Unity /Vive Cheat Sheet

Terminology Notes

e Static game objects are objects that do not move in the game; it is best practice to
mark non-moving objects (walls, floors, etc.) as static so that information about them
can be precomputed. The static checkbox is in the top right of the inspector. https:
//docs.unity3d.com/Manual/StaticObjects.html

e Kinematic: game objects with rigid bodies are normally acted upon by physics. That
is, they receive forces and torque (twisting) when they collide with other objects or other
objects collide with them. However, if a rigid body is set to be kinematic then it essentially
shuts off their interaction with normal physics (gravity is another matter that can be
independently turned on/off). Objects can still collide with them, but they are unaffected
and they do not affect the colliding objects. Instead they pass through as if it were a
ghost. Use a kinematic rigid body if you want to “manually” move the object through
the game environment through code rather than have it simply react to the environment’s
physics.

e FixedUpdate() vs. Update() vs. LateUpdate() — FixedUpdate() is (usually)
called multiple times per frame at a predefined interval (thus there is no need to tie
your code to a fixed time frame using Time.deltaTime ) while Update() is called once

per frame and LateUpdate() is called once per frame after Update() . As a general rule,
time-dependent physics calculations should be done in FixedUpdate() , game mechanics

should be done in Update() and LateUpdate() should contain any code that relies on
the game mechanics being updated first. More: https://docs.unity3d.com/Manual/
ExecutionOrder.html

Tips & Tricks

e Often you may want to export a 3D asset from Maya or similar program into Unity. The
recommended way is to export it as a .fbx or .obj file. If you use .fbx you will
also likely want to scale the objects by selecting the file in the project view, and in the
inspector changing the scale factor to offset the file scale listed. For example, if the file
scale is 0.01, set the scale factor to 100.


https://docs.unity3d.com/Manual/StaticObjects.html
https://docs.unity3d.com/Manual/StaticObjects.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

e Often in Unity one script needs to access code in another script. Scripts are generally at-
tached to a GameObject (https://docs.unity3d.com/ScriptReference/Gamelbject.

html). Suppose that the script’s name is GameData . If we wanted access to this script’s
public methods, we can get the script itself using the following parameterized code.

1 GameObject go = ...;
2 GameData gd = go.getComponent<GameData>();

Assuming that you've gotten a reference to the GameObject (the variable go above),
then you can use the getComponent method to get the script. The <GameData> syntax
is a parameterization (similar to Java or C++’s templates). The type in the parameter-
ization needs to match the type of component you intend to get. For example, if you
wanted a RigidBody instead, you would use

1 GameObject go = ...;
2 RigidBody rb = go.getComponent<RigidBody>() ;

More Resources

e A (more current) video tutorial series:
https://www.youtube.com/watch?v=5C6zr4Q5A1A
https://www.youtube.com/watch?v=MK0c8J877tI

e Video tutorial on using the Skeleton System:
https://www.youtube.com/watch?v=a9EBILq2ep8

e Super in-depth tutorial on Unity/Vive:

https://developer.valvesoftware.com/wiki/SteamVR/Environments/Environment_Tutorial:
_Hammer_and_Basic_Lighting


https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://www.youtube.com/watch?v=5C6zr4Q5AlA
https://www.youtube.com/watch?v=MKOc8J877tI
https://www.youtube.com/watch?v=a9EBILq2ep8
https://developer.valvesoftware.com/wiki/SteamVR/Environments/Environment_Tutorial:_Hammer_and_Basic_Lighting
https://developer.valvesoftware.com/wiki/SteamVR/Environments/Environment_Tutorial:_Hammer_and_Basic_Lighting

