Induction

Computer Science & Engineering 235: Discrete Mathematics

Christopher M. Bourke cbourke@cse.unl.edu

Introduction

How can we prove the following quantified statement?

 $\forall s \in SP(x)$

 \blacktriangleright For a finite set $S=\{s_1,s_2,\ldots,s_n\},$ we can prove that P(x) holds for each element because of the equivalence,

 $P(s_1) \wedge P(s_2) \wedge \cdots \wedge P(s_n)$

- ► We can use *universal generalization* for infinite sets.
- > Another, more sophisticated way is to use Induction.

What is Induction?

- F If a statement $P(n_0)$ is true for some nonnegative integer; say $n_0 = 1$.
- Also suppose that we are able to prove that if P(k) is true for $k \ge n_0$, then P(k+1) is also true;

 $P(k) \rightarrow P(k+1)$

 \blacktriangleright It follows from these two statements that P(n) is true for all $n \geq n_0.$ I.e.

 $\forall n \ge n_0 P(n)$

This is the basis of the most widely used proof technique; *Induction*.

Another View I

To look at it another way, assume that the statements

$$P(n_0) \tag{1}$$
$$P(k) \rightarrow P(k+1) \tag{2}$$

are true. We can now use a form of *universal generalization* as follows.

Say we choose an element from the universe of discourse c. We wish to establish that P(c) is true. If $c = n_0$ then we are done.

The Well Ordering Principle I

Why is induction a legitimate proof technique?

At its heart is the Well Ordering Principle.

Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a base case.

We can then proceed to establish that the set of integers $n \ge n_0$ such that P(n) is *false* is actually *empty*.

Thus, induction (both "weak" and "strong" forms) are logical equivalences of the well-ordering principle.

Another View II

Otherwise, we apply (??) above to get

$$\begin{array}{rcl} P(n_0) & \Rightarrow & P(n_0+1) \\ & \Rightarrow & P(n_0+2) \\ & \Rightarrow & P(n_0+3) \\ & \cdots \\ & \Rightarrow & P(c-1) \\ & \Rightarrow & P(c) \end{array}$$

Via a finite number of steps $(c - n_0)$, we get that P(c) is true. Since c was arbitrary, the universal generalization is established.

 $\forall n \ge n_0 P(n)$

Induction I Formal Definition

Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose

- 1. *P* is true for some particular integer n_0 ; $P(n_0) = 1$.
- 2. If P is true for some particular integer $k \ge n_0$ then it is true for k + 1.

Then P is true for all integers $n \ge n_0$; i.e.

 $\forall n \ge n_0 P(n)$

is true.

Inductive Proofs: Step by Step

- 1. State and prove the base case
- 2. State the *Inductive Hypothesis*
- 3. As an aside, consider where you want to go (identify the *Inductive Conclusion*)
- 4. Using what you know (Inductive Hypothesis) prove the Inductive Conclusion

Induction II

Formal Definition

- Showing that $P(n_0)$ holds for some initial integer n_0 is called the *Basis Step*. The statement $P(n_0)$ itself is called the *inductive hypothesis*.
- ▶ Showing the implication $P(k) \rightarrow P(k+1)$ for every $k \ge n_0$ is called the *Induction Step*.
- ▶ Together, induction can be expressed as an inference rule.

$$(P(n_0) \land \forall k \ge n_0 P(k) \to P(k+1)) \to \forall n \ge n_0 P(n)$$

Example I

Example

Prove that $n^2 \leq 2^n$ for all $n \geq 5$ using induction.

We formalize the statement as $P(n) = (n^2 \le 2^n)$.

Our base case here is for n = 5. We directly verify that

$$25 = 5^2 \le 2^5 = 32$$

and so P(5) is true and thus the induction hypothesis holds.

Example II

Example

Prove that for any $n \ge 1$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

The base case is easily verified;

$$1 = 1^2 = \frac{(1+1)(2+1)}{6} = 1$$

Now assume that P(k) holds for some $k \ge 1$, so

$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

Example I

Continued We now perform the induction step and assume that P(k) is true. Thus,

 $k^2 \leq 2^k$

Consider the expression $(k+1)^2$:

 $\begin{array}{rcl} (k+1)^2 &=& k^2+2k+1\\ &\leq& 2^k+(2k+1) & \mbox{by the inductive hypothesis}\\ &\leq& 2^k+(2k+k) & \mbox{since } k\geq 5>1\\ &=& 2^k+(3k)\\ &\leq& 2^k+5k\\ &\leq& 2^k+k^2 & \mbox{since } k\geq 5\\ &\leq& 2^k+2^k & \mbox{by the inductive hypothesis}\\ &=& 2(2^k)\\ &=& 2^{(k+1)} \end{array}$

Example II Continued

We want to show that P(k+1) is true; that is, we want to show that

$$\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

However, observe that this sum can be written

$$\sum_{i=1}^{k+1} i^2 = 1^2 + 2^2 + \dots + k^2 + (k+1)^2 = \sum_{i=1}^k i^2 + (k+1)^2$$

Example II

Continued

Thus we have that

$$\sum_{i=1}^{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$$

so we've established that $P(k) \rightarrow P(k+1)$.

