
Number Theory – Applications

Computer Science & Engineering 235: Discrete Mathematics

Christopher M. Bourke
cbourke@cse.unl.edu

Number Theory: Applications

Results from Number Theory have many applications in
mathematics as well as in practical applications including security,
memory management, authentication, coding theory, etc. We will
only examine (in breadth) a few here.

I Hash Functions

I Pseudorandom Numbers

I Fast Arithmetic Operations

I Cryptography

Hash Functions I

A hash function is a function that maps a large domain to a
smaller codomain

I Resulting value is a key

I Clearly not one-to-one

I Values mapped to the same element: collisions

I Applications in security (cryptographic hash functions),
checksums (data integrity), error correcting codes (information
theory), Map data structures (Information retrieval)

Hash Functions II

Notation: Zm = {0, 1, 2, . . . ,m− 2,m− 1}
Define a hash function h : Z→ Zm as

h(k) = k mod m

That is, h maps all integers into a subset of size m by computing
the remainder of k/m.

Hash Functions III

In general, a hash function should have the following properties

I It must be easily computable.

I It should distribute items as evenly as possible among all
codomain values.

I Good hash functions: choose m to be a prime, should be
dependant on every bit of k

I It must be onto.

Hashing is so useful that many languages have support for hashing
(perl, python). Hash functions are also a useful security tool for
electronic signatures (MD5, SHA-x).

Pseudorandom Numbers

Many applications, such as randomized algorithms, require that we
have access to a random source of information (random numbers).

I No known truly random source in existence

I Some sources (radioactive decay, thermal noise, cosmic rays)
are only weak random sources

I Weak sources only appear random because we do not know
the underlying probability distribution of events

Pseudorandom numbers are numbers that are generated from weak
random sources such that their distribution is “random enough”.

Linear Congruence Method I

One method for generating pseudorandom numbers is the linear
congruential method.

Choose four integers:

I m, the modulus,

I a, the multiplier,

I c the increment and

I x0 the seed.

Such that the following hold:

I 2 ≤ a < m

I 0 ≤ c < m

I 0 ≤ xo < m

Linear Congruence Method II

Our goal will be to generate a sequence of pseudorandom numbers,

{xn}∞n=1

with 0 ≤ xn ≤ m by using the congruence

xn+1 = (axn + c) mod m

Linear Congruence Method III

For certain choices of m, a, c, x0, the sequence {xn} becomes
periodic. That is, after a certain point, the sequence begins to
repeat. Low periods lead to poor generators.

Furthermore, some choices are better than others; a generator that
creates a sequence 0, 5, 0, 5, 0, 5, . . . is obvious bad—its not
uniformly distributed.

For these reasons, very large numbers are used in practice.

Linear Congruence Method
Example

Example

Let m = 17, a = 5, c = 2, x0 = 3. Then the sequence is as follows.

I xn+1 = (axn + c) mod m

I x1 = (5 · x0 + 2) mod 17 = 0

I x2 = (5 · x1 + 2) mod 17 = 2

I x3 = (5 · x2 + 2) mod 17 = 12

I x4 = (5 · x3 + 2) mod 17 = 11

I x5 = (5 · x4 + 2) mod 17 = 6

I x6 = (5 · x5 + 2) mod 17 = 15

I x7 = (5 · x6 + 2) mod 17 = 9

I x8 = (5 · x7 + 2) mod 17 = 13 etc.

Representation of Integers I

Any integer n can be uniquely expressed in any base b by the
following expression.

n = akb
k + ak−1b

k−1 + · · ·+ a2b
2 + a1b+ a0

In the expression, each coefficient ai is an integer between 0 and
b− 1 inclusive.

Representation of Integers II

For b = 2, we have the usual binary representation, b = 8 gives us
octal, b = 16 gives us hexadecimal while b = 10 gives us our usual
decimal system.

We use the notation

(akak−1 · · · a2a1a0)b

For b = 10, we omit the parentheses and subscript. We also omit
leading 0s.

Representation of Integers
Example

Example

(B9)16 = 11 · 161 + 9 · 160

= 176 + 9 = 185
(271)8 = 2 · 82 + 7 · 81 + 1 · 80 = 128 + 56 + 1

= 185
(1011 1001)2 = 1 · 27 + 0 · 26 + 1 · 25 + 1 · 24 + 1 · 23

+0 · 22 + 0 · 21 + 1 · 20 = 185

You can verify the following on your own:

134 = (1000 0110)2 = (206)8 = (86)16

44613 = (1010 1110 0100 0101)2 = (127105)8 = (AE45)16

Base Expansion
Algorithm

There is a simple and obvious algorithm to compute the base b
expansion of an integer.

