution to the original problem and returns it, or the
subproblem is extended by the variable xi such that the sum of the weights of all
constraints connecting xi to P is highest. If not, then the algorithm has found
an unsolvable subproblem, calls the function musp to determine its minimal
version, and returns it. Function musp is derived from the fo-search algorithm
described in [3].

1: function BOBT(X, D, C, maxbreak)
2: (S, W ) ← breakout(< X, D, C >,∞, maxbreak)
3: if S is a solution then
4: return(solvable, S)
5: else
6: P ← vars(argmaxc∈C(w(c))
7: loop
8: S ← backtrack − search(P, D, C)
9: if S is a solution then

10: if S = X then
11: return(solvable, S)
12: else
13: P ← P ∪ {argmaxxi∈X\P

∑
c(xi,xj),xj∈P

w(c)}
14: else
15: musp ← musp(P, D, C)
16: return (unsolvable, musp)

Algorithm 1: Hybrid solver BOBT: returns either a solution or a minimal un-
solvable subproblem.

4 Experiments and Results

For evaluating the presented scheme we generated a large set of 10,000 random
graph 3-colouring problems according to the method described in [Davenport
et.al. 1995]. The problem graphs that we generate consist of 30 variables with a
connectivity of 2-6. The ratio of the solvable to the unsolvable problems is 1:1.
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Fig. 2. Number of constraint checks on a logarithmic scale for solving 10,000 randomly
generated, 30 node graph 3-colouring problems with BT, BO and BOBT.

Figure 2 shows the results of the experiments. We draw the number of constraint
checks on a logarithmic scale for BT, BO and BOBT as function of the problem
connectivity.

We observe that the hybrid algorithm BOBT clearly outperforms BT and
BO for all connectivity values. Analyzing the execution of the hybrid algorithm,
we notice that BO finds the most solutions for underconstrained problems, while
for tightly constrained problems BT finds more solutions.
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1 Introduction

In [2] we proposed the integration of finite domain (FD) constraints into the func-
tional logic programming language TOY and, as result, presented the language
TOY(FD) . We showed that TOY(FD) integrates the best features of existing
functional and logic languages into FD constraint solving. This paper describes
a sketch (due to space limitations) of the TOY(FD) operational semantics that
consists of a novel combination of lazy evaluation and FD constraint solving.

2 Denotational Semantics

Types. We assume a countable set TVar of type variables α, β, . . . and a
countable ranked alphabet TC =

⋃
n∈N

TCn of type constructors C ∈ TCn.
Types τ ∈ Type have the syntax τ ::= α | C τ1 . . . τn | τ → τ ′ | (τ1, . . . , τn),
C τn abbreviates C τ1 . . . τn, “→” associates to the right, τn → τ abbreviates
τ1 → · · · → τn → τ and (τ1, . . . , τn) denotes n-tuples. A type without any
occurrence of “→” is called a datatype. A polymorphic signature over TC is a
triple Σ = 〈TC, DC, FS〉, where DC =

⋃
n∈N

DCn and FS =
⋃

n∈N
FSn

are ranked sets of data constructors resp. defined function symbols. Each n-
ary c ∈ DCn comes with a principal type declaration c :: τn → C αk, where
n, k ≥ 0, α1, . . . , αk are pairwise different, τi are datatypes, and the set of type
variables occurring in τi is included in {α1,. . . , αk} for all 1 ≤ i ≤ n. Every n-ary
f ∈ FSn comes with a principal type declaration f :: τn → τ , where τi, τ are
arbitrary types. In practice, each TOY(FD) program P has a signature which
corresponds to the type declarations occurring in P . In the sequel, we always
assume a given signature Σ, often not made explicit in the notation and write Σ⊥
for the result of extending Σ with a new data constructor ⊥ :: α, intended to
represent an undefined value belonging to every type. As notational conventions,
in the rest of the paper, we use c, d ∈ DC, f, g ∈ FS and h ∈ DC ∪ FS.
Patterns and Expressions. We assume a countable set Var of (data) vari-
ables X,Y, . . . disjoint from TVar and Σ. Partial expressions have the syntax
� This author has been partially supported by the projects TIC2001-2705-C03-02,
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e ::= ⊥ | X | h | e e′ | (e1, . . . , en) where X ∈ Var, h ∈ DC ∪ FS and
e, e′ and ei (for 1 ≤ i ≤ n) are partial expressions (e ∈ Exp⊥ ). Expressions
of the form e e′ stand for the application of expression e (acting as a function)
to expression e′ (acting as an argument), while expressions (e1, . . . , en) repre-
sent tuples with n components. An expression e is non-primitive, and we write
non−primitive(e), iff it contains no function symbol. Partial patterns are built
as t ::=⊥ | X | c t1 . . . tl | f t1 . . . tm where X ∈ Var, c ∈ DCk, 0 ≤ l ≤
k, f ∈ FSn, 0 ≤ m < n and ti’s are partial patterns (t ∈ Pat⊥ ⊂ Exp⊥). Ex-
pressions and patterns without any occurrence of ⊥ are called total. The sets of
total expressions and patterns are denoted, respectively, by Exp and Pat .
Functions and FD Constraints. Each function f ∈ FSn is defined by a set of
conditional rules of the form f t1 . . . tn = r ⇐ ψ1, . . . , ψk, where (t1 . . . tn) form
a tuple of linear (i.e., with no repeated variable) patterns, r is an expression and
ψj can be either a joinability statement of the form e == e′, or a disequality
statement of the form e /= e′, with e, e′ ∈ Exp, or a Boolean function. Rules
have a conditional reading: f t1 . . . tn can be reduced to r if all the conditions
ψi are satisfied (1 ≤ i ≤ k). FD constraints are defined as functions and their
complete definitions were shown in [2] and are available in [3]. In this paper,
FSFD ⊂ FSn denotes the set of FD constraints that return a Boolean value.
Substitutions. A substitution is a mapping θ : Var → Pat with a unique
extension θ̂ : Exp → Exp, which is also denoted as θ. Let Subst denote the set of
all substitutions and let the set of all the partial substitutions θ : Var → Pat⊥
denote Subst⊥, and defined analogously. We define the domain dom(θ) as the
set of all variables X s.t. θ(X) �= X. By convention, we write eθ instead of θ(e),
and θσ for the composition of θ and σ, such that e(θσ) = (eθ)σ for any e.
Finite Domains. A finite domain (FD) is a mapping δ : Var → ℘(Integer),
where ℘(Integer) denotes the powerset of integers. The set of all FDs is denoted
as FD. Also δ is inconsistent (resp.consistent), and write inconsistent(δ) (resp.
consistent(δ)), if there exists (resp. does not exist) X such that δ(X) = ∅.
Programs. A program defines a set of functions where each f ∈ FSn has an
associated principal type τ1 → . . . → τm → τ (with τ not containing →).
As usual in functional programming, types are inferred and, optionally, can be
declared in the program.

3 Operational Semantics

This section presents part (due to space limitations) of the operational semantics
of TOY(FD) that deals with higher order (HO) programming by translating HO
expressions into first order, and consists of a novel combination of lazy narrowing
and constraint solving. ψ1, . . . , ψn is a goal whose variables have an existential
reading. Solving a goal means obtaining conditions (a mixture of substitutions
and finite domains) over their variables to ensure the satisfiability of the initial
goal.

Notational conventions. Let e, e′ ∈ Exp; by [e]μ, e[μ← e′] and e[∀μ ∈ I.μ←
Xμ], we respectively mean the sub-expression of e at position μ, the expression
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resulting from replacing [e]μ in e by e′, and the expression resulting from re-
placing, for each μ ∈ I with I ∈ ℘(Integer), [e]μ in e by a fresh variable Xμ. If
e ≡ f e1 . . . en and f ∈ FSn, NonPrie ≡ {j | non−primitive(ej) ∧ 1 ≤ j ≤ n} is
the set identifying the positions of all the non-primitive arguments in e.

Let P be a TOY(FD) program with a signature Σ = 〈TC,DC,FS〉. There is
a natural notion of model of rules and programs, for which it can be proved that
every semantically non-ambiguous TOY(FD) program P has a least model IP
[4]. Then, a solution wrt. P for a goal ψ is a substitution σ such that σ satisfies
ψ in IP (σ |=IP ψ). We also say that σ satisfies ∃Uψ if there is σ′ which satisfies
ψ and coincides with σ over dom(σ)− U .

In the following, by | ψ |, the shell of ψ, we denote the result of replacing in
ψ all the outermost sub-expressions of the form f e1 . . . en by ⊥. Following the
schema in [1], we say a goal ψ is semantically finished wrt. σ if σ is a solution of
| ψ | wrt. P and by simplicity we also write σ |=IP ψ. The words semantically
finished are used to express ψ may still contain non-primitive sub-expressions
but their values are irrelevant to the fact that σ is a solution of the goal.

We consider configurations 〈e, σ, δ〉Ca
where e ∈ Exp, σ ∈ Subst , δ ∈ FD

and Ca is a set of primitive FD constraints (i.e., with no function symbol in the
arguments). The initial state to solve a goal ψ is 〈ψ, ε, δ〉∅ where ε denotes the
empty substitution and δ(X) = Integer for any integer variable X in Var. Next
table shows some important rules of the TOY(FD) operational semantics.

NON-SATISFACTION inconsistent(δ) ∨ σ �|=IP e〈
e, σ, δ

〉
Ca
�→ termination with failure

SOLUTION consistent(δ) ∧ σ |=IP e〈
e, σ, δ

〉
Ca
�→ termination with solution σ

ONE-STEP NARROWING
[e]μ ≡ f e1 . . . en, f ∈ FSn − FSn

FD , σ′ ≡ {X1 �→ e1, . . . , Xn �→ en},
f X1 . . . Xn = r ⇐ ψ is a variant rule for f in FS with fresh variables X ∪ Y〈

e, σ, δ
〉

Ca
�→
〈
e[μ← rσ′] ∧ ψσ′, σ, δ

〉
Ca

FD CONSTRAINT SOLVING
[e]μ = (g e1 . . . en), g ∈ FSFD , CFD ≡ [e]μ[∀j ∈ NonPri [e]μ .j ← Xj ]

Ca
′ = Ca ∪ CFD , CFD �

Ca
′

δ δ′〈
e, σ, δ

〉
Ca
�→
〈
e[μ← true]

∧
{Xj == ej | j ∈ NonPri [e]μ}, σ, δ′〉

Ca
′

The non-satisfaction and solution rules check for termination returning a
failure or a solution, respectively. The lazy computation mechanism is based
mainly in the rule one-step narrowing that basically rewrites a goal by taking
into account the demanded positions [4].

We note that, due to space limitations, we do not provide correctness proof
and also that the semantics described here is a simplification of the operational
semantics of TOY(FD) (observe for example that it generates reductions that
are actually not performed, because of variable sharing, and also that we do not
show the rule that considers pattern matching in the function arguments).
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TOY(FD) also integrates a solving mechanism for FD constraints that is
mainly based in the rule FD constraint solving in which it is assumed the exis-
tence of a mechanism CFD �

Ca

δ δ′ to define the resolution of a FD constraint
CFD under the initial conditions imposed by both the finite domain δ and the
constraints in Ca. The resolution gives place to a new (possibly inconsistent)
finite domain δ′ that replaces the original δ in the transition process among
configurations. Observe that only primitive constraints are sent to the FD con-
straint solver. This is because non-primitive constraints are first translated to
primitive ones by replacing the non-primitive arguments by new fresh variables
before executing constraint solving and by registering new bindings in forms of
equality constraints between the non-primitive arguments and the new variables.
This last step is reflected in the addition of the sub-goal Xj == ej , with Xj as
fresh variable, corresponding to each non-primitive argument ej in the original
constraint [e]μ. Note also that this allows for HO computations possibly to be
done on the arguments e1, . . . , en.

Upon termination and finding a solution, the final state is 〈φ, σ, δ〉 with δ
consistent and σ satisfying φ in IP .Termination and correctness of constraint
solving is responsibility of the constraint solving mechanism �

Ca

δ .

4 An Example: Imposing Infinite Lists of Constraints

TOY(FD) provides lazy evaluation (i.e., call-by-need) that means that the argu-
ments (to functions) are evaluated to the required extent in contrast to eager or
strict evaluation in which arguments are evaluated before the call (i.e., call-by-
value). This aspect of TOY(FD) increases the possibilities of constraint solving
by, for example, using infinite list of constraints. Consider the (well-known) magic
series problem [6] and the following TOY (FD) functions1:

generateFD :: int -> [int]
generateFD N = [X | generateFD N] <== domain [X] 0 (N-1)

constrain :: [int] -> [int] -> int -> [int] -> bool
constrain [] A B [] = true
constrain [X|Xs] L I [I|S2] = true <== count I L (#=) X,

constrain Xs L I+1 S2
lazymagic :: int -> [int]
lazymagic N = L <== take N (generateFD N) == L, constrain L L 0 Cs,

sum L (#=) N, scalar_product Cs L (#=) N, labeling [ff] L

magicfrom :: int -> [[int]]
magicfrom N = [lazymagic N | magicfrom (N+1)]

The function lazymagic/1 uses the predefined FD constraints count/4 (via
constrain/4), sum/3, scalar product/4, #=/2 and labeling/2 and the
1 Lists follows the syntax of Prolog lists and Variables start with uppercase, whereas

the remaining symbols start with lowercase.
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primitive function take:: int -> [A] -> [A] defined such that take N L re-
turns the list with the first N elements of L. generateFD/1 imposes an infinite
list of membership constraints (i.e., domain/3) by generating an infinite list of
variables ranging in the interval [0,N-1] for some N. The N-magic serial is cal-
culated by lazy evaluation by solving the goal lazymagic N, for some natural
N. However, observe that an eager evaluation would not terminate as it tries to
evaluate first the second argument in take N (generateFD N) == L yielding
to an infinite list. Also, magicfrom/1 generates an infinite list of N-magic series
from a number N, and, again by lazy evaluation, it is possible to return answers;
for example, the goal take 3 (magicfrom 7) == L returns in L a 3-element list
containing, respectively, the solution to the problems of 7, 8, and 9-magic series.

5 Conclusions

We have presented a sketch of the operational semantics of TOY(FD), a func-
tional logic programming language with support for FD constraint solving. This
semantics consists of a novel combination of laziness and constraint solving in
such a way that both remain independent; the advantage is that termination and
correctness of lazy evaluation is left to the functional logic language that acts
as host language whereas the same properties for constraint solving are respon-
sability of a FD constraint solver connected to the host language. The system
TOY(FD) is available in [3].

Note that we focus on the integration of finite domains into a functional-logic
language, a proposal quite different from the language Oz [5], which combines
FD constraints and functions.
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Abstract. We discuss the problem of scheduling tasks that consume
uncertain amounts of a resource with known capacity and where the
tasks have uncertain utility. In these circumstances, we would like to
find schedules that exceed a lower bound on the expected utility when
executed. We show that the problems are NP-complete, and present
some results that characterize the behavior of some simple heuristics
over a variety of problem classes.

1 Introduction

In this paper we discuss scheduling problems in which the resource consumption
and the utility of the task are given only as probability distributions. Due to the
uncertainty of the resource consumption, some scheduled tasks may not actually
be performed when a schedule is executed. If we assume that we have accurate
knowledge of the distribution of resource consumption and job utility, we can
compute the expected utility of a schedule by accounting for both the uncertain
resource consumption and utility. We can then find a schedule that maximizes
the expected utility, or find a schedule whose expected utility exceeds a lower
bound.

Traditionally, constraint reasoning approaches have been applied to schedul-
ing problems with known resource consumption and temporal constraints; this
has led to “global” resource constraints such as those described in [1,2]. These
techniques must be extended to handle problems with uncertain resource con-
sumption and utility, where the goal is to find schedules that exceed a utility
bound. While these problems are similar in spirit to bin-packing problems, Monte
Carlo integration is required to convolve arbitrary probability distributions over
resource availability. This introduces challenges in the application of constraint
reasoning approaches to solve the problems.

2 Theory

We first introduce some notation. Let X be a set of events, and let R be a set of
resources. Let rmax be the capacity of r ∈ R; thus, at all times, the amount of
� Research Institute for Advanced Computer Science
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available resource is bounded between 0 and rmax. Let Ir(z) be the probability
distribution over the initial amount of available resource r. Define Cx,r(z) as the
probability distribution over the change in availability of resource r after execut-
ing x. We assume that all resource consumption probabilities are independent.
Define Ux(w) as the probability distribution over the utility received from exe-
cuting x. Finally, let T = τi(x, y) be a set of binary metric temporal constraints
over pairs of events x, y. We will denote a schedule by π and the jth event in a
schedule by πj . We then define Aπ,r,j(z) as the probability distribution over the
availability of resource r after the successful execution of the first j events of π.
For convenience, we define Aπ,r,0(z) ≡ Ir(z). We can now define the probability
that event j successfully executes, conditioned on the successful execution of the
previous j − 1 jobs:

S(π, r, j) =
∫ rmax

0
Aπ,r,j−1(z) ∗ Cπj ,r(z)dz (1)

This formula says that event πj fails if it attempts to allocate more resource
than r has available after the successful execution of the first j − 1 events of π,
and succeeds otherwise. We can now write the following recurrence for Aπ,r,j(z):

Aπ,r,j(z) =
Aπ,r,j−1(z) ∗ Cπj ,r(z)

S(π, r, j)
(2)

Note that the probability distribution Aπ,r,j(z) is permitted to be nonzero be-
tween 0 and rmax, and must be 0 elsewhere. We are now in a position to write
the expected value of a schedule π. If there are n events in π, then the probability
of successfully executing only the first i events of schedule π is given by

X(π, i) = (1− S(π, r, i + 1))
i∏

j=1

S(π, r, j) (3)

(where we define S(π, r, n + 1) = 0). The expected utility of these i events is∑i
j=1 E(U(πj)). So the expected utility of the schedule π is given by

E(π) =
n∑

i=1

X(π, i)

⎛⎝ i∑
j=1

E(U(πj))

⎞⎠ (4)

The task is to find a schedule whose expected utility exceeds a bound B.
Initially, we will assume that there is only one resource r with maximum

capacity rmax. We will also assume without loss of generality that the probability
that there is less than 0 resource initially available is 0. Finally, we will assume
that Cr,j(z) > 0 only when z < 0. We will call this problem the Uncertain
Consumable Resource Scheduling Problem (UCRSP).

Theorem 1. UCRSP is in NP.
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Proof. Suppose that the UCRSP has no temporal constraints. First, note we only
need to convolve a linear number of distributions and compute a linear number
of event utilities to compute the schedule utility. The multiplications and sums in
the formula presented above are all polynomial time operations. All that remains
is showing that the convolution operation is a polynomial time operation. In the
worst case, we can do each convolution using Monte Carlo Integration, which
takes constant time for a fixed error [3]. We can add temporal constraints back
to the UCRSP and preserve NP-completeness. The only additional machinery
needed is to observe that we can validate the temporal constraints in polynomial
time using the results of Dechter, Meiri and Pearl [4].

Theorem 2. UCRSP is NP-Hard.

Proof. We will reduce the Knapsack problem to UCRSP. A Knapsack item j =
(s, u) where s is the size and u is the utility. Thus, we map j to a UCRSP
event j with Cr,j(s) = 1 and Uj(u) = 1). The initial amount of resource r in
the UCRSP is the bound on the Knapsack size R. The utility bound of the
Knapsack is mapped to the expected utility bound of our problem. There are no
temporal constraints in the resulting UCRSP. This mapping requires only linear
time. Now consider a schedule π that satisfies the expected utility bound of the
UCRSP. Any schedule can be mapped into a partition of jobs by the following
linear time procedure: while there is still any resource available, add πj to the
Knapsack. If adding πj violates the resource constraint, pik for k ≥ j are not in
the Knapsack. Thus, the set of Knapsack items obeys the Knapsack constraint.
Further, by construction of the UCRSP, each event j that contributes utility
is guaranteed to contribute all of is utility, since all such events execute with
probability 1. It is clear from the simplicity of this mapping that the (expected)
utility of the schedule is the value of a solution to the Knapsack. Thus, a solution
to the UCRSP is a solution to the Knapsack problem. Thus, UCRSP is NP-
Hard.

Corollary 1. UCRSP is NP-Complete.

Finally, we observe that scaling the UCRSP up to multiple resources does
not increase the difficulty of the problem. Suppose there are q resources. The
probability of successfully executing only the first i events of schedule π is now
given by

X(π, i) =

(
q∑

k=1

(1− S(π, k, i + 1))

)⎛⎝ q∏
k=1

i∏
j=1

S(π, k, j)

⎞⎠ (5)

We briefly describe some relaxations of the above two problems. We first note
that if we eliminate the uncertainty in the resource consumption but preserve the
uncertainty in the utility, we see that finding schedules that satisfy an expected
utility bound is trivially reducible to the Knapsack problem. We also note that
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if we allow a schedule to consist of ordered sets of otherwise unordered events
that UCRSP is no longer NP-hard. The reason is that all permutations of each
set must be analyzed to find out what the expected value of the totally ordered
schedules and to check for compliance with the bound B.

3 Practice

We devised three heuristics to choose among unscheduled events: maximize the
expected partial schedule utility (E), minimize the expected resource consump-
tion of the job (R), and minimize the probability of job failure given the current
partial schedule (S). To test the performance of the heuristics we performed
a number of experiments on relatively simple, random domains. We considered
problems with between ten and 20 jobs to be scheduled, and with approximately
half that many constraints. Each of the jobs had a Gaussian distribution for the
quantity of resources it consumed, with a range of values for the means. We
considered problems in which the resource consumption means had uniformly
low variance, uniformly high variance, and random variance, and we varied the
resource limit between ten percent and 50 percent of the expected resource re-
quirement for all the jobs. For each setting of these parameters, we generated
100 problems, and ran each of the heuristics on each problem.

We evaluated the heuristics by using them greedily to select a single valid
schedule. We then computed the expected value of that schedule as shown in
Equation 4. The performance of the three heuristics was consistent over all sizes
of problems and resource limits, so we show the results for a single setting of those
parameters in Table 1. In this case, the problems had 20 jobs, ten constraints,
mean resource usages for the jobs uniformly distributed between ten and 50,
job utilities uniformly distributed between one and ten, and a resource limit of
60 (ten percent of the expected resources required by all the jobs). We were
particularly interested in the effects on the algorithms of changing the variance
of the resource usage of the jobs, so we present results for three different resource
usages.

As the left-hand columns of Table 1 show, the E heuristic (choose the job
that maximizes the expected utility of the schedule built so far) considerably
outperforms the other two on essentially all these problems. The only exception
is on a few very small problems on which both E and R are finding optimal, or
very close to optimal schedules. We expected the E heuristic to perform poorly
when most job’s resource consumption and utility are positively correlated. We
performed additional experiments on such problems, but it still outperforms R
and S. When job resource consumption and utility are anti-correlated R ac-
tually performed slightly better than E, but these results are not statistically
significant. In fact, both heuristics produce very similar schedules for these prob-
lems, and appear to perform very close to optimal (on small problems we have
computed the optimal for).

One problem with using the E heuristic is that it takes approximately 15
times as long to find a schedule as the other two, due to the complexity of the
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Table 1. (Left) Performance of the three heuristics on “uncorrelated” problems with
20 jobs, 10 constraints, and a resource limit of 60. (Right) Performance of the three
heuristics on problems with correlated and anti-correlated resource usage and utility.

Job Variance Heuristic Mean Variance Problem Type Heuristic Mean Variance
E 20.35 26.20 E 13.88 32.88

0.1–1.0 R 18.52 33.92 Uncorr. E∗ 16.07 26.75
S 17.53 32.45 R 11.71 45.39
E 13.88 32.88 E 10.08 0.07

0.1–0.2 R 11.71 45.39 Corr. E∗ 8.01 0.78
S 11.18 26.55 R 7.22 0.57
E 13.91 37.71 E 27.74 50.03

0.8–1.0 R 11.72 44.91 AntiCor. E∗ 23.64 51.16
S 11.63 43.91 R 27.7364 50.04

Monte Carlo estimate of the value of the whole schedule at each step. One ap-
proximation is to ignore the condition that previous jobs succeeded, and instead
use the probability that the schedule up to a particular job will complete in
the given amount of resources. This is easily computed for Gaussian resource
usage distributions as it it simply the sum of the usages for the jobs, which
is itself a Gaussian. However, it overestimates the value of each schedule. The
right-hand columns of Table 1 shows results on the same set of problems using
this approximation, again only for the low variance case.

The approximation actually beats E for the uncorrelated problems by a sta-
tistically significant amount. Our intuition is jobs that use few resources gain
more from the approximation than large jobs, so the approximation favours small
jobs at the beginning of the schedule, which is good for cases such as this with
tight resource bounds. The approximation performs comparably to R, and is in
fact worse on anti-correlated problems. The computation time is still somewhat
larger (a factor of around 2) for the approximation, which suggests that there
is relatively little advantage to using the approximation over using R for many
problems.
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1 Introduction

A central goal of systematics is the construction of a tree of life, where the tree
represents the relationship between all living things. The leaf nodes of the tree
correspond to species and the internal nodes to hypothesized species, assumed
to be extinct, where species have diverged. One problem that biologists face is
to assemble a supertree from many smaller trees that have overlapping leaf sets.
Polytime algorithms have been proposed for this problem [3,5]. We present a
simple constraint encoding of this problem. This is based on the observation
that any rooted tree can be considered as being min-ultrametric when we label
interior nodes with their depth in that tree. That is, any path from the root to a
leaf corresponds to a strictly increasing sequence. Our encoding takes a radically
different approach to solving these problems, and represents a new perspective.

2 Species Trees and Supertrees

In a fully resolved (i.e. bifurcating) species tree each internal node has degree 3,
with the exception of the root. Consequently a fully resolved species tree with n
leaf nodes has n− 1 internal nodes. In Figure 1 we have three species, namely a,
b, and c. Species a and b are more closely related to one another than they are
to c. More specifically, we say that the most recent common ancestor of a and b
is greater than the most recent common ancestor of a and c (equally b and c),
where the most recent common ancestor of two leaf nodes a and b is the internal
node furthest from the root that has a and b as descendants. We compare most
recent common ancestors by measuring their distance from the root. That is,

mrca(a, b) > mrca(a, c) (1)
mrca(a, b) > mrca(b, c) (2)
mrca(a, c) = mrca(b, c) (3)

Note, that in Figure 1 we have labeled the two interior nodes. Generally, interior
nodes are anonymous and we introduce this labeling only to explain the equations

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 837–841, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



838 Ian P. Gent et al.

above. We see that the most recent common ancestor of a and b is interior node
Y , i.e. mrca(a, b) = Y . Furthermore, mrca(a, b) = mrca(b, a) = Y (i.e. the
relation is symmetric) and from equation (3) mrca(a, c) = mrca(b, c) = X. From
equation (1) we have mrca(a, b) > mrca(a, c) (i.e. Y > X) and mrca(a, b) >
mrca(b, c) (i.e. yet again Y > X from equation (2)).

a b

cY

X

Fig. 1. A species tree, where species a and b are more closely related to each other
than they are to species c. This small tree can also be represented as the rooted triple
((a, b), c).

Species trees are frequently presented as a collection of rooted triples, of the
form ((a, b), c) meaning that mrca(a, b) > mrca(a, c), mrca(a, b) > mrca(b, c),
and mrca(a, c) = mrca(b, c). The BreakUp algorithm of [3] takes as input a
species tree and delivers as a result a set of rooted triples that define that tree.
The OneTree algorithm [3,1] takes these triples as input and produces a su-
pertree, if one exists. In Figure 2 two trees are combined to produce a supertree.
First, the two initial trees are broken up into rooted triples using the BreakUp
algorithm. These triples are then passed to OneTree along with the set of species
{a, b, c, d, e, f, g}, and a supertree (f,((d,e),((c,(a,b)),g))) is produced. Note that
there are 9 possible supertrees that respect those triples [6]. The OneTree algo-
rithm is of complexity O(m.n) where we have n leaf nodes and m triples.

Fig. 2. OneTree applied to the two trees (f,(a,g)) and (f,((d,e),(c,(a,b)))), giving the
supertree (f,((d,e),((c,(a,b)),g))). OneTree takes as input the set of rooted triples
R = {((a, g), f), ((a, b), c), ((d, e), c), ((c, b), e), ((e, b), f)} and the set of species S =
{a, b, c, d, e, f, g}.
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Definition 1. An ultrametric tree T is a rooted tree with n uniquely labeled
leaves and interior nodes labeled with values (real or integer) such that any path
from the root to a leaf node constitutes a strictly decreasing sequence. In a min-
ultrametric tree interior nodes are labeled with values such that any path from
root to a leaf is a strictly increasing sequence [2].

An ultrametric tree can be represented by an ultrametric matrix D, and an
ultrametric matrix can be represented by an ultrametric tree.

Definition 2. Let D be an n×n symmetric matrix. D is an ultrametric ma-
trix if there are at most n−1 distinct values within D, and for any three indices
i, j, and k there is a tie for the maximum of Di,j, Di,k, and Dj,k.

In Figure 3 we have an ultrametric matrix D and the corresponding ultrametric
tree T (these figures are taken from [2] page 450). Looking at the tree and
matrix we see that the most recent common ancestor of A and D is labeled with
the value 5, and the most recent common ancestor of E and B is labeled with
value 8. The leaf nodes might be considered as species, and the values on the
interior nodes the number (let’s say) of millions of years that have passed since
species diverged (i.e. species D diverged from species E 5 million years ago). An
ultrametric tree can be constructed from an ultrametric matrix in time O(n2)
[2].

A E

3

5

D B C

3

8

0 8  8  5  3
   0  3  8  8
       0  8  8
           0  5
               0

A
B
C
D
E

A B C D E

Fig. 3. The ultrametric matrix D and its ultrametric tree T .

2.1 The Min-ultrametric Constraint

We now present a constraint encoding which provides a unique representation
of trees up to symmetry of either renaming of internal nodes, or swapping of
left and right subtrees at any node. We encode the depth of the most recent
common ancestors in the tree. We have a n × n two dimensional array D of
constrained integer variables. Each variable Di,j takes a value in the range 0 to
n−1. Since the array is symmetric, Di,j = Dj,i, for all i and j, and we arbitrarily
set the diagonal Di,i = 0. The value assigned to Di,j represents the depth of the
most recent common ancestor of leaf nodes i and j. To encode the constraints
on D, we first associate the integers 1 to n with the species and start with the
constraint for the triple ((a, b), c).

triple(a, b, c) ≡ [(Da,c = Db,c) ∧ ( Da,b > Db,c) ∧ (Da,b > Da,c)] (4)
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This encodes the equations (1), (2), and (3). We can then guarantee that D is a
min-ultrametric matrix by demanding that:

∀a ∈ {1..n− 2}. ∀b ∈ {a + 1..n− 1}. ∀c ∈ {b + 1..n}
(triple(a, b, c) ∨ triple(b, c, a) ∨ triple(c, a, b)) (5)

i.e. one of these triples holds for every combination of three species a, b, and c.
This successfully encodes that the minimum value of the three variables Da,b,
Db,c, Dc,a is shared by two of them and not the third, the defining property of
a min-ultrametric matrix where the resultant tree is bifurcating. This can also
be viewed from a geometric perspective. We can consider the indices a, b and c
as being vertices of a triangle, and the matrix elements Da,b, Da,c and Db,c as
being the length of the edges of that triangle. Triangles are forced to be isosceles,
and equilateral triangles are disallowed.

We need to insist that the values in a row of D do not contain any gaps.
That is, in the resultant tree any path from the root to a leaf node will be an
increasing sequence, and that sequence will have no numeric gaps. We do this
by introducing arrays of constrained integer variables to count the number of
occurrences of each integer in each row of D. We then demand that if the count
for i is zero, then the count for i + 1 is also zero. Equivalently, if i occurs in a
row, and i is greater than 0, then i− 1 occurs in that row also, i.e.

∀ a ∀ b [(Da,b = i ∧ i > 0)→ ∃ c (Da,c = i− 1)] (6)

With this encoding, any consistent instantiation of the variables in D is min-
ultrametric and has a min-ultrametric tree. The number of possible such instan-
tiations is (2n−2)!

2n−1(n−1)! [4].
Given a set of rooted triples R we can then post each triple as a constraint

on the array D. For a triple ((i, j), k) ∈ R we post the constraint triple(i, j, k)
from equation (4) above. This breaks the three disjunctive constraints already
posted between these three variables in (5) above. Consequently, a consistent
instantiation of the variables in D will correspond to a species tree that respects
the triples in R. Given that consistent instantiation of D we can then process
D to construct the tree, using the algorithm in [2]. Therefore, our constraint
encoding achieves the same net result as the OneTree algorithm, and trivially
extends to the enumeration of all species trees (i.e. performing the same func-
tion as AllTrees [3]). To generate all trees we allow our solving procedure to
backtrack whenever it finds a solution, and to continue on to the next solution.

Our encoding only produces bifurcating trees, whereas OneTree may produce
trees with interior nodes with more than two children. This happens when the
triples do not fully define the tree, whereas the constraint encoding automatically
forces a resolution. We can relax our constraints to allow this. The disjunctive
constraints posted across the matrix D can be relaxed as follows:

relTriple(a, b, c) ≡ [(Da,c = Db,c) ∧ (Da,b ≥ Db,c) ∧ (Da,b ≥ Da,c)] (7)

In equation (5) replace triple(a, b, c) with our relaxed constraint relTriple(a, b, c).
From a geometric perspective, for any three vertices a, b, c, by default we allow
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Fig. 4. The min-ultrametric matrix and tree produced from the rooted triples
{((a, g), f), ((a, b), c), ((d, e), c), ((c, b), e), ((e, b), f)}. Note that there are again 9 possi-
ble solutions [6]. This tree is comparable to that given in Figure 2.

triangles to be isosceles or equilateral. Our constraint encoding requires O(n2)
variables, each with a domain of size n, and O(n3) ternary constraints. Figure 4
shows the species tree with its ultrametric matrix, resulting from the constraint
encoding of the trees in Figure 2.

3 Conclusion and Future Work

We have presented a new method for building supertrees. This is based on the
observations that any tree can be considered min-ultrametric when we label
interior nodes with their depth in that tree, and any min-ultrametric matrix has
a corresponding min-ultrametric tree. This then leads us to an encoding of the
decision problem as a constraint satisfaction problem. This can be extended to
deal with unresolved triples as well as over-constrained problems. We also expect
that our encoding can be made more efficient.
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Abstract. In this paper1 we investigate the effect of adding a failed lit-
eral detection method to the traditional unit clause propagation method
in the look-ahead component of a modern SAT solver. Our investigation
points out that, in all the SAT instances that we have tried, failed literal
detection is bound to be ineffective, even assuming it has no overhead.

1 Introduction

In the last couple of years, we have seen a tremendous boost in the performances
of SAT solvers, such boost mostly due to Chaff [1]. Chaff owes its efficiency
to four components: (i) efficient data structures, (ii) an innovative look-back
method, (iii) an effective heuristic, and (iv) low-level optimizations of the code.
zChaff (Chaff latest incarnation) was the best among the complete SAT solvers
on industrial and hand-made benchmarks in the SAT 2002 competition [2]. Thus,
when we speak of modern SAT solvers, we have in mind a “Chaff-like” engine.

In this paper we investigate the effect of adding a failed literal detection
method to the traditional unit clause propagation method in the look-ahead
component of a modern SAT solver. Failed literal detection was first introduced
in POSIT [3], used extensively, e.g., in SATZ [4] and RelSAT [5], and similar
techniques led to positive results on real-world instances in [6]. Our analysis is
mostly experimental and has been performed using our solver Simo modified to
incorporate ideas (i) - (iii) above. We have run our experiments using several
challenging real-world benchmarks. On the basis of the collected data, we con-
clude that enhanced look-ahead based on failed literal detection does not pay off
in modern SAT solvers. Further, we show that even assuming we had an oracle
answering whether a literal will fail, or an oracle giving us the list of literals
which will fail, enhanced look-ahead is not effective.

Throughout the paper, we will assume that the reader is familiar with the
topics of Boolean satisfiability and satisfiability search algorithms for Boolean
formulas in conjunctive normal form (for an extensive coverage of these topics
see, e.g., [7]).

1 This work is partially supported by MIUR, ASI, and by a grant from the Intel
Corporation.
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DLL-Solve()
1 do
2 r ← Look-ahead()
3 if r = t then
4 r ← Heuristic()
5 else
6 r ← Look-back()
7 while r = u
8 return r

Look-ahead()
1 r ← Unit-propagate(nil)
2 if r = f then
3 return f
4 else
5 return Failed-propagate()

Failed-propagate()
1 for each open atom a
2 r ← Unit-propagate(a)
3 Look-back()
4 if r = f then
5 r ← Unit-propagate( ¬a)
6 if r = f then return f
7 else
8 r ← Unit-propagate( ¬a)
9 Look-back()

10 if r = f
11 Unit-propagate( a)
12 return t

Fig. 1. Overview of Simo.

2 (In)Effectiveness of Failed Literal Detection

For the lack of space, the description of the solvers and the benchmarks used for
our experimental analysis is limited to a quick overview (see [8] for more details).
We use two versions of Simo: the default configuration and Simo-Fp, i.e., Simo
enhanced with failed literal detection as described in Fig. 1. Look-ahead, Fig. 1
(bottom-left) discriminates the two versions: in Simo, lines 2-5 of Look-ahead
are replaced with the instruction “return r”; in Simo-Fp, the implementation
of Look-ahead is exactly as detailed in Fig. 1. The test set consists of 483
real world instances. The benchmarks have been selected considering classical
SAT problems and instances submitted to the SAT 2002 competition [2]. All the
experiments have been run on two identical Pentium IV 1.8 Ghz, with 512MB
of RAM running Linux RedHat 8.0.

2.1 Introducing Oracles in Simo-Fp

We can think of three oracle-based versions of Simo-Fp, that we call Simo-
Fp(TO), Simo-Fp(FO), and Simo-Fp(FRO). In particular, we assume to have in
Simo-Fp(TO), an oracle testing whether a literal will fail, thus saving the time
necessary to try the literals which will not be failed; in Simo-Fp(FO), an oracle
returning the sequence of literals which will fail in Simo-Fp, thus saving also
the time necessary to scan the list of open literals; in Simo-Fp(FRO), an oracle
returning the sequence of literals which will fail in Simo-Fp and their reasons,
thus saving also the time necessary to calculate the reasons of the failed literals.

Since the oracles cannot be implemented in practice with a single-pass algo-
rithm, we need to calculate the performance of the oracle-based versions using
the experimental data of Simo-Fp. In order to accomplish this, we introduce four
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Fig. 2. Simo, Simo-Fp and Simo-Fp(*), considering CPU time (left) and tries (right).

CPU time counters inside Failed-propagate (line numbers refer to Failed-
propagate in Fig. 1): Total time (Tf ) is the sum of the run times of each call to
Failed-propagate; time spent on failed (Ts) is the sum of the run times spent
to perform literal propagations when the literals are failed (lines 2-5 and lines
8-11, when the tests on lines 4 and 10 are successful, respectively); time wasted
on failed (Tw) is the same as above, but when the literals are not failed (lines
2-3 and lines 8-9, when the tests on lines 4 and 10 are not successful, respec-
tively); time spent on reason (Tr) is the sum of the run times spent to calculate
the reason of each failed literal when the literal is failed (lines 2-3 and lines 8-9
when the tests on lines 4 and 10 are successful, respectively). Let T be the CPU
time of Simo-Fp, and T (*) be the CPU time of Simo-Fp(*). The performance
of the oracle-based algorithms can be calculated as follows: T (TO) = T − Tw,
T (FO) = T − Tf + Ts, and T (FRO) = T − Tf + Ts − Tr.

To calculate the tries of the oracle-based versions of Simo-Fp we introduce
four more counters (still with reference to Failed-propagate in Fig. 1): total
tries (Nf ) is the sum of the tries performed in each call to Failed-propagate;
tries spent on failed (Ns) is the sum of the tries spent to perform literal prop-
agations when the literals are failed (the tries performed by Unit-propagate
in lines 2,5 or 8,11 when the literal is failed); tries wasted on failed (Nw) is
the same as above, but when the literals are not failed (the tries performed
by Unit-propagate in lines 2 or 8 when the literal is not failed); tries spent
on reason (Nr) is the sum of the tries spent to calculate the reason of each
failed literal when the literal is failed (the tries performed by Unit-propagate
in lines 2 or 8 when the literal is failed). Let N be the number of tries per-
formed by Simo-Fp, and N(*) the number of tries performed by Simo-Fp(*).
The number of tries performed by the oracle-based algorithms can be calculated
as follows: N(TO/FO) = N − Nw and N(FRO) = N − Nf + Ns − Nr. Notice
that N(TO) = N(FO), so we do not need two distinct measures for the tries of
Simo-Fp(TO) and Simo-Fp(FO).
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Table 1. Simo, Simo-Fp and Simo-Fp(*) Tries arranged by benchmark family.

Benchmarks Simo Tries (x1000)
Family Sat Tot At# Cl# Plain Fp Fp(FRO) Fp(TO/FO)

Beijing-1996 8 8 8,226 53,390 1,151 4,475,504 113 5,141
bmc 14 30 10,466 52,995 95,253 5,006,227 33,669 290,623
des 7 7 3,285 20,539 3,073 85,967 786 13,554
fev 0 3 1,324 3,819 1,636 168,740 786 2,814
fpga 10 30 32,612 194,786 10,326 960,441 9,232 48,375
fvp-unsat.2.0 0 5 1,468 15,206 8370 1,047,241 5,438 52,900
mediator 2 2 561.50 12,086 3,689 22,472 1,289 12,833
miters 3 12 2,261 6,119 27,398 2,505,136 23,478 72,405
sss-sat.1.0 79 79 5,022 51,043 75,227 17,553,074 56,333 601,287
vliw-sat.1.1 5 5 20,780 284,509 242 2,657,969 127 8,374

2.2 Simo vs. Simo-Fp(*)

In the following, we use tries as a CPU independent performance measure, in-
stead of branches. The number of tries is the number of times that a literal is
assigned a value, for whatever reason, be it a choice of the heuristic, a unit literal,
a failed literal, or a tentative assignment performed during Failed-propagate.
Considering the oracles presented in the previous subsection, we compare Simo
and Simo-Fp with the data of Simo-Fp(TO), Simo-Fp(FO), and Simo-Fp(FRO).
For all such real and oracle-based versions of Simo, the distributions of the run
time and the number of tries are summarized in Fig. 2. The x-axis in both plots
is an ordinal in the range (0-180), and the y-axis is, respectively, CPU seconds
in Fig. 2 (left) and number of branches in Fig. 2 (right). The total number of
problems visualized is 181 out of 483 since we discarded (i) instances in which
either Simo or Simo-Fp exceeded the time out, and (ii) instances in which the
run time of Simo was less than 0.1 seconds. Both plots in Fig. 2 are obtained by
ordering the results of Simo and Simo-Fp independently and in ascending order.

