
Introduction to Git

Dr. Chris Bourke

cbourke@cse.unl.edu

Department of Computer Science & Engineering

University of Nebraska–Lincoln

Lincoln, NE 68588, USA

August 2015

https://xkcd.com/1597/

1

mailto:cbourke@cse.unl.edu
https://xkcd.com/1597/

Contents

1 Git Overview 2
1.1 Registering . 4
1.2 Installing Git on Your Machine . 4
1.3 Creating a Repository on Github . 5

2 Using Git via Git’s Clients 5
2.1 Cloning an Existing Repository . 6
2.2 Creating & Sharing Your Own Project 7
2.3 Making, Committing & Pushing Changes 9

3 Using Git via the Command Line 9
3.1 Cloning an Existing Repository . 9
3.2 Creating & Sharing Your Own Project 10
3.3 Making, Committing & Pushing Changes 11

4 Using Git via the Eclipse 12
4.1 Cloning an Existing Repository . 12
4.2 Creating & Sharing Your Own Project 14
4.3 Making, Committing & Pushing Changes 18

5 Working With Others 18

6 Resources 18

7 Using UNL’s GitLab 19

1 Git Overview

As you develop software and make changes, add features, fix bugs, etc. it is often useful
to have a mechanism to keep track of changes and to ensure that your code base and
artifacts are well-protected by being stored on a reliable server (or multiple servers).
This allows you access to historic versions of your application’s code in case something
breaks or to “roll-back” to a previous version if a critical bug is found.

The solution is to use a revision control system that allows you to “check-in” changes to
a code base. It keeps track of all changes and allows you to “branch” a code base into a
separate copy so that you can develop features or enhancements in isolation of the main
code base (often called the “trunk” in keeping with the tree metaphor). Once a branch
is completed (and well-tested and reviewed), it can then be merged back into the main
trunk and it becomes part of the project.

You may already be familiar with similar online (or “cloud”) storage systems such as

2

Google Drive or Dropbox that allow you to share and even collaborate on documents
and other files. However, a version control system is a lot more. It essentially keeps
track of all changes made to a project and allows users to work in large teams on very
complex projects while minimizing the conflicts between changes. These systems are
not only used for organizational and backup purposes, but are absolutely essential when
developing software as part of a team. Each team member can have their own working
copy of the project code without interfering with other developer’s copies or the main
trunk. Only when separate branches have to be merged into the trunk do conflicting
changes have to be addressed. Otherwise, such a system allows multiple developers to
work on a very complex project in an organized manner.

Figure 1: Trunk, branches, and merging visualization of the Drupal project

There are several widely used revision control systems including CVS (Concurrent Ver-
sions System), SVN (Apache Subversion), and Git. CVS is mostly legacy and not as
widely used anymore. SVN is a centralized system: there is a single server that acts as
the main code repository. Individual developers can check out copies and branch copies
(which are also stored in the main repository). They also check all changes into the
main repository.

Git, however, is a decentralized system; multiple servers can act as repositories, but
each copy on each developer’s own machine is also a complete revision copy. Code
commits are committed to the local repository. Merging a branch into another requires
a push/pull request. Decentralizing the system means that anyone’s machine can act as
a code repository and can lead to wider collaboration and independence since different
parties are no longer dependent on one master repository.

Git itself is a version control system that can be installed on any server (UNL has a Git
repository setup at https://git.unl.edu). However, we’ll primarily focus on Github

3

https://git.unl.edu

(https://github.com), the main website used by thousands of developers across the
globe.

The rest of this tutorial will describe how to use Github for use in your courses and to
manage and share your code among your peers for group assignments and projects.

1.1 Registering

You can register for a GitHub account at https://github.com/. However, it is strongly
recommended that you get a free “student” account. A normal, free GitHub account
does not allow you to create “private” repositories. Any code you push to GitHub is
automatically public and accessible by anyone. This is okay in general, however many
of your courses will have Academic Integrity policies that will require you to not share
code. A student account allows you up to 5 private repositories (normally $7/month as
of this writing) so that you can comply with Academic Integrity policies.

