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Introduction

How can we prove the following quantified statement?

Vs € SP(x)

> For a finite set S = {s1,52,...,8,}, we can prove that P(zx)
holds for each element because of the equivalence,

P(s1) AN P(s2) A+ N P(sp)

» We can use universal generalization for infinite sets.

» Another, more sophisticated way is to use Induction.

What is Induction?

> If a statement P(ng) is true for some nonnegative integer; say
ng = 1.

» Also suppose that we are able to prove that if P(k) is true for
k > ng, then P(k + 1) is also true;

P(k) = P(k+1)

> It follows from these two statements that P(n) is true for all
n>mng. le.
Vn > ngP(n)

This is the basis of the most widely used proof technique;
Induction.

The Well Ordering Principle |

Why is induction a legitimate proof technique?

At its heart is the Well Ordering Principle.

Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a base case.

We can then proceed to establish that the set of integers n > ng
such that P(n) is false is actually empty.

Thus, induction (both “weak” and “strong” forms) are logical
equivalences of the well-ordering principle.

Another View |

To look at it another way, assume that the statements

P(k) — P(k+1) (2)
are true. We can now use a form of universal generalization as
follows.

Say we choose an element from the universe of discourse ¢. We
wish to establish that P(c) is true. If ¢ = ng then we are done.

Another View Il

Otherwise, we apply (??) above to get

P(no) = P(ng+1)

= P(Tl() +3)
= Plc—-1)
= P(c)

Via a finite number of steps (¢ — ng), we get that P(c) is true.
Since ¢ was arbitrary, the universal generalization is established.

Yn > noP(n)




Induction |

Formal Definition

Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer ng; P(ng) = 1.

2. If P is true for some particular integer k > ng then it is true
for k + 1.

Then P is true for all integers n > ny; i.e.
Vn > ngP(n)

is true.

Induction [l

Formal Definition

» Showing that P(ng) holds for some initial integer ng is called
the Basis Step. The statement P(nyg) itself is called the
inductive hypothesis.

» Showing the implication P(k) — P(k + 1) for every k > ng is
called the Induction Step.

» Together, induction can be expressed as an inference rule.

(P(no) AVEk > noP(k) = P(k+1)) = ¥n > noP(n)

Inductive Proofs: Step by Step

1. State and prove the base case

2. State the Inductive Hypothesis

3. As an aside, consider where you want to go (identify the
Inductive Conclusion)

4. Using what you know (Inductive Hypothesis) prove the
Inductive Conclusion

Example |

Example

Prove that n2 < 2" for alln > 5 using induction.

We formalize the statement as P(n) = (n? < 27).

Our base case here is for n = 5. We directly verify that
25 =5% < 25 =32

and so P(5) is true and thus the induction hypothesis holds.

Example |
Continued
We now perform the induction step and assume that P(k) is true.
Thus,
k2 < 2k

Consider the expression (k + 1)%:

k2 +2k+1

2% 4 (2k +1) by the inductive hypothesis
2F 4 (2k + k) sincek>5>1

2k + (3k)

2k 4 5k

ok 4 2 since k> 5

2k 4 9k by the inductive hypothesis
2(2F)

2(k+1)

(k+1)2

AN IA T INIA

Example Il

Example
Prove that for any n > 1,

£ _n(n+1)2n+1)
L

The base case is easily verified;
12 = A+1E+1

1=
6

=1

Now assume that P(k) holds for some k > 1, so
QLSS CLER)
e 6

i=1




Example Il

Continued

We want to show that P(k + 1) is true; that is, we want to show

that
k+1

o (K4 1)(k+2)(2k+3)
2227 6

i=1
However, observe that this sum can be written

k+1 k
SN =124 224 R (k1) =D i+ (k+ 1)
i=1 i=1

Example Il

Example II

Continued

Thus we have that

k+1

2::(k+1ﬂh2m@k+$

i=1
so we've established that P(k) — P(k +1).