By looking at Fig. 2 we can immediately conclude that aggressive failed
literal detection is bound to be ineffective, both in terms of run time and, more
interestingly, also in terms of search space explored. The only version of Simo-
Fp that can barely compete with Simo is Simo-Fp(FRO), the version of Simo-Fp
embodying the most powerful oracle presented in Sub. 2.1. In spite of its power,
the number of tries performed by Simo-Fp(FRO) is, on average, only about 80%
of the number of tries performed by Simo. As we can deduce from the plots,
Simo-Fp performances are influenced by two major factors: (i) the time (and the
tries) spent to check whether a given literal is failed or not, and (ii) the time
(and the tries) spent to calculate the reasons of failed literals. By looking at
Fig. 2 (right) we can see two order-of-magnitude gaps in the number of tries:
one between Simo-Fp and Simo-Fp(TO/FO), which confirms point (i), and one
between Simo-Fp(TO/FO) and Simo-Fp(FRO), which confirms point (ii).

To complete our experimental analysis, we need to confirm that the cumula-
tive results of Fig. 2 are true also of each single family, i.e., there are no compen-
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sation effects among different families of benchmarks. In Table 1 we present the
data regarding Simo, Simo-Fp and the oracle-based versions of Simo-Fp. Each row
of the Table contains data about a single family of benchmarks. For each fam-
ily we report: the number of benchmarks left in the family after instances have
been filtered out as described in Sub. 2.2 (column Tot); the number of satisfiable
instances (column Sat); the average number of atoms and clauses (columns At#
and Cl#, respectively); the total number of tries performed by Simo, Simo-Fp,
Simo-Fp(TO/FO) and Simo-Fp(FRO) divided by 1,000. Notice that clauses and
atoms statistics have been rounded to 1, and tries statistics have been rounded
to 1,000. Although we cannot show here the complete data, compensation effects
are absent also when looking at single instances in each family. In other words,
there is no single instance in our test set on which Simo-Fp(TO/FO) performs
less tries than Simo or Simo-Fp(FRO), while on all the instances Simo-Fp(FRO)
performs less tries than Simo.

3 Conclusions

In this paper we have presented strong empirical evidence that enhanced look-
ahead based on failed literal detection does not pay off in modern SAT solvers,
at least in the case of real-world problems. In particular we showed that (i)
the number of tries performed by Simo-Fp is, on average, about three orders of
magnitude bigger than the number of tries performed by Simo; (ii) the number of
tries performed by Simo-Fp(TO/FO) is, on average, about one order of magnitude
bigger than the number of tries performed by Simo; (iii) the number of tries
performed by Simo-Fp(FRO) is, on average, only about 80% of the number of
tries performed by Simo.
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Abstract. Since the early 90’s that Constraint Logic Programming (CLP) has 
been used to solve Combinatorial Search Problems. Generally, CLP has a good 
performance with highly constrained problems, but it lacks a “global perspec-
tive” of the search space, making the search for the optimal solution more diffi-
cult when the problems becomes larger and less constrained. On the other hand, 
Local Search Methods explore the search space directly through an “intelligent” 
construction of solution neighbourhoods, turning these methods suitable for 
solving less constrained and large search spaces problems. The aim of this pa-
per is to present a hybridisation framework that allows combining Local Search 
methods with Constraint Logic Programming. The first results demonstrate that 
while maintaining the CLP strengths it is possible to overcome their weak-
nesses and improve its search efficiency.  

1   Introduction 

One of the final objectives of many areas like Operations Research, Artificial Intelli-
gence or Mathematical Programming has been to solve real world problems like 
Scheduling, Planning, Transportation, Assignment, just to name few. These problems 
are usually classified as Combinatorial Optimization Problems and have been solved 
using several traditional approaches. One of the most successful was CLP [1]. CLP 
combines the declarativeness of logic programming with constraint solving tech-
niques from Mathematical Programming, Operations Research, and others. Generally, 
CLP has a very good behaviour for highly constrained problems, but it lacks a 
“global perspective” of the search space, which makes the search of the optimal solu-
tion more difficult for large and less constrained ones. On the other hand, Local 
Search Methods explore directly the search space through the “intelligent” construc-
tion of solution neighbourhoods, which makes these methods suitable for solving 
problems less constrained and with large search spaces. The aim of this paper is to 
present a hybridisation framework that allows combining Local Search methods with 
Constraint Logic Programming, in order to overcome their weaknesses and maintain 
their strengths.  
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The basic idea of this framework consists of using Local Search to dynamically select 
promising areas of the search space and then use CLP to find the local optimum for 
the selected areas. The idea is better explained in section 3.  

2   Other Integration Approaches 

Since the appearance of the first CLP systems in the late 80s, we could see the first 
signs of hybridization. Revising history, we can distinguish 3 main paths for integra-
tion.  

The first and probably the most explored one is the hybridization of CLP with Lin-
ear Programming, where several integration schemes were tried. These schemes 
usually differ in the way the problem is decomposed and the model is built. Some 
examples can be found in [2],[3],[4]. The second path, which is more relevant for this 
work, is the hybridization of CLP with LS methods. Some approaches try to integrate 
CLP techniques in LS methods, in order to improve the neighbourhood exploration or 
selection like in [5]. On other approaches, conceptually closer to our approach, the 
problem is modeled using CLP and then a combination of CLP and LS is used to 
perform the search as in [6]. Finally in the third path the followers try to hybridize 
CLP with Artificial Neural Networks. A scheme for this integration can be seen in [7], 
and was named GENET. The framework presented on this work is general, in the 
sense that it lies mainly on the second path but allows the inclusion of ideas from the 
first or third path. 

3   Solving Combinatorial Problems by Reduce and Assign 

Reduce and Assign is a general framework that allows the hybridisation of LS Algo-
rithms, with CLP. The framework has two components. One, named LS_comp, is 
responsible for exploring the global search space selecting smaller search spaces 
areas that constitute a unique sub-problem. The other, named CP_comp is responsible 
for solving each of the sub-problems. Similarly to traditional LS methods the 
LS_comp executes local moves through neighbourhoods. The difference is that the 
neighbourhood is not a set of feasible solutions obtained from a transformation of an 
initial solution, but is one, or a set, of sub-search spaces obtained from a transforma-
tion of an initial sub-search space. The LS_comp can be represented by the func-
tion ( )_ , : D DLS comp D l S Ss→ , where D is the initial set of variables domain and l is a 

parameter indicating the size of the sub-search space ��� . Any sub-search space is 
obtained through variables domain reduction, so it can be represented by a new set of 
constraints that prune the non-wanted domain values. The LS_comp function has a 
parameter that defines the size of the sub-search space. This parameter is fundamental 
for search efficiency. Generally it balances the search effort between each of the 
components. In the limit, if the parameter is equal to 1 we only have Local Search 
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(the sub-search space only allows 1 assignment), else if the parameter is equal to the 
number of domain values we only have CLP search and the solution returned by the 
CLP component is always a global optimum (the number of possible assignments is 
equal to the Cartesian product of the variable domains). Ideally the optimal l value is 
the smaller that allows the CLP component to find the optimal global solution. 

The CP_comp component is responsible for solving the new sub-problem and can 
be represented by the function ( ) ( )’ ’_ , , , , : ,pCP comp X D C o C X D s→ , where ��  is a 

new set of constraints representing a new sub-search space and ��  the optimisation 

function. The result returned by the component is the local optimal solution if it ex-
ists, or “no” if not. Naturally, the solution has a cost with respect to the optimisation 
function. The answer of the CLP component is returned to the LS component that, 
based on it, selects a new neighbour (sub-domain). In order to avoid being trapped in 
local optima any traditional strategy can be implemented. 

4   Illustrating Example – Guided Constraint Search Applied to 
 Maintenance Scheduling of Electric Generating Units 

In this section we present an instance of our framework named Guided Constraint 
Search (GCS) applied to the Maintenance Scheduling of Electric Generating Units 
(MSEGU). Due to the lack of space the presentation will be summarized, we recom-
mend the reading of [8] for a more detailed description. The main objective of the 
MSEGU problem consists of determining, for each predicted maintenance task, a 
specific start time in the scheduling horizon (e.g. an year), while satisfying the system 
constraints and maintaining system reliability. This objective should be accomplished 
while a function is optimized (e.g. the sum of operation and maintenance costs is 
minimized).  

4.1   Guided Constraint Search Algorithm 

In order to solve the problem we propose for the LS component a function based on 
ideas from Guided Local Search [9]. Similarly, we define a useful (useless) function, 
penalties and costs. However, we differ from GLS on the way we use these values.  
The basic element of the LS_comp is an inutility function. This function defines for 
each possible variable assignment ( )ia x , or in other words, for each pair vari-

able/value ( , )i jx v  a quantity that indicates if the corresponding value should be in-

cluded, or not, in a given sub-search space 
��� . The inutility function is defined by 

 C0 Bc *pij ij ij ijI = + , where I is the inutility value; C0 is an initial heuristic cost; Bc is 

the best solution cost that includes the pair and p is the penalty parameter. Initially p 
and Bc are initialized, for all possible variable assignments, respectively the value 1 
and the problem upper cost bound. C0 can be used to express some heuristics that 
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give the possible best initial values. On each iteration the CLP component is used to 
solve a new Sub-search space problem defined by LS component. This sub-search is 
defined by selecting for each variable domain the l values with the smallest inutility. 
Based on the returned solution, if existing, the used pairs inutility function parameters 
are updated, depending if they belong to a new best solution, or not. Specifically, the 
penalty parameter is incremented by one unit for the pairs that do not belong to the 
best solution. For the other pairs, the penalty remains the same being the Bc parame-
ter updated to the new best cost. Naturally, if no better solution is found, all the pairs 
see their penalty increased. This update procedure accomplishes two objectives. First, 
the probability of certain (possible best) pairs being chosen is progressively increased 
as they belong to good solutions (convergence of the search). Second, the search is 
diversified because the penalty of the pairs that do not belong to new best solutions is 
increased. The key to the effectiveness of GCS is the equilibrium between penalizing 
“bad” pairs variable/values and not penalizing “good” ones.  

Any CLP component has a search procedure that is based on a variable and value 
selection heuristic. We have used two different search procedures. One results from 
the work in [10]. We named it Branch and Bound procedure with Smallest variable 
selection heuristic and Smallest value selection heuristic (BBSS). The other results 
from the work in [11], and we called it as Branch and Bound procedure with Smallest 
Inutility variable and value selection heuristic (BBSI).  

4.2   Experimental Results 

In order to evaluate the different search procedures and respective variants we have 
used data from the Portuguese Electric Power Generation Company (EDP). The 
method was implemented using ECLiPSe [12] system, running on an AMD at 
650Mhz, with 128Mb of memory, using WIN98. Note that this method has not any 
stochastic component. Consequently, we only need to run the program once for each 
parameter set. 

Prior to test the algorithm’s performance we conducted some experiences in order 
to test the l and st parameters influence. Due to a lack of space, we do not show the 
results but we concluded that l should not take small nor high values. We also con-
cluded that as smaller are st values more difficult is to find the optimal solution, and 
that, as higher is the st value more time is needed to find the optimal solution. The 
right st value grows with the size of the problem. Based on these tests, we can em-
pirically say that a good l value is in the interval [ 1/4T,1/2T], and st>10+2*T seconds. 

In order to verify the efficiency of the method we used the results obtained in [13]. 
The results presented on the paper report several evolutionary techniques applications 
(e.g. Simulated Annealing, Tabu Search, Memetic Algorithms, etc) to 3 different size 
problems. They also indicate the number of what they call combination and order 
constraints.  We applied the two variations of the method to 3 same sized, number 
and type of constrains problems. Table 1 shows the results of the methods described 
above compared to a pure CLP approach of [10], named CBB+S+SV+Mc and 3 of 
the methods used in [13], namely Simulated Annealing (SA), Tabu Search (TS) and 
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Memetic Algorithm with a Tabu Search Operator (MA(TS)). The used data is the 
same of [10] but different from [13]. We do not indicate the cost of our method nei-
ther of [10] because it has no interest for the comparison, regarding that data is differ-
ent. Instead, we indicate between parentheses the value of the l and time parameter. 
Times shown are in minutes:seconds format and for the 3 stochastic methods. The 
average cost for 40 runs is indicated between parentheses. Considering that problems 
with the same size and structure are equally demanding in terms of computation time 
we can say that the proposed methods perform better than the CBB+S+SV+Mc and, 
for problem 2 and 3, better than the MA(TS) that is the best method of [13].  

Table 1. Results of the GCS method applied to 3 instances of the MSEGU problem 

Problem 1 2 3 

SA 0:03 0:18 0:46 

TS 0:10 0:59 3:08 

MA(TS) 1:12 6:34 25:29 

CBB+S+SV+Mc 1:40 8:22 48:26 

BBSS 1:26 (l=8; 4:46 (l=13; 20:23 (l=15; 

BBSI 1:34 (l=8; 5:12 (l=13; 18:12 (l=15; 

5   Conclusions and Future Work 

This paper presents “Reduce and Assign” a hybrid framework that allows the integra-
tion of Constraint Logic Programming with Local Search Methods. The basic idea 
consists of using Local Search to explore the global search space and CLP to find 
local optimum solutions for a given sub-search space. In order to validate the frame-
work we presented one possible instance named of Guided Constraint Search. The 
comparison of the results with other approaches for both the instances allow us to 
conclude that the framework is more efficient than pure CLP approaches and even 
very competitive in relation to other non CLP based approaches. We demonstrated 
that the framework is sufficiently flexible to allow the integration of different Local 
Search methods as also the integration of several techniques in the CLP search proce-
dure. For the future we address to lines of research, one is the integration of other 
Local Search procedures, as for example Tabu Search, and the other the improvement 
of the CLP component by the integration of different methods and techniques. In this 
last topic the authors have done already some work, namely with the integration of 
Linear Programming methods in the CLP component. First results were very encour-
aging. Finally, we intend to test the presented instances together with those we are 
working on in different type of optimization problems. 
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Abstract. Configuring consists in simulating the realization of a com-
plex product from a catalog of component parts, using known relations
between types, and picking values for object attributes. An inherent dif-
ficulty in solving configuration problems is the existence of many isomor-
phisms among interpretations. We describe a formalism independent ap-
proach to improve the detection of isomorphisms by configurators, which
does not require to adapt the problem model. We exploit the properties
of a structural subset of configuration problems, which canonical solu-
tions can be produced or tested at low cost by an algorithm, possibly
used as a symmetry breaking constraint.

1 Introduction

Configuring consists in simulating the constrained realization of a complex prod-
uct from a catalog of component parts (e.g. processors, hard disks in a PC ),
using known relations between types (motherboards can connect up to four pro-
cessors), and instantiating object attributes (selecting the ram size, bus speed,
. . . ). The industrial need for configuration applications is ancient [4], and has
triggered the development of many configuration applications.

One difficulty with configuration problems is that isomorphisms naturally
arise from the fact that many constraints are universally quantified [3,6,5]. We
propose a general approach for the elimination of structural isomorphisms in
configuration problems, which generalizes existing methods (the interchange-
ability of “unused” objects, as well as the use of cardinality counters) while not
requiring to adapt the configuration model, and extends a strategy successfully
applied to finite model search [1]. After describing the formalism used throughout
the paper and structural sub-problems (section 2), we define T-trees and their
canonical representatives (section 3). Finally we propose an algorithm to test
the canonicity of configurations (section 4), and conclude in section 5. Proofs,
bibliographic details and combinatorial comparisons can be found in [2].

2 Configuration Problems, and Structural Sub-problems

A configuration problem describes a generic product, in the form of declarative
statements (rules or axioms) about product well-formedness. Valid configuration

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 853–857, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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model instances (called configurations) involve objects and their relationships,
notably types (unary relations involved in taxonomies) and binary composition
relations (an object is a component of at most one composite). We isolate con-
figuration sub-problems called structural problems, that are built from the com-
position relations, the related types and the structural constraints alone, and
study their isomorphisms. For simplicity, we abstract from any configuration
formalism, and consider a totally ordered set O of objects (we normally use
O = {1, 2, . . .}), a totally ordered set TC of type symbols (unary relations) and
a totally ordered set RC of composition relation symbols (binary relations). We
note ≺O, ≺TC

and ≺RC
the corresponding total orders.

Definition 1 (syntax). A structural problem, is a tuple (t, TC , RC , C), where
t ∈ TC is the root configuration type, and C is a set of structural constraints
applied to the elements of TC and RC .

Definition 2 (semantics). An instance of a structural problem (t, TC , RC , C)
is an interpretation I of t and of the elements of TC and RC , over the set O
of objects. If an interpretation satisfies the constraints in C, it is a solution (or
model) of the structural problem.

In the spirit of usual finite model semantics, TC members are interpreted by
elements of P(O), and RC members by elements of P(O × O) (relations). We
use the term configuration to denote a structural problem model .

Definition 3 (root, composite, component). A configuration, solution of a
structural problem (t, TC , RC , C), can be described by the set U of interpretations
of all the elements of RC . If RU denotes the union of the relations in U (RU =⋃

rel∈U rel), and Rt denotes its transitive closure, then we have:

1. ∃! root ∈ O called root of the configuration1 for which ∀o ∈ O (o, root) �∈ RU ,
2. ∀o ∈ O s.t. o �= root, ∃! c ∈ O s.t. (c, o) ∈ RU ;

we call c the composite of o and o a component of c,
3. ∀o ∈ O s.t. o �= root, (root, o) ∈ Rt.

Definition 4. We note U(r) the relation interpreting the relational symbol r ∈
RC in U . Two configurations U and U ′ are isomorphic if and only if there exists
a permutation θ over the set O, such that ∀r ∈ Rc, θ(U)(r) = U ′(r)

3 Coding Configurations: T-Trees

Because composition relations bind component objects to at most one composite
object, configurations can naturally be represented by trees where nodes are
labeled by objects of O, edges are labeled by the component side type of the
corresponding relation, and child nodes are sorted first by their type according
to ≺TC

, then by their label according to ≺O. Figure 1 shows that object numbers
are redundant. We thus introduce T-trees (illustrated in figure 2):
1 Root unicity does not restrict generality.
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Fig. 1. Two isomorphic configuration trees.

Definition 5 (T-tree). A T-tree is a finite and non empty ordered tree where
nodes are labeled by types and children are ordered according to ≺TC

. We note
(T, 〈c1, . . . ck〉) the T-tree with sub-trees c1, . . . ck and root label T .

Proposition 1. Let A1 be a configuration tree, C1 the corresponding T-tree ,
and A2 the configuration tree rebuilt from C1. Then A1 and A2 are isomorphic.

Configuration trees and T-trees being trees, they are isomorphic, equal, super-
posable, under the same assumptions as standard trees.

Proposition 2. Two configurations are isomorphic iff their corresponding T-
trees are isomorphic (two T-trees are isomorphic if there exists a set of permu-
tations of their lists of subtrees that makes them identical).

As a means of isolating a canonical representative of each equivalence class of T-
trees, we define a total order over T-trees. We note nct(T ) (number of component
types) the number of types Ti having T as composite type for a relation in RC .
The types Ti (1 ≤ i ≤ nct(T )) are numbered on each node according to ≺TC

.
If C is a T-tree, we call T-list and we note Ti(C) the list of its children having
Ti as a root label. |Ti(C)| is the number of T-trees of the T-list Ti(C). We note
〈ai〉n1 the list 〈a1, a2, ..., an〉. Many ways exist to lexicographically compare trees.
We use two orders � and ;:

Definition 6 (The relations �, �lex, ; and ;lex).
We define the following four relations: � compares T-trees with roots of the same
type T , �lex is its lexicographic generalization to T-lists,; compares two T-lists
of same type Ti, and;lex is its lexicographic generalization to lists 〈Ti(C)〉nct(T )

1 .
These four order relations recursively define as follows:

– ∀T ∈ TC : (T, 〈〉) � (T, 〈〉).
– ∀C, C ′ �= (T, 〈〉): C � C ′ ⇐⇒ 〈Ti(C)〉nct(T )

1 ;lex 〈Ti(C ′)〉nct(T )
1 .

– ∀C, C ′ �= (T, 〈〉), ∀i: Ti(C); Ti(C ′) ⇐⇒
|Ti(C)| < |Ti(C ′)| ∨ |Ti(C)| = |Ti(C ′)| ∧ Ti(C) �lex Ti(C ′).



856 Stephane Grandcolas, Laurent Henocque, and Nicolas Prcovic

A A A A A A A A A

B B B B B B B B B B B B B B B

D D D D D D D D D DD

A A A

B B B B B B

D D D D D D D DD

A A

BC C

A

CB

D

A

B C

D D

D

A

B B C

A

A A

B B B BC C C

D D D D DD

B B C

A A

B B C

D D D

A

B BB B C C

A

D D D

A

D D

25242322212019

18171615141312

10987654321

11

B B

Fig. 2. The first 26 T-trees ordered by � for a sample problem. The �-minimal repre-
sentatives are framed.

Each T-tree is built from a root of type T and a list of T-lists of sub-trees. A
proof that �, �lex, ; and ;lex are total orders can be found in [2].

Definition 7 (Canonicity of a T-tree). A T-tree C is canonical iff it has no
child or if ∀i, Ti(C) is sorted by � and ∀c ∈ Ti(C), c itself is canonical.

Proposition 3. A T-tree is the �-minimal representative of its equivalence
class (wrt. T-tree isomorphism) iff it is canonical.

The search space of a (structural) configuration problem can be described by
a state graph G = (V,E) where the nodes in V correspond to valid (solution)
T-trees and the edges correspond to unit extensions (adding a single terminal
node to a T-tree). The goal of a constructive search procedure is to find a path
in G starting from the tree (t, 〈〉) (t is the type of the root object) and reaching
a T-tree which respect all the problem constraints.

Proposition 4. Let G be the state graph of a configuration problem. Its sub-
graph Gc corresponding to the only canonical T-trees is connex.

It immediately follows that any configuration procedure that discards the non
canonical structural configurations remains complete.

4 Algorithms

A test of canonicity straightforwardly follows from the definition of canonicity.
It is defined by two functions: Canonical and Less listed in pseudo code by the
figure 3. We note ct(T ) the list of component types of T , sorted according to
≺TC

, and by extension, as the labels of nodes of a T-tree are types, we generalize
these notations to ct(C) for a given T-tree C. The worst case complexity of Less
is Θ(n), n being the number of nodes of the smallest T-tree. Canonical is of
complexity Θ(n log n).
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function Canonical(C)
{returns True iff C is canonical}
begin

if C is a leaf then return True
Let ct(C) = (T1, . . . , Tk)
for i := 1 to k do

Let (a1, . . . al) be the list Ti(C)
for j := 1 to l do

if not(Canonical(aj)) then
return False

for j := 1 to l − 1 do
if not(Less(aj , aj+1)) then

return False
return True

end function

function Less(C, C′)
{Returns True iff C � C′}
begin

if C is a leaf then return True
if C′ is a leaf then return False
Let ct(C) = (T1, . . . , Tk)
for i := 1 to k do

Let (ai
1, . . . , a

i
la) be the list Ti(C),

Let (bi
1, . . . , b

i
lb

) be the list Ti(C′)
if (la < lb) then return True
if (la > lb) then return False
for j := 1 to la do

if (Less(ai
j , bi

j) =False) then
return False

return True
end function

Fig. 3. The functions Canonical and Less.

5 Conclusion

This work greatly extends the possibilities of dealing with configuration isomor-
phisms, until today limited either to the detection of the interchangeability of
all yet unused individuals of each type or to the use of counters of non config-
urable object counters (as in the ILOG software products[3]). We have shown
that the isomorphisms stemming from the properties of a sub-problem called
the structural problem, can be efficiently and totally tackled, by using low cost
amortizable algorithm.
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Abstract. A binary constraints network consists of a set of n variables,
defined on domains of size at most d, and a set of e binary constraints.
The binary constraint satisfaction problem consists in finding a solu-
tion for a binary constraints network, that is an instantiation of all the
variables which satisfies all the constraints. A value a in the domain of
variable x is inconsistent if there is no solution which assigns a to x.
Many filtering techniques have been proposed to filter out inconsistent
values from the domains. Most of them are based on enforcing a given
kind of local consistency. One of the most important such consistencies is
max-restricted path consistency. The fastest algorithm to enforce max-
restricted path consistency has a O(end3) time complexity and a O(end)
space complexity. In this paper we present two improved algorithms for
the same problem. The first still has a O(end3) time complexity, but it
reduces the space usage to O(ed). The second improves the time com-
plexity to O(end2.575), and has a O(end2) space complexity.

1 Introduction

Constraint programming is a declarative programming paradigm which allows
to naturally formulate computational problems [10]. A computational problem
is formulated as a constraint satisfaction problem, which consists in deciding
whether there is an instantiation of a set of variables, defined on finite domains,
which satisfies a set of constraints. Any such instantiation is a solution for the
constraints network. The task of the constraint programming system is to find
a solution (or alternatively all the solutions, or the “best” one). Any constraint
satisfaction problem can be reduced [11] to an equivalent binary constraint satis-
faction problem, that is a constraint satisfaction problem where each constraint
involves only a pair of variables.

A value a in the domain of variable x is inconsistent if there is no solution
which assigns a to x. Inconsistent values can be filtered out from the domains
� This work has been partially supported by the IST Programme of the EU under

contract n. IST-1999-14.186 (ALCOM-FT), by the Italian Ministry of University
and Research (Project “ALINWEB: Algorithmics for Internet and the Web”).
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without loosing any solution. Since the binary constraint satisfaction problem is
NP -complete, there is no hope that all the inconsistent values can be detected in
polynomial time. For this reason, local consistency properties have been studied,
which allow to “quickly” remove a subset of the inconsistent values.

Some of the most important such consistencies are arc consistency [1,9], path
inverse consistency [3,6,7] and � inverse consistency [6,7].

In [4], a new and promising local consistency property has been proposed:
the max-restricted path consistency. Computational experiments give evidence
that max-restricted path consistency offers a particularly good compromise be-
tween computational cost and pruning efficiency [5]. Debruyne and Bessiere [4]
developed the fastest known filtering algorithm based on max-restricted path
consistency, denoted by max-RPC-1, which has a O(end3) time complexity and
a O(end) space complexity, where n is the number of variables, e is the number
of binary constraints and d is the size of the largest domains.

In this paper we present a new algorithm for the same task, which we denote
by max-RPC-2, with the same time complexity as max-RPC-1, but with a smaller
space complexity, that is O(ed).

As a second contribution of this paper, we shortly describe a variant of
max-RPC-2 of O(end2.575) time complexity and O(end2) space complexity. This
algorithm makes use of fast matrix multiplication.

The remainder of this paper is organized as follows. In Section 2 we introduce
some preliminaries. In Section 3 we present Algorithm max-RPC-2. In Section 4
we shortly describe how to reduce the time complexity via fast matrix multipli-
cation.

2 Preliminaries

A binary constraints network is a triple (X ,D, C), where X = {x1, x2 . . . xn} is
a set of n variables, D = {D1, D2 . . . Dn} is a set of n domains of cardinality at
most d, and C = {C{i1,j1}, C{i2,j2} . . . C{ie,je}} is a set of e binary constraints.
Variable xi is defined over domain Di. By ai we denote an element of Di. For
simplicity and without lost of generality, we assume that all the values in the
domains are distinct. We moreover assume that the domains are ordered (the
order can be fixed arbitrarily). A value assignment is a pair (xi, ai), whose
meaning is that we assign the value ai to variable xi. An instantiation is a set
of value assignments, one for each variable. A binary constraint C{i,j} describes
which assignments of values to the variables xi and xj are mutually compatible.
The constraint C{i,j} can be represented extensively through a 0-1 matrix Ai,j

which we interpret in the following way: Ai,j [ai, aj ] = 1 if and only if the pair
of value assignments (xi, ai) and (xj , aj) satisfy the constraint C{i,j}. Notice
that there may be pairs of variables xi and xj for which there is no constraint
C{i,j} in C. In that case all the assignments of values to xi and xj are mutually
compatible. A solution is an instantiation which satisfies all the constraints.
The binary constraint satisfaction problem consists in deciding whether a binary
constraints network admits a solution.
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A value ai is inconsistent if there is no solution which assigns ai to variable
xi. A value ai is max-restricted path consistent if it has a path-consistent support
on each variable xj such that C{i,j} ∈ C. A path-consistent support for ai on xj

is a value aj ∈ Dj such that Ai,j [ai, aj ] = 1 and the pair {ai, aj} has at least one
witness on each variable xk such that C{i,k} and C{j,k} belong to C. A witness
for {ai, aj} on xk is a value ak ∈ Dk such that Ai,k[ai, ak] = Aj,k[aj , ak] = 1.

A subdomain D′ ofD is a set {D′
1, D

′
2 . . . D′

n} such that, for any i ∈ {1, 2 . . . n},
D′

i ⊆ Di. The order of D′ is the sum of the cardinalities of the domains D′
i. A

subdomain D′ is max-restricted path consistent if, for any i ∈ {1, 2 . . . n}, D′
i

is non-empty and all the values a′
i ∈ D′

i are max-restricted path consistent.
By Dmax-RPC we denote the max-restricted path consistent subdomain of D of
maximum order (if any).

3 Max-restricted Path Consistency in Less Space

The fastest known filtering algorithm based on max-restricted path consistency,
max-RPC-1 [4], has a O(end3) time complexity and a O(end) space complexity. In
this section we present a new algorithm for the same problem, which we denote
by max-RPC-2, with the same time complexity as max-RPC-1 but with a smaller
space complexity, that is O(ed).

Let (X ,D, C) be a binary constraints network. Our algorithm removes non-
max-restricted path consistent values from the domains one by one, until a do-
main becomes empty or all the remaining values are max-restricted path consis-
tent.

The algorithm uses two kinds of data structures. A set DelSet of integers
and a set Sa of values for each value a. The set DelSet is used to keep trace of
the domains from which a value has been removed. Whenever we remove a value
ai, we store i in DelSet. The set Sai is used to store the last path-consistent
support aj found for ai on variable xj , for any xj such that C{i,j} ∈ C.

The algorithm consists of two main steps: an initialization step and a prop-
agation step. In the initialization step we consider each value ai and we check if
it is max-restricted path consistent. If not, we remove ai from Di and we add i
to DelSet. Otherwise we store the path-consistent supports found for ai in Sai

.
In the propagation step we have to propagate efficiently the effects of dele-

tions. In fact, the deletion of one value can induce as a side effect the deletion
of other values (which were previously recognized as max-restricted path consis-
tent). There are substantially two kinds of such situations. The first case is when
we delete the unique path-consistent support aj for the value ai on the variable
xj . The second is when we remove the unique witness aj on variable xj for the
pair {ai, ak}, where ak is the unique path-consistent support for ai on variable
xk. In both cases the value ai is not max-restricted path consistent.

Thus in the propagation step, until DelSet is not empty, we extract an integer
j from DelSet and we proceed as follows. We consider any value ai, with C{i,j} ∈
C, and we check if ai is not max-restricted path consistent because of one of the
two situations described above. In particular, we first check if the last path-
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consistent support aj found for ai on xj (which is stored in Sai
), still belongs

to Dj . If not, we search for a new path-consistent support for ai on xj , and
we update Sai accordingly. If such path-consistent support does not exist, ai

is removed and i is added to DelSet. Then, if ai has not been removed in the
previous step, for any variable xk such that C{i,k} and C{j,k} belong to C, we
consider the last path-consistent support ak found for ai on xk (which is stored
in Sai

). We check if the pair {ai, ak} has a witness on variable xj (by simply
considering all the values in Dj). If not, we search for a new path-consistent
support for ai on xk, and we update Sai accordingly. If such path-consistent
support does not exist, ai is removed and i is added to DelSet. In both cases,
when we search for a new path-consistent support, we follow the order on the
corresponding domain. This way we make sure that the same potential path-
consistent support is checked at most once.

Theorem 1. Let (X ,D, C) be a binary constraints network, with n variables, de-
fined on domains of size at most d, and e constraints. Algorithm max-RPC-2 com-
putes Dmax-RPC or determines that it does not exist in O(ed) space and O(end3)
time.

Proof (Sketch). Without loss of generality, we assume e = Ω(n). Moreover we
indicate with ei the number of domains Dj such that C{i,j} ∈ C. The set DelSet
requires O(n) space. For each ai, the set Sai takes O(ei) space. Then the space
complexity of max-RPC-2 is O(n +

∑k
i=1 eid) = O(ed).

The time complexity is bounded by the cost of searching for witnesses (which
is required for both searching for new path-consistent supports and for checking
previously detected ones). Searching for a witness costs O(d). Then checking a
potential path-consistent support aj for a value ai on variable xj costs O(ej +
eid) = O(n+ eid). Value ai has O(d) potential path-consistent supports on each
of the O(ei) variables xj such that C{i,j} ∈ C. No potential path-consistent
support is checked more than once. Thus the total cost to search for new path-
consistent supports is O

(∑n
i=1 eid

2(n + eid)
)

= O(end3). Whenever a deletion
occurs into a domain Dj , we have to search for a witness on xj for all the pairs of
values {ai, ak} where ak is the current path-consistent support for ai on xk, and
C{i,j}, C{i,k} and C{j,k} belong to C. The number of such pairs is O(e2

jd), and
we can detect them in O((ei +ej)d) = O((n+ej)d) steps. Each check costs O(d).
Since domain Dj is interested by O(d) deletions, the total cost of these checks

is O
(∑n

j=1 d2(nd + e2
jd)
)

= O(end3). Thus the time complexity of max-RPC-2

is O(end3). �

Notice that Algorithm max-RPC-2 may check the same potential witness for
a given pair of values more than once: since these redundant checks are relatively
infrequent, they do not affect the total time complexity. Algorithm max-RPC-1
instead, avoids redundancies by storing (in O(end) space) all the witnesses found:
this way, the space complexity is increased without reducing asymptotically the
time complexity.
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4 Max-restricted Path Consistency in Less Time

The first author [7] developed a fast path inverse consistency based filtering
algorithm, based on fast matrix multiplication. A similar technique can be ap-
plied to max-restricted path consistency. In particular, given a triple of variables
xi, xj , xk, there is a decremental procedure to maintain the number of witnesses
for each pair of the kind {ai, aj} on xk, during deletions of values in Dk, which
has a O(d2.376) initialization cost, a O(d0.575) query cost and a O(d1.575) amor-
tized updating cost per deletion. Using this procedure, one can develop a vari-
ant of Algorithm max-RPC-2, of O(end2.575) time complexity and O(end2) space
complexity. For reasons of space, we cannot enter into details.
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Abstract. Combinatorial auctions are an important e-commerce appli-
cation where bidders can bid on combinations of items. The problem of
selecting the best bids that cover all items, i.e., the Winner Determina-
tion Problem (WDP), is NP-hard. In this paper we consider the time
constrained variant of this problem, that is the Bid Evaluation Problem
(BEP) where temporal windows and precedence constraints are associ-
ated to each task in the bid. We propose different algorithms based on
CP, IP and a hybrid approach based on both of them. We show that
even the simplest pure CP based approach outperforms the only existing
approach. We selected a set of algorithms which do not dominate each
other. We identified a set of instance-dependent structural features that
enable to select the best class of algorithms to apply. This is the first
step toward an automatic algorithm selection in algorithm portfolios.

1 Introduction

Business to business e-commerce applications are becoming more and more pop-
ular. Among them, auctions are a way of allocating items among autonomous
and self-interested agents. Items are not limited to goods, but can represent also
resources and services.

In this paper we consider combinatorial auctions, see [4]. Among M items,
bidders can bid on combinations of items, and associate a price for each combi-
nation. The auctioneer should solve the Winner Determination Problem (WDP),
i.e., he should choose the best bids that cover all items at a minimum cost or
maximum revenue. This problem is NP-hard.

A variant of this problem is the so called Bid Evaluation Problem (BEP)
for coordinated tasks. When the auctioneer should, for example, buy a set of
services, he should also consider temporal constraints. Therefore, items in the
bid are associated to a temporal window, a duration, and are linked by prece-
dence constraints. In this case, beside the WDP, the auctioneer should maintain
feasibility of the temporal constraints. To our knowledge, the only system that
tackles this problem is MAGNET (Multi-Agent Negotiation testbed) [1] and it
is based on Integer Programming and Simulated Annealing.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 863–867, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Surprisingly, Constraint Programming (CP) has been very rarely used to
solve either the WDP or the BEP, while we think CP can be successfully used
as an effective tool for modelling and solving problems related to combinato-
rial auctions. In particular, CP can be effective when additional constraints are
introduced.

In this paper, we propose different algorithms for the BEP: two variants of
a pure CP algorithm, one based on Limited Discrepancy Search (LDS) and one
on Depth First Search (DFS); two approaches based on pure IP and two hybrid
approaches merging CP and IP, one based on LDS and one on DFS. We show that
even the simplest approach we developed, based on pure CP, outperforms the
one presented in MAGNET1. We evaluated all algorithms and discovered that
those based on DFS are always dominated by the others. Among the remaining
algorithms none of the them dominates all the others, so we tried to select among
the set of instance-dependent structural features proposed in [3] the ones that
allow to select the best algorithm. An interesting result achieved is that the
standard deviation of the Clustering Coefficient provides a clear indication if to
use an IP or a CP based algorithm.

2 Bid Evaluation Problem: Model and Algorithms

We have different variants of combinatorial auctions. In this paper, we consider
single unit reverse auctions, where the auctioneer wants to buy a set M of
distinguishable items (services) minimizing the cost.

Each bidder j (j = 1..n) posts one or more bids. A bid is represented as
Bj = (Sj , Estj , Lstj , Dj , pj) where a set Sj ⊆ M of services is proposed to be
sold at the price pj . Estj and Lstj are lists of earliest and latest starting time
of the services in Sj and Dj their duration.

The BEP can be seen as a variant of the WDP where a set of temporal
constraints define the feasibility of the assignments computed by the WDP.

We implemented four algorithms, plus two variants based on DFS and LDS,
to solve the BEP. Two algorithms are based on the IP model: the first (referred in
tables to as IP) is a traditional complete solver implementing Branch and Bound
based on linear relaxation, while the second (referred in tables to as LR+IP) is
an incomplete approach that solves the linear relaxation of the problem, then
ranks the variables according to their shadow price, and finally solves the IP
problem considering only the first p% variables, where p is a parameter to be
experimentally tuned.

One algorithm is based on a pure CP model (referred in tables to as CP).
Starting from the same model, one variant explores the search tree with DFS
and one with LDS. In both cases, the heuristic used to select the variable value
is the bid-price divided by bid-size, that is pi/|Si|. The last approach, referred
to as LR+CP in tables, performs an indeed quite loose but effective integration.
Starting from a CP model, we solve a linear relaxation at the root node and we

1 This software has been kindly provided by the authors J. Collins and M. Gini.
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order values based on shadow prices. Again we have two variants, one based on
DFS and one on LDS.

3 Comparing CP and MAGNET

We first compared the pure CP algorithms we developed and MAGNET [1] on
instances generated using MAGNET itself. We ran our experiments on a 2.4Ghz
Intel Pentium 4 with 512Mb RAM. We considered four kinds of MAGNET in-
stances with a number of tasks between 5 and 20 and bids between 15 and 400.

For each instance set we used our CP algorithms, MAGNET implementing
Simulated Annealing (referred to as SA in figures) and, when possible, MAGNET
using Integer Programming (M-IP).

In the first two sets of experiments (5 tasks and 15 bids and 10 tasks and 35
bids), the M-IP approach always finds the optimal solution, while in the third (10
tasks and 100 bids) it does not provide the optimal solution within 15 minutes.
In the first set also SA provides the optimal solution, while, in the second set,
it provides the optimal solution only in the 60% of the cases. In the third set of
experiments it never provides the optimal solution. Our CP approaches always
finds the optimal solution in all instance sets. Mean search time for the first
three sets are depicted in Figure 1, where for each group values are normalized
w.r.t. mean value over all algorithms.

As concern the fourth instance set (20 tasks and 400 bids) none of the ap-
proaches find the optimal solution within 15 minutes, but solutions found found
by the CP based approaches are, on average, 30% better than those produced by
MAGNET. Moreover, the time to produce the best solution is in general consid-
erably lower than 15 minutes and our algorithms always outperform MAGNET.
The relative quality of SA with respect to LDS and DFS is also depicted in
Figure 2 where we show the trend of the solution quality for hard instances with
SA, DFS and LDS. M-IP approach did not find any solution.

Fig. 1. Comparison between
algorithms

Fig. 2. Comparison between algorithms on instances
with 20 tasks and 400 bids
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4 Experimental Results of CP, IP
and Hybrid Approaches

In this section, we provide results on instances generated using both MAGNET
and CATS, a suite for generating realistic auction instances [2]. CATS instances
are more realistic, enabling to set an higher bid-size and bid-size variability. We
generated problems with 10, 15, 20 and 30 tasks, with a number of bids growing
from 40 up to 1000 and with a variable tasks-per-bid values.

In Figure 3 we present results for all algorithms described in section 2 except
for those using DFS since they are always outperformed by those using LDS.
Each group in the histogram represents a different instance set, having the mean
tasks-per-bid value expressed in x-axis. Y-axis values represent, for each group,
mean search time normalized w.r.t. mean over all algorithms. Some instances
are best solved by CP-based approaches (namely CP and LR+CP), while others
by IP approaches (namely IP and LR+IP), depending on the number of tasks-
per-bid (see Section 5 for a deeper analysis).

Finally, we ran experiments on hardest problems, with 30 tasks, 1000 bids
and a growing tasks-per-bid value. We found that only the IP-based approach
provided results. In Table 1 we show the mean search time for both complete
and incomplete IP solver (i.e., IP and LR+IP). For the incomplete approach,
the percentage of variables considered is reported in the last column. Only in
the first 3 instance sets it was possible to prove optimality over all instances.

5 Problem Structure Analysis

In this section, we are interested in identifying a set of instance-dependent pa-
rameters that help in determining the best algorithm to solve the instance itself.
From tables in previous section, we noticed that tasks-per-bid parameter roughly
influences algorithms’ quality. Here we are interested in more precise parameter.

Starting from the notable classification in [3], we extracted from each instance
the 25 features described in the paper. We refer to the bid graph, where each
node represents a bid and each edge stands between two bids if there is one or
more constraints containing that bids. An interesting result achieved is that there

Fig. 3. Comparison between algorithms

Table 1. Comparison between IP algo-
rithms on instances with 30 tasks and 1000
bids

Tasks for BidSearch time (ms)CR%
IP LR+IP

1.40 36328 1235 70
2.49 242281 3500 45
3.34 9̃00000 6975 25
4.62 - 19681 25
6.52 - 25969 30
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is a correspondence between the standard deviation of the Clustering Coefficient
(SDCC) in the bid graph and the experimental results. SDCC is a measure of
the local cliqueness. Typically, in our instances this value ranges from 0.02 e
0.2, and each time it is greater than 0.09, the IP-based approach is preferable
to the CP-based one. It is worth noting the fact that, if SDCC is close to 0.09
both approaches have satisfactory behaviors. For the instances considered it is a
systematic result, but, unfortunately, for larger instances this feature extraction
takes too much time. Therefore, we looked for a similar but easier-to-compute
parameter. We observed that there is a correspondence between SDCC and the
Edge Density (ED) in the bid graph. ED can range from 0 to 1, and we observed
that it is in inverse proportion with SDCC.