Thus, by the principle of mathematical induction,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Example III

Continued

Consider $2^{2(k+1)} - 1$:

$$\begin{array}{rcl} 2^{2(k+1)}-1 &=& 4(2^{2k})-1 \\ &=& 4(3m+1)-1 & \mbox{by inductive hypothesis} \\ &=& 4(3m)+4-1 \\ &=& 3(4m)+3 \\ &=& 3(4m+1) \end{array}$$

And we are done, since 3 divides the RHS, it must divide the LHS. Thus, by the principle of mathematical induction, $2^{2n} - 1$ is divisible by 3 for all $n \ge 1$.

Example II

Continued

$$\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \quad (*)$$

$$= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)[2k^2 + 7k + 6]}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

Example III

Example

Prove that for any integer $n \ge 1$, $2^{2n} - 1$ is divisible by 3.

Define P(n) to be the statement that $3 \mid 2^{2n} - 1$.

Again, we note that the base case is n = 1, so we have that

$$2^{2 \cdot 1} - 1 = 3$$

which is certainly divisible by 3.

We next assume that P(k) holds. That is, we assume that there exists an integer m such that

 $2^{2k} - 1 = 3m$

Example IV

Example

Prove that $n! > 2^n$ for all $n \ge 4$

The base case holds since $24 = 4! > 2^4 = 16$.

We now make our inductive hypothesis and assume that

 $k! > 2^k$

for some integer $k\geq 4$

Since $k \ge 4$, it certainly is the case that k + 1 > 2. Therefore, we have that

 $(k+1)! = (k+1)k! > 2 \cdot 2^k = 2^{k+1}$

So by the principle of mathematical induction, we have our desired result.

Example V

Example

Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$. Then for all $n \geq 1$,

 $x^n \equiv y^n (\mod m)$

The base case here is trivial as it is encompassed by the assumption.

Now assume that it is true for some $k \ge 1$;

$$x^k \equiv y^k \pmod{m}$$

Example VI

Example

Show that

 $\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2$

for all $n \ge 1$.

The base case is trivial since $1^3 = (1)^2$.

The induction hypothesis will assume that it holds for some $k \ge 1$:

 $\sum_{i=1}^{k} i^3 = \left(\sum_{i=1}^{k} i\right)^2$

Example VI Continued $\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 \\ = \frac{(k^2(k+1)^2) + 4(k+1)^3}{2^2} \\ = \frac{(k+1)^2 \left[k^2 + 4k + 4\right]}{2^2} \\ = \frac{(k+1)^2(k+2)^2}{2^2} \\ = \left(\frac{(k+1)(k+2)}{2}\right)^2$

So by the PMI, the equality holds.

Example V

Continued

Since multiplication of corresponding sides of a congruence is still a congruence, we have

$$x \cdot x^k \equiv y \cdot y^k \pmod{m}$$

 $x^{k+1} \equiv y^{k+1} (\mod m)$

And so

Example VI

Continued

Fact

By another standard induction proof (see the text) the summation of natural numbers up to n is

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

We now consider the summation for (k + 1):

$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^k i^3 + (k+1)^3$$

Example VII I Bad Example I

Prove that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

• Base case (easy):
$$n = 1$$
, then $1 = \frac{1(1+1)}{2}$

• Inductive Hypothesis:
$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$

• Inductive Conclusion: $\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$

Observe:

verve:

$$\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$$

$$\left(\sum_{i=1}^{k} i\right) + (k+1) = \frac{(k+1)(k+2)}{2}$$

Example VII II Bad Example I

$$\begin{split} \left(\sum_{i=1}^{k} i\right) + (k+1) &= \frac{(k+1)(k+2)}{2} \\ \frac{k(k+1)}{2} + (k+1) &= \frac{(k+1)(k+2)}{2} \\ \frac{k}{2} + 1 &= \frac{(k+2)}{2} \\ \frac{k+2}{2} &= \frac{(k+2)}{2} \end{split}$$

- Which is true, so done, right?
- ▶ Wrong!: we *started* with the inductive conclusion
- You cannot assume the conclusion: this is begging the question

Example VII

Bad Example II

Consider this "proof" that all of you will receive the same grade.

Proof.

Let P(n) be the statement that every set of n students receives the same grade. Clearly P(1) is true, so the base case is satisfied.

Now assume that P(k-1) is true. Given a group of k students, apply P(k-1) to the subset $\{s_1, s_2, \ldots, s_{k-1}\}$. Now, separately apply the induction hypothesis to the subset $\{s_2, s_3, \ldots, s_k\}$.

Combining these two facts tells us that P(k) is true. Thus, P(n) is true for all students.

Strong Induction I

Another form of induction is called the "strong form". Despite the name, it is *not* a *stronger* proof technique.

In fact, we have the following.

Lemma

The following are equivalent.