Base b Expansion

Input : A nonnegative integer n and a base b.

Output : The base b expansion of n.

1 q = n

2 k = 0

3 while q 6= 0 do
4 ak = q mod b

5 q = b q
b
c

6 k = k + 1

7 end

8 output (ak−1ak−2 · · · a1a0)

What is its complexity?

Integer Operations I

Say we want to compute

αn mod m

where n is a very large integer.

We could simply compute

α · α · · · · · α︸ ︷︷ ︸
n times

We make sure to mod each time we multiply to prevent the
product from growing too big. This requires O(n) operations.

Integer Operations II

Is this efficient? What is the input size?

Consider: n =
1705566317424998551470821443128983228242358667740233493

I log10(n) ≈ 54.23, so about 55 digits

I log2(n) ≈ 180.15, so 181 bits

I Straight-forward multpilication: n− 1 multiplications

I At 1 trillion multiplications per second: 5.4046× 1034 years

I 54 Decillion years (sun only has about 5 billion, 5× 109 years
left)

I Good luck

Integer Operations III

We can do better: perform a repeated squaring of the base,

α, α2, α4, α8, . . .

requiring log (n) operations instead.

Formally, we note that

αn = αbk2
k+bk−12

k−1+···+b12+b0

= αbk2
k × αbk−12

k−1 × · · · × α2b1 × αb0

So we can compute αn by evaluating each term as

αbi2
i

=

{
α2i if bi = 1
1 if bi = 0

Integer Operations IV

We can save computation because we can simply square previous
values:

α2i = (α2i−1
)2

We still evaluate each term independently however, since we will
need it in the next term (though the accumulated value is only
multiplied by 1).

Integer Operations V

Modular Exponentiation

Input : Integers α,m and n = (bkbk−1 . . . b1b0) in binary.

Output : αn mod m

1 term = α

2 if (b0 = 1) then
3 product = α

4 end

5 else
6 product = 1

7 end

8 for i = 1 . . . k do
9 term = term× term mod m

10 if (bi = 1) then
11 product = product× term mod m

12 end

13 end

14 output product

Binary Exponentiation
Example

Example

Compute 1226 mod 17 using Modular Exponentiation.

1 1 0 1 0 = (26)2
4 3 2 1 - i

1 16 13 8 12 term

9 9 8 8 1 product

Thus,
1226 mod 17 = 9

Euclid’s Algorithm

Recall that we can find the gcd (and thus lcm) by finding the
prime factorization of the two integers.

However, the only algorithms known for doing this are exponential
(indeed, computer security depends on this).

We can, however, compute the gcd in polynomial time using
Euclid’s Algorithm.

Euclid’s Algorithm I
Intuition

Consider finding the gcd(184, 1768). Dividing the large by the
smaller, we get that

1768 = 184 · 9 + 112

Using algebra, we can reason that any divisor of 184 and 1768
must also be a divisor of the remainder, 112. Thus,

gcd(184, 1768) = gcd(184, 112)

Euclid’s Algorithm II
Intuition

Continuing with our division we eventually get that

gcd(184, 1768) = gcd(184, 112)
= gcd(112, 72)
= gcd(72, 40)
= gcd(40, 32)
= gcd(32, 8) = 8

This concept is formally stated in the following Lemma.

Lemma

Let a = bq + r, a, b, q, r ∈ Z, then

gcd(a, b) = gcd(b, r)

Euclid’s Algorithm III
Intuition

The algorithm we present here is actually the Extended Euclidean
Algorithm. It keeps track of more information to find integers such
that the gcd can be expressed as a linear combination.

Theorem

If a and b are positive integers, then there exist integers s, t such
that

gcd(a, b) = sa+ tb

Input : Two positive integers a, b.

Output : r = gcd(a, b) and s, t such that sa+ tb = gcd(a, b).

