
Computational Models

Computer Science & Engineering 235: Discrete Mathematics

Christopher M. Bourke
cbourke@cse.unl.edu

Introduction I

At the foundation of computer science, we have questions like

I What are the minimum amount of resources required to solve
a given problem?

I Given enough time or memory, can an algorithm be designed
to solve any problem?

I Can algorithms solve anything and everything?

In short, the answer is no. Even given an infinite amount of
resources, there are problems that no algorithm can solve.

Introduction II

Up to now, we have studied algorithms and problems from a more
intuitive approach.

In fact, the study of algorithms, and more generally, computation
and computational complexity theory have a much more rigorous
theoretical basis.

In particular, we must have a rigorous mathematical model of
computation.

Introduction III

In truth, these topics deserve entire courses unto themselves,
covering specific topics such as

I Language Theory

I Computational Models

I Turing Machines

I Computability Theory

I Reductions: Halting Problem

I Complexity Classes P & NP

I NP-Completeness

I Reductions

We will attempt to give a broad overview of some of these topics.

Languages

As with anything that we want to study, we must always establish
a mathematical framework, a model by which to work within.

For instance, problems and algorithms come in many forms;

I Numerical

I Graph

I Sorting

I Logic

We need a unified model that captures all different types of
problems and algorithms.

Rather than looking at problems, we look at languages.

Languages

Definition

I An alphabet, Σ is a finite, nonempty set of symbols.
Examples: [A-Za-z], [0–9], {0, 1}.

I A string (or word) over Σ is a finite combination of symbols
from Σ. Example: any integer is a string over Σ = [0− 9].

I The empty string, denoted ε is a string containing no symbols
from Σ.

I The set of all finite strings over Σ is denoted Σ∗.
I A language over Σ is a set (finite or infinite), L ⊆ Σ∗.

Language Operations

We restrict our consideration to a binary alphabet, Σ = {0, 1} and
consider binary strings.

Operations can be performed on languages:

I Union – L1 ∪ L2

I Concatenation – L1 ◦ L2 (or just L1L2)

I Kleene Star – L∗

Many other operations exist.

Concatenation

The concatenation of two languages is the concatenation of all
strings in each language.

L1L2 = {xy | x ∈ L1, y ∈ L2}

Example

Let L1 = {0, 10}, L2 = {1, 01}. Then

L1L2 = {01, 001, 101, 1001}

and
L1L1 = {00, 010, 100, 1010}

Kleene Star

The Kleene Star is a recursively defined operation. For a given
language L, L0 = {λ} and for n > 0, we define

Ln = L(n−1)L

Example

For L = {0, 10},

L0 = {λ}
L1 = {0, 10}
L2 = {00, 010, 100, 1010}
L3 = {000, 0010, 0100, 01010, 1000, 10010, 10100, 101010}

Kleene Star

The Kleene Star operation is then defined as the union of all such
concatenations.

L∗ =
⋃

n≥0
Ln

For the alphabet Σ itself, Σ∗ is the set of all binary strings.

Sometimes it is useful to use the following notation to consider
only nonempty strings.

L+ =
⋃

n≥1
Ln = L∗ − {λ}

Regular Expressions

We say that R is a regular expression if

I R = b for some bit b ∈ Σ

I R = λ

I R = ∅
I R = (R1 ∪R2) where R1, R2 are regular expressions.

I R = (R1 ◦R2) where R1, R2 are regular expressions.

I R = (R∗1) where R1 is a regular expression.

Regular expressions are used in grep, sed, vi, Java, Perl, and
most other scripting languages.

Regular Languages

Regular languages are those that can be generated by a regular
expression.

Example

I 0∗ ∪ 1∗ is the language consisting of all strings with either all
1s or all 0s (plus the empty string).

I 0∗10∗ is the language consisting of all strings with a single 1
in them.

I (ΣΣ)∗ the set of all even length strings

I 1Σ∗0 the set of all canonical representation of even integers.

Exercise: Give a regular expression for the set of all strings where
every 0 appears before any occurrence of a 1.

Decision Problems I

An instance of a decision problem involves a given configuration of
data.

An algorithm answers

I yes if the data conforms to or has some property, and

I no if it does not.

Example

Given: an undirected graph G;
Question: does there exist an Euler cycle in G?

Decision Problems II

Though many natural problems (optimization, functional) are not
decision problems, we can usually formulate the decision version of
them.