We have identified three significant ranges for the ED: if ED < 0.5, SDCC is
always greater than 0.09 (thus the IP-based approach is preferable); if ED>0.75,
SDCC is always lower than 0.09 (thus the CP-based approach is preferable); if
0.5 < ED < 0.75, we do not have a clear indication of SDCC and therefore on
the preferable approach. In this case, we recompute ED allowing multiple edges
between the nodes (when more than one constraint is present among them). If
new ED is significantly greater than the previous one, the CP-based approach is
to be preferred; otherwise, if it remains quite unchanged, the best approach is IP.

If the IP approach is the technique of choice, we can use either the complete
approach or the incomplete one named LR+IP. So we have to tune the percent-
age of variables to be considered. We did not find a systematic correspondence
between those choices and any feature we calculated, but from the L1 and L∞
norms of the integer slack vector we can often find out a good superior bound-
ary to the percentage of variables to be considered using IP approach. These
norms are in a way a measure of how fractional is the linear relaxation solution;
we noticed that, in general, the higher the norms, the higher the percentage of
variables to include to obtain the best solution.
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Abstract. We propose a two-level search strategy to solve a two dimensional
circle packing problem. At the first level, a good enough packing algorithm called
A1.0 uses a simple heuristic to select the next circle to be packed. This algorithm
is itself used at the second level to select the next circle to be packed. The resulted
packing procedure called A1.5 considerably improves the performance of the
algorithm in the first level, as shown by experimental results. We also apply the
approach to solve other CSPs and obtain interesting results.

1 Introduction

Given a set of n circles of different radii r1, ..., rn and a circle container, the two di-
mensional (2D) circle packing problem consists in finding the minimal radius r0 of the
container so that all the n circles can be packed into the container without overlap. If
we find an efficient algorithm to solve this problem for a fixed circle container, we can
solve the original problem by using some search strategies (e.g. dichotomous search) to
reach the minimal radius of the container.

No significant published research appears to exist addressing this problem, except
[2]. On the contrary, a lot of algorithms are proposed in the literature for packing equal
circles into a circle container (see e.g. [4,3]).

In this paper we propose a greedy approach called two-level search strategy to solve
this problem.

2 The Two-Level Search Strategy

Consider a 2D Cartesian coordinate system. The coordinate of the center of the container
is (0,0) and the coordinate of the center of the ith circle center is denoted by (x, y). We
call configuration a pattern (layout) where m (≥ 2) circles have been already placed
inside the container without overlap, and n − m circles remain to be packed into the
container.

A legal action (i, x, y) is the placement of circle i inside the container at position
(x, y) so that circle i does not overlap any other circle and is tangent with 2 circles in
the container (note that one of the 2 circles may be the container itself). There may be
several legal actions for circle i.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 868–872, 2003.
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Let (i, x, y) be a legal action, u and v be the two circles in the container and tangent
with circle i if i is placed at (x, y). The degree λ of this action is defined as λ =
(1 − dmin

ri
), where dmin is the minimal distance from circle i to other circles in the

container (excluding u and v but including the container) and ri is the radius of the
circle i.

dmin = min
j∈M,j �=u,j �=v

(|
√

(x− xj)2 + (y − yj)2 − rj | − ri)

whereM is the set of circles already placed inside the container (note that the container
is itself included inM).

Procedure CirclePacking(I)
Begin
for k:=1 to n-1 do

for l:=k+1 to n do
Generate an initial configuration C using circles k and l;
Generate the legal action list L;
if (CirclePackingCore(C, L) returns a successful

configuration)
then stop with success;

Stop with failure;
End.

Procedure CirclePackingCore(C, L)
Begin
while (there are legal actions in L) do

Compute the benefit of each legal action
Select the legal action (i, x, y) with the maximum benefit;
Modify C by placing circle i at (x, y);
Modify L;

Return C;
End.

Fig. 1. A generic circle packing algorithm

Our packing procedures A1.0 and A1.0Core are respectively CirclePacking and Cir-
clePackingCore shown in figure 1. At every iteration, A1.0Core places the circle with
the largest λ and re-calculate the degree of all existing legal actions. If all circles are
placed in the container without overlap, A1.0Core stops with success. If none of the
circles outside the container can be placed into container without overlap (L is empty),
it stops with failure.

However, given a configuration, A1.0 only looks at the relation between the circles
already inside the container and the circle to be packed. It doesn’t examine the relation
between the circles outside the container.

In order to more globally evaluate the benefit of a legal action and to overcome
the limit of A1.0, we compute the benefit of a legal action using A1.0Core itself in the
CirclePackingCore procedure to obtain our main packing algorithm called A1.5, the
CirclePackingCore procedure becoming A1.5Core in this case.

In other words, A1.5Core is CirclePackingCore calling the subprocedure BenefitA1.5
shown in Figure 2 to compute the benefit of legal actions.
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Procedure BenefitA1.5(i, x, y, C, L )
Begin
let C′ and L′ be copies of C and L;
Modify C′ by placing circle i at (x,y) and modify L′;
C′=A1.0Core(C′,L′) ;
if (C′ is successful) then return C′; else return density(C′);

End.

Fig. 2. Subprocedure of Algorithm A1.5 for computing the benefit of a legal action

Given a copy C′ of the current configuration C and a legal action (i, x, y), BenefitA1.5
begins by placing the circle i in the container at (x, y) and calls A1.0Core to reach a
final configuration. If A1.0Core stops with success then BenefitA1.5 returns a successful
configuration, otherwise BenefitA1.5 returns the density (the ratio of the total surfaces of
the circles inside the container to the surface of the container) of a failure configuration
as the benefit of the legal action (i, x, y). In this manner, A1.5 evaluates all existing legal
actions and chooses the best.

Roughly speaking, under the current configuration, the first level of the strategy
consists in choosing the best action (i, x, y) by using a simple heuristic. The second
level uses the first level itself to select the next legal action. We call this approach two-
level search strategy.

3 Experimental Results

A1.0 and A1.5 are implemented in C and executed on an Athlon XP2000+ CPU under
Linux system.

Given a set of circles we respectively use A1.0 and A1.5 to find the minimum container
radius (rmin) so that the set of circles can be packed into the container without overlap.

Table 1 shows the minimum container radius of the two hard instances illustrated
in figures 3 and 4 found by A1.0 and A1.5. It is clear that A1.5 is substantially more
powerful. The resolution of other instances in our experimentation using A1.0 and A1.5
exactly gives the same conclusion. A1.5 is also substantially better than the approach
presented in [2].

Fig. 3. Instance 1
(n = 50, rmin = 380.00)

Fig. 4. Instance 2 (n = 60, rmin = 522.93)
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Table 1. Minimum container radius found by A1.0 and A1.5 and runtime (in seconds) used by
A1.0 and A1.5 to find the successful configuration with the container radius rmin

Instance A1.0 A1.5 Instance A1.0 A1.5
rmin time rmin time rmin time rmin time

1 381.05 2712s 380.00 5396s 2 527.57 4216s 522.93 6615s

4 Solving CSPs with the Two-Level Search Strategy: First Results

Constraint Satisfaction Problems (CSPs) involve the assignment of values to variables
subject to a set of constraints.

Formally, a CSP is defined by a triplet (X,D,C) where X is a set of n variables
{X1, X2, . . . , Xn}, D is a set of n finite domains {D1, D2, . . . , Dn} with each Di is
a set of possible values {vi1, . . . , viki

} for Xi, and C is a set of m constraints between
variables {C1, C2, . . . , Cm}. A solution is an assignment of values to all variables such
that all constraints are satisfied.

The circle packing problem can be considered as a CSP : X is the set of circles to be
packed into the circle container, Di is the set of all legal actions associated with circle
i and C is the set of constraints saying that all circles should be placed in the container
without overlap.

Consequently assigning a value (i, x, y) to Xi means the execution of the legal action
(i, x, y) placing a circle i at position (x, y). A1.0 is just a search procedure where the
benefit of an assignment Xi = (i, x, y) for every unassigned variable Xi and every
(i, x, y) ∈ Di is defined by degree λ§. A1.5 is similar except that the benefit of an
assignment is evaluated using A1.0.

More generally, the two-level search strategy can be used to solve satisfiable CSPs or
Max-CSP. The key issue is the definition of the benefit of a variable assignment Xi = v.
At the first level, we use the value 0 − c as the benefit of Xi = v, where c is the total
number of values in the domain of other unassigned variables conflicting with Xi = v.
At the second level, the search procedure at the first level is itself used to evaluate the
benefit of Xi = v, i.e., after assigning v to Xi, the search procedure at the first level
runs until a final configuration, where either all variables are assigned, or the domain of
each unassigned variable is empty. We use the number of assigned variables in the final
configuration as the benefit of Xi = v.

Intuitively, we should choose an assignment to leave as many rooms as possible to
other unassigned variables. Our current heuristic at the first level is very simple but not
precise enough. However, with a quick implementation, this heuristic already gives us
the first interesting results to solve Round Robin and n-queens problems. These two
well-known CSPs appear to be quite hard for backtracking methods.

In the n-queens problem, one has to place n queens on a n × n chessboard so that
no two queens attack each other. Although specific methods are known to solve this
problem easily, it has been used extensively to test constraint satisfaction algorithms.

As in a backtracking approach, we define n variables with domain {1, 2, · · ·, n}, one
for each queen to be placed. Intuitively, queen Xi is to be placed in some column in ith
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row. We then define constraints stating that there are no two queens in any column or
diagonal.

The search procedure at the first level solves some n-queens instances, but it is the
search procedure at the second level that solves this problem up to 600 queens in less
than 10 hours on a Athlon XP2000+ PC.

In the n teams (n even) Round Robin scheduling problem, one has to place the
(n− 1)n/2 meetings (all teams meet each other exactly once) on a n/2 row and n− 1
column matrix, such that every team occurs exactly once in each column and no more
than twice in each row. See [1] for a formal definition of this problem.

The Round Robin problem is challenging for integer programming or standard con-
straint satisfaction techniques, because of its explosive combinatorics. Linear program-
ming is not able to find a solution for n ≥ 14. Using the powerful C++ constraint
programming library ILOG SOLVER, Gomes et al. [1] built a deterministic backtrack-
style CSP engine able to find a solution for n = 14. Then the CSP engine has been
reinforced by randomization with restart in choosing branching variables to find a solu-
tion for n = 16 in 1.4 hours and for n = 18 in 22 hours. Note that Gomes et al.’s results
in [1] for this problem were among the best until 1999.

We use (n− 1)n/2 variables, one for each meeting. At the first level, no solution is
found even for n = 6. However, we are able to solve this problem at the second level
for n up to 18 in one hour.

5 Conclusion

We have proposed a new heuristic and a two-level search strategy, from which an effective
algorithm called A1.5 is designed for packing unequal circles into a circle container. At
the first level A1.0 uses the new heuristic to select the next legal action. Then at the
second level A1.5 uses A1.0 itself to select the next legal action. Experimental results
show the effectiveness of this strategy.

The two-level search strategy can also be used to solve other CSPs. The first results
obtained using simple heuristics are very encouraging. We are searching for new and
more precise heuristics.
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Abstract. Recently spectacular improvements in the performance of SAT solvers
have been achieved through nogood recording (clause learning). In the CSP lit-
erature, on the other hand, nogood recording remains a fairly minor technique
for improving backtracking algorithms. In this paper we demonstrate how recent
nogood recording techniques from SAT can be generalized to CSPs. The result
is a significant enhancement over current nogood recording techniques used in
CSPs. We also report on some preliminary empirical results which indicate that
generalized nogood recording can have a significant performance benefit.

1 Introduction

A number of works have investigated nogood recording as a technique for improving
backtracking search, e.g., [FD94] (a longer version of this paper, [KB03], contains
many more details, as well as a more detailed list of citations). Abstractly, a nogood is
an easily checkable condition that can be used to test the nodes of a backtracking search
tree. If the condition is true, then there can be no solution to the CSP below that node,
otherwise the node remains plausible. Nogoods are discovered as we explore nodes in
the backtracking tree. These nogoods capture the reason various nodes of the tree failed
to yield a solution. By recording these reasons we can test nodes subsequently visited
by the search, backtracking immediately if the node satisfies any previously recorded
nogood.

Although it is well known that nogood recording can offer benefits in CSPs, it remains
an underutilized algorithmic technique in the field. For example, the main commercial
solvers offer no support for nogood recording. Furthermore, the nogood recording tech-
niques in the CSP literature are significantly less general than the more modern tech-
niques utilized in SAT solvers. First, the CSP literature (even recent work like [JDB00])
has only explored the recording of restricted types of nogoods that contain only literals
with the same sign. This means that no extra reasoning, e.g., unit propagation, is possi-
ble over the nogood database. Second, due to this restriction, alternate ways of learning
nogoods from conflicts, e.g., the 1-UIP technique used in Zchaff [MMZ+01], cannot be
supported. Instead, the recorded nogoods are always subsets of the decisions made on
the way to the conflict. Third, heuristics based on the most recently learned nogoods have
not been examined. And fourth, the CSP literature has concentrated on techniques that
restrict the number and/or size of the nogoods that can be recorded, e.g., using relevance
or length bounded nogood recording [BM96].
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All of these nogood recording techniques are prominent components of modern SAT
solvers, and they have yielded spectacular improvements in SAT solver performance. In
this paper we demonstrate how all of these improved techniques can be generalized to
CSPs, and report on some preliminary empirical results based on an implementation of
these techniques. Our empirical results indicate that these more sophisticated techniques
for utilizing nogood recording can sometimes have a significant benefit—e.g., allowing
us to solve some previously unsolved problems. However, the results also indicate that
further tuning of these techniques might be needed for them to attain their full potential
with CSPs.

2 Nogoods in Backtracking Search

Definitions: A CSP consists of a set of variables {V1, . . . , Vk}, a domain of values for
each variable, and a set of constraints, each constraint being a boolean valued function
over a subset of the variables that maps each assignment of values to these variables to
true/false. If its value is true, we say that this particular assignment of values satisfies
the constraint. A solution to the CSP is an assignment of a value to each variable such
that every constraint is satisfied by this set of assignments.

The standard notion of nogood, as explored in the CSP literature, is a set of assign-
ments that cannot be extended to a solution of the problem. Each node in the backtracking
tree is defined by the set of assignments made so far, with all descendant nodes extend-
ing this set of assignments. Hence, if a node covers a nogood, i.e., includes all of the
assignments in the nogood, all nodes in the subtree below it must also cover the nogood,
and none of them can be a solution.

Nogoods are the CSP equivalent of clauses learned by SAT solvers. To see this con-
sider the simplest SAT encoding of a CSP [Wal00] in which each possible assignment
of a variable, V ← a becomes a proposition asserting that V has been assigned that
value. The constraints of the CSP are then encoded as clauses over this set of propo-
sitional symbols. In addition, the constraint that each variable must be assigned one
and only value, implicit in the CSP encoding, is also encoded as a set of clauses. Un-
der this direct encoding, a nogood V1 ← a1, . . . , Vi ← ai is equivalent to the clause
(V1 �← a1, . . . Vi �← ai). That is, at least one of the assignments (literals) in the nogood
must be false. Viewing the nogood as a conjunction (rather than a disjunctive clause),
when one of its assignments becomes false the nogood is falsified the nogood becomes
inactive. Similarly, when one of its assignments becomes true, we can reduce the nogood
(implicitly) removing that assignment. Finally, when the nogood has been reduced to a
single assignment (become unit), we can force this last one assignment to be false (an
assignment V ← a is forced to be false by pruning a from the domain of V ).

Using Nogoods: Nogood recording can be accomplished in any algorithm that maintains
the reasons for each pruned value [Bac00]. These reasons can be stored in a global array:
if the reason for pruning V ← a is NG, then NoGood [V, a] = NG. Whenever all the
values of a variable V are eliminated through search or propagation, a new nogood is
discover and recorded: NG =

⋃
{NoGood [V, d]− (V, d) : d ∈ Domain[V ]}.

To use the recorded nogoods, the nogood store is checked for unit nogoods after
making an assignment, before constraint propagation. Standard nogoods can only be
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reduced by assignments, so checking at this stage is sufficient. For every nogood NG
that has been made unit by the assignment, we force its remaining untrue assignment to
false, by pruning the corresponding value and setting NG as the reason for that pruning.
Prunings due to a set of assignments violating a constraint use the assignments to the
constraint’s scope as the reason for the pruning1.

3 Utilizing SAT Techniques for Nogoods

SAT solvers gain much mileage from the fact that their store of recorded clauses can
generate long chains of unit propagations, quickly simplifying the problem. Standard
nogoods as described above do not support such chains of unit propagation—all the
literals in standard nogoods have the same sign so no chaining is possible.

The solution is to record nogoods containing literals of both signs: assignments and
non-assignments. With this we obtain propagation in the nogood store. For example, let
NG1 = {V1 �← a, V2 �← c, V3 ← d}, and NG2 = {V1 �← b, V3 �← d, V4 ← c}; say
the search makes the assignment V1 ← c; and the value c is pruned from the domain of
V2. V1 ← c implies that V1 �← a and V1 �← b both become true. The pruning of c means
that V2 �← c becomes true. Thus NG1 is reduced to the unit nogood {V3 ← d}, which
prunes d from the domain of V3. This then causes NG2 to become the unit {V4 ← c},
resulting in c being pruned from the domain of V4.

Recording Generalized Nogoods: To understand how general nogoods can be recorded
during search, it is useful to consider why it is that the unioning of nogoods is a valid way
of producing a new nogood. Implicit in the CSP representation is a “must have a value”
nogood, M = {V �← x1, . . ., V �← xd}. When we have a nogood NGi = {V ← xi, Ri}
for each of V ’s values, we can resolve each NGi against M . The final result will be
{R1, . . . , Rd}.

To discover generalized nogoods, we replace the above procedure with one that
incrementally unwinds the “must have a value” nogood, always replacing the chrono-
logically most recent assignment by the reason (nogood) associated with it. Eventually,
we have a nogood whose most recent assignment is the choice assignment in its level.
We can then backtrack to that level, and store the nogood. The key is that during this
incremental unwinding process some of the non-assignments in the “must have a value”
nogood persist.

Unique Implication Point (UIP): An alternative to completely unwinding the “must-
have-a-value” nogood is to stop when exactly one assignment remains at the current level.
That assignment is called a unique implication point [ZMMM01]. Nogoods computed
via UIPs can be quite different from those computed via the standard technique. We have
experimented with both techniques for nogood recording.

Non-binary Domain Processing The SAT encoding of a CSP contains clauses to en-
force the constraint that each variable must have one and only one value. These clauses

1 In the case of prunings due to GAC propagation the reason (nogood) for the pruning can be
composed from the nogoods of the values pruned from the other variables in the constraint’s
scope.
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(nogoods) could be added to the nogood store prior to search, but it is more efficient (and
effective) to account for the implicit presence of these clauses by special processing of
the nogoods. There are three cases that can be processed in this way. First, whenever a
variable V is assigned a value a all assignments V ← x for x �= a become false. Second,
if a nogood contains an assignment to a variable we can remove all non-assignments
to the same variable prior to storing the nogood (the assignment subsumes the non-
assignments). Third, if a nogood is reduced to a collection of non-assignments to the
same variable, we can immediately prune all other values from the variable’s domain. It
can be noted that the last two cases cannot be captured by simply unit propagating the
implicit “must have a value” and “only-one-value” nogoods.

Heuristics Based on Recently Recorded Nogoods: The recorded nogoods can be used
to rank the unassigned variables by the frequency with which they appear in recently
recorded nogoods. The Variable Decay heuristic utilized in SAT solvers uses this tech-
nique to encourage the tree search to produce short clauses. We have experimented with
such a heuristic, but to date have not found an effective version of it in the context of
CSPs. Nevertheless, there is increasing evidence that heuristic guidance can be the most
effective of the nogood recording techniques utilized in SAT solvers. Hence, we are
continuing our investigations in this area.

Recording Large Numbers of Nogoods: SAT solvers utilize lazy data structures (watch
literals) to optimize the management and propagation of large numbers of large no-
goods. With these techniques previous restrictions on nogood recording utilized in CSP
algorithms can be removed, and instead large databases of nogoods can be efficiently
managed.

4 Empirical Results

We have implemented unrestricted nogood recording, with standard nogoods as well
as generalized nogoods. We have also implemented UIP processing which can be used
with generalized nogoods. All experiments were performed on a Pentium-4 2.2 GHz
machine, with 4GB of RAM, and times are reported in CPU seconds.

We report on one set experiments containing 100 instances of hard crossword puzzles,
presented in [BCSvB01], Beacham et al.. Beacham et al. identified EAC (extensional arc
consistency) as the best algorithm. In our experiments we compared their implementa-
tion of EAC against various nogood recording algorithms based on FCCBJ: FCCBJ+RB
(3rd order relevance bounded recording of standard nogoods), FCCBJ+S (unrestricted
recording of standard nogoods), FCCBJ+G (unrestricted recording of generalized no-
goods) and FCUIP (unrestricted recording of generalized nogoods that result from UIP
reasoning). In Table 1 we report on the instances that were unsolvable by at least one of
the algorithms. The rest were easily solvable by all, with no major time differences.

We see that relevance bounded nogood recording is not very effective, always being
slower than the rest of the algorithms, and solving fewer problems. FCCBJ+S presents
a clear improvement. Recording generalized nogoods with UIP reasoning in some cases
can pay off, but more tuning is needed to obtain maximal benefit from this technique.
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Table 1. Crossword puzzles with FC-based algorithms

EAC FCCBJ+RB FCCBJ+S FCCBJ+G FCCBJ+UIP
Problem Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

UK-21.04 20.36 447 817.36 5924008 1491.22 1170356 - - 5312.95 824067
UK-23.06 84.72 1306 - - 5203.07 2994762 - - 1028.48 835313
UK-23.10 210.54 1834 177.06 1236956 134.59 415718 2199.28 710566 - -

words-15.01 - - - - 5395.93 2423058 - - 1122.5 655479
words-15.10 2.29 265 - - 5752.77 3702947 - - - -
words-19.03 502.12 21096 - - 156.56 526797 - - 490.26 482251
words-19.04 10.58 580 - - 15.46 118325 43.47 124524 30.53 97721
words-21.01 - - - - 3921.84 5056685 - - 1266.06 1207743
words-21.06 4.35 484 - - 45.11 168548 350.27 287223 31.94 75443
words-23.03 - - - - 144.57 672178 5006 1902648 1959.23 1400760
words-23.04 207.16 3783 - - 14715.87 6194196 - - - -
words-23.08 - - - - - - - - 4529.65 1817350
words-23.09 269.79 9933 - - - - - - - -

5 Conclusion

We have developed methods for importing current clause learning techniques from SAT
into CSPs. These techniques do allow us to solve some previously unsolved problems,
but more work remains to obtain to maximal potential from these techniques in the CSP
context.
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Abstract. This paper presents a new constraint domain, where variables can be 
assigned values that are organised in a tree hierarchy. The introduction of this 
new constraint domain is motivated by applications for the configuration of 
product and services, for instance, in the context of e-commerce. The paper 
proposes a small constraint language, based on comparisons and the use of 
monotonic functions. An approximation of domains as convex sets is detailed 
and propagation rules for achieving bound-consistency on the constraints are 
reviewed. This new constraint domain is general, and the author hopes that it 
will be a useful tool not only for solving configuration problems but also for 
promoting constraint technology in new application domains related to content 
classification or the semantic web. 

1   Modelling Problems with Hierarchical Values 

The theory of Constraint Programming has been developed in full generality, inde-
pendently of value domains: constraint programmers can state problems where the 
variables are unknowns who should take their values among (integer, real) numbers, 
Booleans, predefined enumerations or even richer structures such as subsets from a 
known finite set, bags or trees. In practice, CP systems often seldom support con-
straints over anything other than integers, reals and finite sets. We introduce a new 
type of domains, where all values that a variable may take are organized into an hier-
archy. Such hierarchies are often called ontologies or thesauri in AI (see for instance 
the seminal work of Gruber [Gr 93]). They can be encountered for instance, with class 
hierarchies describing product types, with domains modelled at different scales (think 
of geographical data, such as zipcodes) or, with keywords from a thesaurus that are 
used to index a set of documents.  

Constraint over hierarchies have been studied in the context of typing systems (see 
for instance [CF 03] that adresses the case of a much richer structure, e.g. infinite 
quasi –lattices). To our knowledge, they have however, never been used in constraint 
prorgramming for modelling purposes. 

2   The Constraint Language 

The constraint language is defined from four constituents:  
- Concepts are the constant values (from a predefined finite set). They are noted a, 

b, c, d, … 



Constraints over Ontologies      879 

- Concepts are partitioned into a set of ontologies. The set of concepts forming an 
ontology is structured by a refines relation Its directed graph is a tree spanning 
the ontology, and rooted in a particular concept called the root of the ontology. 
The transitive closure of the refines relation is a partial order called the sub-
sumption relation and denoted subsumes. For each ontology O, its root a is the 
maximal element of the subsumption relation.  

- Ontology variables are unknowns, denoted x, y, z,… that may be bound to any 
concept from one given ontology. The original domain from a variable is a given 
ontology. Integer variables shall also be considered and be denoted t, u, … 

- Constraints are expressions involving variables and constants. They are denoted 
C, D, E… and can be formed from the following constructs. 

o Unary comparisons :    
  C  ≡  x ≤  a          where a is a concept from the ontology of x 
   C  ≡ a ≤  x          where a is a concept from the ontology of x 

o Binary comparisons :    
  C  ≡ x ≤  y          where x, y are defined on the same ontology 

o Functions:  
 C  ≡ f(x) = t           where f is a monotonic function 

The semantic of the constraints is straightforward. Comparisons x ≤  y are satisfied 
for all instantiations (x = a, y = b) such that b subsumes a. Monotonic functions are 
mappings from an ontology O onto the integers such that for all pairs of concepts a, b 
∈ O, (a subsumes b) ⇒ (f(b) ≤ f(a)) (increasing functions) or (a subsumes b) ⇒ (f(a) 
≤ f(b)) (decreasing functions). Increasing functions tend to describe the extent of a 
concept, measuring how it covers a domain (the broader the concept, the higher the 
measure). Examples of increasing functions include the area or population for geo-
graphic concepts, or the probability of occurrence of a class of keywords in a corpus 
of data. Decreasing functions tend to describe the quantity of information of a concept 
(the narrower the concept, the higher the measure). Examples of decreasing functions 
include node depth in the ontology, inverse frequency measures or entropy measures. 
Note that such functions are called “graded functions” in the case of set constraints, in 
the Conjunto system [Ge 97]. 

3   Convex Sets and Domain Management  

This section describes how constraint propagation over ontology domains is per-
formed using convex approximations for the domains. The situation is analogue to the 
case of arithmetic constraints, propagated over interval domains.  

Definition: Given an ontology O, a subset S of O is convex if and only if 
For all triplets a, b, c ∈ O, (a ≤ b ≤ c ∧  a ∈ S ∧ c ∈ S) ⇒ b ∈ S 

Definition: Given a concept a from an ontology O, the lower cone and upper cone of 
a, denoted a↓ and a↑ are defined as  

a↓ = {b ∈ O |  b ≤  a}    
a↑ = {b ∈ O |  b ≥  a} 



880      François Laburthe 

Definition: Let O be an ontology and S a subset of O; let (mi) be its minimal elements, 
and (Mj) its maximal elements. The convex envelope env(S) is defined as  

env(S) = ∪i(mi↑)  ∩  ∪j (Mj↓) 

Proposition: Each subset S of an ontology is included in its enveloppe, S ⊆ env(S); 
moreover, the equality S = env(S) holds if and only S is convex. 

In the special case of trees-shaped partial orders, the number of minimal elements 
in a set tends to be large. Thus, we use a compact representation. 

Definition: Given an ontology O, and concepts a1, …, an and b1, …, bm from O (with n 
≥ 1, m ≥ 0), a lower cone expression S is defined as  

 S = a1↓ ∪ … ∪ an↓  \ (b1↓ ∪ … ∪ bm↓) 

Proposition: The convex sets of an ontology are exactly its cone expressions. 

Definition: The normal form of a convex set is the cone expression with a minimal 
number n of ai and a minimal number m of bj. We denote l(S) the size of its normal 
form (ie. O(n + m)) for a convex set S. 

Each convex set S can either be represented by its convex envelope S = ∪i(mi↑)  ∩  

∪j (Mj↓) or by its lower cone expression S = a1↓ ∪ … ∪ an↓  \ (b1↓ ∪ … ∪ bm↓). 
The upper limit of both expressions coincides: the set of aj is identical to the set of Mj.  

Algorithm: The intersection of two convex sets S and T is computed in O(l(S).l(T)). 
Let S = a1↓ ∪ … ∪ an↓  \ (b1↓ ∪ … ∪ bm↓) 

T = c1↓ ∪ … ∪ cp↓  \ (d1↓ ∪ … ∪ dq↓) 

The intersection S ∩ T = ∪i,j (ai↓ ∩ cj↓ ) \ (b1↓ ∪ … ∪ bm↓ ∪ d1↓ ∪ … ∪ dq↓) 
Where (ai↓ ∩ cj↓ ) =   ai↓  if ai ≤ cj,  

cj↓  if ai ≤ cj and  
∅ otherwise (if ai and cj are incomparable). 

 
Domains can be a priori arbitrary sets of nodes from a common ontology. These 

sets are approximated by their convex envelope: the data structure used for storing 
domains can store only convex sets. The data structure directly implements a lower 
cone expression. For a given convex set which lower cone representation is S = a1↓ ∪ 
… ∪ an↓  \ (b1↓ ∪ … ∪ bm↓), the data structure stores the set of ai, the set of bj, and, 
for each bj, the unique i such that bj ≤  ai (a useful information to cache for computing 
with lower cone expressions). 

Note that such an approximation is similar to the interval approximations that are 
done for domains of numerical variables (discrete or continuous). Constraints are 
propagated not up to arc-consistency (as one would not be able to store “holes” that 
make the domain non-convex). Instead, constraints are propagated up-to the equiva-
lent of bound consistency. 

Definition: A constraint C involving ontology variables is called bound consistent if 
and only for each variable x involved in C, with domain 

 domain(x) =  ∪i(mxi↑)  ∩  ∪j (Mxj↓) 
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each maximal value from the domain Mxj and each minimal value mxi has a support in 
the Cartesian product of the domains for all variables involved in C.  

As usual, propagating the constraints comes to reducing the domains until all con-
straints are bound consistent [Apt 97][Ben 94]. 

4   Constraint Propagation 

This section proposes propagation rules for the constraint language that has been 
presented above. The reader should however not be abused by the apparent simplicity 
of the rule expressions: computations are more complex than in the integer case, as 
computing the intersections of two ontology convex subsets requires more computa-
tions than computing the intersection of two numerical intervals. In the remainder, we 
shall denote by h the height of the ontology, by δ its degree and by n its overall size. 
Moreover, t will denote an integer variable with domain [inf(t), sup(t)] and x and  y 
will denote two variables with the following domains  

domain(x) = ∪i(mxi↑)  ∩  ∪j (Mxj↓) 

domain(y) = ∪k(myk↑)  ∩  ∪l (Myl↓) 

4.1   Propagating Comparisons 

The constraint x �  a is propagated with the following rule: 
domain(x) ← domain(x) ∩ a↓ 

The complexity of the rule is O(l(domain(x))). 

The constraint a � x is propagated with the rule  
domain(x) ← domain(x) ∩ a↑ 

The complexity of the rule is O(l(domain(x)) . h.δ) (as l(a↑ ) ≤ h . δ , see [La 03]). 

The constraint x �  y is propagated with the following two rules: 

domain(x) ← domain(x) ∩ ∪l (Myl↓) 

domain(y) ← domain(y) ∩ ∪i(mxi↑) 

The complexity of the first rule is O(l(domain(x)) . l(domain(y)). The complexity of 
the second one is O(l(domain(x)) . l(domain(y)) . h . δ), see [La 03]). 

4.2   Propagating Monotonic Functions 

The constraint f(x) = t (f increasing) is propagated with the following four rules: 

sup(t) ← min(sup(t), Maxj ( f(Mxj) ) ) 
 inf(t)  ← max(inf(t), Mini ( f(mxi) ) ) 
while ∃ Mxj maximal in domain(x) s.t. f(Mxj) > sup(t)     
           domain(x) ← domain(x) ∩ (O  \ Mxj↑) 
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  while ∃ mxi minimal in domain(x) s.t.  f(mxi) < inf(t) 
              domain(x) ← domain(x) ∩ (O  \ mxi↓) 

The complexity of the first rule is O(l(domain(x))), as is the complexity of one itera-
tion of the third rule. Rules 2 and 4 are more expensive, as they require iterating over 
the set of minimal elements mxi of domain(x) for evaluating f. Their complexity is 
thus O(n). Their complexity can be improved to O(l(domain(x)) . h . δ) using pre-
processing to compute g(d) = min(f(c) | c ∈ d↓) on each node d. (see [La 03]). 

5   Conclusions 

This paper introduces a new domain for constraint programming where the possible 
values for a variable are a finite set of items (“concepts”) organized in a tree (“ontol-
ogy”) structured by a partial order relation (“subsumption”). This new domain is di-
rectly motivated from constraint-based configuration where one needs to model the 
very kind of objects in the solution through domain variables. The authors have the 
intuition and preliminary evidence that such domains can also be useful for other 
applications related to content indexing, semantic annotations to data, or the capture 
of user wishes. 

A simple constraint language is provided, mostly based on comparisons and mono-
tonic functions. An encoding of domains based on the approximation of sets of values 
by their convex envelope is proposed. Propagation rules for the constraint language 
relying on the convex approximation are also proposed. The propagation framework 
is thus based on a calculus of interesections of convex subsets of the domain, rewrit-
ing convex sets into a dedicated normal form (cone expressions). 
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Abstract. Searching objects within a catalog is a problem of increasing impor-
tance, as the general public has access to increasing volumes of data. 
Constraint programming has addressed the case of searching databases of com-
plex products that can be customized and build from components, through con-
straint-based configurators. We address the issue of searching objects within 
catalogs of simpler items for which no logic description is available. We pro-
pose to embed constraint technology in a search assistant supporting dynamic 
and concise dialogs based on the exchange of constraint formulations between 
the client and the server. At each iteration, the server analyses the data available 
in the catalog, computes abstractions, cluster decompositions and relaxations in 
order to provide the user with alternative for either explicitly focusing the 
search (adding constraints to the user’s wish) or enlarging it (relaxing, to some 
extent, a subset of the user’s constraints). 
 This cooperative system is currently used for Intranets, customer relationship 
management systems and e-commerce websites.  

1   Introduction 

As users in the general public and in professional environments have increasing ac-
cess to large repositories of data, the issue of searching objects within catalogs gains 
importance. Most sites are powered with search engines helping users to find what 
they wants. Such engines can be either only content-based, using string matching 
algorithms to find the documents, and statistical analysis to sort them by relevance, or 
logic-based, implementing a configuration process: user state their requirements in an 
input form, and the configurator updates the form with implied features (propaga-
tion), or new input criteria (generative constraint programming). 

Our research focuses on the intermediate case where the database is more struc-
tured than a document repository (the objects are more than plain textual content, 
some of their characteristics are described in a database), but no logical formulation 
of the configuration task is available. This case is representative of Intranets, digital 
marketplaces, auction and classified ads sites 

In the spirit of cooperative answering systems [GGM92], the server assists the user 
in his exploration, by providing him with relevant answers to his queries. Instead of 
trying to guess the user’s preferences (as recommender systems do), the method im-
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plements some of the natural ideas from human sales dialogs where the user is being 
explained the structure of the catalog (with a gross idea of the available objects). This 
method extends the work on intensional answers to database queries [Mot 94], and its 
application to interactive data retrieval systems [OY 95]. 

This method is implemented in a system (Wishbone) In contrast with standard ap-
proaches using constraint technology, computations do not rely exclusively upon 
algorithms for propagation and search, but upon algorithms for abstraction, cluster-
ing, relaxation and simplification. The method is data-driven as all the constraint 
management done by the engine is relative to a given state of the catalog (the data-
base): the engine takes advantage of a Galois connection between constraints and sets 
of objects from the catalog in order to compute solution sets to constraints, analyze 
these sets and abstract them back in terms of constraints.  

2   Powering Websites with Human-Inspired Search Dialogs 

When searching for a product over the Internet (a used car to buy, an apartment to 
rent, …), users must answer questions from the sites (by means of input forms, or sets 
of hyperlinks to choose from). The experience turns painful when:  
- either no items match the user’s request and he is asked him to formulate another 

one, without further help.  
- or too many answers match the user’s question and he is asked to enter additional 

criteria, again without any help. 
We propose to incorporate some of the logic from the salesclerk into the search 

dialog with the service, by building dynamic dialogs, where: 
- the user first states his initial need by partially filling a form, 
- he is answered with a gross estimate of the results matching his need (number of 

items, common properties of those items), 
- if many items are available for his need, he is proposed a choice between a few 

groups of items. Those groups are built dynamically, from the actual data avail-
able for the client’s request so that the decomposition amounts to a “reasonable” 
alternative. The user may answer the server’s question (select one group from 
the alternative) or ask for another discriminate criterion. 

- if no items are available for his need, he is proposed a choice between various 
explicit ways of turning his request into a feasible one.  

In both cases (refinement and relaxation alternatives), the user is informed, for 
each branch, of the consequences of selecting it (with the number of matching results 
and a set of common properties of these results). 

The user states his request by means of constraints; the server returns information 
on the available objects also by means of constraints. The dialog can thus be de-
scribed as a process where both parties, the client and the server, synthesize a wish 
that both matches the user expectation and the possibilities from the data at hand. The 
wish is passed back and forth between the client and the server that both add informa-
tion to it. The dialog converges from a vague wish into one with only a few solutions 
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(available items from the catalog). For lack of space, the theory and algorithms of the 
method are only sketched in this paper, we refer the reader to [LC 03] for more de-
tails. 

3   Exchanging Constraint Models 

We start by introducing useful notations. Catalogs contain objects; objects are in-
stances of classes and classes are organized in a single inheritance hierarchy. The 
descendents of a class c is the set of classes inheriting from c. We denote by o:c the 
fact that object o is an instance of class c. Each class extends the structure of its su-
perclass by adding new slots. We call range of a slot the type of values that it con-
tains. Slots may have different ranges: boolean, string, number, date and all classes c 
(such slots contain instances of classes d that are descendents from c). Last, o.s reads 
the value in the slot s of the object o.  

3.1   The Syntax of the Constraint Language 

Constraints use paths to access object features, potentially through sub-objects.  

Definition: a path is defined by a support class c from the class hierarchy, and a se-
quence of k slots s1,…, sk (k≥ 0) such that for all i,1 ≤ i ≤ k, si is of type di→ ri , with di 
(the domain of slot si), a descendent of the class ri-1 (the range of the previous slot si-1, 
or by convention, the support class c=r0). The path p is written c::[s1, …, sk].  

A path is applicable to an object if and only if each slot can be recursively fol-
lowed from the root object. When a path p = c::[s1, …, sk] is applicable to an object x, 
its application returns a set of values (accessible through the chain of slots) 

Definition a constraint is defined by a path p, an operator op and operands a1,…,an. It 
is written C(p, op, a1), C(p, op, [a1,…,an]) or C(p, op, [a1,…,ak], [ak+1,…,an]).  

The supported operators in the constraint language are the following: 
- ≤, ≥ (unary) and inrange (binary) for paths of range number or date  
- = (unary), for paths of range number, Boolean, date or string 
- inset (n-ary), for paths of range string 
- oftype (n-ary), for paths of range object  

3.2   The Semantics of the Constraint Language 

Constraints are evaluated on objects by applying the path and checking the formula. 

Definition: given a constraint C(p, op, [a1,…,an]) and an object x such that ap-
plies(p,x), the evaluation operator eval is defined as follows: 

eval(C(p, ≥, a), x) = true   ⇔ ∃ y ∈ applies(p,x) |  y ≥ a 
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 eval(C(p, ≤, a), x) = true   ⇔ ∃ y ∈ applies(p,x) |  y ≤ a 
 eval(C(p, =, a), x) = true   ⇔ ∃ y ∈ applies(p,x) |  y = a 
 eval(C(p, inrange, [a, b]), x) = true ⇔ ∃ y ∈ applies(p,x) |  a ≤ y ≤ b 
 eval(C(p, inset, [a1,…,an]), x) = true  ⇔ ∃ y ∈ applies(p,x) |  y ∈ {a1,…,an} 
 eval(C(p, oftype, [c1,…,cn],[d1,…,dp]), x) = true   

   ⇔ ∃ y ∈ applies(p,x) |  (y:e ∧ (∃ i, 1≤ i ≤ n, e ≤  ci ) ∧  
           (∀ j, 1≤ j ≤ p, ¬ (e ≤  dj )) ) 

Definition: a wish w is defined by a support class c and a set of constraints  [C1,…,Ck] 
whose paths are pair-wise different but all have c as support. The wish is denoted by 
w= (c, [C1,…,Ck]). For some x:d such that d ≤ c, w can be evaluated with: 

eval(w, x) = true ⇔ ∀ j, 1≤ j ≤ k, eval(C j,x) = true   

Definition: Computing solutions to a wish w=(c, [C1,…,Ck]) is called filtering and its 
application is denoted by φ 

φ(w) = {x | x:d, d ≤ c ∧ eval(w,x)=true} 

4   Constraint-Based Abstraction 

Abstraction is the inverse step of filtering: instead of finding a (the largest) set of 
instances satisfying a wish, one finds the (most precise) wish satisfied by a set of 
instances. We denote this task by α (note that if the constraint language was made of 
arbitrary linear inequalities over numerical slots, α would amount to the computation 
of the convex envelope).  

Definition: α(S) is the maximal wish satisfied by all objects in S.  

Proposition: Objects and wishes are related through α and φ by a Galois connection, 
a structure studied in abstract interpretation [CC 77] (see [LC 03] for details). Ab-
straction is used as a wish strengthening mechanism, in order to warn the user about 
implied constraints of his wishes. For all wishes w, the wish α(φ(w)) (which is tighter 
as α(φ(w)) ≤ w but has the same solution set as φ(α(φ(w)))=φ(w)) is computed and 
returned to the user. He is thus aware of features that are common to all solutions to 
his current request. 

Note that this Galois connection between formulas and sets of objets is commonly 
used with concept lattices for information retrieval [GMA 98].  

5   Constraint-Based Clustering 

Clustering is used in order to separate a set of instances into several subsets. The 
server transforms the user’s wish w into an alternative among a few (say, three) 
tighter wishes w1, w2, w3 such that φ(w)= φ(w1) ∪ φ(w2) ∪ φ(w3). With one click, the 
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user will refine w into one of the sub-wishes wi; the objective of this separation is thus 
twofold : 

- Quick convergence. Entropy reduction principles are used in order for the 
dialog to converge quickly towards solutions.  

- Tight information. The formulation of each sub-wish should be as tight as 
possible, in order for the user to easily accept or refuse branches, based on 
their description. Ssince the clusters cannot be any subset of instances, but 
must be expressed as solutions to a sub-wish, the very syntax of the wish (its 
operands) also accounts in the quality of the decomposition.  