Thus, by the principle of mathematical induction,

22 nn+1(2n+1)

Example Il

Continued

Consider 22(k+1) _ 1

22(k+1) _ 1 =

And we are done, since 3 divides the RHS, it must divide the LHS.

Thus, by the principle of mathematical induction, 22* — 1 is
divisible by 3 for all n > 1.

Continued
k+1
o k(k+1)(2k+1)
g = S k) (9
_ k(k+1)(2k+1)  6(k+1)
B 6 T
_ (k1) [R@RE+1)+6(k+1)]
6
_ (k+1) 282 + Tk + 6]
B 6
_ (k+D(k+2)(2k+3)
6
Example I
Example

Prove that for any integer n > 1, 22" — 1 is divisible by 3.

Define P(n) to be the statement that 3 | 22" — 1.

Again, we note that the base case is n = 1, so we have that
221 _1=3

which is certainly divisible by 3.

We next assume that P(k) holds. That is, we assume that there
exists an integer m such that

2%k _1=3m

Example IV

Example

Prove that n! > 2" for all n > 4

The base case holds since 24 = 4! > 2% = 16.

We now make our inductive hypothesis and assume that
k!> ok
for some integer k > 4

Since k > 4, it certainly is the case that k + 1 > 2. Therefore, we
have that
(E+1)! = (k+ 1)k > 2.2~ = ok+!

So by the principle of mathematical induction, we have our desired
result. O




Example V

Example

Let m € Z and suppose that z = y( mod m). Then for all n > 1,

z" =y"( mod m)

The base case here is trivial as it is encompassed by the
assumption.

Now assume that it is true for some k& > 1;

¥ = 4F( mod m)

Example V

Continued

Since multiplication of corresponding sides of a congruence is still
a congruence, we have

Example VI
Example
Show that )
213 = (Zz)
i=1 i=1
for all m > 1.

The base case is trivial since 13 = (1)2.

The induction hypothesis will assume that it holds for some k& > 1:

be ()

i=1 i=1

z-zF =y y*( mod m)
And so
Ik+l = yk+1( mod m)
O
Example VI
Continued
Fact

By another standard induction proof (see the text) the summation
of natural numbers up to n is

We now consider the summation for (k + 1):

k+1

Zz *Zz +( k+1

Example VI
Continued
k+1 2
ZiS = <w> +(k+1)3
i=1
(B2 (k+1)%) +4(k +1)3
922
(k+1)% [k* + 4k + 4]
= 52
(k+1)2(k +2)2
i —
(B Dk +2)\?
B 2
So by the PMI, the equality holds. |

Example VII |

Bad Example |

Prove that

Z nn+1)

v

o _1(1+1)
Base case (easy): n =1, then 1 = ==
k. k(k+l)

2

> Inductive Hypothesis: > "7 ;i =

» Inductive Conclusion: Zkﬂ w
> Observe:
%i (k1) +2)
B 2

k
(ZO k) (k+1)2(k+2)




Example VII

Bad Example |

k
(Zé) ) (k+1)2(k+2)

i=1

k(h+1) (k+1)(k+2)
3 +(k+1) = —
k (k+2)
a ="
k+2  (k+2)
2 2

> Which is true, so done, right?
» Wrong!: we started with the inductive conclusion

> You cannot assume the conclusion: this is begging the
question

Example VII
Bad Example Il
Prove that for all n > 2,
n! <n”

> Base case (easy): 2! =2 <4 =22
» Inductive Hypothesis: k! < k*
» Inductive Conclusion: (k -+ 1)! < (k + 1)(+1)
> Observe:
(k+1) -k < (k+1)- (k+1)®
B < (k+1)®
EF < (k+ 1))
» Which is true, so done, right?
» Wrong!: we started with the inductive conclusion

» You cannot assume the conclusion: this is begging the
question

Example VII

Bad Example Il

Consider this “proof” that all of you will receive the same grade.

Proof.

Let P(n) be the statement that every set of n students receives

the same grade. Clearly P(1) is true, so the base case is satisfied.