Example

For any optimization problem: “what is the maximum (minimum)
number of x such that property P holds?”

Can be reformulated as,

“Does property P hold for all x ≥ k?”

Languages = Problems

It is not hard to see that languages are equivalent to problems.

That is, given a problem, you can define a language that represents
that problem.

Problem (Sorting)

Given elements x0, . . . , xn−1 (properly encoded) and an ordering
�.

Question: is xi � xi+1 for 0 ≤ i ≤ n− 2?

Languages are Universal I

The language model is robust. Any problem P can be equivalently
stated as a language L where

I (Encodings) x of yes instances are members of the language;
x ∈ L.

I (Encodings) x of no instances are not members of the
language; x 6∈ L.

The key is that we establish a proper encoding scheme.

Languages are Universal II

A proper encoding of graphs, for example, may be a string that
consists of a binary representation of n, the number of vertices.

Using some delimiter (which can also be in binary), we can specify
connectivity by listing pairs of connected vertices.

〈G〉 = 11:00:01:01:10

We can then define a language,

L = {〈G〉 | G is a connected graph}

Languages are Universal III

Graph connectivity is now a language problem;

I 〈G〉 ∈ L if G is a (properly encoded) graph that is connected.

I 〈G〉 6∈ L if G is not connected.

Instead of asking if a given graph G is connected, we instead ask,
is 〈G〉 ∈ L?

Introduction

Now that we have a framework for problems, we need one for
algorithms.

There are many different computational models corresponding to
many classes of languages.

Some are provably more powerful than others. Here, we give a
brief introduction to

I Finite State Automata

I Grammars

I Turing Machines

Finite-State Automata

Definition

A finite automaton is a 5-tuple, A = (Q,Σ, δ, q0, F) where

I Q is a nonempty finite set of states

I Σ is our alphabet

I δ : Q× Σ→ Q is the transition function

I q0 ∈ Q is an initial state

I F ⊆ Q is the set of accept states

Example I

q0 q1 q2

1 0

0

1

0 1

I Q = {q0, q1, q2}
I Σ = {0, 1}
I q0 is our initial state

I F = {q2}

Example II

The transition function is specified by the labeled arrows.

δ(q0, 0) = q1
δ(q0, 1) = q0
δ(q1, 0) = q1
δ(q1, 1) = q2
δ(q2, 0) = q1
δ(q2, 1) = q0

Acceptance = Language
Exercise

Exercise

Design a finite-state automaton to accept the language consisting
of any string in which contain no contiguous 0s.

q0 q1 q2

1

0 0

1

0,1

Acceptance = Language I

For the previous example its not hard to see that the set of strings
M accepts is any string that ends in 01. An equivalent regular
expression is simply

Σ∗01

Acceptance = Language II

The set of strings that a finite-state automaton M accepts is its
language:

L(M) = {x ∈ Σ∗ | M(x) accepts}

Conversely, any string that ends in a non-accept state is rejected.
This also defines a language–the compliment language:

L(M) = Σ∗ − L(M)

Power of Computational Models I

Finite-state automata are one of the simplest computational
models.

Unfortunately, they is also restrictive. The only types of languages
it can recognize are those that can be defined by regular
expressions.

Theorem

Finite-State Languages = Regular Languages = Regular
Expressions

Power of Computational Models II

Recognition here means that a machine, given a finite string
x ∈ Σ∗ can tell if x ∈ L(M).

Such a computational model cannot, for example, recognize
non-regular languages like

L = {w ∈ Σ∗ | w has an equal number of 0s and 1s}

Other Computational Models I

There are many other computational models that have been
considered, each one defines a class of languages that it can
recognize.

Context-Free Languages correspond to Push-down automata; finite
state automatons that have access to a stack. These languages
also correspond to certain types of grammars.

These languages are of fundamental importance to the theory of
computer languages and compilers.

Though these models are interesting, we will limit further
consideration to a more general computational model that
considers general problems and algorithms rather than certain
classes.

Other Computational Models II

For this we turn our attention to Turing Machines.

Though there are many variations (multi-tape, multi-head,
randomized, RAM, etc) we will only consider the following basic
definition.

Note: though there are many variations, from a computability
point of view, the types of languages recognized by all Turing
Machines are the same.