6   Constraint-Based Relaxation 

A fuzzy evaluation function feval is introduced for the constraint language in order to 
distinguish objects that slighlty violate a constraint from objects that significantly do. 
Thus, for an infeasible constraint C, one can sort all candidate objects (inheriting 
from the support class) x by decreasing values of feval(C,x). For a small integer k, let 
x1, …, xk be those k best fuzzy matches. The wish α(x1, …, xk) has at least k solutions, 
and it is a relaxation of constraint C. This is the basis for wish relaxation.  

When an infeasible wish w=(c, [C1,…,Cn]) is submitted, the engine looks for ways 
of relaxing the wish into a feasible one and returns an alternative where each branch 
wi is a wish made of a set of constraints kept as such from w, a set of relaxed con-
straints (constraints that are somewhat looser than their counterpart in w), and con-
straints from w that are ignored (absent from the wi branch). The  algorithm (see 
[LC03]) builds an alternative such that, in each branch wi, the set of constraints kept 
from w is maximal (keeping one more constraint from w would make that branch 
infeasible). It goes in two steps: first, generating maximal subsets of hard constraints, 
then, using each subset of hard constraints to build a relaxation wi for the alternative. 
It ensures that at most n wi are proposed, and that each constraint of the original wish 
that is feasible appears as a hard constraint in at least one of the wi. 

7   Conclusions 

This paper has presented a method and a cooperative system for searching items in a 
catalog. The system supports nicer dialogs between the user and the system, where 
the very information that is exchanged is more meaningful and more concise. Dialogs 
are based on a constraint language; and the server handles constraint with a variety of 
methods such as abstraction, clustering, relaxation and simplification. This approach 
complements constraint-based configuration: configurators use logic-based algo-
rithms (propagation and search) to guide the search through complex catalogs, we use 
data-driven algorithms (abstraction and clustering) to navigate through simpler ones. 



888      François Laburthe and Yves Caseau 

References 

[CC 77]  P. Cousot, R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static 
Analysis of Programs by Construction or Approximation of Fixpoints, POPL 1977. 

[GGM92] T. Gaasterland, P. Godfrey, J. Mincker, An overview of cooperative answering, 
Journal of Intelligent Information Systems, Kluwer, 1(2) 123-157, 1992. 

[GMA 98] R. Godin, R. Missaoui, A. April, Experimental comparison of navigation in a Galois 
lattice with conventional information retrieval methods, International Journal of 
Man-Machine Studies 38, 747-767, 1998. 

[LC 03] F. Laburthe, Y. Caseau. On the use of constraints for exploring catalogs Bouygues 
research report 2003-01, 2003. 

[Mot 94] A. Motro, Intensional answers to database queries IEEE transactions on Knowledge 
and Data Engineering  6(3) 444-454, 1994. 

[OY 95]  J. Ozawa, K. Yamada, Discovery of Global Knowledge in a database for coopera-
tive answering, Proc. IEEE Int. Conference on fuzzy systems, 849-854, 1995.  



Intermediate (Learned) Consistencies

Arnaud Lallouet, Andrëı Legtchenko,
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Abstract. What makes a good consistency? Depending on the con-
straint, it may be a good pruning power or a low computational cost. By
using machine learning techniques (search in an hypothesis space and
clustering), we propose to define new automatically generated solvers
which form a sequence of consistencies intermediate between bound- and
arc-consistency.

Introduction. Since their introduction, CSP consistencies have been recognized
as one of the most powerful tool to strengthen search mechanisms. Since then,
their considerable pruning power has motivated a lot of efforts to find new con-
sistencies and to improve the algorithms to compute them. Consistencies can be
partially ordered according to their pruning power. However, this pruning power
should be put into balance with the complexity of enforcing them. For example,
path-consistency is often not worth it: its pruning power is great, but the price
to pay is high. Similarly, on many useful CSPs, bound-consistency is faster than
arc-consistency even if it does not remove values from the middle of variable
domains.

Very often, the programmer has the choice only between bound- and arc-
consistency. But he or she has often little clue about which one to choose. Re-
cently, it has been shown that consistencies can be built automatically using ma-
chine learning techniques. In [2], a consistency weaker than bound-consistency
but as close to it as possible was constructed. In this paper, we present an method
to automatically build approximations of arc-consistency. Actually, the method
builds a full range of comparable consistencies for a given constraint. These
intermediate consistencies are located between bound- and arc-consistency.

This set of consistencies is provided by a new solver learning method based on
a clustering of the constraint’s tuples, a sampling of the search space and a repair
technique able to fix a too weak operator. We call this consistency multibound-
consistency. The pruning power and the computational cost of such a consistency
is directly related to the number of allowed clusters. The programmer can finely
tune the ratio between filtering and search by choosing a level of consistency
in this set instead of just bound- and arc-consistency. The tests show that on
semi-regular constraints, the best performance is obtained for an intermediate
consistency which is able to perform the most important part of the work of
arc-consistency while saving enough tests to be faster.
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Consistencies. Let V be a set of variables and D = (DX)X∈V their (finite) do-
mains. For W ⊆ V , we denote by DW the set of tuples on W , namely ΠX∈W DX .
A constraint c is a pair (W,T ) where: W ⊆ V is denoted by var(c) and T ⊆ DW

is denoted by sol(c). A CSP is a set of constraints. For W ⊆ V , a search state
consists in a set of yet possible values for each variable: sW = (sX)X∈W such that
sX is a subset of DX . The search space is SW = ΠX∈WP(DX). Singleton states
comprises a single value for each variable, and hence represents a single tuple.
A tuple is promoted to a singleton search state by the operator � �: for t ∈ DW ,
let �t� = ({tX})X∈W ∈ SW and for E ⊆ DW , let �E� = {�t� | t ∈ E} ⊆ SW .
Conversely, a search state is converted into the set of tuples it represents by
taking its cartesian product Π : for s ∈ SW , Πs = ΠX∈W sX ⊆ DW . We denote
by SingW the set �DW � of singleton search states. By definition, �DW � ⊆ SW .
In this paper, we call consistency for a constraint c an operator f on SW having
some properties. We denote by Fix(f) the set of its fixpoints. In order for an
operator to be related to a constraint, we need to ensure that it is contracting
and that no solution tuple could be rejected anywhere in the search space. An
operator having such property is called a preconsistency:

Definition 1 (Preconsistency). An operator f : SW → SW is a preconsisten-
cy for c = (W,T ) if:

– f is monotonic, i.e. ∀s, s′ ∈ SW , s ⊆ s′ ⇒ f(s) ⊆ f(s′).
– f is contracting, i.e. ∀s ∈ SW , f(s) ⊆ s.
– f is correct, i.e. ∀s ∈ SW , Πs ∩ sol(c) ⊆ Πf(s) ∩ sol(c).

The last property means that if a state contains a solution tuple, this one will
not be eliminated by consistency.

An operator on SW is associated to a constraint c = (W,T ) if its singleton
fixpoints represent the constraint’s solution tuples T , i.e. if Fix(f) ∩ SingW =
�sol(c)�. This property is also called singleton completeness.

Definition 2 (Consistency). An operator f is a consistency for c if it is as-
sociated to c and it is a preconsistency for c.

Consistency operators can be easily scheduled by a chaotic iteration algorithm
[1]. By the singleton completeness property, the consistency check for a candidate
tuple can be done by the propagation mechanism itself. Let us now define some
consistencies associated to a constraint c:

– IDc is a family of contracting operators such that any idc ∈ IDc verify: ∀s ∈
SW \SingW , idc(s) = s and ∀s ∈ SingW , s ∈ �sol(c) ⇔ idc(s) = s. In particular,
on non-solution singleton states, idc reduces at least one variable’s domain to ∅.
The non-uniqueness of idc comes from the fact that all search states s such that
Πs = ∅ represent the empty set of solution for a constraint. In the following, we
denote by idc any member of IDc.

– acc is the well-known arc-consistency operator defined by ∀s ∈ SW , acc(s) = s′

with ∀X ∈ W , s′
X = sX ∩ sol(c)|X .

Bound-consistency can also be defined in this framework.
Intermediate Consistencies. Consistencies are compared by considering their
pruning power, which is described by the following ordering: let f and f ′ be two
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operators on SW and let E ⊆ SW . We say that f is more precise than f ′ on
E, denoted by f ⊆E f ′ if ∀s ∈ E, f(s) ⊆ f ′(s). If E = SW , we simply write
f ⊆ f ′. For example, it is well-known that acc ⊆ bcc. The consistency acc is the
most precise consistency for c. The following notion of approximation compares
consistencies for the same constraint:

Definition 3 (Approximation). Let f and f ′ be two consistencies on SW for
a constraint c. The consistency f ′ approximates f if f ⊆ f ′ and f ′ ⊆SingW

f .

For example, bcc is an approximation of acc. Consistencies which are approxima-
tions of acc or even bcc are what we call intermediate consistencies. They define
the same constraint but perform different prunings along the search space. We
define formally the pruning power of a preconsistency f from the number of ex-
tra tuples maintained by f with respect to arc-consistency over the whole search
space. Since acc ⊆ f , it is enough to assume that f is a preconsistency: the prun-

ing power of f is given by P (f) =
1

1 +
∑

s∈SW
(|Πf(s)|−|Πacc(s)|)

|SW |
. In this formula,

the big sum is a kind of distance between f and arc-consistency which measure
the number of tuples “missed” by f and which are removed by arc-consistency.
Thus, acc has a pruning power of 1, and P (bcc) ≤ 1. The pruning power defines a
total ordering on consistencies. The pruning power of a consistency must be put
into balance with the computational cost needed to enforce it: the complexity of
f , denoted by C(f) is the sum of the number of operations necessary to compute
f on every s ∈ SW . To be meaningful, it is of course needed to agree on the
basic operations allowed to compute the consistencies. Note that the complexity
is evaluated on the whole search space and is not a function of the size of the
data or arity. The next idea of quality is to relate the pruning power of a consis-
tency to the complexity of its evaluation measured by the number of operations
necessary to enforce it: the quality of f is Q(f) = P (f)/C(f).
Learning Consistencies. In order to build a consistency, we need to define an
hypothesis space in which search is performed. Let d be a distance between two
operators and let L be a language in which the operators are expressed. The
problem of learning an operator for a consistency consc amounts in finding a
term l0 ∈ L such that l0 = minl∈L d(consc, l). But only minimizing this distance
does not ensure that the learned operator is actually an approximation of consc.
We must also ensure the correctness consc ⊆ l. Hence the learning problem is
stated as follows:

minimize d(consc, l)
subject to ∀s ∈ SW , consc(s) ⊆ l(s) ⊆ s

The correctness of the algorithm is ensured by construction. Following machine
learning vocabulary, consc represents the example space and L the hypothesis
space.
Repair. Building directly a consistency is difficult because the expression of such
a consistency may not be possible in the language in which the operators are
expressed. It may also be possible but at the price of using very long and tricky
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expressions. In the chaotic iteration framework, we can build a consistency by
combining the mutual strengths of several operators. We learn a preconsistency
instead of a consistency because enforcing correction on the whole search space
and at the same time singleton completeness is difficult. A full consistency can
be reconstituted by combining the consistency idc which is associated to c with
the learned preconsistency.
Sampling Method. One of the biggest problem encountered in the search of a
good operator is that the correctness constraints have to be verified along the
whole search space SW . Fortunately, monotonic operators have an other inter-
esting property, they preserve the solution tuples of their associated constraint
across the search space:

Proposition 4. Let f be a monotonic and contracting operator such that
�sol(c)� ⊆ Fix(f). Then f is a preconsistency for c.

By this proposition, if we can ensure that the constructed operator is monotonic,
it is sufficient to be correct with respect to the singleton solution states �sol(c)�.
Actually, good operators are very quickly obtained and only less than a hundred
samples are enough. This allows to apply the method on real-world constraints.
For example, a constraint of arity of 5 with a domain size of 100 values yields,
only for bound-consistency, a search space of size 3.1018 which could not be
handled without this method.
Clustering and Multibound-Consistency. The idea is to isolate disjunctive
chunks of the constraint and to apply bound consistency on each chunk. We
call this consistency multibound-consistency. A constraint is cut off into pieces
by a clustering algorithm. A clustering of c is a set of constraints CL = {c1 =
(W,T1), . . . , cn = (W,Tn)} such that {T1, . . . , Tn} form a partition of T . We
use the agglomerative complete-link clustering algorithm [3]. The consistency
obtained consists in applying the bound-consistency on each separate cluster:

Definition 5 (Multibound-consistency). Let c be a constraint and CL be
a clustering of c. Let bccl be the bound-consistency for a constraint cl. The
multibound-consistency is defined by the operator:

∀s ∈ SW , mbc(s) = s ∩
⋃

cl∈CL

bccl(s)

Note that when each cluster only holds one tuple, we get arc-consistency, and
when all tuples are in a single cluster, we get bound-consistency. Since the clus-
tering wraps some holes, it is needed to compose the learned operator with idc

in order to get a consistency. The multibound-consistency operator is obviously
monotonic. The programmer can measure the quality parameter to get an in-
formation about the behavior of the learned consistency on average or find a
different measure which fits better to his/her problem.
Examples. For all examples, we have compared multibound-consistency as com-
puted by our clustering algorithm to Gnu-Prolog table constraint fd relation
which computes arc-consistency.
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Robot Vision. In this example, a 100×100 map is filled with 1945 points representing
obstacles. This map constraint is intersected randomly 5000 times with a constraint
representing the vision angle of a robot (90o angle oriented from right to left). The
solutions are the obstacles visible by the robot. The multibound-consistency is learned
for this constraint and the maximal quality is obtained for around 230 clusters, far less
than the 620 clusters necessary to get arc-consistency. The maximum speed-up with
respect to fd relation is 6.84 for this map.
Square Map. On this example, the map is a simple square of size 10 × 10 with 10
holes. On this constraint, one cluster is enough and bound-consistency is close to the
optimal.
Crosswords. Crossword compilation can be done by considering that “being a 3-letter
word” is a constraint described by the allowed 3-letter words taken in a dictionary (here
we use 48 random words). The test consists in building a 3×3 grid with a central hole.
In this constraint, tuples are located sparsely at random places, making the clustering
ineffective. The maximal quality is thus obtained around arc-consistency and we do
not get any speed-up.

A last remark concerns the universality of this approach. We strongly believe
that no single method can account for every constraint. Features like density,
proximity or shape can affect very seriously the suitability of a particular rep-
resentation. Most important, the quality we define gives an average measure of
the consistency quality and the constraint may be used in a specific way in an
actual CSP. More experiments are needed in order to determine which approxi-
mation to use according to the problem family or to dynamically tune the ratio
pruning/search during search.
Summary. In this paper, we propose a new consistency generation method which
allows to build a full range of consistencies between bound- and arc-consistency.
These consistencies can be compared both by their pruning power and by their
computational complexity. This allows to optimize the ratio pruning/complexity
to find the optimal consistency for a constraint. A full version of this paper can
be found in [4].
Acknowledgements. We would like to thank Daniel Diaz for his kind support
on the internals of Gnu-Prolog, Slim Abdennadher, Lionel Martin and the rest
of the Solar Team. This project is supported by French CNRS grant 2JE095.
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Abstract. In this paper we introduce a new method for bounding the
solution to constraint optimization problems called semi-independent
partitioning. We show that our method is a strict generalization of the
mini buckets algorithm [1]. We demonstrate empirically that another spe-
cialization of SIP, called greedy SIP, generally produces a better answer
than mini buckets in much less time.

1 Introduction

In this paper we introduce a new method for approximating the solution to
constraint optimization problems [5]. These problems are NP-hard in general,
but have many practical applications. State of the art methods for solving them
[3,6,8,7] rely upon branch and bound search with a heuristic to compute a lower
bound on the quality of the best solution that can be found by extending the
partial assignment associated with the current node.

Our algorithm, called semi-independent partitioning, computes a lower bound
on the best solution of a COP, with the solution quality and running time being
controlled by a complexity parameter i. We will show that SIP is a generalization
of the mini buckets algorithm [1,4]. We will present empirical results showing
that an alternative instantiation of SIP, greedy SIP, generally computes a much
better lower bound than MB in less time.

This paper is divided into several parts. Following this introduction, we in-
troduce basic concepts in Section 2. Then in Section 3 we introduce the semi-
independent partitioning algorithm and compare it with mini buckets. In Section
4 we summarize the results of an experimental comparison, and in Section 5 we
conclude.

2 Basic Concepts

A set of constraints C defined on finite-domain variables X is a set of functions
C = {C1, C2, ..., Cm}, where Ci is defined on a subset of X, Si, called its scope.
The size of the scope is called the constraint arity. Ci maps allowed tuples to
0 and disallowed tuples to 1. The cost of an assignment to X is the number of
constraints it does not satisfy, or

∑
{c∈C} c, where c is evaluated on the assign-

ment. The cost of the optimum solution then is minX

∑
{c∈C} c. The MAX-CSP

problem is to find this quantity. It is NP-hard in general.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 894–898, 2003.
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C can be associated with a binary graph G = (X,E) called the constraint
graph. An edge {x, y} is in E if and only if there exists a constraint c in C whose
scope includes both x and y. The induced width w∗ of C’s graph is defined in
reference to an ordering of the variables in X or absolutely. In reference to an
ordering, it is calculated by removing the variables from the graph from last
to first, connecting all neighbors of a node when it is removed. The maximum
number of neighbors any node has when it is deleted is the induced width. The
absolute induced width is the minimum induced width over all orderings. Finding
the absolute induced width is NP-hard, but orderings with good induced width
can be found with heuristics. The min-degree heuristic, for example, orders the
vertices from last to first, at each point choosing the variable with minimum de-
gree in the graph, then removing it and connecting its neighbors. More material
on the induced width measure can be found in [2].

Given a variable x ∈ X, and set of constraints Cx ⊆ C defined on X ′ ⊆ X
which all mention x in their scopes, the operation of projecting x out of Cx com-
putes a new function g = minx

∑
{c∈Cx} c which is defined on X ′−x. It occupies

O(exp(|X ′| − 1)) space and the time complexity of computing it is the same.
Variable elimination [2] is an exact algorithm for MAX-CSP whose complexity
is exponential in the induced width of the graph along an elimination ordering.
It simplifies a problem C by repeatedly applying projection operations to elimi-
nate variables from last to first. Variable x is eliminated from C by collecting all
the constraints Cx that mention x and replacing them with the function g that
results from projecting x out. The desired quantity minX

∑
{c∈C} c is the result

of projecting out all the variables in X one by one. Its correctness follows from
the fact that minX

∑
{c∈C} c = minX−x

(∑
{c∈C−Cx} c + minx

∑
{c′∈Cx} c′

)
=

minX−x

∑
{c∈C−Cx} c + g.

3 The Semi-independent Partitioning Algorithm

In this section we introduce the semi-independent partitioning algorithm. First in
subsection 3.1 we introduce the algorithm in its most general form, which allows
any number of specific solution strategies. Then in subsection 3.2 we describe a
specialization which uses a greedy strategy. In subsection 3.3 we show that mini
buckets is another specialization.

3.1 General Semi-independent Partitioning

Let C be a set of constraints defined on variables X, and let i be a complexity
bound. Our problem is to find a good lower bound on the cost of the optimal
solution minX

∑
{c∈C} c with O(|C||X| exp(i)) time and space complexity.

The exact method variable elimination, described in Section 2, can be used
if an ordering of C’s graph can be found with w∗ ≤ i. However in general w∗ > i
and this is not possible, and in any case finding an optimum ordering is an
NP-hard problem.
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We can partition a set of constraints C defined on X into subsets C1 and
C2, where C1 ∪ C2 = C and C1 ∩ C2 = ∅, and the induced width of C1
is bounded by i. Variable elimination can be applied to completely or par-
tially solve C1, resulting in the value of its optimum solution or a function
giving the cost of the optimum extension of any assignment to its scope vari-
ables. Formally, if Y is the set of variables we wish to eliminate from C1, then
minX

∑
{c∈C} c = minX

∑
{c∈C1} c +

∑
{c′∈C2} c′ ≥ minX−Y (minY

∑
{c∈C1} c)+

(minY

∑
{c′∈C2} c′) = minX g +

∑
{c′∈C2} c′, where g = (minY

∑
{c∈C1} c) is the

solution of C1 that is derived by variable elimination.

Algorithm General SIP
Input: Constraints C, complexity limit i, partitioning method S.
Output: Lower bound on the solution of C.
While w∗(C) > i according to a heuristic ordering...

1. Select C1 ⊆ C s. t. w∗(C1) ≤ i with S, let C2 = C − C1.
2. Let S choose a set Y of variables to eliminate from C1 with v. e.
3. Set g = minY

∑
{c∈C1} c, let C = g ∪ C2.

Return the solution of C found with variable elimination.

Fig. 1. The General SIP Algorithm

Pseudo-code for general SIP is given Figure 1. Each invocation of variable
elimination costs O(|X| exp(i)). Assuming at least two constraints are eliminated
each time, and that no more than one new function is generated, then the total
running time is O(|C||X| exp(i)).

3.2 Greedy SIP

Up until now we have not specified how general SIP is to partition the con-
straints or decide what variables to eliminate. In this subsection we describe an
instantiation of general SIP, called greedy SIP, which offers a practical strategy.

The basic problem is to partition a set of constraints C into C1 and C2, such
that an ordering of C1 can be found with induced width bounded by i. Greedy
SIP’s method is to greedily try to add constraints from C into C1, maintaining
at all times a heuristic ordering of C1 with bounded induced width, and refusing
to add a constraint to C1 if that makes its heuristic ordering exceed the limit.
The partitioning is completed when one attempt has been made to add every
constraint in C. The set of variables Y to be eliminated is simply all but the
first i variables in the final heuristic ordering.

For example, consider the problem shown in Figure 2. The i bound is 2, and
the initial problem C is the clique of size 6 in the upper left corner. We will use
the min-degree heuristic ordering. A greedy partitioning is shown in the upper
right corner, where C1 is to the left of the ∪ and C2 is to the right. A min-degree
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Fig. 2. Example of Greedy SIP

ordering of C1 is x3, x1, x2, x6, x5, x4, which has induced width 2. Note that
if we try to add any other edge from C2 to C1, the induced width of the min
degree ordering will exceed the limit. For example, if we add (x1, x5) to C1, the
min degree ordering has induced width 3.

Now greedy SIP will eliminate all but the first 2 variables x3 and x1 from
C1. The result is shown in the lower left corner. C is then set to the function
g defined on x1 and x3 joined with C2, as shown on the lower right. Since a
min degree ordering of C now has induced width 2, variable elimination can be
applied to finish the problem.

3.3 Mini Buckets

In this subsection we describe mini buckets [1,4] as another specialization of
general SIP.

Mini buckets always maintains a variable to eliminate, x. When it partitions
a set of constraints C with complexity bound i, it selects a subset Bx of C called
x’s bucket, which is the set of all constraints in C mentioning x. Then it selects
a maximal subset of Mx of Bx called a mini bucket, such that the total number
of variables appearing in Mx is not more than i + 1, and no other member of
Bx can be added without destroying this property. Mx is chosen to be C1 and
C2 becomes C −Mx. Mx is ordered arbitrarily, except that the bucket variable
x is placed at the end of the ordering and it is selected as the only variable
to eliminate. Doing this creates a function g of arity i which does not mention
x. C is then set to g ∪ C2 and the process continues. If Bx is empty, then a
new variable x′ is selected to be eliminated next. The algorithm halts when all
variables have been eliminated.

4 Empirical Results

To compare MB and greedy SIP, we tested them on random binary MAX-CSP
problems with 55 variables and domain size 4. Every constraint had a 40 percent
chance of being present. All constraints randomly disallowed half of the possible
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value pairs and allowed the other half. We averaged the results of 25 experiments
for each value of i from 6 to 9. The results are summarized in Figure 3. For all
settings of i, greedy SIP achieved a significantly better lower bound in less time
than MB. For example, at i = 6 SIP computed an average lower bound of 67.5
in 12 seconds. Even at i = 9 MB was not quite as accurate, computing a lower
bound of 64.1 in 1020 seconds.

i = 6 i = 7 i = 8 i = 9
MB SIP MB SIP MB SIP MB SIP

Lower Bound 41.9 67.5 49.7 77.4 57.1 84 64.1 90.5
Time 19s 12s 72s 39s 272s 136s 1020s 485s

Max. Memory 1.1M 0.2M 3.7M 0.6M 12M 2.2M 42M 9M

Fig. 3. Empirical results (average w∗ = 39)

5 Conclusion

In this paper, we introduced a new algorithm for computing lower bounds on the
quality of the best solution of a MAX-CSP problem. We compared it empirically
with the mini buckets method, showing that it performed significantly better.

For future work, of course it would be of interest to directly evaluate the
efficiency of our method as a heuristic for branch and bound search to find an
exact optimum. Since our method, unlike mini buckets, does not follow a natural
static variable ordering, it would have to be called dynamically at every node.
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1 Introduction

Although some algorithms are better than others on average, there is rarely a best algo-
rithm for a given problem. Instead, different algorithms often perform well on different
problem instances. Not surprisingly, this phenomenon is most pronounced among algo-
rithms for solvingNP-hard problems, when runtimes are highly variable from instance
to instance. When algorithms exhibit high runtime variance, one is faced with the prob-
lem of deciding which algorithm to use for each particular instance; in 1976 Rice dubbed
this the “algorithm selection problem” [8]. More recent work on this problem includes
[5,4].

Our previous work [7] demonstrates that statistical regression can be used to learn
surprisingly accurate models of an algorithm’s runtime. In a recent extended abstract [6]
we discussed the use of these runtime models for algorithm selection, and also for the
automated tuning of instance generators. This companion paper extends these ideas, de-
scribing new techniques for making algorithm portfolios more practical and for making
benchmarks harder. As in [7,6], we evaluate our techniques in a case study on the com-
binatorial auction winner determination problem (WDP)—an NP-hard combinatorial
optimization problem formally equivalent to weighted set packing. We consider three
algorithms for solving WDP: ILOG’s CPLEX package; GL (Gonen-Lehmann) [3], a
simple branch-and-bound algorithm with CPLEX’s LP solver as its heuristic; and CASS
[2], a more complex branch-and-bound algorithm with a non-LP heuristic.

What does it mean to see boosting as a metaphor for algorithm design? Boosting
is a machine learning paradigm [9] based on two insights: (1) poor classifiers can be
combined to form an accurate ensemble when the classifiers’ areas of effectiveness are
sufficiently uncorrelated; (2) new classifiers should be trained on problems on which the
current aggregate classifier performs poorly. We argue that algorithm design should be
informed by two analogous ideas: (1) algorithms with high average running times can
be combined to form an algorithm portfolio with low average running time when the
algorithms’ easy inputs are sufficiently uncorrelated; (2) new algorithm design should
focus on problems on which the current algorithm portfolio spends most of its time.

� Thanks to Ryan Porter, Carla Gomes and Bart Selman for helpful discussions. This work was
supported by DARPA grant F30602-00-2-0598, the Intelligent Information Systems Institute
at Cornell, and a Stanford Graduate Fellowship.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 899–903, 2003.
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Fig. 1. Algorithm and Portfolio Runtimes

2 Making Algorithm Portfolios Practical

We have demonstrated that algorithm portfolios can offer significant speedups over
winner-take-all algorithm selection (see Fig. 1, reproduced from [6]). It is thus worth-
while to consider modifications to the methodology that make it more useful in practice.

2.1 Transforming the Response Variable

Average runtime is an obvious measure of portfolio performance if one’s goal is to
minimize computation time over a large number of instances. Since our models minimize
root mean squared error, they appropriately penalize 20 seconds of error equally on
instances that take 1 second or 10 hours to run. However, another reasonable goal may
be to select an algorithm well on every instance regardless of its hardness; in this case,
relative error is more appropriate. Let rp

i and r∗
i be the portfolio’s runtime and the optimal

runtime respectively on instance i, and n be the number of instances. One measure that
gives an insight into the portfolio’s relative error is percent optimal: 1

n#{i|rp
i = r∗

i }.
Another measure of relative error is average percent suboptimal: 1

n

∑
i

rp
i −r∗

i

r∗
i

.

Taking a logarithm of runtime is a simple way to equalize the importance of relative
error on easy and hard instances. Thus, models that predict a log of runtime help to
improve the average percent suboptimal, albeit at some expense in terms of the portfolio’s
average runtime. Other transformations achieve different tradeoffs. In Figure 2 (overleaf)
we show three different functions; linear (identity) and log are the extreme values; clearly,
many functions can fall in between. The functions are normalized by their maximum
value, since this does not affect regression, but allows us to better visualize their effect.
In our case study (section 2.4) we found that the cube root function was particularly
effective.

2.2 Smart Feature Computation

Feature values must be computed before the portfolio can choose an algorithm to run.
We expect that portfolios will be most useful when they combine several exponential-
time algorithms having high runtime variance, and that fast polynomial-time features
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should be sufficient for most models. Nevertheless, on some instances the computation of
individual features may take substantially longer than one or even all algorithms would
take to run. In such cases it would be desirable to perform algorithm selection without
spending as much time computing features, even at the expense of some accuracy in
choosing the fastest algorithm—if an instance is easy for all algorithms, we can tolerate
a much greater prediction error. We partition the features into sets ordered by time
complexity, S1, . . . , Sl, with i > j implying that each feature in Si takes significantly
longer to compute than each feature in Sj . The portfolio can start by computing the
easiest features, and iteratively compute the next set only if the expected benefit to
selection exceeds the cost of computation. More precisely:

1. For each set Sj learn or provide a model c(Sj) that estimates time required to
compute it. Often, this could be a simple average time scaled by input size.

2. Divide the training examples into two sets. Using the first set, train models M i
1 . . .

M i
l , with M i

k predicting algorithm i’s runtime using features in
⋃k

j=1 Sj . Note that
M i

l is the same as the model for algorithm i in our basic portfolio methodology. Let
Mk be a portfolio which selects argmini M i

k.
3. Using the second training set, learn models D1 . . . Dl−1, with Dk predicting the

difference in runtime between the algorithms selected by Mk and Mk+1 based on
Sk. The second set must be used to avoid training the difference models on data to
which the runtime models were fit.

Given an instance x, the portfolio now works as follows:

4. For j = 1 to l

(a) Compute features in Sj

(b) If Dj [x] > c(Sj+1)[x], continue.
(c) Otherwise, return with the algorithm predicted to be fastest according to Mj .

2.3 Capping Runs

The methodology of [7] requires gathering runtime data for every algorithm on every
problem instance in the training set. While the time cost of this step is fundamentally
unavoidable for our approach, gathering perfect data for every instance can take an
unreasonably long time. When algorithm a1 is usually much slower than a2 but in some
cases dramatically outperforms a2, a perfect model of a1’s runtime on hard instances
may not be needed for discrimination. The process of gathering data can be made much
easier by capping the runtime of each algorithm and recording these runs as having
terminated at the captime. This is safe if the captime is chosen so that it is (almost) always
significantly greater than the minimum of the algorithms’runtimes; if not, it might still be
preferable to sacrifice some predictive accuracy for dramatically reduced model-building
time. Note that if one algorithm is capped, it can be dangerous (particularly without a
log transformation) to gather data for another algorithm without capping at the same
time, because the portfolio could inappropriately select the algorithm with the smaller
captime.
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 Average Runtime % Optimal Average % Suboptimal

(Optimal) 216.4 s 100 0 

Log 236.5 s 97 9 

Cuberoot 225.6 s 89 17 

Linear 225.1 s 81 1284 

Fig. 3. Portfolio Results

2.4 Case Study Results

Table 3 shows the effect of our response variable transformations on average runtime,
percent optimal and average percent suboptimal. The first row has results that would be
obtained by a perfect portfolio. As discussed in section 2.1, the linear (identity) transfor-
mation yields the best average runtime, while the log function leads to better algorithm
selection. We tried several transformation functions between linear and log. Here we
only show the best, cube root: it has nearly the same average runtime performance as
linear, but also made choices nearly as accurately as log. Notice that the three models
shown here are not equally accurate on our dataset (they are non-linear transformations
of each other). The effect of the transformations is to shift model accuracy to achieve
different tradeoffs. That fact that all of these models achieve good portfolio performance
illustrates the robustness of our portfolio results with respect to model accuracy.

When using smart feature computation described in section 2.2, on our test set the
average feature computation took 27 seconds instead of 48, while the selected algorithm
took only an average of 1 second longer to run. This result becomes quite significant for
easy instances.

3 Inducing Hard Distributions

Once we have decided to select among existing algorithms using a portfolio approach,
it is necessary to reexamine the way we design and evaluate algorithms. Since the
purpose of designing new algorithms is to reduce the time that it will take to solve
problems, designers of new algorithms should aim to complement an existing portfolio.
First, it is essential to choose a distribution D that reflects the problems that will be
encountered in practice. Let Hf be a model of portfolio runtime based on instance
features, constructed as the minimum of the models that constitute the portfolio. By
normalizing, we can reinterpret this model as a density function hf . Given a portfolio,
the greatest opportunity for improvement is on instances that are hard for that portfolio,
common in D, or both. More precisely, the importance of a region of problem space is
proportional to the amount of time the current portfolio spends working on instances
in that region (formally, importance is measured by D · hf ). This is analogous to the
principle from boosting that new classifiers should be trained on instances that are hard
for the existing ensemble, in the proportion that they occur in the original training set.

Sampling from D ·hf is problematic, since D may be non-analytic (an instance gen-
erator), while hf depends on features and so can only be evaluated after an instance has
been created. One way to handle this is rejection sampling [1]: generate problems from
D and keep them with probability proportional to hf . (In fact, the technique described
below is approximate rejection sampling, which saves us from having to normalize Hf
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Fig. 4. Inducing Harder Distributions

and always outputs an instance after a constant number of samples.) This method works
best when another distribution is available to guide the sampling process toward hard
instances. Test distributions usually have some tunable parameters −→p , and although the
hardness of instances generated with the same parameter values can vary widely,−→p will
often be somewhat predictive of hardness. We can generate instances from D ·hf in the
following way:

1. Create a hardness model Hp with features −→p , and normalize it to create a pdf, hp.
2. Generate a large number of instances from D · hp.
3. Construct a distribution over instances by assigning each instance s probability

proportional to Hf (s)
hp(s) , and select an instance by sampling from this distribution.

Note, that if hp is helpful, hard instances from D · hf will be encountered quickly.
Even in the worst case where hp directs the search away from hard instances, we’ll still
sample from the correct distribution, since the weights are divided by hp(s).

Figure 4 shows the results of applying this procedure to our dataset. Since our
runtimes were capped, the induced distribution doesn’t generate any instances that are
orders of magnitude harder than previous instances. In [6] we showed that this can also
be achieved, making extremely easy distributions between 50 and 100 times harder.
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1 Introduction

Disjunctions of constraints frequently appear in applications of constraint pro-
gramming. In this paper, we propose a new filtering algorithm for the disjunc-
tions of constraints. It performs the same domain reductions as constructive
disjunction [1,2], but is more efficient.

The paper is organized as follows. In Section 2 we give background on con-
straint networks. Section 3 reviews the existing approaches of dealing with dis-
junctions of constraints. Then, we present a new algorithm to achieve arc con-
sistency on a disjunction of constraints (Section 4).

2 Background

Constraint Network. A (constraint network) N = (X,D, C) is defined as a
set of n variables X = {x1, . . . , xn}, a set of domains D = {D(x1), . . . , D(xn)}
where D(xi) is the finite set of possible values for variable xi, and a set C of
constraints between variables. Let <d be a total ordering on D(xi),∀xi ∈ X.
Constraint. A constraint C on the ordered set of variables X(C) = (xi1 , . . . ,
xir

) is a subset of the Cartesian product D(xi1)× · · ·×D(xir
) that specifies the

allowed combinations of values for the variables xi1 , . . . , xir .
Tuple. An instantiation of the variables in X(C) is called a tuple on X(C).
The value of variable x in a tuple τ is denoted by τ [x]. By extension, if V is a
subset of X(C), τ [V ] denotes the values of the variables of V in the tuple τ . A
tuple τ on X(C) is valid iff ∀x ∈ X(C), τ [x] ∈ D(x).
Support. Let N = (X,D, C) be a constraint network, and let C be a constraint
in C. A value a for a variable x is often denoted by (x, a). Let a ∈ D(x) be a
value, let τ be a valid tuple on X(C), such that a = τ [x]. τ is called a support
for (x, a) on C iff it is allowed by C.
Arc Consistency. Let N = (X,D, C) be a constraint network, C a constraint
in C. A value a ∈ D(x) is consistent with C iff x /∈ X(C), or ∃τ such that τ
is a support for (x, a) on C. C is arc consistent iff ∀x ∈ X(C), D(x) �= ∅ and
∀a ∈ D(x), a is consistent with C.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 904–908, 2003.
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3 Disjunction of Constraints: Existing Approaches

This section reviews two existing approaches of dealing with the disjunction of
constraints: the “standard implementation” and the constructive disjunction.

The standard implementation for the constraint or(c1, c2) consists in applying
the following propagation rules: (1) if c1 is false on the current domains then
add(c2) to the solver; (2) if c2 is false on the current domains then add(c1) to the
solver. A side-effect of such a propagation rule is that, as long as both constraints
can be true, the or constraint will not be able to prune anything. Indeed, using
the standard propagation rule does not ensure arc-consistency for the variables
in the disjunction.

Example 1 Let x be a variable and its domain be D(x) = {1, 2, 3}. Let us
consider the constraint or(x = 1, x = 2). It is easy to see that the value 3 is not
possible for x. Nevertheless, the above propagation rule will not be able to prune
the value 3 since the two constraints x = 1 and x = 2 can be true.

Another approach to implement the or constraint is the use of constructive
disjunction [1,2]. The idea is to propagate independently each term of the dis-
junction. The domains of the variables are the union of their domains in the
different branches of the disjunction. In our example, we have: constraint(x =
1) −→ D1(x) = {1}, and: constraint(x = 2) −→ D2(x) = {2}. Then the union
of D1(x) and D2(x) can be computed: {1} ∪ {2} = {1, 2}. Thus D(x) can be
reduced to D1(x) ∪D2(x) = {1, 2}.

Whereas the standard propagation rule for the or constraint in general leads
to a simple generate-and-test behavior, with no pruning at all, the constructive
disjunction performs a very good pruning of the domains. In fact it is easy to
show the following proposition:

Proposition 1Let C1 and Ck be k constraints whose filtering algorithms achieve
arc-consistency. Then constructive disjunction applied on or(C1, ..., Ck) achieves
arc-consistency.

Proof: Consider a variable x whose domain after reduction is D(x). The domain
D(x) is, by definition, the union of the domains of x in the different branches
D(x) = D1(x) ∪ ... ∪Dk(x). Thus if value a is in D(x) it is also in one domain
Di(x) at least. In the branch i, we know that Ci is arc-consistent. Thus (x, a) is
arc-consistent in the branch i. For a disjunction, to be consistent, it suffices that
one branch is consistent, thus (x, a) is arc-consistent for or(C1, ..., Ck).

Constructive disjunction thus performs an optimal reduction of the domains.
Nevertheless, the constructive disjunction is not so often used in constraint pro-
gramming applications. The main reason of such a limited use of constructive
disjunction seems to be that it is much more expensive in term of CPU time
than the standard filtering for disjunction, and, even if its pruning may be much
stronger, constructive disjunction does not always pay off [2].
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4 A New Filtering Algorithm
for the Disjunction of Constraints

In that section, we introduce a filtering algorithm for or constraint that performs
the same pruning as constructive disjunction, and thus achieves arc-consistency,
but which is much more efficient. The idea is to seek supports only when needed.
This is not the case in constructive disjunction which may compute useless sup-
ports, as we will now show in the following example:

Example 2 Let x, y, z be three variables, let their respective domains be D(x) =
[1, 1000], D(y) = [1, 2], D(z) = [1, 1000], and let C be the constraint or(x = y, y =
z). The tuple {(x, 1), (y, 1)} is a support for the constraint x = y. That is to say,
when x = 1 and y = 1, the constraint x = y is true, and thus C is true, even
if the constraint y = z is false. In other terms, for any value v of z in D(z),
the tuple {(x, 1), (y, 1), (z, v)} is a support on the constraint C. Symetrically,
{(y, 2), (z, 2)} is a support on the constraint y = z, and thus {(x, v), (y, 2), (z, 2)}
is a support on C for every value v ∈ D(x). Indeed, the two above support checks
are sufficient to prove arc-consistency of the constraint C.

If one wants to use constructive disjunction to prove arc-consistency of C, it
will first compute arc-consistency for constraint x = y, and then for constraint
y = z, doing at least 1000 constraints checks for each constraint.

The example 2 should have given to the reader the intuition of the new
filtering algorithm for the or constraint. Proposition 2 formalizes that intuition.

Proposition 2 Let C be the constraint or(C1, C2). Let V1 be the variables of C1
that are not in C2, let V2 be the variables of C2 that are not in C1, and let V3 be
the variables that are shared by C1 and C2. That is: V1 = X(C1)−X(C2), V2 =
X(C2)−X(C1), V3 = X(C1) ∩X(C2).

– Let τ1 be a support on C1. Let τ be a tuple on C such that:
1. τ [X(C1)] = τ1[X(C1)]
2. for all variable z in V2, τ [z] ∈ D(z).

Then τ is a support on C.
– Let τ2 be a support on C2. Let τ be a tuple on C such that:

1. τ [X(C2)] = τ2[X(C2)]
2. for all variable x in V1, τ [x] ∈ D(x).

Then τ is a support on C.

Proof: we give the proof for the first assertion, the other one is symetric. The
values of variables in X(C1) are in the domains since τ1 is a support and thus
is valid. Then, in τ , the values of variables X(C1) are in the domains. As, by
construction the values of variables V2 in τ are also in the domains, we know
that τ is valid. As τ makes the constraint C1 true, the constraint or(C1, C2) is
true, and thus τ is an allowed tuple, hence it is a support.

Then, a support τ on C can be simply derived from a support τ1 on C1 (resp.
τ2 on C2). It suffices to complete τ1 (resp. τ2) by adding values for the variables
in V2 (resp. V1): any value in their domains can be taken.
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Corollary 1 A first corollary is that, for the variables that are in V3, it suffices
to find one support per value, either in C1 or in C2.

Indeed, corollary 1 uses for the meta-constraint level the principle of lazy support
that was introduced in AC-6 [3].

Corollary 2 A second corollary is that if a support τ1 on C1 is found, we can
derive directly a support on C for all the values (z, b) where z is a variable in
V2 and b ∈ D(z). Thus, τ1 plays the role of a generic support for the variables
in V2, and there is no reason to waste time in searching individual supports in
C2 for the variables in V2. (A symetric argument holds for a support in C2 and
variables in V1.)