- ► The Well Ordering Principle
- ▶ The Principle of Mathematical Induction
- ► The Principle of Mathematical Induction, Strong Form

Example VII Bad Example II Prove that for all $n \ge 2$, $n! < n^n$ • Base case (easy): $2! = 2 < 4 = 2^2$ • Inductive Hypothesis: $k! < k^k$ • Inductive Conclusion: $(k + 1)! < (k + 1)^{(k+1)}$ • Observe: $(k + 1) \cdot k! < (k + 1) \cdot (k + 1)^{(k)}$ $k! < (k + 1)^{(k)}$ $k^k < (k + 1)^{(k)}$ • Which is true, so done, right? • Wrong!: we started with the inductive conclusion • You cannot assume the conclusion: this is begging the question

Example VII

The Bad Example - Continued

- The mistake is not the base case, P(1) is true.
- \blacktriangleright Also, it is the case that, say $P(73) \rightarrow P(74),$ so this cannot be the mistake.

The error is in $P(1) \rightarrow P(2)$ which is certainly not true; we cannot combine the two inductive hypotheses to get P(2).

Strong Induction II

Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement P concerning the integer n, suppose

- 1. *P* is true for some particular integer n_0 ; $P(n_0) = 1$.
- 2. If $k > n_0$ is any integer and P is true for all integers l in the range $n_0 \le l < k$, then it is true also for k.

Then P is true for all integers $n \ge n_0$; i.e.

 $\forall (n \ge n_0) P(n)$

is true.

Strong Form Example

Fundamental Theorem of Arithmetic

Recall that the Fundamental Theorem of Arithmetic states that any integer $n \ge 2$ can be written as a unique product of primes.

We'll use the strong form of induction to prove this.

Let $P(\boldsymbol{n})$ be the statement " \boldsymbol{n} can be written as a product of primes."

Clearly, $P(2) \mbox{ is true since } 2 \mbox{ is a prime itself. Thus the base case holds.}$

Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We now apply the inductive hypothesis; both u and v are less than k+1 so they can both be written as a unique product of primes;

 $u = \prod_i p_i, \quad v = \prod_j p_j$

Therefore,

$$k+1 = \left(\prod_i p_i\right) \left(\prod_j p_j\right)$$

and so by the strong form of the PMI, P(k+1) holds.

Strong Form Example GCD

Let P(n) be the statement

$$a, b \in \mathbb{N} \land \gcd(a, b) = 1 \land a + b = n \Rightarrow \exists s, t \in \mathbb{Z}, as + tb = 1$$

Our base case here is when n = 2 since a = b = 1.

For s = 1, t = 0, the statement P(2) is satisfied since

$$st + bt = 1 \cdot 1 + 1 \cdot 0 = 1$$

Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We make our inductive hypothesis. Here we assume that the predicate P holds for all integers less than some integer $k\geq 2;$ i.e. we assume that

 $P(2) \wedge P(3) \wedge \cdots \wedge P(k)$

is true.

We want to show that this implies ${\cal P}(k+1)$ holds. We consider two cases.

If k + 1 is prime, then P(k + 1) holds and we are done.

Else, k+1 is a composite and so it has factors u,v such that $2 \leq u,v < k+1$ such that

 $u\cdot v=k+1$

Strong Form Example

Recall the following.

Lemma

If $a,b\in\mathbb{N}$ are such that $\gcd(a,b)=1$ then there are integers s,t such that

gcd(a,b) = 1 = sa + tb

We will prove this using the strong form of induction.

Strong Form Example

We now form the inductive hypothesis. Suppose $n\in\mathbb{N},n\geq 2$ and assume that P(k) is true for all k with $2\leq k\leq n.$

Now suppose that for $a, b \in \mathbb{N}$,

$$gcd(a,b) = 1 \land a + b = n + 1$$

We consider three cases.

Strong Form Example
GCD
Case 1
$$a = b$$

In this case
 $gcd(a,b) = gcd(a,a)$ by definition
 $= a$ by definition
 $= 1$ by assumption
Therefore, since the gcd is one, it must be the case that $a = b = 1$
and so we simply have the base case, $P(2)$.

Strong Form Example GCD Case 2 a < bSince b > a, it follows that b - a > 0 and so gcd(a, b) = gcd(a, b - a) = 1(Why?)

Furthermore,

$$2 \le a + (b - a) = n + 1 - a \le n$$

Strong Form Example GCD

Since $a+(b-a)\leq n,$ we can apply the inductive hypothesis and conclude that P(n+1-a)=P(a+(b-a)) is true.

This implies that there exist integers s_0, t_0 such that

 $as_0 + (b-a)t_0 = 1$

and so

 $a(s_0 - t_0) + bt_0 = 1$

So for $s = s_0 - t_0$ and $t = t_0$ we get

as + bt = 1

Thus, P(n+1) is established for this case.

Strong Form Example

Case 3 a > b This is completely symmetric to case 2; we use a - b instead of b - a.

Since all three cases handle every possibility, we've established that P(n+1) is true and so by the strong PMI, the lemma holds. $\hfill\square$