1 a0 = a, b0 = b

2 t0 = 0, t = 1

3 s0 = 1, s = 0

4 q = ba0
b0
c

5 r = a0 − qb0
6 while r > 0 do
7 temp = t0 − qt
8 t0 = t, t = temp

9 temp = s0 − qs
10 s0 = s, s = temp

11 a0 = b0, b0 = r

12 q = ba0
b0
c, r = a0 − qb0

13 if r > 0 then
14 gcd = r

15 end

16 end

17 output gcd, s, t

Algorithm 1: ExtendedEuclideanAlgorithm

Euclid’s Algorithm
Example

a0 b0 t0 t s0 s q r

27 58 0 1 1 0 0 27

58 27 1 0 0 1 2 4

27 4 0 1 1 -2 6 3

4 3 1 -6 -2 13 1 1

3 1 -6 7 13 -15 3 0

Therefore,
gcd(27, 58) = 1 = (−15)27 + (7)58

Euclid’s Algorithm
Example

Example

Compute gcd(25480, 26775) and find s, t such that

gcd(25480, 26775) = 25480s+ 26775t

a0 b0 t0 t s0 s q r
25480 26775 0 1 1 0 0 25480
26775 25480 1 0 0 1 1 1295
25480 1295 0 1 1 -1 19 875
1295 875 1 -19 -1 20 1 420
875 420 -19 20 20 -21 2 35
420 35 20 -59 -21 62 12 0

Therefore,

gcd(25480, 26775) = 35 = (62)25480 + (−59)26775

Chinese Remainder Theorem

We’ve already seen an application of linear congruences
(pseudorandom number generators).

However, systems of linear congruences also have many
applications (as we will see).

A system of linear congruences is simply a set of equivalences over
a single variable.

Example

x ≡ 5(mod 2)
x ≡ 1(mod 5)
x ≡ 6(mod 9)

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m1,m2, . . . ,mn be pairwise relatively prime positive integers.
The system

x ≡ a1(mod m1)
x ≡ a2(mod m2)

...
x ≡ an(mod mn)

has a unique solution modulo m = m1m2 · · ·mn.

How do we find such a solution?

Chinese Remainder Theorem
Proof/Procedure

This is a good example of a constructive proof; the construction
gives us a procedure by which to solve the system. The process is
as follows.

1. Compute m = m1m2 · · ·mn.

2. For each k = 1, 2, . . . , n compute

Mk =
m

mk

3. For each k = 1, 2, . . . , n compute the inverse, yk of
Mk mod mk (note these are guaranteed to exist by a
Theorem in the previous slide set).

4. The solution is the sum

x =

n∑

k=1

akMkyk

Chinese Remainder Theorem I
Example

Example

Give the unique solution to the system

x ≡ 2(mod 4)
x ≡ 1(mod 5)
x ≡ 6(mod 7)
x ≡ 3(mod 9)

First, m = 4 · 5 · 7 · 9 = 1260 and

M1 = 1260
4 = 315

M2 = 1260
5 = 252

M3 = 1260
7 = 180

M4 = 1260
9 = 140

Chinese Remainder Theorem II
Example

The inverses of each of these is y1 = 3, y2 = 3, y3 = 3 and y4 = 2.
Therefore, the unique solution is

x = a1M1y1 + a2M2y2 + a3M3y3 + a4M4y4
= 2 · 315 · 3 + 1 · 252 · 3 + 6 · 180 · 3 + 3 · 140 · 2
= 6726 mod 1260 = 426

Chinese Remainder Theorem
Wait, what?

To solve the system in the previous example, it was necessary to
determine the inverses of Mk modulo mk—how’d we do that?

One way (as in this case) is to try every single element a,
2 ≤ a ≤ m− 1 to see if

aMk ≡ 1(mod m)

But there is a more efficient way that we already know how to
do—Euclid’s Algorithm!

Computing Inverses

Lemma

Let a, b be relatively prime. Then the linear combination computed
by the Extended Euclidean Algorithm,

gcd(a, b) = sa+ tb

gives the inverse of a modulo b; i.e. s = a−1 modulo b.

Note that t = b−1 modulo a.

Also note that it may be necessary to take the modulo of the result.

Chinese Remainder Representations

In many applications, it is necessary to perform simple arithmetic
operations on very large integers.

Such operations become inefficient if we perform them bitwise.

Instead, we can use Chinese Remainder Representations to perform
arithmetic operations of large integers using smaller integers saving
computations. Once operations have been performed, we can
uniquely recover the large integer result.