The filtering algorithm in Figure 1 simply applies those principles. Once we
know there exists a support of (x, a) on C, it is clearly a waste of time to try to
find another one.

procedure globalOrFiltering(C1, C2)
τ1 = getAnySupport(C1)
if τ1 = nil

replace this constraint by C2

return
τ2 = getAnySupport(C2)
if τ2 = nil

replace this constraint by C1

return
For each variable x in V3

For each value a in D(x)
τ = getSupport(C1, (x, a))
if τ = nil

τ = getSupport(C2, (x, a));
if τ = nil

remove a from D(x)

Fig. 1. A global filtering algorithm for or(C1, C2)

Description of the Algorithm. The algorithm first computes any support
for C1, thanks to the method getAnySupport(C1) which is supposed to exist. If
such a support can be found, then it is a generic support for every variable in V2.
If none exists, then C1 is false; thus C2 must be true, it is added to the constraint
solver (and the constraint or(C1, C2) can be removed from the constraint solver).
A similar generic support is seeked for C2.
Then the algorithm has to find a support for each value of each variable in V3.
It suffices to find one support of this pair variable/value in C1 or in C2. If none
exists, the value can be removed from the domain of the variable. The method
getSupport(C, (x, a)) is supposed to exist for each constraint C1 and C2.

The following proposition is a direct consequence of the proposition 2:
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Proposition 3 The filtering agorithm globalOr achieves arc-consistency for the
constraint or(C1, C2).

Following the GAC-schema [4], two important characteristics for arc-
consistency algorithms are: (1) incrementality of arc-consistency maintenance
during search; (2) taking into account multidirectionality of supports (i.e., a
support for a given pair variable/value is also a support for every pairs vari-
able/value that compose the support). The algorithm of Figure 1 can be easily
extended to take into account incrementality (by storing supports) and multidi-
rectionnality.
Complexity of the Algorithm. Let us assume a general model with p con-
straints in disjunction or(C1, C2, ..., Cp). Assume that: (1) there are k > 0 vari-
ables that are shared in the p constraints; (2) all the variables have d values in
their domains; (3) all the constraints have the same arity r; (4) we do not take
into account multidirectionnality of support in our complexity analysis.

Constructive disjunction will find p ∗ r ∗ d supports. The globalOr filtering
algorithm will find k∗d supports. As k ≤ r, globalOr save at least a factor of p in
CPU time. The gain may be much larger, for example, if there are two variables
that are shared by 100 constraints whose arity is 10, and with domains of size
20: there are 40 supports to find in one case and 20000 in the other case.

5 Conclusion

We have proposed in that paper an algorithm that achieves arc-consistency over
disjunctions of constraints. It is always better than constructive disjunction in
efficiency for the same pruning. It improves constructive disjunction in the same
way AC-6 [3] improved AC-4 [5]. Furthermore the approach can be applied to all
meta constraints on cardinality like: atmost (or at least) p constraints are true
among q.

References

1. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and evalu-
ation of the constraint language cc(FD). In Podelski, A., ed.: Constraint Program-
ming: Basics and Trends. LNCS 910. Springer (1995) (Châtillon-sur-Seine Spring
School, France, May 1994).
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Abstract. We present a new library, INCOP, which provides incomplete
algorithms for optimizing combinatorial problems. This library offers lo-
cal search methods such as simulated annealing, tabu search as well as
a population based method, Go With the Winners. Several problems
have been encoded, including Constraint Satisfaction Problems, graph
coloring, frequency assignment.
INCOP is an open C++ library. The user can easily add new algorithms
and encode new problems. The neighborhood management has been care-
fully studied. First, an original parameterized move selection allows us
to easily implement most of the existing meta-heuristics. Second, differ-
ent levels of incrementality can be specified for the configuration cost
computation, which highly improves efficiency.
INCOP has shown great performances on well-known benchmarks. The
challenging flat300 28 graph coloring instance has been colored in 30
colors for the first time by a standard Metropolis algorithm.

1 Introduction

Discrete optimization problems can be solved by two majors types of methods,
complete and incomplete ones. Complete algorithms are based on a tree search
with a Branch and Bound schema. Several commercial software tools propose
such methods. When an optimization problem can be modeled by linear con-
straints and a linear criterion, MIP packages can be used. Otherwise, constraint
programming tools, such as IlogSolver or Chip, can be used.

When the search space becomes too large, these systematic search techniques
are often outperformed by incomplete methods, that cannot prove the optimality
of a solution, but often give rapidly a good solution. The most common incom-
plete methods are based on local search which tries to make local changes to
one configuration for improving its cost. Other incomplete methods explore the
search space by managing a population of configurations.

To efficiently implement complete algorithms requires a great effort and
therefore commercial tools have been built and are successfully used. Conversely,
it is easier to implement an incomplete method and no important effort has been
made to build a commercial tool. IlogSolver has recently added a local search
module, but it is included in the whole library and cannot be used separately.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 909–913, 2003.
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This lack of tool has recently led many researchers to build their own in-
complete search method libraries [12]. We can cite iOpt [14] by British Telecom,
SCOOP [10] by SINTEF, Localizer++ [6] at Brown University, Hotframe [13]
at University of Braunschweig, Discropt [11] at State University of New York.
Philippe Galinier and Jin-Kao Hao [4] also proposed a framework for local search.

However, at the moment, all these libraries are not free or not available.
We have found only one free library available on the Web: EasyLocal++, at
University of Udine [2], that implements local search methods.

Initially, we wanted to test a new population-based method and compare
it with local search methods in the same implementation. In that purpose, we
decided to provide a free library, implementing the main local search meta-
heuristics and efficient population-based methods.

2 Architecture

We have chosen an object oriented design and implemented the library in C++,
using virtual methods and data structures provided by the STL. The main classes
are: OpProblem, Algorithm, Configuration, Move , NeighborhoodSearch,
Metaheuristic. It is then not difficult to define new meta-heuritics, new neigh-
borhoods or new problems by defining subclasses.

The most popular local search metaheuristics are implemented such as Hill
Climbing, GSAT, Simulated Annealing, Tabu Search. For adding a new meta-
heuristic, one has to define a subclass of Metaheuristic, with its data, an
acceptance condition of a candidate move and a executebeforemove method
for updating the meta-heuristic data (like the temperature of simulated anneal-
ing or the tabu list) before executing a move.

A configuration is represented by a fixed set of integer variables, with a pri-
ori known domains of values. Important combinatorial optimization problems,
as traveling salesman problems (TSP) can be encoded in this framework. Con-
straint Satisfaction Problems (CSP) are transformed into MAX-CSP optimiza-
tion problems for which the number of violated constraints (or more generally
a criterion computed on these violations) is minimized. We have implemented
several CSPs, including graph coloring and frequency assignment problems.
Adding a New Problem. The criterion to be optimized is specific to a given
problem. Three methods compute this criterion. config evaluation evaluates
the cost of an initial configuration; move evaluation performs the incremental
evaluation of a move; update conflicts updates the conflicts data structure
of a configuration when a move is executed.

3 Contributions

This section details original features of INCOP. First, the incremental configura-
tion cost computations offered by our library improve efficiency. Second, efficient
population-based algorithms can be used to tackle the most difficult instances.
Third, an original parameterized move selection can lead to easily create new
variants of local search algorithms.
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3.1 Incrementality

The contribution of any variable value to the evaluation of a configuration cost
is the number of constraints violated by this value (considering the current value
of the other variables). Since this evaluation is performed very often, it is crucial
to rapidly evaluate the impact of a move on the whole configuration cost. We
provide 3 manners to manage the conflicts, implemented by 3 classes.

1. In CSPconfiguration, the conflicts are not stored: one needs to compute
the number of constraints violated by the old and the new values.

2. In IncrCSPconfiguration, the contribution of the current value is stored
in conflicts; we need to compute only the contribution of the new value.

3. In FullincrCSPconfiguration, all the contributions of all possible values
are stored in conflicts; the evaluation of a move is immediate.

The incremental evaluations are performed by the two following methods:
move evaluation is called when a move is tested, and update conflicts when
a move is performed. With full incrementality, the computation effort is mainly
done in update conflicts. It is fruitful when a lot of moves must be tested
before accepting one. When the problem is sparse as in most of graph color-
ing instances, the updating is not costly. It only concerns the values of the few
variables linked by a constraint with the currently changed variable. Full in-
crementality can save an order of magnitude in computing time. The memory
required is also reasonable for coloring problems: the size of the conflict data
structure is N × D, where N is the number of nodes and D the number of
colors.

3.2 Go with the Winners Algorithms

The population-based algorithms implemented in INCOP are variants of the Go
With the Winners algorithm [3]. Several configurations are handled simultane-
ously. Every configuration, named particle, performs a random walk and, peri-
odically, the worst particles are redistributed on the best ones. To ensure im-
provements in the population, a threshold is lowered during the search and no
move passing above the threshold is allowed.

The hybridization with local search is straightforward: instead of performing
a random walk, every particle performs a local search. GWW-grw [9], a hybridiza-
tion of GWW with a simple walk algorithm, has given very good results.

3.3 Selection of a Move

An atomic step in local search algorithms is the way neighbors of the current
configuration are tested. An original generic move selection, a kind of candidate
list strategy [5], has been embedded in INCOP. First, the method is feasible
gives a feasibility condition for the move. For instance, in GWW algorithms, the
configuration cost must stay under the current threshold. In order to finely tune
the intensification effort of the search, 3 parameters are used:
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Table 1. Results on graph coloring benchmarks. The best results of known algorithms
are reported in the left side (number of colors, time); the results with INCOP in the right
side (number of colors, number of conflicts (average on 10 trials), cpu time (average on
10 trials), success rate, algorithm and neighborhood used.

nb-col time nb-col conflicts time success algo neighb.

le450 15c 15 min 15 0 1.1 min 10/10 GWW-grw var-conflict

le450 15d 15 min 15 1.4 1 min 5/10 GWW-grw var-conflict

le450 25c 25 min 25 1.5 55 min 1/10 Metropolis var-conflict

le450 25d 25 min 25 1.3 58 min 1/10 Metropolis var-conflict

flat300 28 31 h 31 0.3 4 min 9/10 Metropolis min-conflict

flat300 28 31 h 30 1.6 1.6 h 5/10 Metropolis min-conflict

Table 2. Results on CELAR frequency assignment benchmarks. The results of the best
known algorithms are in the left side; the results with INCOP in the right side.

bound best found bound (average) time succes algo
celar6 3389 min 3389 (3405.7) 9 min 4/10 GWW-grw
celar7 343592 min 343596 (343657) 4.5 h 1/10 GWW-grw
celar8 262 min 262 (267.4) 33 min 2/10 GWW-grw

1. We first test Min neighbors neighbors in order to select the best one.
2. If none has been accepted by the meta-heuristics, we test other neighbors

until one is accepted or a sample of Max neighbors is exhausted.
3. Finally, if no neighbor among these Max neighbors has been accepted, the

No acceptation parameter indicates how to select a configuration: either the
best feasible or any feasible among the Max neighbors visited neighbors.

These parameters allow us to implement many different classical behaviors
as searching the best neighbor in the entire neighborhood or the first acceptable
neighbor in a sample of K neighbors.

4 Experiments

We have performed experiments on difficult instances mainly issued from two
categories of problems encoded as weighted MAX-CSPs: difficult graph coloring
instances proposed in the DIMACS challenge, and CELAR frequency assignment
problems1. All the tests have been performed on a PentiumIII 935 Mhz.

4.1 Graph Coloring Instances

Incomplete algorithms succeeded in coloring flat300 28 in 31 colors [8].We col-
ored it in 31 colors in a few minutes and in 30 colors in 1.6 hour using a Metropolis
algorithm (i.e., simulated annealing with constant temperature [1]) and a neigh-
borhood implementing the Min-conflicts heuristics [7].
1 Thanks to the “Centre d’ELectronique de l’ARmement”.
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4.2 CELAR Frequency Assignment Instances

The constraints are of the form |xi − xj | = δ or |xi − xj | > δ. The objective
function is a weighted sum of violated constraints.

5 Conclusion

This paper has presented a new C++ library for incomplete combinatorial op-
timization. We have implemented several local search, and original and efficient
population-based algorithms. A great effort has been done for the neighborhood
management. An important issue is the incrementality in move evaluations. We
have obtained it by maintaining a conflict data structure. Finally, we hope that
our parameterized move selection process will improve existing meta-heuristics.

We think that no incomplete algorithm can efficiently solve all the problems.
So it is important to test rapidly different algorithms, different neighborhoods.
Such a library permits it and we have obtained good results for CELAR fre-
quency assignment problems with GWW-grw and for graph coloring problems with
GWW-grw or Metropolis, with a min-conflict or a var-conflict neighborhood.
We have, for the first time, colored flat300 28 with 30 colors.
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1 Introduction

Graph colorability (COL) is a constraint satisfaction problem, which has been
studied in the context of computational complexity and combinatorial search al-
gorithms. It is also interesting as subjects of heuristics [2]. Many research reports
discuss the complexity of COL [2,3,4,8,9,10]. Examples of possible candidates of
order parameters that explain the mechanism making COLs very hard include
the 3-paths [10], the minimal unsolvable subproblems [8], and the frozen devel-
opments [4]. Instead of generate-and-test approaches, we propose a constructive
approach producing 3-colorablity problems (3COLs) that are exceptionally hard
for usual backtracking algorithms adopting Brélaz heuristics and for Smallk col-
oring program [1]. Instances generated by our procedure (1) are 4-critical, (2)
include no near-4-cliques(n4c’s; 4-cliques with 1 edge removed) as subgraphs,
and (3) have the degree of every node limited to 3 or 4: quasi-regular.

2 Graph 3-Colorability and 4-Critical Graphs

Let G = (V,E) be a graph to be colored, where V and E corresponds to the
set of vertices and edges. Let n =| V | and m =| E |. An edge (i, j) ∈ E has
the constraint that prohibits assigning the same color to vertices, i and j. Phe-
nomena similar to physical phase transitions are generally observed in COLs,
where search cost follows an easy-hard-easy pattern as a function of constraint
density, or γ(= 2m/n). The region where median search cost becomes the most
time-consuming lies very close to the cross-over point, at which half the instances
are solvable and half unsolvable (primary PT). An interesting region also exists
at a slightly lower constraint density than that of primary PT, in which excep-
tionally hard instances (EHIs) [5] tend to occur, although most are solved easily
(secondary PT).
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(a) A 4-critical graph (part).              (b) Embedding completed.

Fig. 2. Embedding operator embed K4(i, j).

A hard non 3-colorable graph necessarily contains large 4-critical subgraphs
[4,8], i.e., non 3-colorable but any proper subgraph is 3-colorable. K4, 4-clique, is
the smallest 4-critical graph because removing an arbitrary edge from it makes
a 3-colorable graph, which we call an n4c (Fig. 1) [4]. The n4c contains an
interesting constraint, constraint(x,w), that claims the colors for x and w must
be the same. Let Fig. 2(a) be part of a 4-critical graph, where the degree of vertex
i, deg(i), is 3. Introduce an operation, embed K4(i, j), where an n4c is added
in place of edge (i, j) merging i and x and connecting j and w 1. Starting with
K4 as the initial graph, arbitrarily large 4-critical instances are constructed by
repeating embed K4(i, j) recursively to meet the many known conditions EHIs
may have to satisfy [10,7, 4, 8].

3 Composition Algorithm for EHI without n4c’s
Because embed K4(i, j) always leaves an n4c in the graph, we can find at any
stage of graph construction at least 1 n4c, which is the footprint where the latest
embedding operation was executed. By repeating collapse, i.e., inverse operation
of embed K4(i, j), the given graph straightforwardly is reduced to a single K4
that is unsolvable. To overcome this drawback, we introduce a set of original n4c-
free 4-critical graphs independent of each other in that no graph is a subgraph of
any other. We found 7 such graphs by trial and error (Fig. 3), in which each graph
is termed MUGnt, where MUG stands for “minimal unsolvable graph,” n means
the number of vertices included, and t is used to identify the type if necessary.
Let us naturally extend the embedding operation to embed MUGnt(i, j). These
operations are the same as Hajós’ join construction [6] except that both vertices
to be merged should have the degree of 3.

Proposition 1 When embed MUGnt(i, j) is applied to a 4-critical graph, the
result remains 4-critical.

Proposition 2 Quasi-regularity is maintained by embed MUGnt operation
where nt is 9, 10, 11a, 11b, or 12c.

Proposition 3 Let the graph to embed contain, m edges and n = n3 + n4 + n5
vertices, where ni is the number of vertices with degree i. The numbers of vertices
1 Note that 4-criticality is maintained because the constraint, constraint(i, w), remains

after embedding while u and v are not adjacent to other vertices.
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(a) MUG9 (n = 9, m = 16) (b) MUG10 (n = 10, m = 18)

(c) MUG11a (n = 11, m = 20) (d) MUG11b (n = 11, m = 19)

(e) MUG12a (n = 12, m = 22) (f) MUG12b (n = 12, m = 22) (g) MUG12c (n = 12, m = 21)

Fig. 3. 4-critical n4c-free graphs.

with degrees 3,4,5 increase by n3 − 2, n4 + 1, n5. The total number of vertices
increases by n− 1, and edges by m− 1.

Starting with a 4-critical graph, we construct arbitrarily large 4-critical
graphs, i.e., including an arbitrary number of vertices, by repeating embedding.
Fig. 4 gives the procedure “graph-generator(k)” which repeats embedding oper-
ations k times randomly. When we start with 1 of 7 graphs (Fig. 3), we produce
graphs contain no n4c’s. Further, if a quasi-regular graph is assigned initially
to Ginit at (1) in Fig. 4, and both MUG12a and MUG12b are excluded from
candidates at (2), then the graph-generator produces quasi-regular graphs.

4 Experiments and Discussion

We test the difficulty of 3COL instances generated by “graph-generator(k)”
where all graphs except for MUG12a and MUG12b are used to generate quasi-
regular graphs. For 8 cases from k = 5 to k = 12, 100 instances are generated
for each case, i.e., a total of 800 generated instances. These instances are applied
to the backtracking algorithm with Brélaz heuristics and the Smallk coloring
program. In the Brélaz algorithm, only 500 instances from k = 5 to k = 9 are
used for testing. These algorithms are implemented in C on a PC with 1 GHz
of Pentium III and 512 Mbytes of RAM. Fig. 5 gives results for search costs
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procedure graph-generator(k)
begin

input an initial graph Ginit; (1)
G := Ginit;
for w := 1 to k do

choose randomly an edge(i, j) ∈ E(G) where deg(i)≤ 3;
choose randomly MUGnt, (nt =9, 10, 11a, 11b, 12a, 12b, or 12c); (2)
embed MUGnt(i, j);

end for;
end.
procedure embed MUGnt(i, j)
begin

choose randomly an edge (x, y) ∈ E(MUGnt) where deg(x)≤ 3;
remove edges (i, j) and (x, y);
add an edge (j, y);
merge x with i;

end.

Fig. 4. 3COL instance generator.

and CPU time, where “average line” shows the variation in average search cost
and CPU time for each k as a function of the average number of vertices for
each k. Smallk is more sophisticated than the Brélaz algorithm, but both search
cost and CPU time clearly exhibit exponential growth2. We also conduct exper-
iments on randomly generated instances. For 33 cases from γ = 3.0 to γ = 5.0
at the intervals of 0.2 in n = 100, 200, and 300, 10,000 instances are randomly
generated for each cases, i.e., a total of 3.3 million generated instances, each of
which is solved using Smallk. In the Brélaz algorithm, only 1.1 million instances
with n = 100 are used. It is obvious that the hardness of our instance set cannot
be compared with that of the huge set of random instances ( Fig. 6)3.

Experiments confirmed that our method stably produces EHIs whose com-
putational cost is of an exponential order of n. Researchers adopting generate-
and-test approaches found that conditions under which EHIs tend to occur are
as follows: (1) Their constraint density is near the secondary PT region [7], (2)
the smallest minimal unsolvable subproblem is very large compared to the in-
stance size [8], and (3) their structure is homogeneous, i.e., quasi-regular [10]. It
seems reasonable that instances produced by our method meet all these condi-
tions. Because our instances contain no n4c’s, most frozen pairs [4] are hidden
from the surface, which makes our instances hard to solve even for sophisticated
algorithms such as Smallk. We still do not know theoretically why our instances
become EHIs. The ultimate question may be whether our instances are inher-

2 As long as we see results of Culberson and Gent in [4], our instances seem to be
much harder than their threshold graphs, although the complexity of their graphs
also exhibit exponential growth.

3 In Smallk, it is only 2.6 sec. and 103 sec. to determine the colorability of each hardest
random instance with 200 and 300 vertices at γ = 4.8, whereas it requires more than
500 sec. on average in solving our instances with even 100 vertices or so in Fig. 5.
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Fig. 5. Experimental results on 3COL instances generated by our procedure.

Fig. 6. Experimental results on randomly generated instances.

ently hard for any search algorithms. Let us move on to an issue probably related
to heuristics. Fig. 3 introduces only 7 n4c-free MUGs independent of each other.
Although we surmise that the number of such graphs is infinite, we still do
not know how to generate them systematically. The method for producing such
graphs may be necessary for hiding the structural weakness of an instance so
that no clever heuristics can find and exploit it.

5 Conclusions

We have proposed a constructive algorithm to generate EHIs of 3COL, which
recursively repeat self-embedding operations of MUGs. The EHIs generated are
4-critical and contain no n4c’s, to hide a structural weakness that heuristics
would be able to exploit. Using Brélaz heuristics and Smallk, we showed that
the complexity of 3COL instances generated by our algorithm is an exponential
order of the number of vertices. We plan to develop a systematic method to
arbitrarily produce many MUGs independent of each other to construct hard
instances, and to clarify whether heuristics exist that cope with these instances.
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Abstract. In constraint solving for finite domains, efficient set represen-
tation is an important issue. In this paper we propose an enhancement of
Erwig’s diet representation called the enhanced diet, which represents a
finite domain as an AVL tree of intervals. In addition to element insertion
and deletion, we show that the domain splitting used for constraints such
as X ≤ Y can be done in O(log m) steps by adopting Crane’s Algorithm,
where m is the number of intervals, not the number of elements.

1 Introduction

In constraint solvers for finite domains, such as ILOG Solver [1], JSolver [2], B-
Prolog [3], clp(FD) [4] and others, variables are associated with finite domains
and constraint propagation is done by set operations on those finite domains.
Efficient set representation is therefore an important issue for implementation
of constraint systems.

There have been several ways to represent finite domains, especially concern-
ing subsets of integers. Bit vectors and hash maps are complete and efficient in
set operations, but unsuitable for large sets. Single-interval representation (that
is, a finite domain as a pair of lower and upper bound values) is efficient in space
and in set operations. However, this representation is incomplete. Representing
a domain as a (chained) list or an array of intervals is complete and efficient in
space, but set operations on them are inefficient. For example, the complexity
of element deletion is O(m), where m represents the number of intervals.

Another way is the use of the diet (the discrete interval encoding tree) [5]
proposed by Erwig, which represents a subset of integers as a binary tree of
intervals. The diet is complete and efficient in space. Insertion and deletion for
elements on the diet take only O(log m) steps. However, diets are simple, not
necessarily balanced, binary trees. Therefore, the worst-case complexities of these
operations are still O(m) as interval lists.

In this paper we describe an enhancement of the diet called the enhanced diet
which represents a subset of integers as an AVL tree of intervals. In the enhanced
diet, element insertion and deletion take only O(log m) steps for both average
and worst-case scenarios. Though we consider for simplicity only the case for
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integer sets, the methods we present can be applied to any domains with a total
order and a predecessor and a successor functions.

We take the following notations: a closed interval [a, b] represents a set {i ∈
Z | a ≤ i ≤ b}, and we denote by m the number of (maximal closed) intervals.
For example, a set D = {1, 2, 3, 6, 9, 10, 11, 12} can be represented as a set of
intervals {[1, 3], [6, 6], [9, 12]} and m = 3 for D.

2 The Diet

Martin Erwig has proposed a set representation called the diet (the discrete in-
terval encoding tree) [5]. The idea is to represent a set as a binary tree of intervals.
Figures 1(a) and (b) show a binary tree representation and a diet representation
of a set {1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20} respectively. An important prop-
erty of the diet is that between each two distinct intervals of a diet there is a gap
of at least one element, i.e. for any diet its intervals neither overlap nor touch.
An example of invalid diets is shown in Fig. 1(c): it is invalid for an interval [7,
10] touches another interval [11, 14].

(a) (b) (c)
7

8

10

14

19

2091

2

3

11

12

13

[7, 14]

[1, 3] [19, 20]

[ 7, 10 ] 

[ 1, 3 ] [ 19, 20 ]

[ 11, 14 ]

touches

Fig. 1. (a)A Binary Tree, (b)a Diet and (c)an Illegal Diet.

The diet is complete and efficient in space. Erwig has presented algorithms
of insertion and deletion for elements on the diet and shown that they take
only O(log m) steps. However, diets are simple, not necessarily balanced, binary
trees. Therefore, the worst-case complexities of these operations are still O(m).
Moreover, operations other than insertion or deletion have not been shown.

3 Enhancement of the Diet for Constraint Satisfaction

In this section we describe an implementation of the diet as AVL tree for im-
proving the worst-case complexities of deletion and other operations. We call the
diet which we have extended the enhanced diet. We also describe a specialization
of the enhanced diet to speed up constraint solving and the algorithm of domain
splitting used for constraints such as X ≤ Y .

3.1 Data Structure of the Enhanced Diet

In Erwig’s original diet, each node has only its interval and left and right chil-
dren, since they are not balanced and used only for insertion and deletion. To
implement the diet as AVL tree and to efficiently perform more complicated set
operations on them, we need more information.
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First, a node of AVL tree has its height value. Second, in constraint solving,
the minimum and the maximum values of domains are often used. As enhanced
diets are (balanced) binary trees, getting the minimum or maximum value takes
O(log m) steps. Third, the cardinalities of domains are used in constraint solving
when choosing the next variable to be instantiated. One of the most common
strategies is to choose the variable bound to the domain of the smallest cardi-
nality (first-fail principle). Since you need visit all the nodes to calculate the
cardinality, it takes O(m) steps.

Consequently, each node of enhanced diets we have defined has the following
values other than its interval and children: (1) its height, (2) the minimum and
maximum values, and (3) the cardinality. Since each node has these auxiliary
values, it takes only O(1) steps to get them from an enhanced diet.

3.2 Set Operations on the Enhanced Diet

For we have chosen AVL tree as the implementation of the enhanced diet, our
algorithms are based in part on [6].

The basic operations for the enhanced diet as AVL tree are: (1) making a new
enhanced diet from two existing enhanced diets and an interval as the new root
node, where the difference in heights between the two enhanced diets equals zero
or one; (2) inserting an interval node into an existing enhanced diet; (3) deleting
an interval node from an existing enhanced diet; and (4) extracting a leftmost
or rightmost interval node from an existing enhanced diet. Operations (2), (3)
and (4) are performed as in usual AVL tree. In operation (1), the parameters of
the new root node are calculated as in Fig. 2.

[ a, b ]

T

A B

A B

[ a, b ] min(T) := min(A)
max(T) := max(B)
height(T) := 1 + max{height(A), height(B)}
card(T) := (b - a + 1) + card(A) + card(B)

Fig. 2. Making a New Enhanced Diet from Two Existing Enhanced Diets.

The algorithms of element insertion and deletion for diets have been proposed
by Erwig and one can easily apply them to enhanced diets. Since enhanced diets
are balanced, element insertion and deletion take O(log m) steps for both average
and worst-case scenarios.

Concatenation is a kind of union, which makes a new enhanced diet T =
T1 ∪ T2 from two existing enhanced diets T1 and T2, where max(T1) < min(T2)
or max(T2) < min(T1). This is used as an auxiliary operation for the domain-
splitting operation and others. A fast algorithm of concatenating two AVL trees
was proposed by Clark A. Crane and its description can be found in [6]. Figure
3 describes Crane’s concatenation algorithm. Suppose we want to concatenate
two AVL trees T1 and T2 such that max(T1) < min(T2) and height(T1) ≥
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height(T2). The other cases are similar. First go down the right links of T1 until
reaching a subtree D such that height(D) − height(T2) ≤ 1. Then extract the
rightmost node d from D, calling it the juncture node, and let D′ be the resulting
tree. Then make a new AVL tree from d, D′, and T2 as its root node, left subtree
and right subtree respectively. Then reconstruct subtrees upward as if the new
node d had just been inserted. Crane proved this concatenation algorithm for
AVL tree takes O(log n) steps, when the original (higher) tree contains n nodes.

concatenate

C

zero or one

T1

D
d

B

A

T2

D’
1. extract

d

T2

C

B

A
2. reconstruct

Fig. 3. Concatenation of Two AVL Trees.

Crane’s algorithm is not perfect for enhanced diets when they touch each
other. Let T1 = {[1, 3], [5, 10]} and T2 = {[11, 15], [20, 35]}, then concatenating
the two enhanced diets by Crane’s algorithm would produce an invalid enhanced
diet {[1, 3], [5, 10], [11, 15], [20, 35]}, not a valid one {[1, 3], [5, 15], [20, 35]}.

Figure 4 shows how to cope with these cases. If T1 touches T2, i.e. max(T1)+
1 = min(T2), then not only extract the rightmost interval node J1 from T1 but
also extract the leftmost interval node J2 from T2, and make the juncture node J3
whose lower bound is that of J1 and upper bound is that of J2. Then concatenate
T1

′ and T2
′ with J3 as the juncture node. Reconstruction is performed as is

in Crane’s original algorithm. This algorithm takes O(log m) steps as Crane’s
original algorithm for AVL tree.

concatenate

D’

[ 30, 50 ]

[ 30, 43 ] [ 44, 50 ]

D

[ 30, 43 ]

T2
touching

zero or one

J1 J2
[ 44, 50 ]

T2’extractextract

J3

Fig. 4. Concatenation of Two Touching Enhanced Diets.

Domain-splitting operation is used for constraints such as X ≤ Y . It makes
a new domain D′ from an existing domain D and a given value d such that
D′ = {x ∈ D | x ≥ d} or D′ = {x ∈ D | x ≤ d}. This problem is also
solved by Crane for AVL trees. His AVL-splitting algorithm can be applied to
enhanced diets with slight changes: in the enhanced diet, each node represents
an interval, not a single value. Figure 5 shows how our splitting algorithm based
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on Crane’s algorithm is performed. Ai’s and Bi’s represent subtrees and Pi’s
represent interval nodes. In this example, we want to make a new enhanced diet
which has values contained in the original enhanced diet and less than or equal
to a given cutting value 57. The path to the node which contains the cutting
value is something like in the figure. We wish to construct an enhanced diet that
contains the nodes of A1, P1, A2, P2, A3, P3, A4, and [50, 57]. This construction
can be done by a sequence of concatenations: first insert [50, 57] into A4 and let
A4

′ be the resulting enhanced diet, then concatenate A4
′ and A3 with P3 as their

juncture node, then concatenate A3
′ and A2 with P2, and finally concatenate

A2
′ and A1 with P1. Crane proved his splitting algorithm for AVL tree takes

O(log n) steps, when the original tree contains n nodes, and our slightly changed
algorithm for the enhanced diet also takes O(log m) steps.

cut

[ 50, 68 ]

cutting value = 57
A1

P1

A4 B4

B1
A2

P2

A3

P3
B2

B3

[ 50, 57 ]A4

1. insert

2. concatenate with
Pi’s as juncture nodesA1

P1

A2

P2

A3

P3

Fig. 5. Domain Splitting (Less than or Equal to).

4 Conclusion

In this paper we proposed a set representation called the enhanced diet, which
represents a subset of integers as a balanced binary search tree of intervals. The
enhanced diet is complete and can represent large sets efficiently in space. Ele-
ment insertion and deletion on the enhanced diet take O(log m) steps for both
average and worst-case scenarios. The domain splitting used for constraints such
as X ≤ Y can also be done in O(log m) steps by adopting Crane’s algorithm.
Future work will involve combining the enhanced diet and bit vectors.
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Abstract. This paper presents two methods for improving the perfor-
mance of the Distributed Breakout Algorithm using the notion of inter-
changeability. In particular, we use neighborhood partial and full inter-
changeability techniques to keep conflicts localized and avoid spreading
them to neighboring areas.
Our experiments on distributed sensor networks show that such tech-
niques can significantly reduce the number of cycles required to solve the
problems (therefore also reduce communication and time requirements),
especially on difficult problems. Moreover, the improved algorithms are
able to solve a higher proportion of the test problems.

1 Introduction

Distributed Constraint Satisfaction (DisCSP) is a powerful paradigm applicable
for a wide range of coordination and problem solving tasks in distributed artificial
intelligence.

Among the distributed algorithms that were developed for this kind of prob-
lems ([4]), the Distributed Breakout Algorithm (DBA) received quite some in-
terest (e.g. [9]) because of a number of properties that this algorithm exhibits
(simple, efficient, low overhead, linear memory requirements, good anytime char-
acteristics).

DBA is an extension of the original centralized Breakout Algorithm ([8]). This
algorithm is a local search method, with an innovative technique for escaping
from local minima: the constraints have weights, which are dynamically increased
to force the agents to adjust their values while in a local minimum. During the
execution of the algorithm, each agent proposes improvements to the current
state by changing it’s variable value such that the cost of violated constraints is
decreased as much as possible.

While having the interesting properties that we enumerated above, local
search algorithms also have a common problem: choosing indiscriminately be-
tween the possible values of the local variable (only considering the cost of the
immediate constraint violations) can lead to “chain-reactions” (one conflict orig-
inating in one part of the constraint graph needlessly propagates throughout the
whole graph, only to (hopefully) be resolved in a completely different part of the
graph).

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 925–929, 2003.
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We analyzed these phenomena, and drew the conclusion that using inter-
changeability techniques, one can determine what values from the local domain
will not cause such conflict propagations, and use one of those values as the next
variable assignment. In this way, we look for a “local resolution” to all conflicts,
in the sense that we keep them contained as much as possible, and only involve
“external parties” when there is no other way.

We discovered that techniques based on interchangeability [3] (both neigh-
borhood partial and full interchangeability [1]) can improve the performance of
this algorithm.

2 Preamble

2.1 Problem Description and Formalization

The distributed sensor network problem ([2]) consists of a sensor field composed
of n sensors, and m targets to be tracked. Each sensor has its own visibility range.
The sensors can communicate among themselves, but not necessarily every sensor
with every other sensor.

Some restrictions apply: 3 sensors have to be assigned to each target, and
they must be able to communicate among themselves; each sensor can only track
one target at a time.

In our approach, one agent corresponds to a target; each agent has 3 local
variables (the sensors to be assigned to each target), and the domain of each
variable is the set of sensors that can track the respective target.

There are two types of constraints: intra-agent constraints (the variables be-
longing to one agent must be assigned to different sensors, and the sensors as-
signed to one agent must have a communication link between themselves) , and
inter-agent constraints (no 2 variables from any 2 agents can be assigned the
same value - a sensor can track a single target).

2.2 Interchangeability Background

The concept of interchangeability informally means equivalence between values
of a CSP variable:

– Neighborhood Interchangeability (NI): 2 values a and b of a variable Vi are
NI if they are equivalent for every constraint involving Vi;

– Neighborhood Partial Interchangeability (NPI): a weaker form of NI, defined
for a subset of values from the local domain with respect to a set of neighbors,
where the impact of the change of the local variable is limited to the reference
set of neighbors.

2.3 Breakout Algorithm

In the distributed version of this algorithm, agents communicate through ok?
and improve messages: an ok? message is used to send the current variable
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value, and an improve message is used to send possible improvement in the
evaluation of variable value. When receiving ok? messages from all neighbors,
an agent calculates the evaluation of the current variable value and its possible
maximal improvement and sends them to neighbors via improve messages. When
receiving improve messages from all neighbors, an agent compares them with its
own improvement. If there is a greater improvement than its own, the agent will
not do anything. If there is no possible improvement (all are 0), the agent will
increase the weights of the violated constraints. If its improvement is the greatest,
the agent will change its variable to the value giving the maximal improvement.

Note that ties in improvement comparison are broken deterministically by
comparing agent identifiers. After this step, the agents send ok? messages to
their neighbors. When no more constraints are violated, the problem is solved.

3 Algorithms

Due to lack of space, we will present here only a high-level overview of the
algorithms that we developed.

NI-DBA: the idea is that if we find the NI-sets for the local variables,
we can safely assign values from those sets, being certain this won’t cause any
conflicts with the neighboring agents. The NI-sets are determined during the
pre-processing phase, based on the domains of the neighbors, and are used at
runtime like this: if an agent has a conflict with a neighbor, it will search for an
improvement in it’s local domain giving preference to the values from the NI-set.
This avoids any future conflicts with any neighbor.

NPI-DBA: the NPI-sets are computed at runtime, w.r.t. the set of the
neighbors that we already have conflicts with. When searching for a local im-
provement, we give preference to the values from the NPI-sets, thus not risking
to cause future conflicts with neighbors that are not already involved, therefore
keeping conflicts contained.

4 Evaluation

We made our evaluations in these settings: a sensor grid with 400 sensors in
total, and randomly generated solvable problems with 40, 60, 80, 100, 110, 115,
120, 125 and 130 simultaneous targets (meaning three times as many variables).
The sensor grid was the same for all the problems, and the targets were placed
randomly, such that the problems were still solvable.

We collected these results: problem solved/not solved (a problem is declared
unsolved after the number of cycles reaches a threshold of 50000 cycles), and
solving effort (time spent and number of cycles required).

For small numbers of targets, all the algorithms performed well; the differ-
ences increased with the problem difficulty, and peaked at 130 targets (most
difficult problems), where NPI-DBA solved more than 70% of the problems,
whereas Standard-DBA solved less than 50% (see Figure 1) Both the average
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number of rounds and the solving time for standard DBA are bigger than those
for NPI-DBA, and close to the ones of NI-DBA.

We see in Figure 2 that for difficult problems, the number of required rounds
for NPI-DBA is about 40% smaller than the one of Standard DBA. A similar
diagram for the time is available, but not included here.

We developed a visual interface that allows us to monitor the solving process,
thus giving us clear indications that using the strategies based on NI/NPI greatly
inhibits the propagation of conflicts around the constraint graph.

The initialization of the variables was pseudo-random (identical for all the
algorithms), in order to keep the algorithms comparable, and see the improve-
ments that the search strategy brings. Initialization with values from the NI-sets
yields even larger improvements, leading us to believe that both the “informed”
initialization of the variables and the subsequent search strategy play a role in
the performance of the algorithm.
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Overall, our results have shown that NPI-DBA is much better than NI-DBA.
This is due to the fact that in dense problems, there is usually little or no NI at
all, whereas NPI, being a weaker form of NI is still computable.

5 Conclusions and Future Work

The techniques presented here can be easily generalized beyond inequality con-
straints and resource allocation problems (in that case, the NI and NPI sets
are more difficult to compute: simple disjunction between sets is not enough
anymore, and discrimination trees [3] and joint discrimination trees [1] must be
used).

NPI-DBA clearly outperforms standard DBA for difficult problems, and NI-
DBA shows comparable performance. Further speedups weer obtained with “in-
formed” initializations, based on the NI data available after the preprocessing
phase.

Further improvements could also be obtained by allowing multiple simulta-
neous changes of the local variables at each step, and by trying a hierarchical
approach, where certain agents are delegated as “local authorities” for solving
a particularly difficult local problem. It would be interesting to study in more
detail the scalability of these algorithms.
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1 Introduction

Symmetry occurs frequently in Constraint Satisfaction Problems (CSPs). For
instance, in 3-colouring the nodes of a graph, a CSP model that assigns a specific
colour to each node has sets of equivalent solutions in which the three colours
are permuted. Symmetry in CSPs can cause wasted search, because the search
for solutions may repeatedly visit partial assignments symmetric to ones already
considered. If a partial assignment does not lead to a solution, neither will any
symmetrically equivalent assignment. When searching for all solutions, for every
solution found, all the symmetrically equivalent solutions will also be found.

To avoid this wasted effort, the search algorithm can be modified so that
search never visits assignments symmetric to those already considered. One such
approach is Symmetry Breaking During Search (described in [7]). On backtrack-
ing to a choice point, having explored the subtree resulting from the assignment
of a value to a variable, say var = val, the search will explore the subtree
in which var �= val. SBDS adds constraints to ensure that in this subtree, no
assignment is considered that is symmetrically equivalent to one already met.

SBDS requires a function for each symmetry in the problem describing its
effect on the assignment of a value to a variable. To allow SBDS to be used in
highly symmetric CSPs, Gent et al. [5] linked SBDS (in ECLiPSe) with GAP
(Groups, Algorithms and Programming) [4], a system for computational group
theory. GAP-SBDS allows the symmetry group, rather than its individual ele-
ments, to be described. Symmetry can then be handled more efficiently than in
SBDS, since the elements of the group are not explicitly created. On the other
hand, GAP-SBDS has the overhead of the communication between ECLiPSe and
GAP. Furthermore, the symmetry-breaking constraints posted on backtracking
are constructed dynamically rather than being pre-defined in the symmetry func-
tions as in SBDS.

Symmetry Breaking via Dominance Detection (SBDD) [1,2] checks every
node in the search tree to see if it is dominated by a symmetric equivalent of a
subtree already explored, and if so prunes this branch. Gent et al. [6] have de-
veloped GAP-SBDD, a generic version of SBDD that uses the symmetry group
of the problem and links SBDD (in ECLiPSe) with GAP. At each node in the
search tree ECLiPSe calls GAP to check for dominance. If the node is not dom-
inated, GAP sometimes identifies variable/value pairs that can be deleted from
domains; this information is returned to ECLiPSe. Gent et al. compared GAP-
SBDD with GAP-SBDS applied to BIBDs and showed that GAP-SBDD could
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solve much larger problems, and was faster than GAP-SBDS on the smaller
problems which both could solve.

In this paper, we compare SBDS, GAP-SBDS and GAP-SBDD on a class
of graph labelling problems. Constraint programming has proved valuable for
solving these problems, and eliminating symmetry has led to many new results.
Some are presented here; more can be found in a longer version of the paper [9]
and at http://scom.hud.ac.uk/scombms/Graceful.

2 Graceful Graphs

A labelling f of the nodes of a graph with q edges is graceful if f assigns each
node a unique label from {0, 1, ..., q} and when each edge xy is labelled with
|f(x)−f(y)|, the edge labels are all different. Figure 1 shows an example. Gallian
[3] surveys graceful graphs, i.e. graphs with a graceful labelling, and lists the
graphs whose status is known.

The problem of finding a graceful labelling of a graph can be expressed as a
CSP. A possible model, used by Lustig & Puget [8] to find a graceful labelling
of K4 × P2 (see section 3), has a variable for each node, x1, x2, ..., xn, each
with domain {0, 1, ..., q} and a variable for each edge, d1, d2, ..., dq, each with
domain {1, 2, ..., q}. The constraints of the problem are: if edge k joins nodes
i and j then dk = |xi − xj |; x1, x2, ..., xn are all different; and d1, d2, ..., dq are
all different. We treat the allDifferent constraint on the node variables as a set
of binary �= constraints, whereas for the edge variables we use the highest level
of propagation provided for the allDifferent constraint in ECLiPSe. We assign
values to the node variables only and use lexicographic variable ordering.