Turing Machines I

Definition

A Turing Machine is a 7-tuple, M = (Q,Σ,Γ, δ, q0, qaccept, qreject)
where

I Q is a nonempty, finite set of states

I Σ is the input alphabet

I Γ is the tape alphabet

I δ : Q× Σ→ Q× Γ× {L,R,−}2 is the transition function

I q0 ∈ Q is the initial state

I qaccept is the accept state

I qreject is the reject state

Turing Machines II

Input x0 x1 x2 x3 x4 x5 x6 x7 · · ·

Finite State Control
Q, δ : Q× Γ→ Q× Γ× {L,R,−}2

Work Tape γ0 γ1 γ2 γ3 γ4 γ5 · · · t t · · ·

Turing Machines III

A Turing Machine is a basic computational model which has an
input tape that can be read from, an output tape that can be
written on and a set of states.

A tape head moves left and right along the input/output tape and
performs reads and writes according to what symbols it encounters.

Turing Machines IV

A definition of a given Turing Machine can be made precise by
enumerating every possible transition on every possible input and
output symbol for every state.

A state diagram similar to automatons can visualize this transition.
However, it is much easier to simply describe a Turing Machine in
high level English.

Turing Machine Example

The following Turing Machine decides the language

L = {x#x | x ∈ Σ∗}

M(x) (read: on input x)

1. Scan the input to be sure that it contains a single #, if not
reject.

2. Zig Zag across the tape to corresponding positions on each
side of #. If symbols do not match, reject, otherwise cross
them off (write a blank symbol, t) and continue.

3. After all symbols to the left of # have been crossed off, check
to the right of #, if any symbols remain, reject otherwise,
accept.

Turing Machine Equivalence I

The Church-Turing Thesis gives a formal (though debatably not
rigorous) definition of what an algorithm is.

It states that the intuitive notion of an algorithmic process is
exactly equivalent to the computational model of Turing Machines.

This means that any rigorous computational model can be
simulated by a Turing Machine. Moreover, no other computational
model is more powerful (in terms of the types of languages it can
accept) than a Turing Machine.

Turing Machine Equivalence II

A programming language is Turing complete if it can do anything
that a Turing machine can do.

As a consequence, any two Turing complete programming
languages are equivalent.

Intuitively, anything that you can do in Java, you can do in C++

(algorithmically, we’re not talking about specific libraries), Perl,
Python, PHP, etc.

R & RE I

As you may have experienced, a program does not necessarily have
to halt. Infinite loops are possible in Turing machines too.

We say that a Turing machine M recognizes a language L if for
every x ∈ L, M(x) halts and accepts.

A Turing machine M decides a language L if for every string x,
M(x) halts and rejects or accepts (according to L).

R & RE II

A language L is in RE if some Turing machine recognizes it.

RE is the class of recursively enumerable languages (also called
computably enumerable).

For a language in L ∈ RE, if x ∈ L, then some machine will
eventually halt and accept it.

If x 6∈ L then the machine may or may not halt.

R & RE III

A language L is in R if some Turing machine decides it.

R is the class of recursive languages (also called computable).

Here, if L ∈ R, then there is some machine that will halt on all
inputs and is guaranteed to accept or reject.

Its not hard to see that if a language is decidable, it is also
recognizable by definition, thus

R ⊆ RE

Church-Turing Thesis: Intuitive Notion

“There exists a Turing Machine M that decides a language L”

=

“There exists an Algorithm A that solves a problem P”

The Halting Problem I

There are problems (languages) that are not Turing Decidable:
languages L ∈ RE, L 6∈ R.

We take as our first example the halting problem.

Problem (Halting Problem)

Given: A Turing Machine M and an input x.

Question: does M(x) halt?

The Halting Problem II

This indeed would be a very useful program—once you’ve compiled
a program, you may want to determine if you’ve screwed up and
caused an infinite loop somewhere.

We will show that the halting problem is undecidable.

That is, no algorithm, program or Turing Machine exists that could
ever tell if another Turing Machine halts on a given input or not.

Halting Problem Proof I
By way of contradiction assume that there exists a Turing Machine
H that decides the halting problem:

H(〈P, x〉) =

{
1 if P halts on x
0 if P does not halt on x

We now consider P as an input to itself.

In case you may think this is invalid, it happens all the time. A
text editor may open itself up, allowing you to look at its binary
code. The compiler for C was itself written in C and may be called
on to compile itself. An emulator opens machine code intended for
another machine and simulates that machine.