To get a student account first register at GitHub using an email account that ends in
.edu (to “prove” you’re a student). Then go to https://education.github.com/pack

and register for a “student pack.” Sign up early as some have reported long wait times
to receive their student pack. The student pack contains a lot of other free and reduced
cost software packages, tools and services that may be of interest.

1.2 Installing Git on Your Machine

If you want to use Git on your own personal machine, then you may need to install a
Git client. There are many options out there and you are encouraged to explore them,
however the following suggestions are all free and open source.

• Git has released its own graphical user interface clients which are available for free
for both Windows and Mac:

– Windows: https://windows.github.com/

– Mac: https://mac.github.com

See section 2 for instructions on using the client.

• If you will be using the Eclipse IDE (http://www.eclipse.org/downloads/) for
development, the most recent versions already come with a Git client. Eclipse will
work on any system. See Section 4 for using Git with Eclipse.

• If you use Windows and prefer to use a command line interface, you can download
and install TortoiseGit (https://code.google.com/p/tortoisegit/) a Windows
Shell Interface to Git. See Section 3 for using Git via the command line interface.

• If you use Mac and want the command line version of Git, you can download and

4

https://github.com
https://github.com/
https://education.github.com/pack
https://windows.github.com/
https://mac.github.com
http://www.eclipse.org/downloads/
https://code.google.com/p/tortoisegit/

install here: http://www.git-scm.com/download/mac. Alternatively, you can in-
stall Git using a tool like MacPorts:
http://iamphioxus.org/2013/04/20/installing-git-via-macports-on-mac-osx/.
See Section 3 for using Git via the command line interface.

1.3 Creating a Repository on Github

You will eventually want to publish (“push”) your project code to Github. To do this
you’ll first need to create a repository on Github’s site:

1. Login to Github (https://github.com/) and click on the “repositories” tab.

2. Create a new repository (see Figure 2) with the name that will match your project
folder (the names do not have to match, but it keeps things organized). Provide a
short description and choose whether or not to make it public or private depending
on whether or not you are allowed to share your code with your peers.

You may choose to include a README file and/or establish a license (which
creates a LICENSE file). However, for this tutorial we will assume that you start
with an empty repo on Github. If you choose to create these files some extra steps
may be necessary.

Figure 2: Creating a New Repository on GitHub

2 Using Git via Git’s Clients

In this section we’ll explore the basic uses of Git by using Git’s client which pro-
vides a Graphical User Interface (GUI) to Git. A complete online help guide is avail-
able here: https://mac.github.com/help.html (Mac) and here: https://windows.

github.com/help.html (Windows).

Advantage: nice, clean, intuitive interface with GitHub-style diff markup

Disadvantage: requires a separate client; some tasks are better done on GitHub.com
or are difficult to do with the client alone.

Though the clients should be almost identical for Mac and Windows, there may be some
slight differences; this tutorial was written using the Mac version.

5

http://www.git-scm.com/download/mac
http://iamphioxus.org/2013/04/20/installing-git-via-macports-on-mac-osx/
https://github.com/
https://github.com/
https://mac.github.com/help.html
https://windows.github.com/help.html
https://windows.github.com/help.html
https://github.com

2.1 Cloning an Existing Repository

To clone an existing repository hosted on GitHub, point your browser to its URL. On its
page there will be several options to clone, fork or download the repository (see Figure
3).

Figure 3: Forking and/or Cloning on GitHub.com

If you click the “Clone in Desktop” option, you’ll be prompted to allow the GitHub
client to open and clone the repository to your local file system (you will be prompted
to indicate where unless you’ve setup a permanent clone path/directory). You will be
able to make changes to your local copy but you will not be able to push changes to the
original project unless you are a collaborator with write permission. However, you can
create a new repository in your GitHub account and push the project back to your own
repository.