There are two sources of symmetry in the CSP: first, symmetry in the graph.
For instance, if the graph is a clique, any permutation of the node labels in a
graceful labelling is also graceful, and if the graph is a path, Pn, the node labels
can be reversed. Second, we can replace the value of every node variable xi by
its complement q − xi. We can also combine each graph symmetry with the
complement symmetry. For instance, the graceful labelling (0, 3, 1, 2) of P4 has
three symmetric equivalents: (2, 1, 3, 0); (3, 0, 2, 1); (1, 2, 0, 3).
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Fig. 1. The unique graceful labelling of K5 × P2.
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3 Km × P2 Graphs

K5 × P2, shown in Figure 1, consists of two copies of K5, with corresponding
vertices in the two cliques forming the vertices of a path P2. The symmetries of
K5 × P2 are, first, any permutation of the 5-cliques which acts on both in the
same way. For instance, if the nodes of the first clique are numbered 1 to 5 and
those of the second 6 to 10, we can transpose nodes 1 and 2 and simultaneously
6 and 7. Second, inter-clique symmetry: all the node labels in the first clique can
be interchanged with the labels of the adjacent nodes in the second. These can
also be combined with each other and with the complement symmetry. Hence,
the size of the symmetry group is 5! × 2 × 2, or 480. We can eliminate all the
symmetry using SBDS, GAP-SBDS or GAP-SBDD; or some of the symmetry
can be eliminated instead by adding a constraint to the CSP. We devised several
different strategies to use in our comparison:

A: Eliminate all the symmetry (i.e. the full symmetry group of 480 elements).
B: Eliminate only the graph symmetry, and not the complement symmetry

(a subgroup of size 240): at worst this will double the number of solutions.
C: Ignoring the complement symmetry, eliminate the inter-clique symmetry

by adding a constraint to the CSP that the node labelled 0 is in the first clique.
This leaves only the clique permutations (120 elements).

D: In SBDS, use a constraint to break the inter-clique symmetry (as in
C). The remaining symmetry allows all permutations of the subsets {x1, x6},
{x2, x7}, {x3, x8}, {x4, x9} and {x5, x10}. This is a generalisation of symmetry
due to indistinguishable variables and can be eliminated by just the ten trans-
positions of the subsets. For instance, one transposition swaps x1 with x2 and
x6 with x7. Strategy D is not possible in GAP-SBDS or GAP-SBDD, because
the subset of transpositions is not a group.

These strategies for dealing with symmetry in three instances of the class
Km × P2 using SBDS, GAP-SBDS and GAP-SBDD are compared in Table 1.
GAP-SBDS and GAP-SBDD require the symmetry group of the problem as
input. We extended both to simplify this task. Similar GAP code was used to
output the symmetry functions required for SBDS from a set of group generators.

There are 4 non-isomorphic graceful labellings of K3×P2 and 15 of K4×P2.
K5×P2 has a unique graceful labelling (shown in Figure 1). K4×P2 was shown
to be graceful by Lustig & Puget [8] but the number of non-isomorphic graceful
labellings and the gracefulness of K5 × P2 were not previously known.

We find all graceful labellings, partly because when finding just one solution,
symmetry does not always cause wasted effort. However, finding a graceful la-
belling of K5×P2 with no symmetry breaking takes 30,010 backtracks and 1830
sec., much longer than SBDS, GAP-SBDS or GAP-SBDD take to both find the
solution and prove that it is unique, when breaking all the symmetry.

In strategy A, SBDS does less search than GAP-SBDS; this seems to be
due to lazy evaluation in GAP-SBDS, to delay imposing constraints. However,
SBDS is fastest when the number of symmetry functions is smallest (strategy D):
increasing the number of symmetry functions severely affects its runtime, even
when the number of backtracks is greatly reduced. The speed of GAP-SBDS, on
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Table 1. Comparison of different levels of symmetry breaking using SBDS, GAP-SBDS
or GAP-SBDD for finding all graceful labellings of Km ×P2, for m = 3, 4, 5. ‘bt’ is the
number of backtracks. The running time is on a 1.6GHz Pentium 4, running ECLiPSe.

K3 × P2 K4 × P2 K5 × P2

SBDS GAP- GAP- SBDS GAP- GAP- SBDS GAP- GAP-
SBDS SBDD SBDS SBDD SBDS SBDD

bt sec. bt sec. bt sec. bt sec. bt sec. bt sec. bt sec. bt sec. bt sec.
A 6 0.25 9 0.54 22 0.69 147 12.9 165 8.3 496 20.6 4172 1356 4390 382 17977 1310
B 16 0.24 16 0.59 50 1.33 369 13.1 369 14.3 1276 53.6 9889 929 9889 793 51623 3910
C 16 0.21 16 0.58 24 0.63 369 11.0 369 14.1 473 16.5 9889 659 9889 783 11710 859
D 16 0.2 - - - - 369 10.6 - - - - 9889 629 - - - -

the other hand, is much less affected by the number of symmetries, and its best
strategy is to break all the symmetry and hence benefit from the reduction in
search. For a small number of symmetries (e.g. strategy C) SBDS is faster than
GAP-SBDS, since it avoids the overhead of interacting with GAP.

On these problems, GAP-SBDD performs very poorly in comparison to GAP-
SBDS. From detailed examination of the search trees, this is because the search
variables of the CSP are the node variables, whereas the edge variables cause
most constraint propagation. In GAP-SBDD, GAP returns just a boolean to
indicate whether the current node is dominated or not, and possibly a list of
values to remove from the domains of specified search variables. This successfully
breaks the symmetry and prunes the search tree, but provides no information
that can propagate to the non-search variables, in this case the edge variables.
On the other hand, GAP-SBDS breaks symmetry by posting constraints on
backtracking, and these can propagate in the same way as any other constraint.

Because GAP returns limited information to ECLiPSe, GAP-SBDD can solve
much larger problems than GAP-SBDS, as found by Gent et al. in their BIBD
experiments [6]. Our results have shown the disadvantage of this reduced com-
munication. CSP models in which only some of the variables are used for search,
but constraint propagation over the full set of variables is crucial to solving the
problem quickly, are not unusual. It is an important finding that GAP-SBDD
performs badly on such a model.

4 Conclusions

We have carried out an experimental investigation of symmetry breaking in
graceful graph problems. We have compared three techniques which break sym-
metry during search, namely SBDS, GAP-SBDS and GAP-SBDD. Experiments
with the Km×P2 graceful graph problems have confirmed that GAP-SBDS out-
performs SBDS when the symmetry group is large. However, for problems with
small numbers of symmetries, SBDS will be the better choice.

The limited earlier comparisons of GAP-SBDD and GAP-SBDS suggested
that GAP-SBDD can handle much larger symmetry groups than GAP-SBDS.
However, we have shown that GAP-SBDD is much worse than GAP-SBDS at
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solving the graceful graphs problems. We traced its difficulty to a feature of the
CSP model: much of the constraint propagation involves non-search variables.
Since this happens frequently in CSP models developed by expert modellers, it
is a significant drawback to GAP-SBDD.

With good symmetry breaking, constraint programming is a valuable tool
for finding graceful labellings of symmetric graphs or proving that they are not
graceful. This investigation has produced several new results, and those for Km×
Pn graphs are included in the latest version of Gallian’s survey [3].
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Abstract. This paper presents Tree Local Search (TLS), a generic algo-
rithm that hybridizes tree and local search methods. It has the following
properties: it can filter all its instantiations and allows to freely select
the variable whose value changes in case of failure. The primitive ver-
sion of TLS can be regarded as a Hill-Climbing method that handles
filtered instantiations. An extended version generalizes the Backtracking
and Min-Conflicts algorithms.

1 Introduction

Tree search (TS) and local search (LS) are two general search approaches for solv-
ing CSPs that were often opposed. Roughly, TS tries to prove that a problem
is unsatisfiable: almost all the mechanisms associated to TS (filtering, variable
ordering) look for a failure as quickly as possible. Hence, finding a solution is
only the consequence of the impossibility to prove the unsatisfiability. On the
other hand, LS has the only goal to find a solution as quickly as possible with-
out caring about systematicity and completeness. It is obvious that a TS must
be used when it is expected that a problem has no solution. Conversely, LS is
supposed to be more efficient than TS on problems with many solutions. Now,
it is not easy to decide the two approaches when dealing with hard problems
with very few solutions. The nature of these problems requires to combine driv-
ing quickly the search toward a solution while discarding the unsatisfiable parts
of the search space. This is why many propositions to integrate LS satisfiabil-
ity mechanisms and TS unsatisfiability mechanisms to design hybrid algorithms
were experimented until today. According to us, even if the existing hybrid al-
gorithms have practical interests, they are often lacking theoretical foundations.
What principles should we follow when designing hybrid algorithms?

2 The Tightest Coupling Property

In the following, we call variable assignment the assignment of one variable, total
instantiation an instantiation of all the variables of the problem, partial instan-
tiation an instantiation of a (non-strict) subset of the variables and terminal
instantiation a partial instantiation which last variable assignment permitted to
determine that no solution of the problem can contain this instantiation. A ter-
minal instantiation corresponds to a failure detected by a tree search algorithm.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 935–939, 2003.
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The two fundamental differences between TS and LS are (1) the type of
instantiation (terminal or total) they handle and (2) the way that they generate
a successor of the current instantiation. LS has the advantage to be able to
change the value of any variable for reaching a solution as quickly as possible.
TS can only change the last variable(s) chosen to extend the instantiation. On
the other hand, LS only handles total instantiations so its search space size is
the product of the domain sizes. TS only handles partial instantiations. Each
time a partial instantiation is extended by a variable assignment, it is checked
or filtered to determine if it can be extended to obtain a solution. If not, a
great number of total instantiations can be eliminated at the same time. The
maximum set of instantiations that can be generated by TS can really be smaller
than the one of LS. The hybridation of TS and LS has a simple goal: take
advantage of both (1) filtering and (2) free selection of the variable whose value
changes. Now, how should these two properties be integrated into one algorithm?
The tighter the coupling, the more potential has the search to fully exploit the
advantages of both TS and LS all along the search. It seems impossible to achieve
a tighter coupling between TS and LS than enforcing filtering and free variable
selection on every partial instantiation. Actually, as it always seems preferable to
extend a consistent partial instantiation than to change the value of one variable
already assigned, changing the value of a variable is only needed for terminal
instantiations.

Definition 1. A search algorithm has the tightest coupling property if: (1) it
filters all its partial instantiations and (2) it allows to freely select the variable
whose value changes when a terminal instantiation is generated.

3 Tree Local Search

As far as we know, no existing hybrid algorithm has the tightest coupling prop-
erty. We now present a new algorithm that fullfills this property. It is based on
Limited Discrepancy Search[1] (LDS), which has a similar property: LDS filters
all the instantiations and it can be used to generate the neighborhood of an
instantiation.

We call most promising instantiation, a total instantiation where all the vari-
ables are assigned to the first value selected by the heuristic. It can be regarded
as the extension of the current instantiation by assigning the first selected value
of their domain to the remaining variables. As the authors of [1] noticed, LDS
iteration 1 allows to generate all the instantiations differing by one value from
the most promising instantiation. If iteration 1 of ILDS is run without checking
the constraints before all the variables are assigned, the set of total instantiations
that are generated is equal to the neighborhood (in the common sense used in
LS) of the most promising instantiation. To simulate a LS, it suffices to select the
best neighbor (e.g., the one that satisfies the greater number of constraints) and
make it become the most promising instantiation. This is enforced by changing
the value ordering heuristic so that it chooses the values of the best neighbor
first. In practice, the domains of the variables are statically ordered before the
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resolution. When the best neighbor is found, all its values are moved to the first
position of the domains (and the other values are shifted to the right). So, we
can see that Min-Conflicts[2] (MC) can be simulated by a tree search algorithm
that performs successive LDS iteration 1 with domain reordering.

If the constraints are checked each time a partial instantiation is extended
during LDS iteration 1, the neighborhood has a different nature but the princi-
ple remains the same. The neighborhood is composed of terminal instantiations
whose all variable assignments but one belong to the most promising instan-
tiation. The criterion that determines the best neighbor depends on the way
the constraints are checked. If the contraints are checked like BT, that is, by
checking the compatibility between the last variable assignment and the previ-
ous ones, only one variable assignment is the source of conflicts. A first obvious
criterion is to select the neighbor that has the greater number of variable assign-
ments: the more variable assignments, the more compatible assignments and the
most likely may these assignments take part to a solution. If the constraints are
checked through a filtering (e.g. Forward-Checking, MAC), in addition to the
number of variable assignment criterion, it is possible to consider the sizes of
domains that have not been emptied so as to select a neighbor.

In figure 1 is defined Tree Local Search (TLS), a generic tree search algorithm
that performs a Hill-Climbing search while filtering partial instantiations. We call
TLS-BT a specific TLS that does no filtering but only checks the compatibility
between the last variable assignment and the previous ones, like in the simple
Backtracking algorithm (BT)(see figure 2).

4 Extensions of TLS

Even if TLS has the tightest coupling property, it remains rudimentary. It must
be seen as the core of an algorithm that requires to be extended and completed
to be efficient in practice. We are going to define a generalization of TLS-BT,
called TLS-BT(i,k), such that TLS-BT, BT and MC are particular cases of it.
To achieve this, we extend the notion of neighborhood so that it captures the
one of BT and then we extend the notion of terminal instantiation so that it
captures the one of MC.

Definition 2. Neighborhood of order i
Let N(s) be the neighborhood of a total instantiation s. N(s) represents all the
total instantiations that differs from s by one variable assignment. The extended
neighborhood of order i is defined by N0(s) = {s} and Ni+1(s) =

⋃
s′∈Ni(s) N(s′).

Ni(s) represents all the total instantiations that differs from s by at most
i variable assignments. Notice that N1(s) = N(s) and Nn(s) is the set of all
possible total instantiations, when n is the number of variables. The notion of
extended neighborhood already appears in [3], where the Variable Neighborhood
Search (VNS) is presented. The main idea of VNS is to extend the neighborhood
if a local optimum is reached.
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TLS:
1 min ← ∞;
2 LOOP
3 s ← LDS-iteration1(∅)
4 IF f(s) = 0 THEN return s
5 IF f(s) < min THEN min = f(s)
6 reorder-domains(s)
7 ELSE return FAILURE

LDS-iteration1(s):
1 IF all the variables are assigned THEN return s
2 ELSE
3 smin ← s; S ← list-of-extentions(s)
4 FOR z ← 1 TO |S|
5 IF NOT inconsistent(S[z]) AND discrepancies(S[z]) ≤ 1 THEN
6 s ← LDS-iteration1(S[z])
7 IF f(s) = 0 THEN RETURN s
8 IF f(s) < f(smin) THEN smin ← s
9 RETURN smin

Fig. 1. The Tree Local Search algorithm. The function f evaluates the proximity of
terminal instantiations to a solution. When f(s) = 0, s is a solution. f may be the
count of violated constraints. The function list-of-extentions(s) returns all the possible
extensions of a partial instantiation s by choosing a value to assign to the next variable.
This function may also filter the domains if a filtering mechanism is wanted in the
algorithm. The function inconsistent(s) may just check the compatibility of the last
assignment with previous one or check if a domain is empty (if filtering is integrated).
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solution

x1  1 2 3

x3  1 2 3
x4  1 2 3

x2  2 1 3
x3  1 2 3
x4  1 2 3

x1  1 2 3
x2  1 2 3
x3  1 2 3
x4  1 2 3

x2  2 1 3
x1  3 1 2

Fig. 2. TLS-BT running on a CSP with 4 variables and domain size equal to 3. The
criterion for selecting the best neighbor is the number of assigned variables.

The notion of neighborhood of order i is directly extended to terminal instan-
tiations: the neighborhood of order i of a terminal instantiation s is the set of
terminal instantiations generated by the iteration i of LDS (when the values of s
are the first of their ordered domains). To obtain an algorithm that generalizes
both TLS-BT and BT, it suffices to replace iteration 1 by iteration i, where i is
a parameter set before the algorithm is run. If we call this algorithm TLS-BT(i)
then we have TLS-BT(1) = TLS-BT and TLS-BT(n) = BT.

We now extend the notion of terminal instantiation so as to find a generaliza-
tion of TLS-BT and MC. The main difference between these two algorithms is
the type of instantiation they handle. We must find an instantiation type more
general than the total instantiation type and the terminal instantiation type.

Definition 3. k-inconsitency. A partial instantiation is said k-inconsistent if
the number of constraints it violates is greater or equals to k.
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In that context, we call terminal instantiation a partial instantiation whose
last variable assignment made k-inconsistent or a total instantiation that is not a
solution. By replacing the inconsistency check of BT by a k-inconsistency check,
we obtain an algorithm generalizing TLS-BT and MC. Instead of backtracking
as soon as a constraint is violated, it waits until at least k constraints are vio-
lated by the partial instantiation. When setting k to 1, we fall back to TLS-BT.
When setting k to n(n−1)

2 , the maximal number of constraints in a binary CSP
with n variables, we fall back to MC. To generalize TLS-BT and MC, in addition
to applying a k-inconsistency check, the criterion to compare terminal instanti-
ations must be adapted. The number of violated constraints must be taken into
consideration. The criterion of comparison that we propose is the following. A
terminal instantiation is better than another one if it has assigned more vari-
ables or if it has assigned as much variables but has violated fewer constraints.
This criterion is more general than the ones of TLS-BT and MC. If k = 1, k-
inconsistency is just the usual inconsistency because an instantiation is terminal
as soon as it violates one constraint. If k = n(n−1)

2 , only total instantiations may
be k-inconsistent, so the instantiation can only be selected thanks to the num-
ber of violated constraints, just like with MC. By integrating both the extended
neighborhood of order i and the k-inconsistency check into TLS-BT, we obtain
the TLS-BT(i,k) algorithm that generalizes TLS-BT, BT and MC.

5 Conclusion and Perspectives

The primitive procedure of TLS has been generalized to obtain TLS-BT(i,k), so
as to generalize also Min-Conflicts and Backtracking, the basic search methods of
local search and tree search. Tuning the parameters i and k makes TLS-BT(i,k)
smoothly increase or decrease the size and the composition of the instantiation
neighborhoods. As a more general algorithm than BT and MC, appropriate
settings of TLS-BT(i,k) guarantees an efficiency at least as good as BT or MC.
The nature of TLS-BT(i,k) should allow to extend it easilly to generalize efficient
widely-used local search and tree search algorithms such as Forward-Checking,
MAC, VNS, Tabu Search and many others. TLS has the potential to integrate
the latest refinements of filtering procedures and mechanisms for escaping a local
optimum. Future experiments on such more sophisticated variants of TLS will
show how they compete with the best search methods.
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Abstract. Multiple sequence alignment is a central problem in Bioinformatics. A
known integer programming approach is to apply branch-and-cut to exponentially
large graph-theoretic models. This paper describes a new integer program formu-
lation that generates models small enough to be passed to generic solvers. The
formulation is a hybrid relating the sparse alignment graph with a compact encod-
ing of the alignment matrix via channelling constraints. Alignments obtained with
a SAT-based local search algorithm are competitive with those of state-of-the-art
algorithms, though execution times are much longer.

1 Background

Multiple sequence alignment (MSA) is a central problem in Bioinformatics and is known
to be NP-complete [3]. Given a number of sequences of symbols from an alphabet, the
aim is to align them while maximizing some function. Gaps may be introduced between
symbols, and in some MSA formulations the objective function includes a measure
of the number and length of gaps. A common data structure is the alignment matrix
which contains one sequence per row, including gaps; aligned symbols occur in the
same column.

Numerous heuristic methods have been proposed for multiple alignment, of which by
far the most widely used is progressive alignment. This involves clustering the sequences
first to give a guide tree and then building up the alignment gradually, following the
branching order in the guide tree. This is very fast even for hundreds of sequences, and
the most widely used software is the well-known ClustalW package [11]. The T-Coffee
package [8] also uses a progressive heuristic but has been shown to be more accurate than
ClustalW, at the expense of extra computing time. There are also several methods based
on optimising the WSP (weighted sums of pairs) objective function which use Genetic
Algorithms [7] or iteration [2]. These vary in the extent to which they are practical for
more than a few sequences or in the quality of the optimisation.

Dynamic programming [6] has been used for MSA problems but is known to scale
poorly to more than a few sequences. More successful is the Complete Maximum Weight
Trace (CMWT) formulation in which the symbols are viewed as vertices in an alignment
graph G = (V,E) (actually an extended graph that includes edges between adjacent
symbols in each sequence). Each vertex is a position i in sequence j, which we shall
denote by (i, j). Each edge connects two vertices from different sequences. Each edge
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e ∈ E has a weight we representing the usefulness of aligning its two symbols. An
alignment realises an edge if it aligns its two symbols, and the aim is to maximize the
sum of the weights of the realised edges. The set of realised edges is a trace if certain
constraints are satisfied, and an alignment matrix can always be constructed from a trace.

The CMWT generates large models which can be reduced by using the Sparse
MaximumWeight Trace (MWT) formulation. This restricts attention to a carefully chosen
subgraph, defining only those edges that are used in pairwise alignments of high quality.
Besides reducing the size of the models, the MWT provides an opportunity to input
biological knowledge via the choice of subgraph. The usual way of ensuring that the
realised edges form a valid trace is to enumerate all critical mixed cycles in the graph,
adding a constraint to prohibit each cycle [1,4,10] (other constraints may also be added).
The MWT and related formulations have natural integer linear program (ILP) models.
The number of constraints is exponential in the size |E| of the graph [1] but these are
not passed en masse to a solver. Instead a branch-and-cut approach is used, generating
violated constraints as required in order to derive cutting planes. Generating the relevant
constraints is known as the separation problem and can be done in polynomial time.

We explore an alternative ILP approach to the MSA. Instead of accessing an expo-
nentially large model in polynomial time, we use a model with a polynomial number of
constraints that can be passed to a generic solver. To avoid the use of cycle constraints
we model the alignment matrix directly, and relate it to the sparse alignment graph by
channelling constraints. Instead of applying branch-and-cut we transform the model to
pseudo-Boolean form and pass it to a SAT-based local search algorithm.

2 A Hybrid 0/1 Model

As in the MWT define a binary variable ve for each edge e ∈ E. The problem is then to
maximize

∑
e∈E weve subject to constraints ensuring the construction of an alignment

matrix. The matrix has n rows (one per sequence) and c columns where c ≥ maxj(lj) and
lj is the length of sequence j. We allow each sequence position to be placed anywhere
in the corresponding row of the matrix, subject to constraints. We denote an edge e ∈ E
between (i, j) and (i′, j′) by e = ((i, j), (i′, j′)) where j < j′ by convention. A matrix
entry with no sequence position placed in it implicitly contains a gap. The symbols are
not explicitly modelled, only the way in which sequence positions are mapped to matrix
columns. Let b = �log2 c� so that the c matrix columns can be represented using b
bits. Define 0/1 variables pijk where 1 ≤ j ≤ n, 1 ≤ i ≤ lj and 1 ≤ k ≤ b. Then
1 +

∑b
k=1 2k−1pijk denotes the matrix column of symbol (i, j). There are two sets

of constraints. To ensure that sequence positions are placed in the alignment matrix in
an ordered way, add ordering constraints

∑b
k=1 2k−1(pijk − pi′jk) ≥ i − i′ where

1 ≤ j ≤ n and 1 ≤ i′ < i ≤ lj . To relate the pijk and ve variables add channelling
constraints

(ve = 1)→
(

b∑
k=1

2k−1pijk =
b∑

k=1

2k−1pi′j′k

)
where e = ((i, j), (i′, j′)) ∈ E, which can be implemented by the linear constraints
pijk − pi′j′k + ve ≤ 1 and pi′j′k − pijk + ve ≤ 1 where 1 ≤ k ≤ b and e =



942 Steven Prestwich, Des Higgins, and Orla O’Sullivan

((i, j), (i′, j′)) ∈ E. A motivation for the model was to avoid the exponential number of
constraints in the MWT, and it can be shown that it has space complexity O(nm2 log m).

3 Experiments

We reduce an MSA optimisation problem to a series of CSPs, each with a cost constraint∑
e∈E weve > W for some integer lower bound W . The CSPs have increasing values

of W , each being the weight of the previous solution, and the initial bound W0 is 0. Each
CSP is solved by transforming it to linear pseudo-Boolean form, which contains only
constraints

∑
i wili ≥ d where the weights wi and the constant d are positive integers,

and the literals l are either variables v or their negations v̄ = 1− v. The interest of this
form is that it is only a slight extension of SAT, and many SAT algorithms generalise
easily to it. We apply the Saturn hybrid local search algorithm, which was generalised
in [9] and gave good results on block design and sports scheduling problems. Saturn
uses each solution as a starting point for the next CSP, by reassigning as many variables
as possible (under a random variable ordering, without violating any constraints). On
solving the final CSP an alignment matrix is constructed, then post-processed by applying
simple transformations to reduce the number of columns used.

We take MSA instances from the HOMSTRAD [5] database of protein alignments.
We generate sparse alignment graphs using T-Coffee with default settings. It takes every
pair of sequences and outputs weighted pairs of symbols, aligning each pair of sequences
using dynamic programming and recording all of the pairs of aligned symbols. The
weights are simply the percent identity of the parent sequences for each pair. We measure
the accuracy of our results by counting the percentage of columns in the alignment
matrix that are identical with reference alignments, which are automatically derived
by comparing the 3-dimensional structures of the proteins. These alignments are not
guaranteed to be optimal but are of high quality. This is a measure commonly used by
working biologists; though trace weight is the measure being optimised, there is only an
approximate correspondence between weight and alignment quality, partly because of
some arbitrariness in the weights assigned to the alignment graph edges.

We first applied Saturn to four fairly small problems: ChtBD is a family of chitin
binding domains which are structural proteins in plant cells, hla consists of a group of
histocompatibility proteins involved in the immune system, TIG contains a group of
glucanotransferases which are involved in metabolism, and ch is a family of calponin
homology domain proteins which are involved in actin binding in the cell. These have
between 4 and 6 similar sequences of between 43 and 178 residues, apart from ch which
has 4 very dissimilar sequences. In each case Saturn finds the same solutions as ClustalW
and T-Coffee in a few minutes, except for ch where it finds a less optimal solution.

Next we applied Saturn to two larger problems. Firstly the mmp problem is a fam-
ily of matrix metalloproteineases which are important proteins in the cytoskeleton of
the cell. It has 6 sequences, 55% identical to each other, and an average length of 164
residues. The model has 6723 ve variables, 7872 pijk variables, 80311 ordering con-
straints and 107569 channelling constraints. The alignment found by Saturn is 95.5%
correct, equalling that found by T-Coffee, while ClustalW’s alignment is 92.4% correct.
Secondly the oxidored q6 problem is a family of NADH ubiquinone oxidoreductases,
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---KHRPSVVWLHNAECTGCTEAAIRTIKPYIDALILDTISLDYQETIMAAAGETSEAAL
---KKRPSVVYLHNAECTGCSESVLRTVDPYVDELILDVISMDYHETLMAGAGHAVEEAL
----SRPSVVYLHAAECTGCSEALLRTYQPFIDTLILDTISLDYHETIMAAAGEAAEEAL
LMGPRRPSVVYLHNAECTGCSESVLRAFEPYIDTLILDTLSLDYHETIMAAAGDAAEAAL
----KKAPVIWVQGQGCTGCSVSLLNAVHPRIKEILLDVISLEFHPTVMASEGEMALAHM

HEALEGKDG-YYLVVEGGLPTIDGGQWGMVAG-------HPMIETCKKAAAKAKGIICIG
HEAIKGD---FVCVIEGGIPMGDGGYWGKVGG-------RNMYDICAEVAPKAKAVIAIG
QAAVNGPDG-FICLVEGAIPTGMDNKYGYIAG-------HTMYDICKNILPKAKAVVSIG
EQAVNSPHG-FIAVVEGGIPTAANGIYGKVAN-------HTMLDICSRILPKAQAVIAYG
YEIAEKFNGNFFLLVEGAIPTAKEGRYCIVGEAKAHHHEVTMMELIRDLAPKSLATVAVG

TCSPYGGVQKAKPNPSQAKGVSEAL---G--VKTINIPGCPPNPINFVGAVVHVLT----
TCATYGGVQAAKPNPTGTVGVNEALGKLG--VKAINIAGCPPNPMNFVGTVVHLLT----
TCACYGGIQAAKPNPTAAKGINDCYADLG--VKAINVPGCPPNPLNMVGTLVAFLK----
TCATFGGVQAAKPNPTGAKGVNDALKHLG--VKAINIAGCPPNPYNLVGTIVYYLKN---
TCSAYGGIPAAEGNVTGSKSVRDFFADEKIEKLLVNVPGCPPHPDWMVGTLVAAWSHVLN

K---GIPDLDENGRPKLFYGELVHDNCPRLPHFEASEFAPSFDSEEAKKGFCLYELGCKG
K---GMPELDKQGRPVMFFGETVHDNCPRLKHFEAGEFATSFGSPEAKKGYCLYELGCKG
G---QKIELDEVGRPVMFFGQSVHDLCERRKHFDAGEFAPSFNSEEARKGWCLYDVGCKG
K---AAPELDSLNRPTMFFGQTVHEQCPRLPHFDAGEFAPSFESEEARKGWCLYELGCKG
PTEHPLPELDDDGRPLLFFGDNIHENCPYLDKYDNSEFAETFTK-----PGCKAELGCKG

PVTYNNCPKVLFNQ-VNWPVQAGHPCLGCSEPDFWDTMTPFYEQG
PDTYNNCPKQLFNQ-VNWPVQAGHPCIACSEPNFWDLYSPFYSA-
PETYNNCPKVLFNE-TNWPVAAGHPCIGCSEPNFWDDMTPFYQN-
PVTMNNCPKIKFNQ-TNWPVDAGHPCIGCSEPDFWDAMTPFYQN-
PSTYADCAKRRWNNGINWCVEN-AVCIGCVEPDFPDGKSPFYVAE

Fig. 1. Saturn alignment for the oxidored q6 problem.

which are enzymatic proteins involved in the Citric Acid Cycle in the cell. This has
5 sequences, 57% identical to each other, and an average length of 265 residues. The
model has 4563 ve variables, 11934 pijk variables, 175237 ordering constraints and
82135 channelling constraints. The alignment found by Saturn is shown in Figure 1. It
is 98.7% correct, ClustalW’s is 97.3%, and T-Coffee’s 95.5%. Thus on these problems
the pseudo-Boolean approach is competitive with ClustalW and T-Coffee in terms of
solution quality. It is far slower, taking tens of minutes as opposed to seconds or less, but
these are promising first results. In future work we hope to improve the results by gener-
alising Saturn to handle non-binary domains, to avoid the use of binary representations
for matrix columns.
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Abstract. A new type of local consistency is presented. The local
consistency is based on pruning “by analogy” and can be associated
with symmetry breaking via dominance detection and interchangeability
methods. We present an algorithm for achieving the local consistency
and show how it can be combined with forward checking.

1 Introduction

The paper presents a new type of local consistency. Algorithms that achieve the
local consistency use pruning “by analogy”. The idea of pruning can be asso-
ciated with symmetry breaking via dominance detection [1,2] and interchange-
ability methods [3,4].

Every node of the search tree can be associated with a constraint network
(CN). The present paper demonstrates possibility of pruning when a part of the
CN associated with the current node is equal to a part of the CN associated with
some dead-end. The result of the pruning is either rejection of the current node
of the search tree or filtering of domains of the CN associated with the node.

We introduce a concept of k-dominance (k ≥ 0). If a CN X1 is k-dominated by
an unsolvable CN X2, X1 is either unsolvable (if k = 0) or additional constraints
of arity k can be imposed on X1 (if k > 0). Next, the notion of k-dominance
consistency is introduced. A CN X is k-dominance consistent with a set S of
unsolvable CNs, if it is not i-dominated (0 ≤ i ≤ k) by any CN of S.

The present paper concentrates on 1-dominance consistency. The reason is
that achieving 1-dominance consistency allows direct filtering of domains follow-
ing the unary constraints imposed. On other side, constraints of arity two and
more are not added, therefore the structure of the processed CN is not changed.

The rest of the paper is organized as follows. Section 2 provides the nec-
essary background. Section 3 defines k-dominance consistency and provides an
algorithm for achieving 1-dominance consistency. Section 4 provides methods for
maintaining 1-dominance consistency combined with Forward Checking (FC).
Section 5 briefly describes experimental evaluations.

2 Preliminaries

Definition 1. A binary constraint network (CN) is a triple (Z,D,C), where Z
is a set of variables, D is a set of domains, C is a set of binary constraints. For
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every variable v ∈ Z, Dv ∈ D contains the set of values, that can be assigned to
v. For every pair of variables v, u, Cv,u ∈ C is a subset of the Cartesian product
of Dv and Du that contains all compatible pairs of assignments of variables u
and v 1.

Let X be a CN. Then Z(X) is the set of variables of X, D(X) is the set
of domains of all variables of X and C(X) is the set of constraints of X. The
domain of v is denoted by D(X)v and the constraint between variables v and u is
C(X)v,u. To emphasize that val is a value of the domain of a variable V , denote
it by val(V ). If a variable V is assigned with a value val(V ), the assignment is
denoted by 〈V, val〉.

Definition 2. Let X be a CN. A set of assignments
P = {〈V1, val1〉, 〈V2, val2〉, . . . , 〈Vm, valm〉} to different variables of Z(X) is a
partial solution of X if for every i, k, 1 ≤ i, k ≤ m, (〈Vi, vali〉, 〈Vk, valk〉) satisfies
C(X)Vi,Vk

.

Let P be a partial solution, then V ars(P ) denotes the set of variables assigned
in P , for every V ∈ V ars(P ), P (V ) denotes the assignment of V in P .

Given a CN X. To solve CSP is to find a partial solution that assigns all the
variables of Z(X).

Definition 3. Let X be a CN. A nogood of X is a partial solution of X that
cannot be extended into a solution of X.

Definition 4. Let X be a CN. Let V ar be a subset of Z(X). The projection of
X to V ar is a CN X ′ such that Z(X ′) = V ar, for every V ∈ Z(X ′), D(X ′)V =
D(X)V , C(X ′) = C(X). The projection of X to V ar is denoted by XV ar.

3 Dominance Consistency

Definition 5. X ′ is a subnetwork of a CN X if the following conditions hold:
Z(X ′) ⊆ Z(X), for every v ∈ Z(X ′) D(X ′)v ⊆ D(X)v, a pair of assignments
satisfies C(X ′) if and only if it satisfies C(X).

Definition 6. Two CNs X1 and X2 are coordinated if for every V, V ′ ∈ Z(X1)∩
Z(X2) and for every val ∈ D(V )X1 ∩ D(V )X2 and every val′ ∈ D(V ′)X1 ∩
D(V ′)X2 , 〈V, val〉 and 〈V ′, val′〉 are compatible in X1 if and only if they are
compatible in X2.

Let us now define the concept of k-dominance consistency.

Definition 7. Let X1 and X2 be 2 coordinated CNs, such that
Z(X2) ⊆ Z(X1), and there are k variables of Z(X1) ∩Z(X2) whose domains in
X1 are not contained in their domains in X2 (variables distinguishing X1 from
X2). We say that X1 is k-dominated by X2.
1 It is assumed that constraints are symmetric, that is Cv,u = Cu,v for every pair of

variables u and v.
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Definition 8. Let X be a CN. Let F = {X1, . . . , Xl} be a set of unsolvable CNs
coordinated with X such that for every Xi ∈ F , Z(Xi) ⊆ Z(X). We call F a
filtering set of X.

Definition 9. Let X be a CN, and let F be a filtering set of X. X is k-
dominance consistent with F if for any i, 0 ≤ i ≤ k, X is not i-dominated
by any CN of F . If X is not k-dominance consistent with F , we say that X is
k-dominated by F .

Special cases of k-dominance consistency are 0 and 1-dominance consisten-
cies. If a CN X is 0-dominated by a filtering set F , then X is unsolvable. If X is
1-dominated by F then it is possible to filter domains of X without loosing a so-
lution. The process of filtering domains in this manner can be termed achieving
1-dominance consistency. Algorithm 1 describes a simple procedure for achieving
1-dominance consistency.

Algorithm 1 Achieving 1-dominance consistency

1: repeat
2: for every Xi ∈ F do
3: if X is dominated by Xi then
4: Report the unsolvability of X
5: Stop
6: end if
7: if X is 1-dominated by Xi then
8: Let V be the variable distinguishing X from Xi

9: D(X)V ← D(X)V \ D(Xi)V

10: if The domain of V is empty then
11: Report the unsolvability of X
12: Stop
13: end if
14: end if
15: end for
16: until No value is removed from any domain during the last iteration

4 Maintaining 1-Dominance Consistency
for Forward Checking

Definition 10. Let P be a partial solution of a CN X. The subnetwork XP of
X induced by P is defined as follows. Z(XP ) = Z(X) \ V ars(P ). For every
v ∈ Z(XP ), D(XP )v contains the set of all values of D(X)v that are compatible
with assignments in P of all variables of V ars(P ) ∩ Z(X).

The execution of forward checking (FC) can be represented as a sequence of
states. Every state contains the current partial solution and the current CN. Let
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P be the current partial solution at some state of FC while processing a CN X.
Then the current CN equals XP .

FC immediately rejects P if XP contains a variable with the empty domain.
Otherwise, FC tries to extend P . We propose a combination of FC with main-
taining of 1-dominance consistency. The combination is called FC-DC. For every
visited P such that XP is not empty, FC-DC constructs a filtering set FS. Then
1-dominance consistency of XP with FS is achieved. Performing 1-dominance
consistency, FC-DC can filter domains of the current CN or even reject P . Al-
gorithm 2 presents a procedure for construction of FS.

Algorithm 2 Construction of a filtering set

1: FS ← ∅
2: for every V ∈ V ars(P ) do
3: Let P ′ be a subset of P containing variables assigned before V
4: Let P ′′ be a subset of P containing variables assigned after V
5: for every val(V ) eliminated from the current domain of V do
6: if val(V ) is compatible with all assignments of P ′ and P ′′ then
7: X ′ ← XP ′∪{〈V,val〉}
8: X ′′ ← X ′

P ′′
9: FS ← FS ∪ {X ′′}

10: end if
11: end for
12: end for

The filtering set generated by Algorithm 2 contains CNs induced by a set
of nogoods of X. The set of nogoods is obtained using values eliminated from
current domains of assigned variables. Given an assigned variable V . A set P ′

generated in line 3 of the algorithm is the subset of the current partial solution
containing all variables assigned before V . Then for every val(V ) eliminated
from the current domain of V , if val(V ) is compatible with all assignments of
P ′ then P ′ ∪ {〈V, val〉} is a nogood. Therefore, a CN X ′ generated in line 7 of
the algorithm is unsolvable. However, X ′ still cannot be inserted into FS as X ′

can contain variables that are not in XP . Obtaining X ′′, the algorithm removes
these redundant variables.

Proposition 1. Let X be a CN and let FS = {X1, . . . , Xm} be a filtering set of
X. Let FS′ = {X ′

1, . . . , X
′
m} be a set of constraints such that X ′

i is an unsolvable
projection of Xi. Then FS′ is a filtering set of X. Moreover, if X is 1-dominated
by FS then it is 1-dominated by FS′.

Proposition 1 suggests that replacing in Algorithm 2 the CN X ′ by its un-
solvable projection increases the filtering ability of maintaining 1-dominance
consistency.
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We describe a procedure that constructs for val(V ) a set S of variables such
that (X ′)S is unsolvable. We call S a responsibility set of val(V ). The set is
constructed at the moment when val(V ) is being eliminated from the current
domain of V . If V is unassigned and val(V ) is incompatible with the last assign-
ment of the current partial solution then S is empty. Otherwise, 〈V, val〉 is itself
the last assignment of the current partial solution. In this case, there must be
an unassigned variable V ′ with the empty current domain. Let S1 . . . Sl be the
responsibility sets associated with the eliminated values of V ′. Then S is set to⋃

i Si.
Note that if at least one value of V ′ was deleted because achieving of 1-

dominance consistency, the method cannot be applied and S is set to V ars(X ′).
The method for obtaining responsibility sets is strongly related to the rea-

soning reusing method proposed by T.Schiex [5]. Instead of acquiring a set of
constraints responsible for elimination of a value, we take the set of unassigned
variables participating in these constraints.

5 Preliminary Evaluations

The proposed method of local consistency maintenance was evaluated on a set
of CNs generated randomly given their density p1 and tightness p2. All CNs
contained 25 variables and every variable had the domain of size 5. For every
value of p1 we took the value of p2 that is close to the phase transition region.

We compared the pure FC with FC computing responsibility sets and main-
taining 1-dominance consistency (FCR-DC). FCR-DC visits less nodes than FC
for all tried values of p1. FCR-DC performs better than FC in the number of
consistency checks for 0.1 ≤ p1 ≤ 0.5 (even in orders of magnitude better for
p1 = 0.1). For p1 > 0.5, FCR-DC performs more consistency checks than FC.
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Abstract. Incomplete decision algorithms can often solve larger prob-
lem instances than complete ones. The drawback is that one does not
know whether the algorithm will finish soon, later, or never. This pa-
per presents a general decision-theoretic method for optimally terminat-
ing such algorithms. The stopping policy is computed based on a prior
probability of the answer, a payoff model describing the value that dif-
ferent probability estimates would provide at different times, and the
algorithm’s run-time distribution. We present a linear-time algorithm
for determining the optimal stopping policy given a finite cap on the
number of algorithm steps. To increase accuracy, the initial satisfiability
probability and the run-time distribution are conditioned on features of
the instance. The expectation of the result at each future time step is
computed using Bayesian updating. We then extend the framework to
settings where no exogenous cap is given on the number of algorithm
steps. The method also provides a normative basis for algorithm selec-
tion. Finally, our method can be used to terminate and/or select complete
algorithms optimally as well1,2.

1 Introduction
Decision problems are problems where the answer is either yes (Y) or no (N).
Such problems are central to computer science and ubiquitous in the world. A
decision algorithm is an algorithm that determines the answer to such a prob-
lem. A complete decision algorithm is a decision algorithm that always gives the
answer in finite time. An incomplete decision algorithm never finishes if the an-
swer is N, and may or may not finish if the answer is Y. So, if such an algorithm
finishes, the answer is Y.

Incomplete algorithms are important because they can often solve signifi-
cantly larger problem instances than complete algorithms. Commonly the user
of an incomplete algorithm initiates its execution, and after a while gets tired of
waiting for a solution. She may be tempted to terminate the algorithm. At the
same time she knows that the algorithm might finish, and that this might occur
even in the very next step. Should she terminate the algorithm?

This paper presents a method for optimally determining when the algorithm
should be terminated if it has not found a solution. The key observation is that
1 A short, very tentative version of this paper appeared in a workshop [3].
2 This material is based upon work supported by the NSF under CAREER Award

IRI-9703122, Grant IIS-9800994, ITR IIS-0081246, and ITR IIS-0121678.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 950–955, 2003.
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incomplete algorithms are iterative refinement algorithms and approximation
algorithms in that over time they implicitly refine a probability estimate that a
solution exists. Let us define the following symbols:

SOLt =”Solution found by time t” (so, if a solution is found at time t, then
SOLt′ = 1 for all t′ ≥ t), and

NOSOLt =”No solution found by time t”.
The iterative refinement algorithm emerges when we realize that the probability
of the answer being Y decreases with the number of steps that the algorithm has
executed (unless the algorithm halts which guarantees that the answer is Y). This
probability, p(Y |NOSOLt), can be computed using a statistical performance
profile, p(SOLt|Y ), of the algorithm, i.e., the probability of finding a solution by
time t given that a solution exists. The performance profile can be constructed
from prior runs of the algorithm as we will describe.