From the encoding 〈P,P〉 we construct another Turing Machine,
Q as follows:

Q(〈P〉) =

{
halts if H(〈P,P〉) = 0
does not halt if H(〈P,P〉) = 1

Halting Problem Proof II

Now that Q is constructed, we can run Q on itself:

Q(〈Q〉) =

{
halts if H(〈Q,Q〉) = 0
does not halt if H(〈Q,Q〉) = 1

Which is a contradiction because Q(〈Q〉) will halt if and only if
Q(〈Q〉) doesn’t halt and vice versa.

Therefore, no such H can exist.

Other Undecidable Problems

Many other problems, some of even practical interest have been
shown to be undecidable. This means that no matter how hard
you try, you can never solve these problems with any algorithm.

I Hilbert’s 10th problem: Given a multivariate polynomial, does
it have integral roots?

I Post’s Correspondence Problem: Given a set of “dominos” in
which the top has a finite string and the bottom has another
finite string, can you produce a sequence of dominos that is a
match—where the top sequence is the same as the bottom?

I Rice’s Theorem: In general, given a Turing Machine, M,
answering any question about any non-trivial property of the
language which it defines, L(M) is undecidable.

Reductions

Showing that a problem is undecidable is relatively easy—you
simply show a reduction to the halting problem. That is, given a
problem P that you wish to show undecidable, you proceed by
contradiction:

1. Assume that P is decidable by a Turing Machine M.

2. Construct a machine R that uses M to decide the Halting
Problem.

3. Contradiction – such a machine M cannot exist.

Halting Problem

Intuitive example: we can categorize all statements into two sets:
lies and truths. How then can we categorize the sentence,

I am lying

The key to this seeming paradox is self-reference. This is where we
get the terms recursive and recursively enumerable.

Complexity Classes

Now that we have a concrete model to work from: Problems as
languages and Algorithms as Turing Machines, we can further
delineate complexity classes within R (all decidable problems) by
considering Turing Machines with respect to resource bounds.

In the computation of a Turing Machine M, the amount of
memory M uses can be quantified by how many tape cells are
required in the computation of an input x. The amount of time M
uses can be quantified by the number of transitions M makes in
the computation of x.

Complexity Classes

Of course, just as before, we are interested in how much time and
memory are used as a function of the input size. In this case,

T (|x|)

and
M(|x|)

respectively where x ∈ Σ∗. Again, the restriction to decisional
versions of problems is perfectly fine—we could just consider
languages and Turing Machines themselves.

Complexity Class P

Definition

The complexity class P consists of all languages that are decidable
by a Turing Machine running in polynomial time with respect to
the input |x|. Alternatively, P is the class of all decision problems
that are solvable by a polynomial time running algorithm.

Non-Determinism I

A nondeterministic algorithm (or Turing Machine) is an algorithm
that works in two stages:

1. It guesses a solution to a given instance of a problem. This
set of data corresponding to an instance of a decision problem
is called a certificate.

2. It verifies whether or not the guessed solution is valid or not.

3. It accepts if the certificate is a valid witness.

Non-Determinism II

As an example, recall the HamiltonianCycle problem.

A nondeterministic algorithm would guess a solution by forming a
permutation π of each of the vertices.

It would then verify that (vi, vi+1) ∈ E for 0 ≤ i ≤ n− 1.

It accepts if π is a Hamiltonian Cycle, otherwise it rejects.

Non-Determinism III

An instance is in the language if there exists a computation path
that accepts.

Therein lies the nondeterminism – such an algorithm does not
determine an actual answer.

Alternatively, a nondeterministic algorithm solves a decision
problem if and only if for every yes instance of the problem it
returns yes on some execution.

Non-Determinism IV

This is the same as saying that there exists a certificate for an
instance.

A certificate can be used as a proof that a given instance is a yes
instance of a decision problem. In such a case, we say that the
certificate is valid.

If a nondeterministic algorithm produces an invalid certificate, it
does NOT necessarily man that the given instance is a no instance.

NP

We can now define the class NP.

Definition

NP (“Nondeterministic Polynomial Time”) is the class of all
languages (problems) that can be decided by a Nondeterministic
Turing Machine running in polynomial time with respect to the
size of the input |x|.