A “fork” essentially does this in reverse. If you choose this option, a new repository will
be created in your account and the project will be copied to this new repository. Then,
in your Git client, you can clone it as a local copy to work on by clicking the “Add a

6

https://github.com

repository” button in the Git client as depicted in Figure 4.

Figure 4: Cloning in the GitHub Client

2.2 Creating & Sharing Your Own Project

To share/publish a project to GitHub, you can start with an existing project or create
a repository and then start working on your project.

1. Open your Git hub client and click the “Add a repository” button as in Figure 4.

2. Select the “Create” tab and select the directory of the project you wish to create
a repository with as in Figure 5.

Figure 5: Creating a Repository in the GitHub Client

3. Upon success, the Git client should appear as in Figure 6; you can now make
an initial commit by filling in the commit message and description and clicking
“Commit to master”

7

Figure 6: Committing in the GitHub Client

4. You can now “publish” your repository to GitHub by clicking the “Publish” icon
in the top right of the Git client

5. This opens a new dialog where you can specify the name and description of the
project as it will appear on GitHub.

To finish up, click the “Push Repository” button and observe your new project on
GitHub

8

2.3 Making, Committing & Pushing Changes

You can make changes to your local project and the changes will automatically be
detected in the Git client. As in the previous step-by-step process, you can select a
subset of changes to commit. Once committed, you can push the changes by clicking
the “Sync” icon at the top right:

3 Using Git via the Command Line

In this section we’ll explore the basic uses of git by using the Command Line Interface
(CLI) utilities. This section assumes basic familiarity with the unix command line.

Advantage: quick, straightforward access to git

Disadvantage: requires good working knowledge of the command line; proficiency takes
longer

3.1 Cloning an Existing Repository

The first thing you may want to do is to “clone” an existing project that has already
been published on Github. You may do this if your instructor has provided some code
for assignments or labs.

To start, you can verify that git has been properly installed on your machine by executing
the following:

git --version

which may output something like:

git version 1.9.5 (Apple Git-50.3)

though your specific version may differ. However, if this command does not work, you
will need to troubleshoot your installation before continuing.

1. Move to the directory where you want the project files to be placed. Usually this
is your “workspace” folder.

2. Execute the following command:

git clone https://github.com/project/url

9

where the URL is replaced with the URL of the project that you want to clone. For
example, if you wanted to clone Lab 01 for CSCE 155E/H, which has the url https:
//github.com/cbourke/CSCE155-C-Lab01, you would execute the command:

git clone https://github.com/cbourke/CSCE155-C-Lab01

3. If successful, you should see a message like the following:

Cloning into ’CSCE155-C-Lab01’...

remote: Counting objects: 9, done.

remote: Compressing objects: 100% (7/7), done.

remote: Total 9 (delta 2), reused 9 (delta 2), pack-reused 0

Unpacking objects: 100% (9/9), done.

A new directory/file structure should now exist in your directory and you can start
working with/editing the files.

If the owner of the repository that you just cloned ever makes changes, you can “pull”
those changes from the repository by using git pull to pull all changes.

3.2 Creating & Sharing Your Own Project

1. Before continuing you will need to create a repository on Github. To do this, refer
to the steps in Section 1.3.

2. Setup your local repository from the command line by going to your project direc-
tory and executing the following commands (approximate expected outputs have
been included here:

• Initialize your directory using:

git init

which should have output similar to:

Initialized empty Git repository in /your/directory/foo/.git/

• Add all files, directories and subdirectories to your git index using:

git add --all

• Commit your files using the following. The -m specifies that a commit
message follows:

git commit -m "Initial Commit"

Output should resemble:

10

https://github.com/cbourke/CSCE155-C-Lab01
https://github.com/cbourke/CSCE155-C-Lab01

[master (root-commit) 7a3fb99] Initial Commit

2 files changed, 24 insertions(+)

create mode 100644 README.md

create mode 100755 hello.c

• Associate your repo with the repo on GitHub using the following command:

git remote add origin https://github.com/login/PROJECT.git

where the URL is replaced with the URL for your project.