2 Method for Terminating Decision Algorithms

This section presents a method for optimally terminating an incomplete decision
algorithm. The incomplete algorithm is used to update the probability estimate
of the answer being Y. Based on a run-time distribution of the algorithm, an
agent can anticipate how this estimate will change as more time is allocated to
the algorithm. The agent can also anticipate its expected payoff in the real world
given that it will act based on the probability estimate available at the time of
action (the probability will be 1 if the algorithm happens to find a solution).
Using this information, the agent can calculate the optimal time to terminate
the algorithm.

Terminating optimally seems difficult because all of the following concerns
have to be taken into account:

– Further computation adds value because it can cause the algorithm to find a solution. This is
nontrivial to analyze because the probability of finding a solution at a given future time step
changes based on how many unsuccessful steps the algorithm has executed. For example, at
step 0, step 905 may look unprofitable while at step 708, step 905 may well look profitable.
Alternatively, at step 0, step 905 may look profitable while at step 708, step 905 may look
unprofitable.

– Further computation adds value because it refines the probability that a solution exists even
if the algorithm does not terminate. The probability that a solution exists decreases as the
algorithm takes unsuccessful steps.

– As this probability estimate gets refined, it can be used to make future termination/continuation
decisions. Therefore, these decisions can be made with better information than what is available
at the outset. The fact that such new information is valuable due to this reason is yet another
motivation to execute the algorithm further.

– The payoff from a given probability estimate that a solution exists (this probability is 1 if a
solution has been found) decreases with time because the agent misses the opportunities of
using the answer earlier in the agent’s choice of what to do in the world.

– Further computation adds to the computational cost.
– If the deliberation controller has let the algorithm execute past the optimal termination time,

it can be optimal to let it execute even further since the losses incurred so far have become
sunk cost.

– In some cases, the agent’s expected payoff is maximized by never terminating the algorithm
(unless the algorithm finishes, i.e., determines that the answer is Y).

It turns out that all of these factors can be soundly taken into account.
The method that we present does this in a Bayesian framework and leads to
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an optimal termination decision. Specifically, the problem is that of finding an
optimal policy for the deliberation controller, i.e., deciding what the agent should
do in each of the max nodes in Figure 1.

max

t=0

CONTINUE

STOP

t=1

NOSOL1

SOL1

max

t=1

STOP

t=2

max

t=2

STOP

t=3

SOL2
SOL3

NOSOL2 NOSOL3

t=t
~

...max

t=3

STOP

t=4

t=T

SOL4

NOSOL4

Decision of the deliberation controller (terminator)

Move of the incomplete algorithm

CONTINUE CONTINUE CONTINUE

Fig. 1. Deliberation controller’s decision tree. The bold lines show an example policy
where the deliberation controller will terminate the algorithm at time t = t̃ = 1 if the
algorithm has not found a solution.

2.1 Conditional Performance Profiles:
Probability Updates Using a Run-Time Distribution

To determine when to terminate, the deliberation controller needs to know how
the probability of finding a solution by any given time changes based on how
many steps the algorithm has executed so far without finding a solution. Let τ1
and τ2 be arbitrary times such that τ1 ≤ τ2. We are interested in determining
the quantity p(SOLτ2 |NOSOLτ1). Trivially,

p(SOLτ2 |NOSOLτ1 ) = 1 − p(NOSOLτ2 |NOSOLτ1 ) (1)

The right hand side can be solved using the definition of conditional probability:

p(NOSOLτ2 |NOSOLτ1 ) =
p(NOSOLτ2 ∧ NOSOLτ1 )

p(NOSOLτ1 )
(2)

Because p(NOSOLτ2 ∧NOSOLτ1) = p(NOSOLτ2), this can be simplified to

p(NOSOLτ2 |NOSOLτ1 ) =
p(NOSOLτ2 )

p(NOSOLτ1 )
(3)

which can be solved using
p(NOSOLt) = p(Y )p(NOSOLt|Y ) + p(N)p(NOSOLt|N) (4)

Using the fact that p(N) = 1 − p(Y ) and the fact that the algorithm never
finishes if no solution exists, i.e., p(NOSOLt|N) = 1, the above equation can be
rewritten:

p(NOSOLt) = p(Y )p(NOSOLt|Y ) + 1 − p(Y ) (5)

The termination algorithm also needs to know the chance that the answer is
Y given that no solution has been found by step t. This can be determined using
Bayes rule:
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p(Y |NOSOLt) =
p(Y )p(NOSOLt|Y )

p(Y )p(NOSOLt|Y ) + p(N)p(NOSOLt|N)

=
p(Y )p(NOSOLt|Y )

p(Y )p(NOSOLt|Y ) + p(N)

=
p(Y )p(NOSOLt|Y )

p(Y )p(NOSOLt|Y ) + 1 − p(Y )
(6)

where p(NOSOLt|Y ) = 1 − p(SOLt|Y ) (7)

So, the agent can compute both p(SOLτ2 |NOSOLτ1) and p(Y |NOSOLt)
in constant time if it knows p(Y ) and p(SOLt|Y ). The quantity p(Y ) is sim-
ply the agent’s prior probability that the answer is Y, i.e., the agent’s belief
before it has executed any steps of the algorithm. In the extended version at
www.cs.cmu.edu/˜sandholm/util term.extended.pdf we present an example
that demonstrates how p(Y ) can be obtained using features of the problem in-
stance that are quick to measure. The quantity p(SOLt|Y ) can be determined
empirically off-line by running the algorithm on instances (similar to the in-
stance that needs to be solved in the on-line situation) whose answer is Y, and
seeing on what fraction of them the algorithm has found a solution by time t.
Alternatively, p(SOLt|Y ) could be determined from an analytical model of the
run-time distribution.

2.2 The Payoff Model
To determine when to terminate, the deliberation controller also needs to know
how the agent would use the information that the algorithm provides in the real
world. This depends on the application. However, for the purposes of the ter-
mination decision, this information can be represented in a domain independent
way using a payoff function. Let us denote by πworld(x, pY , t) the agents real-
world payoff if the actual outcome is x, x ∈ {Y,N}, the agent’s estimate—after
running the algorithm for t steps—of the answer being Y is pY , and the agent
acts according to this estimate at time t (or later if the agent finds that more
beneficial). The agent’s choice of a real-world action depends on pY and t, but
the real-world payoff, πworld, of that action depends on the true posteriori x and
when the action is taken, t. In the extended version of this paper we present an
example application and illustrate how the πworld function can be constructed.

The agent’s payoff, π(x, pY , t), takes into account both the real-world payoff,
πworld(x, pY , t), and the computation cost. If they are independent, we can write

π(x, pY , t) = πworld(x, pY , t)− h(t) (8)

where h(t) is the computation cost. If there is a fixed unit cost of computation,
ccomp, then h(t) = ccomp ·t. Our termination method applies to general π: it does
not assume that the computation cost is independent of the real-world payoff.

2.3 Algorithm for Computing an Optimal Termination Policy

Put together, the inputs to the algorithm that computes the optimal termination
policy are 1) the prior probability that a solution exists, p(Y ), 2) the run-time
distribution in the form of p(SOLt|Y ), and 3) the payoff model, π(x, pY , t).

Conceptually, the stop/continue decisions are solved starting from the end
of the decision tree (Fig. 1), and moving toward the root. For now, say that the
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tree ends at step T (we relax this assumption of an exogenous upper bound on
the optimal termination time in the extended version of this paper). This does
not mean that the algorithm is terminated at step T . This section describes how
the termination time, t̃, is computed (t̃ ≤ T ).

For every decision node of the tree, the expected payoff from stopping is
computed, and so is the expected payoff from continuing. The expected payoff
from continuing at node t depends on the solution that was acquired for node
t+1. At a node, the deliberation controller should terminate the algorithm if and
only if the expected payoff from stopping is higher than that of continuing. The
pseudocode below computes this optimal termination policy. The function v(t)
solves the expected value of the subtree rooted at the deliberation controller’s
decision node t. The policy can be solved by making the call v(0). The optimal
decision for each decision node, t, is stored in decision[t], and the time when the
deliberation controller should first terminate the algorithm is stored in t̃ 3.

Algorithm 1 (Compute an optimal termination policy)
function v(t)

if t = 0
pSOL = 0 /* Chance that a solution was found in this step */
πSOL = 0 /* Payoff of that solution */

else
pSOL = p(SOLt|NOSOLt−1)
πSOL = π(1, 1, t)

pY = p(Y |NOSOLt)
E[π|STOP ] = pSOL · πSOL + (1 − pSOL)(pY · π(1, pY , t) + (1 − pY ) · π(0, pY , t))
if t = T /* End of the tree */

decision[t] = STOP ; t̃ = t; return E[π|STOP ] /* recursion bottoms here */
else

E[π|CONTINUE] = pSOL · πSOL + (1 − pSOL) · v(t + 1) /* recursion */
if E[π|STOP ] ≥ E[π|CONTINUE]

decision[t] = STOP ; t̃ = t; return E[π|STOP ]
else

decision[t] = CONTINUE; return E[π|CONTINUE]

Algorithm 1 runs in O(T ) time and space. The values p(SOLt| NOSOLt−1)
and p(Y |NOSOLt) are computed in constant time from the inputs p(Y ) and
p(SOLt|Y ) using the formulas derived in Section 2.1.

3 Other Results

An extended version of this paper is available at www.cs.cmu.edu/˜sandholm/
util term.extended.pdf. It presents an example application of how the method
can be used (in the context of a manufacturing planning problem converted to
3SAT), how the payoff model π(x, pY , t) can be derived, how the prior p(Y )
can be constructed (using statistical information and features of the problem
instance), and how the run-time distribution p(SOLt|Y ) can be constructed
3 In classical stopping problems, at every time step after the first optimal stopping

point it is better to stop. Here that is not the case. The algorithm determines a set
of stopping points (t s.t. decision[t] = STOP ) which need not be consecutive. These
points state when to terminate the incomplete algorithm even if, for some reason, it
was not terminated at the first optimal stopping point.
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from runs of the algorithm. It also discusses ways how the method can be used
when an exogenous upper bound T on the optimal run-time is not given, and
presents example settings where it is best to never terminate the algorithm.
Finally, it discusses related research (e.g., [2,1]), and presents more elaborate
conclusions and directions for future research.
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Abstract. We present a new approach to 3D scene modeling based on
geometrical constraints. Contrary to most of the existing methods, we
obtain 3D scene models that respect the given constraints exactly. Our
tool can describe a large variety of linear and non-linear constraints in a
flexible way.
Our approach is based on a dictionary of so-called r-methods, based on
theorems in geometry, which can solve a subset of geometrical constraints
in a very efficient way. Two fast and complete graph-based algorithms are
proposed to find a reduced parameterization of a scene, and to decompose
the equation system in a sequence of r-methods.

1 Introduction

Reconstruction of accurate and photorealistic 3D models is one of the most
challenging tasks in Computer Vision. In this paper, we address the problem
of image-based reconstruction of a scene respecting a set of geometrical con-
straints. Defining geometrical constraints between scene primitives and incor-
porating them into the reconstruction system helps to stabilize the calibration,
improves the quality of the model and limits the number of required images.

A common approach consists in incorporating the constraints into the op-
timization process. These methods however are often costly. Furthermore, they
guarantee neither the convergence nor the (exact) constraint satisfaction.

Our model acquisition approach is detailed in [7]. It is divided into three
main phases: initialization, constraint planning and optimization.

Initialization. In addition to 2D images, geometric objects and constraints
must be defined. The 3D model is represented by points, lines and planes. They
are subject to linear and non–linear constraints such as distance, incidence,
parallelism and orthogonality.

An initial reconstruction is provided by a quasi-linear approach exploiting
projections and geometrical constraints [6]. After this phase, all the variables
(camera and model parameters) have an initial value.
F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 956–961, 2003.
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Constraint Planning. Our model reconstruction system requires a set of r-
methods which allows us to decompose the whole equation system into small
subsystems. An r-method [5] is a predefined routine used to solve a subset of
geometric constraints. An r-method computes the coordinates of output objects
based on the current value of input object coordinates, and satisfies the under-
lying constraints between input and output objects. For example, an r-method
computes the parameters of a line based on the current position of two points
incident to this line.

Several r-method patterns have been incorporated in a dictionary used by
our system. They correspond to standard theorems of geometry. The constraint
planning is divided into two steps:
1. R-method addition phase: Add automatically in the equation graph all the

r-methods corresponding to r-method patterns present in the dictionary.
2. Planning phase: Perform GPDOF [5]1 on the enriched equation graph. GPDOF

produces a set of input parameters and a sequence of r-methods (called
plan) to be executed one by one. Input parameters are a subset of the vari-
ables describing the scene such that, when a value is given to them, there
exists a finite set of solutions for the system satisfying the constraints.

Model Optimization. The optimization process2 only adjusts the input pa-
rameters. Every time the cost function is computed (inside the numerical algo-
rithm), the r-methods in the plan are executed, producing a new value for the
other variables such that all the constraints are satisfied. The detailed process
can be found in [7].

1.1 Contribution
Many works have focused on incorporating geometrical constraints for camera
calibration and 3D reconstruction including [3,2]. The reader will refer to [7] for
more details on the existing approaches which often require costly computations
or do not guarantee to provide a solution. The approach presented in this paper
overcomes these drawbacks. It is complete, fast and can be used to model non-
linear constraints like distances, angles and distance/angle ratios.

This paper focus on the constraint planning process (Section 2) and shows
experimental results in Section 3.

2 Constraint Planning

This section details the algorithms necessary for the constraint planning.

2.1 Automatic Addition of R-Methods

The automatic addition of r-methods is essentially based on a simple subgraph
isomorphism algorithm performed on the constraint graph. When a subgraph
matches an entry in the dictionary, the corresponding r-methods are added to
the equation graph. Two steps are performed:
1 GPDOF stands for General Propagation of Degrees of Freedom.
2 based on a standard numerical algorithm and minimizing the reprojection errors.
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Fig. 1. Left: A didactic 2D scene describing a parallelogram in terms of lines, points,
incidence constraints and parallelism constraints. Center: The corresponding con-
straint graph. It contains 4 points Pa,...,Pd, 4 lines La,...,Ld, 8 incidence constraints
C1,...,C8 and 2 parallelism constraints P1, P2. Right: The enriched equation graph
after automatic addition of r-methods. Equations are represented by rectangles and
variables by circles. An r-method is represented by a hyper-arc including equations
and output variables. Only 8 of the 16 r-methods are depicted for the sake of clarity.
These r-methods match one of the three following patterns: line incident to two points
(e.g., r-methods m1 and m7); point at the intersection of two known lines (m2, m4,
m6, m8); line passing through a known point and parallel to another line (m3, m5)..

-1-. The first step explores all the connected subgraphs with size at most a small
value k equal to the maximum number of nodes (objects+constraints) implied
in any r-method of the dictionary, e.g., 7 in our tool. Starting from every single
node, the subgraphs are built by incrementally adding a neighbor node to the
current connected subgraph until the size k is reached. This depth first search
algorithm is a simplification of the algorithmic scheme presented in [1]. The
key idea allowing the algorithm to explore a tree of subgraphs is to consider at
each step only a specific subset of selected neighbors, depending on a unique
numbering of the nodes [1].

In practice, the time complexity of this algorithm is linear in the actual num-
ber of connected subgraphs of size less than k (which is O(nk)). It is acceptable
for small values of k and sparse graphs.

-2-. For every found subgraph, a second procedure compares it with the sub-
graph patterns in our dictionary implemented as a hash table, which eliminates
most of the subgraphs. A final comparison is made by a combinatorial process 3

inspired by the solving process of CSPs (BT). In short, objects in the subgraph
are reordered to be matched with objects in a subgraph pattern. If the subgraph
matches, the corresponding r-methods are added to the equation graph.

2.2 The GPDOF Algorithm

GPDOF [5] works on an enriched equation graph. It computes a sequence of r-
methods to be executed for satisfying all the equations. GPDOF solves this combi-
natorial problem in polynomial-time and is quasi-linear in practice. It performs

3 Deciding whether two graphs are isomorphic is still an open problem.
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the three following steps until no more equation remains in the equation graph
G (success) or no more free r-method is available (failure)4:

1. select a free r-method m 5,
2. remove from G the equations and the output variables of m,
3. create all the submethods of a r-method mi that share equations or output

variables with m.
A plan can be obtained by reversing the selection order: the first selected r-

method will be executed last. The first two steps above define the standard PDOF
local propagation algorithm [4] on which GPDOF is based (PDOF accepts only r-
methods solving one equation.) Selecting iteratively free r-methods ensures that
no loop is created in the plan.

It turns out that, when r-methods can solve several equations, there is no
guarantee that PDOF finds a plan, even if one exists. This highlights the notion of
submethod which renders GPDOF complete. In short, the notion of submethod ex-
plains that a partially removed r-method remains available for a future selection.
The reader will refer to [5] to get a more detailed information.
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Fig. 2. Two possible planning phases performed by GPDOF on the didactic scene.
Left: At the beginning, r-methods m2, m4, m6, m8 are free, so that one of them is
selected, e.g., m4. (a) This selection implies the removal of the equations and the
output variables of m4 from the equation graph. (b) This frees r-methods m3 and
m5 which are selected and removed next in any order. (c) The r-methods m1 and m7

are then free and can be selected. The process ends since no more constraint remains
in the equation graph. The obtained plan is the sequence (m1, m7, m3, m5, m4).
Right: GPDOF may also select first m6 which is free. The third step of GPDOF then
creates the submethod m′

5 of m5 and the submethod m′
7 of m7. The process continues

and selects m4, m′
5, m1, m′

2, m′
3, and finally m′

7. Selected r-methods (m1, m4, m6) and
submethods (m′

2, m′
3, m′

5, m′
7) are represented by thick hyper-arcs. .

4 In this case, one obtains an incomplete plan which solves only a subpart of the
equations (geometric constraints) and more parameters are adjusted by optimization.

5 Output variables of a free r-method appear in no “external” equations.
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2.3 Determining the Input Parameters

The input parameters modified by the numerical optimization simply consist of
the variables which are output by no r-method in the plan. This yields the 6
coordinates of points Pa, Pb, Pd for the plan illustrated in Fig. 2-left- or the
2 coordinates of point Pa for the plan illustrated in Fig. 2-right-. Due to the
selection of submethods, the values of variables in a second set of parameters
are read a first time (recall that every variable has an initial value) and computed
later by r-methods, e.g., the coordinates of Pb are in this set (Fig. 2-right-). The
other variables are only modified by r-method execution. This subtlety cannot
be explained here due to a lack of space.

3 Results

We have used our approach to build a model of a church (see Figure 3). Five
images architectural plans (distances) were used. The scene includes 137 con-
straints (including 10 distances), 251 equations, 119 objects, 427 variables. The
time for the constraint planning (2 min. on a Pentium IV 2GHz) is dominated
by the exploration of the connected subgraphs. 2213 r-methods have been added
automatically. The execution time of GPDOF is negligible. The plan was built of
107 r-methods and is executed in 55 ms.

a1

a2

a3

(a) (b) (c)

Fig. 3. (a)–One of the five photos used for the reconstruction; (b)–Some artifacts of
the unconstrained model. (c)–The constrained model after optimization corrects the
artifacts.
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We investigate the use of many-valued clausal forms as an intermediate formal-
ism between CSP and SAT for solving combinatorial problems. In this research
programme, we have recently designed and implemented a complete many-valued
SAT solver called Mv-Satz [1], which builds on the popular Boolean solver Satz,
and conducted an experimental investigation that provides evidence that Mv-
Satz outperforms Satz and zChaff on a number of problems.

We present here the results we have obtained when solving SAT-encoded
random binary CSPs that were generated using the so-called model B. In the
table we show the experimental results for zChaff, Satz, and Mv-Satz using the
direct and support SAT encodings. For each solver we provide the mean and
median time (in seconds) needed to solve sets of 100 instances. Observe that
Mv-Satz outperforms Satz up to one order of magnitude, and zChaff up to two
orders of magnitude.

parameters zChaff Satz Mv-Satz
〈n, d, p1, p2〉 encoding mean median mean median mean median

〈15, 25, 80/105, 283/625〉 direct 95 116 35 36 11 13
support 20 23 157 216 72 84

〈15, 30, 80/105, 424/900〉 direct 488 598 100 91 26 25
support 73 72 503 606 175 199

〈25, 15, 198/300, 65/225〉 direct 1118 1102 177 176 30 31
support 508 422 549 607 188 203

〈25, 20, 198/300, 126/400〉 direct 16588 12963 1374 1303 187 181
support 8820 5836 6185 5590 1057 1135

〈35, 15, 305/595, 60/225〉 direct 67826 40610 6807 6518 637 653
support 60271 42036 7412 7334 1896 1880

〈45, 10, 415/990, 22/100〉 direct 6217 4492 919 875 140 135
support 5577 4122 418 415 322 301

〈70, 6, 1050/2415, 4/36〉 direct 10231 8183 129 125 65 58
support 17341 13983 164 153 142 129

〈100, 4, 2000/4950, 1/16〉 direct 1774 1862 5 5 5 5
support 2492 2375 17 16 18 18
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This work introduces the FeReRA (Feedback, Reinforcement, and Reactive
Agents) algorithm, an extension to the ERA framework [3]. ERA (Environment,
Reactive Rules, and Agents) introduced a non-deterministic, self-organising,
multi-agent approach to solving Constraint Satisfaction Problems (CSP) whereby
a problem is broken up into smaller sub-problems and each sub-problem is to be
solved by an independent agent. Each agent inhabits a local environment which
represents the domain of its respective variables, and will try to find solutions
to its sub-problem by seeking positions in the environment that translates to
consistent value assignments for the variables in the sub-problem. ERA’s key
strength is that it is capable of finding solutions to CSPs without much com-
putational overhead. Its Achilles’ heel, however, is its inconsistent performance
resulting from inbuilt random behaviours which are relied on to escape local
optimums. To overcome this weakness, FeReRA extends ERA by replacing the
random decisions with a deterministic feedback mechanism that helps the al-
gorithm to decide which agents are to make non-improving moves necessary to
take it out of a local optimum. This feedback process is structure dependent, and
it takes into account the cumulative effects of individual agents’ behaviours on
the global state of the system. This is in contrast with the approaches taken in
similar work [2][4], where emphasis is placed on individual agents detecting and
escaping quasi-local minimums . Preliminary results from experiments on graph
colouring instances are as follows: First, on critically constrained instances, the
time taken to find solutions on average was equal or better with FeReRA com-
pared to ERA. Secondly, on over constrained instances the quality of solutions
found was consistent with FeReRA and was on average better or equal to ERA’s
performance. An extended version of this abstract is available at [1].
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Numerical constraint problems occurs in numerous applications. Consistency techniques
on finite domains have been adapted to handle continuous CSP(e.g. 2B-consistency, kB-
consistency1, Box-consistency2, . . .). Roughly speaking, these local filtering methods
compute an external approximation of the solution space. That is to say, intervals the
bounds of which are local consistents. Thus, this external approximation still contains a
huge number of local inconsistent values. Splitting techniques are often used to isolate
individual solutions. However, these techniques are ineffective when the domain contains
continuous subspaces of solutions. Moreover, they do not take advantage of the semantic
of the constraints for splitting the intervals.

We introduce here a pruning technique, called LDF(Local Decomposition Filtering)3,
for solving systems of distance equations. This method is based on a local decomposition
of the domains which is guided by the properties of the distance constraints(convexity
and monotonicity). More precisely, the domains of the coordinates of two points involved
in a constraint c is decomposed using the properties of c(see figure 1). The canonical
form of the distance equations(X2 + Y 2 − D2 = 0) identifies the monotonous and
convex parts on R+ × R+, R+ × R−, R− × R+ and R− × R−.
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Fig. 1. Consider constraint (xA − xB)2 + (yA − yB)2 = D2 with D ∈ [4.95, 5]. Left picture
shows the domains of the points A and B after 2B-consistency filtering. Right picture shows the
four subdomains of A and B and the micro-structure computed by LDF.

1 O. Lhomme. Consistency techniques for numerical CSPs. Proceedings of the 13th IJCAI.
Chambéry, France, August 28 -September 3, 1993. Morgan Kaufmann, p232-238.

2 P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial Systems Using a Branch
and Prune Approach. SIAM Journal on Numerical Analysis , 34(2), p797-827, April 1997.

3 H. Batnini and M.Rueher. Filtrage local par décomposition de CSP continus. JNPC’03. 9eme
Journées Nationales pour la résolution de Problemes NP-Complets. p39-51. Juin 2003.Amiens.
France.
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This decomposition is propagated on the other variables by the way of a local con-
sistency algorithm. A graph of intervals is updated by a specific projection procedure
which connects the consistent pairs of subdomains. We prove that the global reduction of
the domains is at least equivalent with that carried out by 2B-consistency. The structure
of the resulting graph can be compared to an arc-consistant finite CSP. Thus, classical
searching algorithms can be used to identify potential subspaces of solutions.

The first results on academic examples are promising. Further work concerns ex-
perimentations on real problems (robotics and theory of the mechanisms) as well as the
extension of this approach to other systems of non-linear constraints.
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Modern scheduling techniques must take into account incomplete information
and/or potential changes in the environment, i.e. uncertainty. The central issue
is to design robust scheduling techniques, aimed at guaranteeing the feasibility
and the quality of the executed schedule. Several ways to get a more robust
schedule have already been investigated. One way among others is to keep one
and only one fixed schedule to execute, but reschedule when it appears the qual-
ity of the currently executing schedule degrades. This approach is relevant as
far as rescheduling is fast enough w.r.t. the scheduling execution, i.e. when the
dynamics of the system are low. The problem we tackle is on-line rescheduling
with temporal uncertainty: activity durations are uncertain and activity end
times must be observed during execution. In this paper we assume we have a
representation of the uncertainty on each activity duration in the form of prob-
ability distributions which are used in the simulation of schedule execution. We
use the simulations to monitor the execution of the schedule and in particular
to estimate the quality of the schedule and the end times of the activities. Given
an initial schedule, execution starts and we must decide when to reschedule. We
propose and explore a non-monotonic technique where each time we reschedule
we can completely change the existing schedule except for those activities that
have already started or finished execution. This paper addresses the basis on
which the decision to reschedule is made by investigating three simple measures
of the data provided by simulation that are called the rescheduling criteria. We
have chosen to use constraint programming for scheduling the initial problem and
rescheduling when necessary. We illustrate our approach on job-shop problems
with uncertain durations. The first experimental results are promising since on-
line rescheduling improves schedule quality with a little additional computational
effort whatever the rescheduling criterion used. In addition, these techniques can
easily be extended to solve more complex problems and simulation permits us
to quickly obtain good approximations whatever type of uncertainties and prob-
ability distributions are considered. Future work will focus on developing these
scheduling methods to better tune the different parameters and implementing
a monotonic approach where a partial schedule is built until some horizon and
never questioned.
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This paper addresses Constraint Satisfaction Problems (CSP), known to be NP-
complete, by a repair-based algorithm referred to as informed backtracking (IBt). The 
method consists in taking an initial  complete but inconsistent assignment and incre-
mentally repairing  constraint violations until a solution is achieved. It is guided by a 
simple ordering heuristic for repairing constraint violations: the Min-conflict-
heuristic. This latter selects a variable  that is currently participating in a constraint 
violation, and chooses a new value that minimises the number of outstanding  con-
straint violations.   

Although its advantages when compared with the simple backtracking, its  effi-
ciency can be improved by enriching it with  other simple methods. The approach 
attempts to combine the forward checking algorithm (FC) with  the IBt in order to 
prevent future conflicts by checking the constraints between the current variable and 
the future variables. The new algorithm (IBtFC) allows branches of the search tree 
that will lead to failure to be pruned earlier than with IBt.  

To show the advantages of this approach, experimental comparisons between IBt 
and IBtFC are given. Our experiments are performed on binary CSP-samples ran-
domly generated. This  generation is guided by classical CSP parameters. In order to 
have a quick and clear comparison of the relative performance of the two approaches, 
we compute ratios of (IBt)  and (IBtFC) performance using the Run time, and con-
straint checks as follows: 

 CPU-ratio = IBt-Run-time/ IBtFC -Run-time  
 Cchecks-ratio = IBt- Cchecks/ IBtFC -Cchecks 

From the CPU time point of view, IBtFC requires up to three times less for the  most 
strongly tight and , even for the most weakly constrained set of examples. Moreover it 
requires up to two times less for the over-constrained set of examples.  It follows that, 
when we are considering Cchecks-ratio, we have significant related results that con-
firm the efficiency of our approach.   

As perspectives, we intend to compare our algorithm with other ones ( for instance, 
MAC). Some heuristics,  such as variable scheduling,  known to be efficient in CSP 
field have also to be adapted  in order to improve the approach’s efficiency. 
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Modern Constraint Logic Programming (CLP) systems have a number of ap-
proved features like their declarative programming language, the incorporation
of sophisticated search space pruning and propagation algorithms as well as de-
terministic complete search algorithms. But for very complex, large-scale combi-
natorial optimization problems as they occur in the real world, CLP often fails to
deliver high quality solutions. This is the application area where metaheuristics
are often reported to reach dominant results. Consequently, considerable effort
has been directed to combine the constraint programming and metaheuristic
search paradigms and exploit their respective superior features.

To take advantage of both paradigms, we propose the integration of meta-
heuristics into an existing CLP system. We define an interface which encodes
the declarative problem specification given to it by the CLP system as a gen-
eral CSP. This involves mapping the given constraints and associated variables
with their domains. Since metaheuristics do not enforce constraints explicitly
we transform the constraint system into a penalty function which counts the
number of violated constraints and weights those by their “degree” of violation.
Thus, by minimizing the penalty function a metaheuristic implicitly tries to re-
spect the constraints. In contrast, variable domains are enforced directly, since
heuristics are restricted to select values from within the given variable domains.
After search, the metaheuristic returns a complete assignment of all variables to
values which may or may not be feasible with respect to the constraint system.

Experiments with a Tabu Search (TS) metaheuristic have shown that addi-
tional problem knowledge beyond the given CSP is required for efficient appli-
cation of metaheuristics: For instance, TS requires carefully designed operators
for each problem, e.g. neighborhood and tabu list operators. Also, excessive use
of equality constraints causes inefficiencies which can be corrected by use of
propagators inside the metaheuristics. These kinds of additional information are
communicated to the metaheuristics by adding pseudo constraints to the con-
straint system which have no effect on the CLP system itself but improve the
efficiency of the metaheuristics drastically.

The presented approach of extending a CLP system with metaheuristics has
several benefits: The CLP system remains fully functional while the metaheuris-
tics work from the same declarative problem specification. The metaheuristics
can be applied to any (sub-)problem of the CLP desired but also can solve ex-
tended problems. As tools for optimization metaheuristics can additionally take
optimization goals into account and also allow non-linear constraints which both
are easily implemented and integrated in form of pseudo constraints. The inter-
action between both systems can be freely defined and imposes no restrictions
on them.
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It could be argued that the widespread use of constraint programming (CP) tools
is not being hampered so much by the efficiency of the tools, as much as it is by
the limited number of experts available to install and configure such systems. It
remains a ‘black-art’ as to what combination of techniques will result in a system
which is not only able to solve the problem, but does so in a manner which is
appropriate for the application. To this end, we attempt to tackle this problem
by creating a system that takes a basic problem description and considers the
objectives of an application to create a self-configured system. Further, in the
event that system performance starts to decline, we will revisit the original
configuration and the system will self-tune to deal with changes in the use of
the application.

We are inspired by the approach taken by many consultants when creating
an application. A problem description is given, using a specification language,
which describes the logic of the application and what constitutes an acceptable
solution to the problem. The description is usually combined with some sample
data to create a set of problem instances. In addition to this, the consultant
is given some objectives which state how the system will be used and what
constitutes acceptable performance. Often the main strategy used by humans
is to build a prototype, evaluate it based on the objectives, and then to adjust
the prototype iteratively until it reaches an acceptable state. These trials and
tribulations are a process which guides the consultant to a specific configuration
which is able to tackle the problem. It is rare that a complex system is built on
the first iteration unless it matches some very similar project the consultant has
worked on in the past.

Our approach is not to try and automate the process of acquiring the de-
scription or objectives (which is a complex problem in its own right) but rather
to automate the trials and tribulations step by giving a machine the ability to
build prototypes and evaluate them. Even if the machine is capable of a mod-
est number of ways to restructure the application, then it should be possible to
gain an advantage in two main ways. There is the advantage of the technology
being accessible to someone who is not trained in CP. A further and potentially
more valuable benefit is that a human consultant’s effort on a project is typically
governed by time and cost restrictions. An automated system may be able to
outperform this effort and yield a better tailored application for the problem.
� This work has received support from Science Foundation Ireland under Grant

00/PI.1/C075.
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The central idea in this work is that it is possible to assist users satisfy a set of inconsistent
preferences by generating tradeoffs [1]. For example, during an interactive configuration
session when we reach a point where our desires cannot be met we consider tradeoffs
between our preferences.

We model tradeoffs as additional constraints and have begun to study the issues
involved in generating and evaluating them. Our work attempts to address important
but ill-defined questions like “what is a good tradeoff?” in a formal and experimen-
tal manner. There is a large body of work in constraint-based configuration. We make
further contributions toward the development of techniques that learn user preferences
and use these to assist users achieve satisfactory configurations. We utilize the n-queens
configuration problem, with the addition of user-generated preference constraints and
system-generated trade-off constraints. During an interactive session with the configu-
rator, the user may specify a preference constraint which causes an inconsistency. At
this point our configurator attempts to recommend a set of appropriate “tradeoff” con-
straints to the user from which she can select one before continuing to develop a solution
for the configuration problem. Tradeoffs are modelled as binary constraints. Modelling
tradeoffs as binary constraints is useful, particularly since standard constraint processing
algorithms can be used to reason over them.

One of our primary objectives is to assist the user achieve a viable solution that
she will find acceptable in as few tradeoffs as possible [1]. However in the case of an
inconsistency it may be necessary to revisit previously accepted tradeoffs because an
acceptable tradeoff cannot be found. Our aim is to adapt existing backtracking algorithms
for interactive tradeoff generation to help us revisit previously accepted tradeoffs. The
idea of generating tradeoffs that best satisfy user preferences is a simple one and the
ability of configurators to generate tradeoffs to users during interactive configuration is
valuable. Our current work is concerned with (a) finding efficient methods for computing
tradeoffs, and (b) efficiently revisiting previously accepted tradeoffs when the need
arises.
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Current-generation constraint programming languages are considered by many,
especially in industry, to be too low-level, difficult, and large. In order to unleash
the proven powers of constraint technology and make it available to a wider range
of people, a higher-level, simpler, and smaller modelling notation is needed.

In our opinion, even recent commercial languages such as opl1 do not go
far enough in that direction. Many common modelling patterns have not been
captured in special constructs. They have to be painstakingly spelled out each
time, at a high risk for errors, often using low-level devices such as reification.

Sets recently started appearing as modelling devices in some constraint pro-
gramming languages. However, relations have not received much attention yet,
except the particular case of a total function via the concept of an array.

We claim that a suitable first-order relational calculus is a good basis for a
high-level ADT-based constraint modelling language. It gives rise to very natural
and easy-to-maintain models of combinatorial problems. We do not aim at pro-
viding a complete language, as long as it is capable of modelling a large number
of problems. More important is a small language with orthogonal constructs.

Due to this, we present our new modeling language, called esra2, and in order
to demonstrate its expressiveness, we present a model for the BIBD3 problem:

dom Varieties,Blocks
cst r, k, λ ∈ N

var BIBD : Varieties r×k Blocks
solve ∀(v1 �= v2 ∈ Varieties) count(λ)(i ∈ Blocks | BIBD(v1, i)∧BIBD(v2, i))

The declaration of the decision variable BIBD, a relation in Varieties × Blocks,
immediately takes care of the constraints that each block is to be of size k and
that each variety is to be in r blocks. The only remaining constraint, that each
distinct pair of varieties is to be in the same block exactly λ times, is taken care
of using the count quantifier, a generalisation of existential quantification.

� This work is partially supported by grant 221-99-369 of VR, the Swedish Research
Council.

�� The authors’ names are ordered according to the Swedish alphabet.
1 P. Van Hentenryck. The opl Optimization Programming Language. MIT Press, 1999.
2 P. Flener, J. Pearson, and M. Ågren. The Syntax, Semantics, and Type System of

esra. At http://www.it.uu.se/research/group/astra, April 2003.
3 See problem 28 at http://www.csplib.org for more information.
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Abstraction is a process where problems are modified in some way to make them
easier to solve. For our purposes, we look at abstraction as adding constraints in
such a manner as to reduce the number of solutions, or removing constraints in
order to make more solutions valid. It is a form of simplification, where certain
details of a problem are ignored, or temporarily cast aside, in order to make the
problem less difficult to solve. The central idea in this paper is to use constraints
in order find candidate abstractions of a problem, making the abstraction process
quicker, easier, and more efficient.

When abstracting a problem, one of the most important points is deciding
on which elements of the problem to abstract. Making the right choices in this
respect is crucial and can mean the difference between finding a near optimal so-
lution, an acceptable solution, or, in the worst case, no solution to the abstracted
problem.

The process of abstraction begins with taking a subject problem P , and
generating a candidate abstraction, using CP-based techniques. We use this ab-
stracted problem, AP , the basis for creating the abstracted model of P , which is
P ∗. Naturally, there are some side effects to the changes made. The problem we
will have created is not the problem we were asked to solve, and we may have
to changed the characteristics of the original problem in some way.

We then solve the abstract problem, giving us a solution. This solution how-
ever, is not automatically a valid solution to the original problem, P . We must
concretize this solution, in order to make it an acceptable solution to the original
problem. Depending on the problem involved, this may be a very difficult and
time consuming task or it may be completely trivial.

Applying abstraction to constraint programming is an area that has been
examined, although in the area of using constraints to actually generate the
abstractions, there does not appear to be any work. Indeed much of the work
seems to concentrate in the abstractions themselves, rather than the process by
which they were created.

Here we present the idea of using the power of constraints to find valid
abstractions and to choose the best option available for abstraction. We intend
to further examine the issue of abstraction using constraints as it is potentially
very useful for solving larger problems.

� This work has been supported by Science Foundation Ireland under Grant
00/PI.1/C075 and ILOG, SA.
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Sensitivity Analysis in CSPs�
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When modeling real-world problems, we cannot always be sure about the na-
ture of our problem, nor be certain that it is immune to change. In job-shop
scheduling, machines can break down, tasks may take longer in reality than
in our model, and the market prices for the various commodities may change.
Clearly, it would be beneficial if our CSP model could be analysed, so that we
could be aware of the effects of various changes on our solution. An analysis may
also furnish information useful in itself, such as that a particular machine is not
needed.

It is important to decide on what exactly constitutes sensitivity analysis in
CSPs. We have limited ourselves to studying the effects of:

– adding/removing a constraint
– adding/removing a value from the domain of a variable
– altering the objective function in an optimisation CSP
– altering the values of constants

We propose a method of sensitivity analysis which utilises techniques already
available in integer linear programming[1]. A CSP is first converted into an
ILP using a direct encoding, and then this new ILP has the sensitivity analysis
outlined in [1] applied to it.

We have shown that the ILP sensitivity analysis allows us to detect redundant
constraints in our CSP. Further, if the CSP has a linear optimisation function,
we can predict the effect of perturbations of constants within the optimisation
function on a given optimal solution.

In future, we hope to develop more direct methods for sensitivity analysis.
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Solution stability is the ability of a new solution to share as many values as
possible with the original if a break arises. Whenever large changes to a solution
introduces additional expense or reorganisation, stability is valuable. Stability
also facilitate the search for a new solution. Supermodels are solutions of SAT
formulas which are stable to change [MGR98]. We propose the following exten-
tion of the definition of supermodels to the CSP framework:

A solution S to a CSP is (a, b)-super solution iff the loss of the values of at
most a variables in S can be repaired by assigning other values to these
variables, and modifying the assignment of at most b other variables.

Intuitively, for a given number of breaks (loss of values), only a small number
of repairs (reassignments) is required. A necessary but not a sufficient condi-
tion for the existence of a supermodel is the absence of backbone variables. A
backbone variable is a variable that takes the same value in all solutions. The
presence of a backbone variable in a SAT problem makes it impossible to find
any (a, b)-supermodels as that particular variable has no alternative. To solve
the super constraint satisfaction problem, we propose to apply methods derived
from local consistency, that we call super consistency. These methods lead to an
efficient algorithm for a = 1 and b = 0. One key point is that a value need at
least two supports to belong to a super solution instead of one. Indeed, if any
value of a solution has only one support, then this support is in the solution as
well. Therefore its loss would have as consequence the loss of the former value.
Observe, however, that those two supports haven’t the same function. By def-
inition, only one of them will be in the solution. Based on this, we propose an
algorithm that not only separates consistent from inconsistent values, but marks
the values as:

– inconsistent
– consistent, but only as a “repair” (repair value)
– consistent, with two supports on each neighbor (super value)

The algorithm branches only on the later, super values.
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distn: An Euclidean Distance Global Constraint
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Abstract. We present a global constraint that maintains the Euclidean
distance between n points.

Euclidean Distance constraints appear in many application domains of CP, such
as molecular conformation, robotics or facility location. Solving problems involv-
ing many distance constraints is a difficult task, and several solutions have been
proposed in [1–3]. The method of “active areas” introduced in the Circle Packing
problem [4] enables us to build the propagation algorithm of a global constraint
that maintains the Euclidean distance between n points.

The declarative semantics of the constraint we propose are

distn(rel, [Z1, . . . , Zn], D) (1)

where rel is one of {≤,≥,=}, the Zi are pairs of “location domain variables”
(Xi, Yi) and D is a positive “distance domain variable”. The constraint (1) holds
if

∀zi ∈ Zi, ∀j, ∃zj ∈ Zj / distance(zi, zj) rel D

This provides the user with a modeling tool, and the first benchmarks have
shown its propagation algorithm outperforms the classical consistency algo-
rithms found both in discrete and continuous constraint solvers. Moreover, the
involved algorithm can be extended to take a matrix defining the distance rela-
tions as input. The algorithm has been integrated into a continuous constraint
solver, and its extension to three dimensions and comparison with [1–3] are in
preparation.
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Ensuring truthfulness amongst self-interested agents who are bidding against one an-
other in an auction is computationally expensive. The Vickrey-Clarke-Groves (VCG)
mechanism guarantees that each of the agent’s dominant strategy is to tell the truth, but
it requires solving n + 1 optimisation problems for n agents. The objective of our work
is to use constraints in conjunction with Operations Research to make truthful mecha-
nisms computationally feasible. Eliciting truthful responses from self-interested agents
has been previously studied in game theory and economics. A class of VCG mecha-
nisms have been developed whereby the dominant strategy for any agent is to tell the
truth, meaning that rational agents maximise their utility by truthfully revealing their
preferences.