That is, each stage, guessing and verification, can be done in
polynomial time. HamiltonianCycle ∈ NP since a random
permutation can be generated in O(n) time and the verification
process can be done in O(n2) time.

P versus NP I

It is not hard to see that

P ⊆ NP

since any problem that can be deterministically solved in
polynomial time can certainly be solved in nondetermistic
polynomial time.

The most famous unanswered question so far then is

P
?
= NP

P versus NP II

In fact, this is the most important open question in computer
science today. The Clay Mathematics Institute has designated it as
one of their Millennium Problems1, a collection of 7 open scientific
questions deemed important for the new millennium.

Who so ever is able to definitively solve this problem (or any of the
other 6) and survives the review of jealous and skeptical peers will
be the proud recipient of $1,000,000.

1http://www.claymath.org/millennium/

The Million Dollar Question

The very question itself is at the heart of computer science studies.

If the answer is yes (very unlikely), then every problem in NP could
be solved in polynomial time. If the answer is no, then the hardest
problems in NP could never be solved by a polynomial time
algorithm. Such problems will forever remain intractable.

To understand this more fully, we need to explore the notion of
NP-Completeness.

Polynomial Time Reductions

Just as we had to show a reduction from one problem to the
halting problem to show that it was undecidable, so to can we
make polynomial time reductions between decidable problems.

Definition

A decision problem P1 is said to be polynomial time reducible to a
decision problem P2 if there exists a function f such that

I f maps all yes instances of P1 to all yes instances of P2. no
instances likewise.

I f is computable by a polynomial time algorithm

In such a case we write
P1 ≤P P2

NP-Completeness

In general, an easy problem can always be trivially “reduced” to a
harder problem. Conversely, it is not possible to reduce a hard
problem to an easy one using a polynomial time reduction.

Definition

A problem P is said to be NP-Complete if

1. P ∈ NP and

2. For every problem P ′ ∈ NP, P ′ ≤p P

Intuitively, NP-Complete problems are the hardest (most difficult
computationally speaking) problems in NP (of course there are
provably harder problems in classes such as EXP.

The First Reduction

The notion of NP completeness doesn’t help us much by
itself—given a problem P that we wish to show is NP-Complete,
how does one prove that every problem in NP reduces to P?

The key is to realize that polynomial time reductions are transitive:

P1 ≤p P2 ≤p P3 ⇒ P1 ≤p P3

Thus, we need only show a reduction from a known NP-Complete
problem to P to show that P ∈ NPC.

In 1971, Stephen Cook independently defined the notions of NP
and NP-Completeness showing the first NP-Complete problem
ever.

Notation

Recall the following notations:

I A literal is a boolean variable that can be set to 0 or 1

I ∨ denotes the logical or of 2 boolean variables

I ∧ denotes the logical and of 2 boolean variables

I ¬ denotes the negation of a boolean variable

I A clause is the is the logical disjunction (or-ing) of a set of
boolean variables. Ex: (x1 ∨ ¬x2 ∨ x5)

I The conjunction of a collection of clauses is the logical and of
all their values. The value is true only if every clause is true.

Satisfiability

Satisfiability or simply just SAT is the following problem:

Problem (Satisfiability)

Given: a set of boolean variables, V = {x1, x2, . . . xn} and a set of
clauses, C = {C1, C2, . . . Cm}.
Question: Does there exist a satisfying assignment of boolean
values to each literal xi, 1 ≤ i ≤ n such that

m∧

i=1

Ci = C1 ∧ C2 ∧ . . . ∧ Cm = 1

Example

Let n = 4 and consider the following conjunction:

C = (x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

This conjunction is satisfiable and is therefore a yes instance of
SAT since if we set x1 = x4 = 0 and x2 = x3 = 1, C = 1.

Let n = 3 and consider the following conjunction:

C = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)∧
(x1 ∨ x3) ∨ (¬x1 ∨ ¬x3)∧
(x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

This conjunction is not satisfiable since none of the 2n = 8
possible boolean assignments will ever make C = 1.

Satisfiability

This perfectly illustrates the intuition behind the NP class. Yes
instances are easily solved if we are lucky enough to guess a
satisfying assignment. No instances require an exhaustive search of
all possible assignments.

Theorem (Cook, 1971)

The problem SAT is NP-Complete.