• Push your commit to the remote repository using the following command:

git push -u origin master

Output should resemble something like:

Counting objects: 4, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 577 bytes | 0 bytes/s, done.

Total 4 (delta 0), reused 0 (delta 0)

To https://github.com/login/PROJECT.git

* [new branch] master -> master

Branch master set up to track remote branch master from origin.

3. Refresh your browser’s Github page to verify the changes were pushed remotely

3.3 Making, Committing & Pushing Changes

Now that your code is committed to Github’s servers, you’ll eventually want to make
changes to current files and/or add/remove files and commit these changes. Once you
have made your changes, you can essentially repeat part of the process above:

git add --all

git commit -m "Update Message"

git push -u origin master

Note:

• The "Update Message" should be more descriptive: it is used to document the
changes you’ve made for this commit. It is best practice to be as descriptive as
possible as to your changes.

• The git add --all command adds all files in the current directory as well as
all of its subdirectories to the commit index. If you want to be more precise and
intentional, you can add individual files using git add foo.txt , etc.

11

4 Using Git via the Eclipse

Eclipse is an industry-standard Integrated Development Environment (IDE) that inte-
grates code editors (with markup) and build tools to streamline the development process.
There are many plugins and utilities that can be used with Eclipse to interact with git.
However, the latest version of Eclipse (Luna as of this writing) supports git natively.
The process below describes how to use this functionality.

Advantage: using a single IDE/interface keeps things simple

Disadvantage: interface can be a bit clunky; it is more difficult to see differences

4.1 Cloning an Existing Repository

1. First we need a Git perspective (a context in the Eclipse User Interface that will
allow us to work with Git). To open the Git perspective, click on the “Open
Perspective” tab in the upper right:

Select “Git” from the menu and click OK

2. Click the “Clone a Git repository” in the Git Repositories navigation menu:

3. Copy/past or type into the URI field, the URL of the project that you want
to clone. For example, if you wanted to clone Lab 01 for CSCE 155E/H, you
would use the URL https://github.com/cbourke/CSCE155-Java-Lab01 Then
click “Next”

12

https://github.com/cbourke/CSCE155-Java-Lab01

4. Once Eclipse has grabbed the project, the “master” branch should be selected
(checkbox); click “Next” again.

5. Select the directory where you want your project to be saved. Caution: the default
option may not correspond to your default workspace. You may want to change
it to your workspace, but the choice is yours. Also mark the “Import all existing
projects after clone finishes” checkbox option or you will need to manually import
the cloned project into Eclipse.

13

6. Switch back to your Java or JavaEE perspective and you can see your cloned
project.

Note: this process assumes that the project you are cloning originated from an Eclipse
project. Eclipse expects that files be organized in a particular way and that configuration
files are present that describe how the project is setup. If the project was not an Eclipse
project, you’ll need to clone/setup the project in Eclipse manually.

If the owner of the repository that you just cloned ever makes changes, you can “pull”
those changes from the repository by right-clicking the repo in the Git Perspective and
selecting “Pull.”

4.2 Creating & Sharing Your Own Project

Create and develop your own project in Eclipse and get it to the point where you want
to make an initial commit and push to Github. Then do the following:

1. Before continuing you will need to create a repository on Github. To do this, refer
to the steps in Section 1.3.

2. Open the Git Perspective in Eclipse.

3. Click the “Create a new repository and add it to this view” icon:

4. Select the project folder for the Eclipse project you want to add as a git repo

14

5. Expand the directory structures and select the file(s) you wish to add to the index
(that is, the files you want to “stage” for your commit), right click and “add to
index”.

Note: adding a folder (or the entire working directory) to git’s index adds all files
and subfolders within that folder. You can instead, highlight individual files if you
want to be more precise or intentional with each commit.

6. Right click the repo and select “Commit..”

15

7. Enter a commit message; Initial Commit is good for the first commit, but each
commit message should be descriptive and document the changes that have been
made. Select the checkboxes of all the files you wish to commit. Click “Commit”

Note: you can see the differences in each file if you double click the file.