Now assume that P(k — 1) is true. Given a group of k students,
apply P(k — 1) to the subset {s1,s2,...5k_1}. Now, separately
apply the induction hypothesis to the subset {s2, s3, ..., Sk}

Combining these two facts tells us that P(k) is true. Thus, P(n)
is true for all students.

O

Strong Induction |

Another form of induction is called the “strong form”.
Despite the name, it is not a stronger proof technique.

In fact, we have the following.

Lemma

The following are equivalent.

> The Well Ordering Principle
» The Principle of Mathematical Induction
» The Principle of Mathematical Induction, Strong Form

Example VII

The Bad Example - Continued

> The mistake is not the base case, P(1) is true.

> Also, it is the case that, say P(73) — P(74), so this cannot
be the mistake.

The error is in P(1) — P(2) which is certainly not true; we cannot
combine the two inductive hypotheses to get P(2).

Strong Induction Il

Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer ny; P(ng) = 1.

2. If k > nyg is any integer and P is true for all integers [ in the
range ng < | < k, then it is true also for k.

Then P is true for all integers n > ng, i.e.
Y(n > ng)P(n)

is true.




Strong Form Example

Fundamental Theorem of Arithmetic

Recall that the Fundamental Theorem of Arithmetic states that
any integer n > 2 can be written as a unique product of primes.

We'll use the strong form of induction to prove this.

Let P(n) be the statement “n can be written as a product of
primes.”

Clearly, P(2) is true since 2 is a prime itself. Thus the base case
holds.

Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We make our inductive hypothesis. Here we assume that the
predicate P holds for all integers less than some integer k > 2; i.e.
we assume that

P(2)ANP(3)A---AP(k)

is true.

We want to show that this implies P(k + 1) holds. We consider
two cases.

If K+ 1 is prime, then P(k + 1) holds and we are done.

Else, £+ 1 is a composite and so it has factors u,v such that
2 < wu,v < k+ 1 such that

u-v="k+1

Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We now apply the inductive hypothesis; both u and v are less than
k + 1 so they can both be written as a unique product of primes;

u:Hpi, 1):Hpj
i J

Therefore,

k+1= (Hp) l:[pj

and so by the strong form of the PMI, P(k + 1) holds. O

Strong Form Example
GCD

Let P(n) be the statement

a,b € NAged(a,b) =1ANa+b=n=3s,t € Z,as+th=1
Our base case here is when n =2 since a =b=1.
For s = 1,t = 0, the statement P(2) is satisfied since

st+bt=1-1+1-0=1

Strong Form Example
GCD

Recall the following.

Lemma

Ifa,b € N are such that ged(a,b) = 1 then there are integers s,t
such that
ged(a,b) =1 = sa+tb

We will prove this using the strong form of induction.

Strong Form Example
GCD

We now form the inductive hypothesis. Suppose n € N;n > 2 and
assume that P(k) is true for all &k with 2 <k <mn.

Now suppose that for a,b € N,

ged(a,b) =1Na+b=n+1

We consider three cases.




Strong Form Example
GCD

Casela=0b
In this case

ged(a,b) = ged(a,a) by definition
= a by definition
=1 by assumption

Therefore, since the ged is one, it must be the case that a =b =1
and so we simply have the base case, P(2).

Strong Form Example
GCD

Case2a<b

Since b > a, it follows that b — a > 0 and so
ged(a,b) = ged(a,b—a) =1

(Why?)

Furthermore,

2<a+(b-a)=n+1-a<n

Strong Form Example
GCD

Since a + (b — a) < n, we can apply the inductive hypothesis and
conclude that P(n+1 —a) = P(a+ (b—a)) is true.

This implies that there exist integers s, o such that
aso+ (b—a)to =1

and so
a(sp —to) +btp =1

So for s = sp — tp and t = ¢y we get
as+bt =1

Thus, P(n + 1) is established for this case.

Strong Form Example
GCD

Case 3 a > b This is completely symmetric to case 2; we use a — b
instead of b — a.

Since all three cases handle every possibility, we've established that
P(n+1) is true and so by the strong PMI, the lemma holds. [