Chinese Remainder Representations

Lemma

Let m1,m2, . . . ,mn be pairwise relatively prime integers, mi ≥ 2.
Let

m = m1m2 · · ·mn

Then every integer a, 0 ≤ a < m can be uniquely represented by n
remainders over mi; i.e.

(a mod m1, a mod m2, . . . , a mod mn)

Chinese Remainder Representations I
Example

Example

Let m1 = 47,m2 = 48,m3 = 49,m4 = 53. Compute
2, 459, 123 + 789, 123 using Chinese Remainder Representations.

By the previous lemma, we can represent any integer up to
5,858,832 by four integers all less than 53.

First,
2, 459, 123 mod 47 = 36
2, 459, 123 mod 48 = 35
2, 459, 123 mod 49 = 9
2, 459, 123 mod 53 = 29

Chinese Remainder Representations II
Example

Next,
789, 123 mod 47 = 40
789, 123 mod 48 = 3
789, 123 mod 49 = 27
789, 123 mod 53 = 6

So we’ve reduced our calculations to computing (coordinate wise)
the addition:

(36, 35, 9, 29) + (40, 3, 27, 6) = (76, 38, 36, 35)
= (29, 38, 36, 35)

Chinese Remainder Representations III
ExampleNow we wish to recover the result, so we solve the system of linear

congruences,
x ≡ 29(mod 47)
x ≡ 38(mod 48)
x ≡ 36(mod 49)
x ≡ 35(mod 53)

M1 = 124656
M2 = 122059
M3 = 119568
M4 = 110544

We use the Extended Euclidean Algorithm to find the inverses of
each of these w.r.t. the appropriate modulus:

y1 = 4
y2 = 19
y3 = 43
y4 = 34

Chinese Remainder Representations IV
Example

And so we have that

x = 29(124656 mod 47)4 + 38(122059 mod 48)19+
36(119568 mod 49)43 + 35(110544 mod 53)34

= 3, 248, 246
= 2, 459, 123 + 789, 123

Caesar Cipher I

Cryptography is the study of secure communication via encryption.

One of the earliest uses was in ancient Rome and involved what is
now known as a Caesar cipher.

This simple encryption system involves a shift of letters in a fixed
alphabet. Encryption and decryption is simple modular arithmetic.

Caesar Cipher II

In general, we fix an alphabet, Σ and let m = |Σ|. Second, we fix
an secret key, an integer k such that 0 < k < m. Then the
encryption and decryption functions are

ek(x) = (x+ k) mod m
dk(y) = (y − k) mod m

respectively.

Cryptographic functions must be one-to-one (why?). It is left as
an exercise to verify that this Caesar cipher satisfies this condition.

Caesar Cipher
Example

Example

Let Σ = {A,B,C, . . . , Z} so m = 26. Choose k = 7. Encrypt
“HANK” and decrypt “KLHU”.

“HANK” can be encoded (7-0-13-10), so

e(7) = (7 + 7) mod 26 = 14
e(0) = (0 + 7) mod 26 = 7
e(13) = (13 + 7) mod 26 = 20
e(10) = (10 + 7) mod 26 = 17

so the encrypted word is “OHUR”.

Caesar Cipher
Example Continued

“KLHU” is encoded as (10-11-7-20), so

e(10) = (10− 7) mod 26 = 3
e(11) = (11− 7) mod 26 = 4
e(7) = (7− 7) mod 26 = 0
e(20) = (20− 7) mod 26 = 13

So the decrypted word is “DEAN”.

Affine Cipher I

Clearly, the Caesar cipher is insecure—the key space is only as
large as the alphabet.

An alternative (though still not secure) is what is known as an
affine cipher. Here the encryption and decryption functions are as
follows.

ek(x) = (ax+ b) mod m
dk(y) = a−1(y − b) mod m

Question: How big is the key space?

Affine Cipher
Example

Example

Let m = 26, a = 9, b = 14; perform the following:

1. Verify that this scheme ensures a bijection

2. Encrypt the word “PROOF”

3. Decrypt the message “ODHKML”.

“PROOF” can be encoded as (15-17-14-14-5). The encryption is
as follows.

e(15) = (9 · 15 + 14) mod 26 = 19
e(17) = (9 · 17 + 14) mod 26 = 11
e(14) = (9 · 14 + 14) mod 26 = 10
e(14) = (9 · 14 + 14) mod 26 = 10
e(5) = (9 · 5 + 14) mod 26 = 7

The encrypted message is “TLKKH”.