8. Right click the repo again and select Remote → Push

9. Enter the URL of the repo you created on http://github.com. Then enter your
Github user name and password.

16

http://github.com

Note: this will only work for your repositories or repos on which you are a collab-
orator and have been granted write access.

10. Select “master” from the “Source ref” menu and click “Add Spec”. The branch
should now appear in the “Specifications for push” menu. You can now click
“Finish”.

11. If successful, a new dialog confirming the push should appear and your files should
be updated on Github.

17

4.3 Making, Committing & Pushing Changes

Now that your code is committed to Github’s servers, you’ll eventually want to make
changes to current files and/or add/remove files and commit these changes. Once you
have made your changes, you can essentially repeat part of the process above; however,
steps 1–4 will not be necessary.

Note that you don’t need to push every commit to Github. You can make as many
local commits as you want. The entire history and all the diffs (differences) are tracked
between each commit.

5 Working With Others

As previously mentioned, you will not be able to pull from a private repo. Nor will
you be able to push to a repo that you do not own or that you are not a collaborator
of. However, you will want to do this when you work with other individuals either as
partners for an assignment or as a group in a group project (assuming that your course
instructor’s policies allow this of course).

To do this, simply create a repository that will be used by the group as outlined by one
of the methods above. You can then grant read/write access to your others by making
them collaborators on the project. You can easily do this in Github by following the
instructions at this link:

https://help.github.com/articles/adding-collaborators-to-a-personal-repository/

Once you’ve all been added, each of you should be able to push/pull from the same
repository.

6 Resources

This tutorial is only an introduction to get you started. Git is a complex tool that takes
a while to master. There are many other issues (branching, resolving conflicts, merging,
etc.) that will you eventually encounter. Below are some additional resources that may
help you.

• Git Reference: http://gitref.org/

• Git Glossary: https://help.github.com/articles/github-glossary/

• GitHub’s walkthrough for both Windows and Mac:
https://help.github.com/articles/set-up-git/

• GitHub Desktop (released 2015/08/12):

18

https://help.github.com/articles/adding-collaborators-to-a-personal-repository/
http://gitref.org/
https://help.github.com/articles/github-glossary/
https://help.github.com/articles/set-up-git/

https://github.com/blog/2046-github-desktop-is-now-available

• GitHub’s Tutorial/Challenge:
https://try.github.io/levels/1/challenges/1

• Workflow tutorial using git:
https://www.atlassian.com/git/tutorials/comparing-workflows/centralized-workflow

• Git from the inside out:
http://maryrosecook.com/blog/post/git-from-the-inside-out

• Github Video Tutorial: https://www.youtube.com/watch?v=0fKg7e37bQE

• Lifehacker tutorial on using git:
http://lifehacker.com/5983680/how-the-heck-do-i-use-github

• Eclipse Mars now comes with Git Flow! http://eclipsesource.com/blogs/

2015/06/22/git-flow-top-eclipse-mars-feature-3/

• 19 Tips for Everyday Git Use http://www.alexkras.com/19-git-tips-for-everyday-use/

7 Using UNL’s GitLab

Git software is free and open source (FOSS), but GitHub.com is a private company that
has to pay to keep the lights on and make a profit. The software that GitHub runs on
is closed and proprietary; they could choose to shut off access tomorrow. The venture
capitalists that back them could decide to call in their chips and completely change
their business model. Even as it stands, free GitHub accounts are limited to public
repositories only. It is important to consider the alternatives.

• Bitbucket (https://bitbucket.org/) allows free unlimited private repositories
but limits the number of collaborators for free accounts (to 5).

• Visual Studio Online (https://www.visualstudio.com/en-us/version-control-vs)
offers free, unlimited private repos with additional features from Microsoft.

• GitLab (https://about.gitlab.com/) is a GitHub like solution that offers free,
unlimited private repos hosted on their servers.