It has been shown that if non-optimal solutions are found to the optimisation problems
that determine the prices paid in VCG mechanisms, then the mechanism is no longer
guaranteed to be truthful [2]. This is a major drawback because it precludes the use of
various polynomial-time heuristics and approximation algorithms that can provide good
or near optimal solutions very quickly to NP-complete problems such as combinatorial
auctions.

CP algorithms can borrow techniques from OR to minimise the punitive computa-
tional burden when ensuring truthfulness. Using propagation and inference techniques,
CP can aid the search when the conditions for solutions are complicated by additional
constraints. We shall conduct an empirical study of the benefits of using CP for task
scheduling in a grid environment within a pricing mechanism framework. We also plan
to investigate the suitability of DCSP as an underlying infrastructure for Distributed Al-
gorithmic Mechanism Design [1]. Our main aim is to show that constraint technology,
when allied with OR algorithms, can make truthfulness more computationally feasible
and improve flexibility.
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Preference Constraints: New Global Soft Constraints 
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The privileged preference representation used for combinatorial problems has been 
the objective function. It is almost exclusively used at every aggregation levels of a 
hierarchical preference model, and has remarkable structural properties as transitivity 
and completeness. These properties are often judged too restrictive, because some 
important aggregation concepts are incomplete by definition, as efficiency and equity. 
Moreover, preferences are not necessarily transitive because of uncertainty. For all 
these reasons, we decided to enlarge objective function-based combinatorial problems 
toward weaker structured preference concepts: preference binary relations. 

Given a set of solutions S, a preference binary relation of an individual on S can
be interpreted as a mapping from S × S to the set of fundamental attitudes FA = {indif-
ferent, better, worse, incomparable}. The power set of FA minus the empty set and FA is
called the set of attitudes PR(FA). When S is an explicit solutions set, preference bi-
nary relation is explicitly represented. But in an implicit solutions set environment as 
for constraint-based problems (S is then a Cartesian product) this way of modelling is 
inadequate. We propose a new soft constraint called preference constraint, dedicated 
to preference binary relations on constraints systems. So, the preference constraint,
noted {c [α, x]}α, x, describing the preference binary relation , is the set of con-
straints {c [α, x], ∀ (α, x) ∈ PR(FA) × �V} on the variable set V, with �V the Carte-
sian product of domains D(v) for all v ∈ V. Each constraint c [α, x] is parameterized 
by a solution x and an attitude α, and its feasible set is made up of solutions y ∈ �V

such that y α x, with α  indicating the attitude α of the preference binary relation .
In a digraph context, the feasible set describes the neighborhood of x in the solution 
set according to the binary relation α .

Preference constraints offer great flexibility for preferences elicitation: Complex 
evaluation models of solutions involve several viewpoints from several individuals, 
which are methodically synthesized with various aggregations rules in order to obtain 
a single collective preference binary relation. In this kind of hierarchical preference 
model, each aggregation rule is represented by one preference constraint defined re-
cursively. Consequently, the instance of a constraint-based combinatorial problem can 
be defined as a couple (CS, {c [α, x]}α, x), called preference-based constraint system,
where CS = (V, D, C) is a constraint system describing the set of solutions, and {c [α,
x]}α, x is a recursively-defined preference constraint. To tackle real world problems, 
each preference constraint is designed as a global constraint parameterized by α and 
x. We present algorithms based on Branch-and-Bound and discuss an initial imple-
mentation solving the nurse scheduling problem with encouraging results. 
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Classical constraint satisfaction problems (CSPs) provide an expressive formalism for
modeling and solving many real-world problems. However, classical CSPs prove to
be restrictive in any situation where uncertainty, fuzziness, probability, optimisation or
partial satisfaction are intrinsic. Soft constraints alleviate many of the restrictions which
classical constraint satisfaction impose. In particular, soft constraints provide a basis for
capturing notions such as vagueness, uncertainty and cost in the CSP model.

The semiring framework [1–4] for generalised constraint satisfaction is based upon
the central observation that a semiring (a set together with two binary operators which
satisfy certain properties) is all that is needed to describe many constraint satisfaction
paradigms. The semiring set provides the levels of consistency, which can be interpreted
as cost, degrees of preference, probabilities or any other criteria consistent with the
requirements of the framework. The two operations then allow us to combine constraints
(×) and to compare (+) consistency levels from this set.

In this work we demonstrate a time and space efficient method for representing and
evaluating c-semiring combination constraints. We show how combination constraints
can be represented intentionally in a time and space efficient manner. We then utilise a
basic property of the definition of a c-semiring to allow us to perform a generalised lazy
evaluation of combination constraints that can be applied transparently to all instances
of the framework. We evaluate the performance implications of the cumulative effect of
this run-time optimisation, demonstrating the utility and generality of this approach.
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An important class of symmetries in constraint programming arises in matrices of
decision variables (we assume 2 dimensional matrices without loss of generality)
where rows and columns represent indistinguishable objects and are therefore
symmetric. We can permute any two rows as well as two columns of a matrix with
row and column symmetry without affecting any (partial) assignments. An n×m
matrix with row and column symmetry has n!m! symmetries, which increase
super-exponentially thus it can be very expensive to visit all the symmetric
branches of the search tree. In order to break such symmetries effectively, we
investigate ordering constraints that can be posted on matrices without removing
feasible solutions.

To break row symmetry, we can enforce that the rows are lexicographically
ordered. To break row and column symmetries, we can insist that the rows and
columns are both lexicographically ordered. We can also treat each row as a
multiset and enforce that the rows are multiset ordered. Unlike lexicographic
ordering, multiset ordering the rows is invariant to column permutation. Mul-
tiset ordering is incomparable to lexicographic ordering. To break row and col-
umn symmetries, we can insist that the rows and columns are both multiset
ordered. Alternatively, we can enforce multiset ordering in one dimension and
lexicographic ordering in the order. To easily pose, and effectively and efficiently
propagate the ordering constraints, we have devised global constraints for lexi-
cographic and multiset orderings.

If the search strategy pushes search in a different direction than that of the
ordering constraints, the search tree enlarges. This conflict can be overcome
by incorporating more inference into the the ordering constraints by combining
together the problem and the ordering constraints. We therefore introduce a
new global constraint on 0/1 variables that combines together the lexicographic
ordering constraint with two sum constraints. Such constraints frequently occur
together in problems involving capacity or partitioning that are modelled with
symmetric matrices of decision variables.

Experimental results confirm the effectiveness and the efficiency of the global
constraints, as well as the value of the ordering constraints in breaking row and
column symmetries effectively.

� I am very grateful to Toby Walsh for his excellent supervision of this work. Many
thanks to Brahim Hnich, Alan Frisch, and Ian Miguel for their comments and fruit-
ful discussions. This research received support from VR grant 221-99-369 and SFI.
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Constraint programming still lacks the suitable debugging tools and techniques.
When a program gives incorrect results or when its performances are disappoint-
ing, the developer gets very little support from his programming environment to
find out the problem. Specific tools are needed to ease this debugging stage.

Debugging tools use data that are retrieved during the execution. This ba-
sic information can be taken out from an execution trace generated by a tracer
embedded in the solver. Thus, a traditional tracer, that provides a rich enough
trace, is a powerful front-end to new debugging tools. The difficult task of in-
strumenting the solver is made only once.

We have defined a generic trace for constraint solvers over finite domains [1].
The genericity of the trace is twofold: it can feed a large variety of tools and it
can reflect the behavior of several constraint programming platforms. The goal
of the generic trace is to ease the definition of debugging tools independently of
the platforms. We claim that most of the functioning a user wants to observe
can be captured by this trace. This trace reflects the interesting aspects of the
execution while hiding solver specific issues.

Real-life constraint programs can generate a huge amount of trace data. To
limit the volume of the trace, the tracer has to generate only the subset of
the trace that is relevant for a given debugging tool. Thus, the tracer has to
implement a lazy generation of the trace: the tool must be able to configure the
subset of the trace to be generated and to ask the tracer to modify it dynamically
to fit its needs.

A first “lazy” tracer has already been developed for the GNU-Prolog plat-
form. It implements a refinement of the generic trace model. A first experimental
assessment has shown the efficiency of this tracer. A further step would be to
connect the tracer to visualization tools.
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Programming search seems to be major factor of adapting constraint program-
ming paradigm for large-scale real-world application such as timetabling prob-
lem. Presented work tries to use explicit search implemented in Mozart/Oz, what
allows to create complicated, custom-tailored distribution strategy and search
method. Well-known first-fail distribution strategy was not sufficient, because
timetabling problem with room allocation is consider and there are two finite
domain variables connected with course. Choosing proper course rather than
variable is consider and decision is made due several factors.

For resolving soft constraining method of value assessment was used. The
assessment of the value corresponds to the fulfillment of the soft constraint. If a
value does not fulfill the soft constraint its assessment is increased corresponding
to the weight of that constraint. Some of hard and soft constraints was introduced
during distribution for reducing complexity of computations.

Often in sophisticated combinatory problems occurs thrashing, repeated fail-
ure due to the same reason and redundant work. Method of counting fails and
researching was introduced, which bases on counting which course is making fail
during search and using it in course selection. Next if solution is not found in
some limit time, search is restarted and number of fails from previous searches are
taken into account in selecting course. It leads to effect, that variables that cause
thrashing are schedule at the beginning. This method is also used with relaxing
bound for removing value with too high assessment - technique for increasing
constraint propagation that accelerate finding feasible and good solution.

Improving solution by standard branch and bound did not give good results
because distribution is design to find good solution right away and branch and
bound is systematic method that make a lot of redundant work. Described ap-
proach tries not to resign from constraint propagation and uses advantages of
the local search paradigm to optimize timetable. After finding solution course,
that causes the highest cost, is relaxed together with courses depending on it. All
other courses have the same start time. Search is made only on relaxed courses
and is treated as neighborhood move. If it produces better solution, it is kept.
The tabu list is added not to relax always the same courses.

The presented approach allows generating feasible and good solutions for real
high-school and university department timetabling data. Future work consists
on using better local search techniques for optimization1.

1 A part of the research has been supported by the Foundation for Polish Science.
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The general aim of my research involves a new perspective on the study of
standard CSP notions. In this view, a typical unit in the CSP paradigm can
be seen as a combination of smaller units. An operation can be considered as a
composition of smaller operations. Here I describe two such studies.

The first research concerns interchangeability of values in a CSP domain.
The main idea is based on treating each value as a combination of smaller sub-
values. Identical fragments from other values can then be merged together. Since
the new domain contains no two values having overlapping set of microstructure
support, it is expected that the amount of duplicate effort during search would
be reduced. Preliminary experiment in [1] confirms the hypothesis. An example
of the idea is shown in Figure 1.
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Fig. 1. From left to right: A CSP involving four variables, its microstructure, and the
transformed CSP after merging identical sub-values.

The second research direction deals with the process of variable instantia-
tion. Departing from the normal viewpoint, we see a variable instantiation as a
removal of domain values; removing all but one value from a variable domain
is equivalent to the usual instantiation. This non-standard perception allows us
to treat variable instantiation as a successive process of value removal. It has
the following advantage: during search when a conflict is encountered, instead of
looking at particular variable assignments as the cause we try to narrow down
the “culprit”, a set of values whose removal leads to that conflict. Any assign-
ment of a value not in the culprit set will lead to the same dead-end, since
assigning it amounts to the deletion of all other values including the culprit set.
Consequently, each value not included in the culprit set can not be part of a
solution and can be immediately ruled out.
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Using Case-Based Reasoning
to Write Constraint Programs�

James Little, Cormac Gebruers, Derek Bridge, and Eugene C. Freuder

Cork Constraint Computation Centre
Computer Science Department

University College Cork

‘Constraint programming’ (CP) is a powerful tool for problem solving. However,
to obtain maximum benefit from CP, programmers require significant knowledge
and experience. We describe a new approach where Case-Based Reasoning is used
to help write good constraint programs. Our approach provides the potential for
the full range of CBR advantages to be brought to bear on the task of automating
constraint programming:

– Experts can provide knowledge conveniently in the form of cases
– Expertise can be naturally provided in a modular, incremental fashion
– Solution methods can be matched with problem characteristics for efficient

execution
– Cases can be automatically adapted to cover unforeseen situations
– Adaptations can be generalised and added to the case base to implement a

form of learning from experience

Case-Based Reasoning is a problem-solving methodology based on reusing
experience gained in previous problem-solving episodes. In CBR, a new problem
is not generally solved by reasoning ‘from scratch’ but by retrieving stored solu-
tions to similar previously-solved problems, and transferring and adapting these
solutions to the new problem. To use CBR to write constraint programs thus
requires the identification of problem characteristics (viz. a problem representa-
tion) that enables us to say that two problems are ’similar’. We can then reuse
an effective solution strategy from one constraint program on new, but similar,
problems. A key advantage of using CBR is the ability to predict a rich combi-
nation of programming choices simultaneously i.e. choice of Variable Ordering
Heuristic and Value Ordering Heuristic and constraint representation.

Apart from their experience, the constraint programmer’s main methodol-
ogy for writing good programs is empirical experimentation. An alternative way
of achieving efficient constraint programs is by shifting part of the knowledge
burden required from the developer to the machine. Our methodology, O’Casey,
makes it possible to encapsulate into cases both the expertise and findings of
case studies, and examples of effective constraint programs written by experts.
O’Casey can also utilise abstract specifications to generate programs but with
less of a knowledge burden on the programmer than existing systems.
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The long-term goal of our research is to provide syntactic criteria for the au-
tomatic reformulation of combinatorial and constraint problems specifications,
in order to improve solver efficiency. Our current investigations focus on the
selection of constraints that can be safely “delayed” and solved afterwards, yet
guaranteeing that every solution of the reformulated spec can be reconduced,
via the application of the delayed constraints, to a solution of the original one.
A consequence of this approach is that the set of solutions is enlarged, thus
hopefully obtaining a speed-up in the solving process.

In this paper we focus on reformulation techniques for the subclass of per-
mutation problems characterized by constraints that bind an element of the per-
mutation either to the next or the previous one. A paradigmatic example is the
Hamiltonian circuit (HC) of a graph problem, which aims to find a permutation
of the graph nodes (i.e., a bijective mapping from the n nodes to the integer
range [1..n]) s.t. every node is linked to its successor, and the last to the first
one. Another example is the permutation flow-shop scheduling problem. In this
context, we identify the Injective constraint (Inj) as safe-delay. By ignoring it
and slightly changing the other constraints, we obtain possible reformulations of
the original problems. As an example, for HC, removing (Inj) results in clusters
of nodes that can be visited in an arbitrary way (thus, identifying only a partial
order among them). To guarantee that every solution of the reformulated prob-
lem can be reconduced to a solution of the original one, the adjacency constraint
has to be extended to nodes with the same order number, thus forcing clusters
to be cliques. In this way, we allow abstraction from the level of nodes to the
level of clusters, by first identifying cliques, and then solving the HC problem on
the abstract graph. Further elaborations of the above idea are possible, leading
to two additional reformulations of the original problem which result to abstract
graphs with less edges. As a consequence, they seem more efficiently evaluable
wrt the original spec, especially for negative instances, for particular classes of
solvers (e.g., SAT based ones). As for the planned work, we aim to extend the
experimentation through the use of state-of-the-art solvers for CP, e.g., opl.

From a methodological point of view, it is important to emphasize that our
goal is not to provide a new and more efficient algorithm for solving a particular
problem, but to show that consistent speed-ups can be achieved by a mere and
syntactically-based reformulation of a pure declarative spec, which can be in
principle performed automatically by the system in a preprocessing stage.
Acknowledgments.The author is grateful to his advisor, Prof. Marco Cadoli,
for guiding, supporting, and encouraging his research activity.
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Over the past few years we have seen a marked increase in the interest of sym-
metry breaking in constraint programming. Many new techniques have been
introduced to deal with the problems that symmetrical CSPs create. Previous
methods of symmetry breaking such as SBDS [1] and SBDD [2,3] require an ex-
plicit list of the symmetries of a CSP, or a dominance checker, respectively. Also,
the GHK-SBDS method [4] of breaking symmetry requires the user to supply a
generator set of a group representing the symmetries of the CSP.

In all cases, some effort is needed by the constraint programmer to describe
the symmetries of their problem. This is a barrier that needs to be broken if we
are to see symmetry breaking used by the constraint community in general.

We present an implementation that breaks this barrier: NuSBDS, which has
been designed to allow the average constraint programmer to break symmetry in
their CSPs quickly and easily. NuSBDS is a C++ library that works with ILOG
Solver 5.x and is based on the GHK-SBDS method of symmetry breaking. It
has an additional layer of code which allows the constraint programmer to list
the types of symmetry that exist in their CSPs easily by stating the name of
a macro. Multiple macros can be used to describe many complex groups of
symmetry while the user need not know any group theory. Consult [5] for a
more detailed explanation with examples of how to use NuSBDS.
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During the last few years, thanks to the faster, smaller, cheaper personal computers 
and well-developed, user friendly software, the interactive behaviour is more and 
more requested. In this paper, we will discuss what impacts the interactivity can have 
on CSP. 

Interactivity manifests itself in several ways. At first, the possibility to influence 
the problem solving process seems to be the most important. Such capability can give 
the users a very powerful tool to tackle with difficulties that are sometimes very hard 
to solve for an automated solver. The solver has to be able to handle somehow modi-
fied solution and to continue solving the problem. The generated solution should not 
differ much from the previous one (what the user modified), because the user has to 
be able to follow up the changes. If the solver gives a completely different solution, 
the system will be useless. 

Another, also very important property is the visualisation of results - not only some 
feasible, final solutions, but also some incomplete and even inconsistent solutions, 
generated during the search or when feasible results cannot be found in some reason-
able time. The user should understand where the problems are and why a feasible or 
better solution was not found. 

The capability to help the user make some decisions is also very interesting. The 
system can for example generate and evaluate some hints, like what to change and 
how (e.g. what constraint to weaken). There can also be more sophisticated advices, 
like what impact will some change have on the difference from the previous solution, 
what next changes will such modification cause, what has to be changed next. 

There are several ongoing approaches, for example minimization of the number of 
differences between the previous and the new solution desired on an altered problem 
(e.g. minimal perturbation problem in [1,3]). Another approach tries to response very 
quickly after each single user interaction (e.g. by a local search based technique work-
ing on feasible partial solutions [2]). 
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MUSKRAT (Multistrategy Knowledge Refinement and Acquisition Toolbox) [1] 
aims to unify problem solving, knowledge acquisition and knowledge-base refine-
ment in a single computational framework. Given a set of Knowledge Bases (KBs) 
and Problem Solvers (PSs), the MUSKRAT-Advisor investigates whether the avail-
able KBs will fulfil the requirements of the selected PS for a given problem. We 
would like to reject impossible combinations of KBs and PSs quickly. We propose to 
represent combinations of KBs and PSs as CSPs. If a CSP is not consistent, then the 
combination does not fulfil the requirements. The problem then becomes one of 
quickly identifying inconsistent CSPs. To do this, we propose to relax the CSPs: if we 
can prove that the relaxed version is inconsistent then we know that the original CSP 
is also inconsistent. It is not obvious that solving relaxed CSPs is any easier. In fact, 
phase transition research (e.g. [2]) seems to indicate the opposite when the original 
CSP is inconsistent. We have experimented with randomly generated CSPs [3], where 
the tightness of the constraints in a problem varies uniformly. We have shown that 
careful selection of the constraints to relax can save up to 70% of the search time. We 
have also investigated practical heuristics for relaxing CSPs. Experiments show that 
the simple strategy of removing constraints of low tightness is effective, allowing us 
to save up to 30% of the time on inconsistent problems without introducing new solu-
tions. 

In the constraints area, future work will look at extending this approach to more re-
alistic CSPs. The focus will be on scheduling problems, which are likely to involve 
non-binary and global constraints, and constraint graphs with particular properties 
(e.g. [4]). We will also investigate more theoretical CSP concepts, including higher 
consistency levels and problem hardness. Success in this research will allow us to 
apply constraint satisfaction and relaxation techniques to the problem of knowledge 
base reuse. 
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Explanations for failure in constraint satisfaction tend to focus on blame. However, in
an interactive context we also require explanations that are “useful” in the sense that
they provide the basis for assisting the user move forward in search. In particular, when
the user is faced with a dead-end, a subset of the assigned variables for which there
exists an alternative assignment that permits moving forward should be found. This set
of variables can be regarded as a Useful Explanation.

Several methods exist which can be used to compute explanations, such as PaLM [1]
and QuickXplain [2], and through the use of dependency records [3, 4]. However, these
approaches tend to find the reason that caused the problem, rather than advising the user
what she can do to eliminate it.

By comparison, Useful Explanations focus solely on helping a user to make progress
in an interactive environment. Useful Explanations concentrate on answering one ques-
tion, namely “what can I do to restore one or more values to a variable domain which
has been wiped out?”. By focusing on which assignments should be “fixed” the user can
be helped to overcome inconsistency and to continue selecting values for the remaining
variables in the problem. Useful Explanations are especially beneficial in interactive
contexts in which users attempt to solve a constraint satisfaction problem (CSP), by
assigning values to variables in turn, e.g. in e-commerce configuration.

Our current work focuses on developing efficient algorithms for computing Useful
Explanations, developing metrics for evaluating the quality of explanations and investi-
gating to what extent current blame-based explanation techniques compute explanations
which are useful. In particular, we are interested in techniques which generate explana-
tions which are guaranteed to be useful.
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In many practical applications users often find it difficult to articulate their constraints [1].
We have begun studying the issues involved in interactively acquiring constraints and
have already made a number of novel contributions [3]. We view interactive constraint
acquisition as the process of learning constraints from examples [2, 4] and focus on
the role the user has to play during an interactive session. If we consider our user as
a teacher, it may be possible that there are things that our teacher can do to provide
“better” examples even without being able to precisely articulate the target concept.
We have compared a number of teacher profiles and demonstrate that the ability of the
teacher (the user) and the ability of the learner (constraint acquisition system) has an
impact on the acquisition process.

We have found that while good query generation strategies, adopted by the learner,
and good teachers can work well separately, when coupled their combined power is
greatly increased. However, we have observed that while a teacher of average ability
results in longer dialogs with the learner than the ideal teacher, the number of examples
required to acquire the target constraint can often be of comparable magnitude. If we
regard examples as being expensive, since they may be difficult to find, and responding
to queries as being cheap, there is an interesting tradeoff to be considered between the
cost of being a good teacher and the length of the dialog between the teacher and the
learner. This raises a number of fundamental questions which we are currently studying.

Our current work focuses on acquiring multiple constraints from teachers of differing
abilities using acquisition systems based on different query generation strategies. The
insights gained here inform our research agenda in the area of interactive constraint
acquisition.
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Constraint satisfaction problems (CSPs) are often highly symmetric. Given any
solution, there are others which are equivalent in terms of the underlying prob-
lem being solved. Constraint programmers use symmetry breaking methods to
exclude all but one in each equivalence class of solutions.

A common way to achieve this is to add constraints to the CSP. Ideally, the
new constraints should only be satisfied by one assignment in any symmetri-
cally equivalent class. An alternative is to adapt the search algorithm so that
constraints are added during search. Symmetry breaking during search (SBDS)
[1][3] works by taking a list of symmetry functions, provided by the program-
mer, and placing related constraints at branching points during search. In recent
years Gent et. al.[2] have linked SBDS (in ECLiPSe) with a computational group
theory package called GAP. Individual symmetries in a CSP correspond to el-
ements in a group, so GAP-SBDS allows the symmetry group rather than the
individual symmetries to be described. It is possible to combine both SBDS and
GAP-SBDS with symmetry breaking constraints, as long as we ensure that each
symmetrical equivalence class is only eliminated once.

The design and implementation of various symmetry breaking methods has
lead to the need for investigations into which method should be used in different
situations, and when a combination is needed. We have developed a framework
for the design of such tests. In general, it is vital to choose an appropriate problem
and consider the model and search heuristics. The problem should be one where
you can easily vary the type and numbers of symmetries, as well as break the
symmetry group down to subgroups; this gives a full suite to run comparisons
over. The model and the search heuristic should be as simple as possible so as
not to mask any differences in the symmetry methods, but it must be efficient
enough to allow many test cases to be run in reasonable time. These decisions
can be made by the use of a case study.
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We developed novel branch and bound algorithms for solving Max-SAT and
weighted Max-SAT, which are variants of the algorithm of Borchers & Furman
(BFA) [1]. We improved BFA by (i) defining a lower bound of better quality,
and (ii) incorporating a new variable selection heuristic.

The lower bound of BFA is the number of clauses not satisfied by the current
partial assignment, but BFA does not incorporate any underestimation of the
number of clauses that become unsatisfied if the current partial assignment is
extended into a complete assignment. We incorporate that underestimation by
taking into account the inconsistencies between past and future variables. Our
first algorithms is BFA+UND; i.e., a new version of BFA that incorporates our
lower bound.

The variable selection heuristic of BFA is MOMS (i.e., it selects a variable
among those that appear more often in clauses of minimum size). We also used
the Two-Sided Jeroslow-Wang rule (JW) [2] instead of MOMS in order to take
into account the occurrences of variables in clauses which are not of minimum
size. Our second algorithms is BFA+UND+JW; i.e., a new version of BFA that
incorporates our lower bound with JW as variable selection heuristic.

We next show some experimental results comparing BFA, BFA+UND, and
BFA+UND+JW. The left (right) plot shows the behaviour of the algorithms on
50-variable randomly generated (weighted) Max-2-SAT instances. Observe that
our algorithms decreases the time needed to solve an instance up to two orders
of magnitude.
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Abstract. Many open problems exist in mathematics. Many of these
problems are combinatorial in nature and can theoretically be solved us-
ing search algorithms. Existing search algorithms are unable to cope with
the large solution space and model size of many of these problems. We
propose to solve these problems by modifying existing search algorithms
and developing new algorithms to cope with the challanges that these
problems offer.

The aim of this work is to apply recent advances in search technology to math-
ematical problems. In particular we aim to discover new mathematical objects
which are imprecisely known: For example Ramsey numbers, zero-sum square
matrices, and low-autocorrelation binary sequences. Systematic backtrack search
can be used for proofs of nonexistence while stochastic search can be used to
find solutions quickly. We hope to solve open questions in mathematics, and to
exploit mathmatical insights to design new search algorithms.

In order to address these, and other open problems in combinatorial mathe-
matics, we are limited by existing techniques. Many of these problems produce
models which are too large for existing techniques to deal with. Some work has
already been done on lifted search engines which allow SAT clauses to be ex-
pressed intentionally for sets of variables [1]. This allows large models to be
expressed as groups of clauses which are then generated when they are needed.
We itend to extend this work to make it suitable for the problems which we are
interested in.

The development of new approaches to these problems is likely to find ap-
plication to real-world problems. For example, techniques for handling the very
large models necessary for Ramsey numbers are immediately applicable to other
large combinatorial problems.
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Numerous industrial problems can be modelled as constraint satisfaction prob-
lems: scheduling, call centers, television spots, etc. Constraint programming of-
fers high-level modelling and reusable techniques for solving such problems. In
order to provide efficient solvers and to better meet user needs, global constraints
are often used. They model complex constraints over numerous variables: for in-
stance, gcc, alldiff or stretch.

Explanation-based algorithms like dynamic backtracking, its extension mac-
dbt or decision-repair have now proven their efficiency. However, the production
of precise (thus useful) explanations is quite hard with global constraints. The
aim of our work is to show that investing in sophisticated algorithms to provide
precise explanations for global constraints is a good thing: solvers become more
efficient.

An explanation contains enough information to justify a state or a decision
(throwing a contradiction, reducing a domain. . . ): it is composed of the con-
straints and the choices made during the search which are sufficient to justify
such an inference. Although computing explanations for basic constraints is easy,
using explanations with global constraints is quite more difficult. Indeed, it may
be hard or even infeasible to make explanations about the filtering inferences
without using internal data structures.

We compute here such explanations thanks to identifying explanations for all
depending computations within global constraints. For instance, in the case of
the stretch constraint, explanations should be identified for all the bounds of
stretch. Regarding the flow constraint which allows to check wether there exists
a flow in a network satisfying capacity constraints, we prove that a minimal cut
can be used to justify the maximal flow in such a network. In both cases, these
explanations can then be directly used in order to justify each decision taken
in the pruning algorithm. The next step is to work on a generic framework for
computing explanations for global constraints.

Our propositions were tested in order to show that precise explanations are
really useful for improving problem solving. Experiments show good results in
term of both number of nodes and computation times. Explanations for global
constraints open new fields: solver cooperation, documentation, analysis, debug-
ging, etc.
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The introduction of watched literals[1], a lazy data structure for satisfiability
(SAT) search algorithms, has resulted in great improvements in the run-time of
SAT solvers. Watched literals keeps track of two literals remaining in a clause so
as to detect when a clause becomes unit or empty. Watched literals is non-trivial
to implement in QBF search. Quantified Boolean Formulae (QBFs) are SAT
formulae with some variables universally quantified. This changes the semantics
of unit and false clauses. The issue of watching literals in QBF is addressed in
[2].

In this paper, I show that the use of lazy data structures need not be restricted
to literals in clauses. In SAT, the detection of pure literals and deleted variables
appears to be unimportant[3], and so watched literals has so far been the only
implemented lazy data structure. In search for QBF satisfiability, this is not
the case; the detection of universal pure literals in particular is critical. This is
because a universal pure literal is set false, and so removes the universal from
clauses. These clauses could then lead to further unit propagation.

To detect a pure literal, one must know the number of literals of each sign of
a variable that exist in the problem. An easy way in which to do this is to keep a
list of which clauses a variable occurs in an which sign the literal of the variable
has in those clauses. If the positive and negative occurences are kept separate,
detecting pure literals becomes trivial. The watched method improves upon this
by keeping one positive and one negative watched “c-literal” per variable. If
either is ever remove d and no other can be found to take its place, the variable
is detected as having a pure literal.

In an experimental comparison, the watched clause method outperformed the
standard method by up to 8825 times on some problems, and never performed
worse. The watched clause method is not restricted to QBF and implementation
in SAT may prove the effectiveness of pure literals in SAT.
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In Railway Simulation, given timetables have to be checked against various cri-
teria, mainly correctness and robustness. Most existing approaches use classical
centralized simulation techniques. This work goes beyond that in two main as-
pects: I use Constraint Satisfaction to get rid of dead lock problems and the
simulation is done distributed. This should make it possible to solve a Railway
Simulation problem, never solved before in its complexity: the German railway
network. In all existing simulation approaches, physical systems are described in
terms of states and (mostly discrete) events. In Constraint-Based Simulation, we
use a modeling that is completely different to classical approaches: The system to
be simulated is described as one complex Constraint Satisfaction Problem (CSP).
This CSP is solved using state-of-the-art propagation and search techniques. In
our application, the railway network is mapped into an abstract discrete model:
It is partitioned into blocks, while each real track section may be cut in more
than one block. A block is then the atomical exclusion unit: In no event, one
block may be occupied by more than one train at the same time. The way of
a train through the network is divided into parts such that each part refers to
exactly one block and the concatenation of all parts makes up the whole way of
the train from its source to its destination. Assigning start and duration times to
each part wrt. its block then gives directly a solution to the simulation problem.
The big advantage of this approach is that deadlock situations are detected very
early: constraint propagation does this for us. Distributed Railway Simulation
(DRS) is Railway Simulation in a distributed manner: The simulation problem
is cut into several pieces, which are simulated in several nodes. We currently
decompose the problem wrt. space: The network is partitioned such that the
number of parts fits the number of available computing nodes while the number
of cut railway lines is minimized. A meta-algorithm conducts the distributed
simulation process: (1) Decompose problem (2) Start simulators (3) Distribute
problem parts (4) Main loop: (4a) Let parts be simulated (4b) Try merging
parts; where necessary to fit solutions: re-do simulation of parts (5) Merge par-
tial results into global result. The algorithm may or may not be synchronized. In
non-synchronized mode, each node simulates its part, communicates the entering
and leaving trains to its neighbours, and immediately recomputes the part in case
some neighbour has sent appropriate changes. In synchronized mode, the node,
after having finished its part, waits until all other nodes have completed their
work and restarts afterwards. The main advantage of the synchronized mode
is that it makes the overall computation deterministic. The non-synchronized
mode is non-deterministic, but has a higher degree of concurrency.
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If an iterative deepening search (IDS) procedure has the property that solu-
tions at a given iteration are also found at later iterations, it is possible to skip
iterations without loss of correctness. We examine the conditions required for
skipping to be worthwhile and give an algorithm for dynamically adapting the
skipping to the behaviour of the search procedure.

We consider the problem f with solution π, written π |= f . If a solution is
found during IDS at depth i, we write π |=i f . We write T (f, i) for the time
taken for the ith iteration. We make the following simplifying assumptions:

– If f has a solution, this solution may be found by iterative deepening search
to some depth k: π |= f → ∃k · π |=k f

– If f has a solution at depth i then it is solvable at all greater depths: π |=i

f → ∀j ≥ i, π |=j f
– T (f, i) is monotonically increasing with i: ∀j ≥ i, T (f, j) ≥ T (f, i)

To decide on the size of a step to be taken, we consider the circumstances
under which a particular step size will save time overall. Suppose we are currently
at depth i during the IDS. It is preferable to solve π |=i+Δ f next rather than
the sequence ∀j=i..nπ |=j f iff i + Δ > n and T (f, i + Δ) <

∑n
j=i+1 T (f, j). The

point of comparison, n, is chosen by a simple heuristic found in testing to be
sufficient: the first solution of f is equally likely to lie at any depth k, 0 ≤ k <∞,
so we take n = i + �Δ

2 �.
To construct the algorithm, we approximate T (f, i) as an exponential bai,

which is appropriate for many possible applications including bounded model
checking. We determine the a and b using standard statistical methods on the
past behaviour of the search, and hence choose a maximum Δ which satisfies
the conditions above. This gives us the following algorithm:

– Initialise: a, b←∞, current depth i← 0, list of past behaviour B ← []
– Until a solution is found, loop:
• Solve π |=i f , recording the time taken in t
• Append the pair 〈i, t〉 to B
• Use best-fit on B to estimate a and b

• Choose Δ such that bai+Δ <
∑i+�Δ

2 �
j=i+1 baj

• i← i + Δ

Our preliminary experimental evaluation demonstrates the efficacy of
this method on bounded model checking problems; however, other iterative-
deepening-style problems must be tried in order to determine the generality of
the heuristic chosen.
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Learning Good Variable Orderings
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Variable ordering heuristics try to reduce the cost of searching for a solution
to a constraint satisfaction problem (CSP). On real problems that have non-
binary and non-uniform constraints it is harder to make a good choice of variable
ordering: surprisingly little is known about when and why variable ordering
heuristics perform well. In an attempt to address this problem we present initial
problem-specific investigations into variable orderings. The problem selected was
the graceful labelling of the graph 2C4 + K1 shown in figure 1.
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67

Fig. 1. The ‘double wheel’ graph 2C4 + K1.

This problem is described by Petrie and Smith [1]. Their initial model spec-
ified a static variable ordering informed by the behaviour of what are already
known to be good heuristics such as smallest remaining domain. Whilst good
results were obtained, in terms of the total number of backtracks to find all solu-
tions, other static variable orderings are significantly better. These observations
led to this more thorough investigation: more detail can be found in [2].

It is usually expected that the length of the search depends greatly on the
selection of the first variable: in fact, our results show for this problem that it
is possible to obtain good results with any choice of first variable. This suggests
that choosing a good initial order for the variables as the basis for either a static
or dynamic variable ordering heuristic may be less straightforward, at least for
some problems, than hitherto thought.
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An Adaptive Controller for Real-Time
Resolution of the Vehicle Routing Problem
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The Vehicle Routing Problem (VRP) is a mathematical model that closely ap-
proximates the real-world problems freight companies must deal with on a daily
basis. Given the dynamic nature of these problems, VRP can have different levels
of constraints and consequently many varied solving techniques. Different con-
straints on the VRP such as time constraints or the number of vehicles in a fleet,
has brought about a need for tailor-made algorithms. Many hybrid techniques to
solve the VRP have been established [1–3]. The success of these multiple strat-
egy procedures on different types of problems and the underlining evidence that
no one method has shown superiority in solving various versions of this problem
has led to the investigation of an Adaptive Controller for resolving the VRP.

This Adaptive Controller will specify strategies for each particular problem
using details such as size of dataset, number of constraint, and tightness of con-
straints. It can utilise a collection of constraint programming and metaheuristic
methods to solve a VRP. This controller guides the selection of suitable tech-
niques for any variation of the problem, based upon experience and general ex-
amination of the dataset. The system will therefore learn to choose or combine
the most suitable procedures for each particular problem.

V-LAB combines different technologies to create a multi-agent software sys-
tem that will facilitate companies competing for extra work convenient to their
individual schedule. This system will be an appropriate testing ground for the
Adaptive Controller. Here a wide range of VRPs will be generated, from small
problems with minor constraints, to large sophisticated problems with an abun-
dance of constraints. This work is funded through Enterprise Ireland’s Advanced
Technologies Research Programme.
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α-Dynamic Controllability of Simple Temporal
Problems with Preferences and Uncertainty
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Abstract. We define Simple Temporal Problems with Preferences and
Uncertainty to handle at, the same time, soft temporal preferences and
uncontrollable events. We extend the notion of Dynamic Controllability
to this new class of temporal problems and give two algorithms that,
given an STPPU in input, respectively check if the property holds and
find the highest preference level at which it holds.

Research on temporal reasoning, once exposed to the difficulties of real-life prob-
lems, can be found lacking both expressiveness and flexibility. To address the lack
of expressiveness in standard Simple Temporal Problems, the Simple Temporal
Problems with Preferences (STPP) framework merge STPs with semiring-based
soft constraints [1]. To address the lack of flexibility in execution of standard
STPs, [2] introduced Simple Temporal Problems under Uncertainty (STPUs).
While durations are given by intervals, timepoints are decided by the agent
(requirement) or decided by ‘nature’ (contingent). We define STPPUs (STPs
with Preferences and Uncertainty) a natural unifying model, where there are
requirement and contingent time points, and constraints consist of intervals and
preference functions that map the elements of the intervals into preferences. A
STPU is dynamically controllable if there is a online execution strategy that de-
pends only on observed timepoints in the past and that can always be extended
to a complete schedule whatever may happen in the future. We extend DC to
STPPUs defining α-Dynamic Controllability. An STPPU is α-DC if there is a
schedule that satisfies DC and it has an associated preference of at least α. We
propose an algorithm that checks α-DC of an STPPU by testing the DC of the
STPU obtained considering, on each constraint, the subinterval mapped in a
preference ≥ α. We also propose an algorithm that performs a binary search of
the highest preference level αmax at which α-DC holds.
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Abstract. Integration of explanations into a CSP solver is a technique
addressing difficult question “why my problem has no solution”. Besides
providing some sort of answer to the user, explanations can be used for
debugging, solving dynamic problems and in advanced search algorithms.
Explanations work pretty well with simple constraints. However, in order
to use explanations together with a global constraint, its filtering algo-
rithm (i.e. propagation) has to be enhanced to be explanation-aware.
In my work I focus on such a technique for classical scheduling filtering
algorithms like edge-finding and not-first/not-last.

When working with explanations ([2]), whenever a filtering algorithm reduces
a domain of a variable, an explanation for this reduction have to be generated
and recorded on a stack. The explanation is a set of terms (i.e. just propagated
constraint and current domains of involved variables) which justify the reduction.
When a search comes to a dead end, explanations can be used to find a subset
of problem, which is unfeasible. This subset can be very useful for a user. Also,
advanced search techniques can use this information to reduce a search space
(see e.g. [3]).

There are two main dificulties when adapting a filtering algorithm to generate
explanations: to find the actual explanation and to not slow the algorithm down
too much. In case of edge-finding ([4] and not-first/not-last [1], I found such an
algorithms with time complexity O(n2).
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Randomized restart is an effective technique for eliminating heavy-tails and im-
proving the performance of backtrack algorithms [1]. Different restart strategies
use different cutoff schedules and some of the better studied ones include a fixed-
cutoff strategy and Luby et al.’s universal strategy [2]. However, these strategies
are more of theoretical interest and in practice Walsh’s geometric strategy seems
to offer more tangible benefits [3]. Our two focuses are to firstly provide some
theoretical results on the geometric strategy and secondly to establish an em-
pirical method for studying the different strategies in a more systematic and
efficient manner.

We show that the geometric strategy has tail probability of the form e− log2 t

and thus establish the effectiveness of the strategy in removing heavy-tails. The
mean and variance of the geometric strategy are both finite, and instead of
relating these quantities to that of the optimal fixed-cutoff strategy we express
them in terms of the strategy parameters (geometric factor and scaling factor).
We believe this approach better describes the dynamics of performance change
and may be more useful for strategy tuning. For general cases where the exponent
of the geometric sequence is some polynomial function of degree m we obtain a
tail probability of the form e−(log t)1+

1
m .

Our empirical studies adopt a fast simulation based approach suitable for
observing general patterns. Given the original run-time distributions, heavy-
tail parameters, and strategy parameters as input, we numerically construct
the run-time distributions of the restart strategies. The means and variances
can be plotted against the input parameters and compared within and across
strategy families. Among other results, we confirm that skewness in the original
distribution is desirable. We also find that the best strategy in each family is
the one that most closely resembles the optimal fixed-cutoff strategy. Lastly,
plateaus are sometimes observed in the parameter space of geometric strategies,
which may be a robustness feature useful in strategy design. Generally, we found
that there is no one best strategy, but there are non-trivial patterns and biases
that deserve more in-depth study.
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Coordination programming deals with building complex software systems from
largely autonomous component systems. Cooperative constraint solving (see for
example [1]), which is widely recognized as a means to improve efficiency of
constraint solving, is an area that may benefit from techniques developed in
coordination programming, because the solvers that we want to combine are
generally autonomous applications that have diverse interfaces.

OpenSolver is an experimental constraint solver that has been designed with
solver cooperation in mind. As a result, it allows for easy coordination. It im-
plements a branch-and-prune tree search solving algorithm that is abstract in
the sense that the actual functionality is determined by software plug-ins in a
number of predefined categories, corresponding to different aspects of this solv-
ing algorithm. A special category of plug-ins covers the coordination layer of the
solver. Through a plug-in in this category, the execution of the solving algorithm
can be controlled, and data can be shared with other solvers.

The main categories of functional plug-ins are domain types for CSP vari-
ables, domain reduction functions (DRF’s) that perform the actual pruning,
schedulers that control the application of the DRF’s, branching strategies that
expand the search tree, and several categories corresponding to different aspects
of a strategy for traversing the search tree.

OpenSolver is the basis for implementing DICE (DIstributed Constraint En-
vironment) [2], a framework for cooperative constraint solving where it plays
the role of a component solver, and of a wrapper that allows other solvers to be
coordinated through it. For this purpose, a coordination layer plug-in is being
developed through which OpenSolver instances can participate in a distributed
constraint propagation algorithm, and in parallel search. These are the main
modes of solver cooperation supported by DICE. Other possible coordination
layer plug-ins are a user interface that drives a single OpenSolver as a stand-
alone configurable constraint solver, and interfaces for nested search, through
which an OpenSolver can be used as a DRF, or as a branching strategy plug-in.
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