Affine Cipher
Example Continued

When do we attack? Computing the inverse, we find that a−1 = 3.

We can decrypt the message “ODHKML” (14-3-7-10-12-11) as
follows.

d(14) = 3(14− 14) mod 26 = 0 = A
d(3) = 3(3− 14) mod 26 = 19 = T
d(7) = 3(7− 14) mod 26 = 5 = F
d(10) = 3(10− 14) mod 26 = 14 = O
d(12) = 3(12− 14) mod 26 = 20 = U
d(11) = 3(11− 14) mod 26 = 17 = R

Public-Key Cryptography I

The problem with the Caesar & Affine ciphers (aside from the fact
that they are insecure) is that you still need a secure way to
exchange the keys in order to communicate.

Public key cryptosystems solve this problem.

I One can publish a public key.

I Anyone can encrypt messages.

I However, decryption is done with a private key.

I The system is secure if no one can feasibly derive the private
key from the public one.

I Essentially, encryption should be computationally easy, while
decryption should be computationally hard (without the
private key).

I Such protocols use what are called “trap-door functions”.

Public-Key Cryptography II

Many public key cryptosystems have been developed based on the
(assumed) hardness of integer factorization and the discrete log
problems.

Systems such as the Diffie-Hellman key exchange protocol (used in
SSL, SSH, https) and the RSA cryptosystem are the basis of
modern secure computer communication.

The RSA Cryptosystem I

The RSA system works as follows.

I Choose 2 (large) primes p, q.

I Compute n = pq.

I Compute φ(n) = (p− 1)(q − 1) (called the totient)

I Choose a, 2 ≤ a < φ(n) such that gcd(a, φ(n)) = 1.

I Compute b = a−1 modulo φ(n).

I Note that a must be relatively prime to φ(n).

I Publish n, a

I Keep p, q, b private.

The RSA Cryptosystem II

Then the encryption function is simply

ek(x) = xa mod n

The decryption function is

dk(y) = yb mod n

The RSA Cryptosystem
Computing Inverses Revisited

Recall that we can compute inverses using the Extended Euclidean
Algorithm.

With RSA we want to find b = a−1 mod φ(n). Thus, we compute

gcd(a, φ(n)) = sa+ tφ(n)

and so b = s = a−1 modulo φ(n).

The RSA Cryptosystem
Example

Example

Let p = 13, q = 17, a = 47.

We have

I n = 13 · 17 = 221.

I φ(n) = 12 · 16 = 192.

I Using the Euclidean Algorithm, b = 47−1 = 143 modulo φ(n)

e(130) = 13047 mod 221 = 65

d(99) = 99143 mod 221 = 96

Public-Key Cryptography I
Cracking the System

How can we break an RSA protocol? “Simple”—just factor n.

If we have the two factors p and q, we can easily compute φ(n)
and since we already have a, we can also easily compute b = a−1

modulo φ(n).

Thus, the security of RSA is contingent on the hardness of integer
factorization.

Public-Key Cryptography II
Cracking the System

If someone were to come up with a polynomial time algorithm for
factorization (or build a feasible quantum computer and use Shor’s
Algorithm), breaking RSA may be a trivial matter. Though this is
not likely.

In practice, large integers, as big as 1024 bits are used. 2048 bit
integers are considered unbreakable by today’s computer; 4096 bit
numbers are used by the truly paranoid.

But if you care to try, RSA Labs has a challenge:

http://www.rsasecurity.com/rsalabs/node.asp?id=2091

Public-Key Cryptography
Cracking RSA - Example

Example

Let a = 2367 and let n = 3127. Decrypt the message,
1125-2960-0643-0325-1884 (Who is the father of modern
computer science?)

Factoring n, we find that n = 53 · 59 so

φ(n) = 52 · 58 = 3016

Public-Key Cryptography
Cracking RSA - Example

Using the Euclidean algorithm, b = a−1 mod φ(n) = 79. Thus,
the decryption function is

d(x) = x79 mod 3127

Decrypting the message we get that

d(1225) = 122579 mod 3127 = 112
d(2960) = 296079 mod 3127 = 114
d(0643) = 64379 mod 3127 = 2021
d(0325) = 32579 mod 3127 = 1809
d(1884) = 188479 mod 3127 = 1407

Thus, the message is “ALAN TURING”.