There are many more alternatives each with their own features and business model.

UNL hosts its own GitLab instance. GitLab is software similar to GitHub but is free and
open source, offering unlimited private repositories and unlimited users. UNL’s instance
can be found at https://git.unl.edu and is free for all students, faculty, and staff.

You can login with your My.UNL login credentials (the same that you use for Black-
board). The look and feel will be very similar to GitHub. To get started, GitLab has
an introductory video available to help you get started: https://about.gitlab.com/

19

https://github.com/blog/2046-github-desktop-is-now-available
https://try.github.io/levels/1/challenges/1
https://www.atlassian.com/git/tutorials/comparing-workflows/centralized-workflow
http://maryrosecook.com/blog/post/git-from-the-inside-out
https://www.youtube.com/watch?v=0fKg7e37bQE
http://lifehacker.com/5983680/how-the-heck-do-i-use-github
http://eclipsesource.com/blogs/2015/06/22/git-flow-top-eclipse-mars-feature-3/
http://eclipsesource.com/blogs/2015/06/22/git-flow-top-eclipse-mars-feature-3/
http://www.alexkras.com/19-git-tips-for-everyday-use/
https://github.com/
https://bitbucket.org/
https://www.visualstudio.com/en-us/version-control-vs
https://about.gitlab.com/
https://git.unl.edu
https://about.gitlab.com/2014/02/26/getting-started-with-gitlab/
https://about.gitlab.com/2014/02/26/getting-started-with-gitlab/

2014/02/26/getting-started-with-gitlab/. The full documentation can be found
here: http://doc.gitlab.com/ce/.

1. Create a repository on GitLab, make it private if you don’t want everyone to be
able to access it.

2. Initialize the repository on your local file system and make an initial commit as
previously:

git init

git add --all

git commit -m "Initial Commit"

git remote add origin git@git.unl.edu:login/projectName.git

3. You won’t be able to push your project to GitLab though as UNL’s GitLab does
not support password authentication (since to login to GitLab, you use a Single
Sign On (SSO) service). Instead, you need to generate an SSH key and add it to
your profile on GitLab.

a) Follow this documentation (Windows and Mac) to generate an SSH key:
http://doc.gitlab.com/ce/ssh/README.html.

b) Go to GitLab and click “Profile Settings” and go to the “SSH Keys” tab.
Click “Add SSH Key” and copy and paste the SSH key.

4. Now you can push your repo to GitLab:

git push -u origin master

likely, it will prompt you for your passphrase (if you established one, which you
should have!) and it will push the code.

To collaborate with other students, you can do the following.

1. Navigate to the repository you wish to collaborate on.

2. Click the “Settings” tab.

3. Click the “Members” navigation tab on the left

4. Click “New project member”

5. Add a user by searching for their username or actual name (they’ll need to be
registered first).

6. Select the appropriate level of access (likely “Master” to allow them to commit
changes); full documentation on what each level can do is available here: https://
gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/permissions/permissions.

md

There are many other alternatives as well; here is a pretty good comparison: http:

//en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities.

20

https://about.gitlab.com/2014/02/26/getting-started-with-gitlab/
https://about.gitlab.com/2014/02/26/getting-started-with-gitlab/
http://doc.gitlab.com/ce/
http://doc.gitlab.com/ce/ssh/README.html
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/permissions/permissions.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/permissions/permissions.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/permissions/permissions.md
http://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities

	Git Overview
	Registering
	Installing Git on Your Machine
	Creating a Repository on Github

	Using Git via Git's Clients
	Cloning an Existing Repository
	Creating & Sharing Your Own Project
	Making, Committing & Pushing Changes

	Using Git via the Command Line
	Cloning an Existing Repository
	Creating & Sharing Your Own Project
	Making, Committing & Pushing Changes

	Using Git via the Eclipse
	Cloning an Existing Repository
	Creating & Sharing Your Own Project
	Making, Committing & Pushing Changes

	Working With Others
	Resources
	Using UNL's GitLab