NP-Complete Problems

First, let’s take a look at a short list of standard NP-Complete
problems. Of course, literally hundreds of problems have been
shown to be NP-Complete since Cook showed the first reduction.

I 3-CNF – A more restrictive version of SAT where each clause
is a disjunction of exactly 3 literals. CNF stands for
Conjunctive Normal Form. Note that 2-CNF ∈ P.

I HamiltonianCycle – Determine if a given undirected
graph G contains a cycle which passes through every vertex
exactly once.

I TravelingSalesman – Find the least weighted cycle in a
graph G that visits each vertex exactly once.

NP-Complete Problems

I SubsetSum – Given a collection of integers, can you form a
subset S such that the sum of all items in S is exactly p.

I GraphColoring – For a given graph G, find its chromatic
number χ(G) which is the smallest number of colors that are
required to color the vertices of G so that no two adjacent
vertices have the same color.

Some good resources on the subject can be found in:

I Computers and Intractability – A Guide to the Theory of NP
Completeness 1979

I http://www.csc.liv.ac.uk/~ped/teachadmin/

COMP202/annotated np.html – An annotated list of about
90 NP-Complete Problems.

Showing a Polynomial Reduction

There are 5 basic steps to show that a given problem P is
NP-Complete.

1. Prove that P ∈ NP by giving an algorithm that guesses a
certificate and an algorithm that verifies a solution in
polynomial time.

2. Select a known NP-Complete problem P ′ that we will reduce
to P (P ′ ≤P P)

3. Give an algorithm that computes f : P ′yes 7→ Pyes for every
instance x ∈ {0, 1}∗.

4. Prove that f satisfies x ∈ P ′ if and only if f(x) ∈ P
5. Prove that the algorithm in step 3 runs in polynomial time

Clique problem

A clique in an undirected graph G = (V,E) is a complete induced
subgraph G′ = (V ′, E′), V ′ ⊆ V,E′ ⊆ E. That is, it is a subset of
vertices V ′ of G where every vertex in V ′ is connected to each
other.

Problem (Clique)

Given: An undirected graph G = (V,E)
Question: Does there exist a clique of size k?

In terms of languages we define

Clique = {〈G, k〉 | G is a graph with a clique of size k}

Clique Reduction

We want to prove that Clique is NP-Complete. To do this we
will go by our 5 step process.

1. Clique ∈ NP. We can randomly select k vertices from a
given graph’s vertex set V in O(|V |) time. Further, we can
check if, for each pair of vertices v, v′ ∈ V ′ if (v, v′) ∈ E in
O(|V |2) time.

2. We select the 3-CNF-SAT problem, a known NP-Complete
problem for our reduction: 3-CNF-SAT ≤P Clique.

Clique Reduction

3. We define the following function. Let φ = C1 ∧ . . . ∧ Ck be a
3-CNF formula. We will construct a graph G that has a clique
of size k if and only if φ is satisfiable. For each clause
Ci = (xi1 ∨ xi2 ∨ xi3) we define vertices vi1, v

i
2, v

i
3 ∈ V . Edges

are defined such that (viα, v
j
β) ∈ E if both of the following

hold:

1 If the vertices are in different clauses, i.e. i 6= j
2 Their corresponding literals are consistent: viα is not the

negation of vjβ

Example

C = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3)

Clique Reduction

C1

x1

¬x2

x3

C3

x1 x2 x3

C2

x1

¬x2

¬x3

Clique Reduction

4. We need to show that yes instances of the 3-CNF function φ
are preserved with this function. That is we want to show that
φ is satisfiable if and only if f(φ) = G has a clique of size k.
(⇒) : Suppose that φ has a satisfying assignment. This
implies that each clause Ci contains at least one true literal.
Remember that each literal corresponds to some vertex in G.
Choosing a true literal from each clause yields a set V ′ of size
k. To see that V ′ is a clique we look at our two requirements
from before: viα and vjβ are consistent and both are true, thus

(viα, v
j
β) ∈ E.

Clique Reduction

(⇐): Suppose that G has a clique of size k. No edges in G
connect vertices in the same triple corresponding to a clause so V ′

contains exactly on vertex per triple. Without fear of causing
inconsistencies, we can assign a 1 to each literal corresponding to
some vertex in each triple thus each clause is satisfied and so φ is
satisfied.

5. The computation of the function described in step 3 is clearly
polynomial. The input size is something like O(nk) so
building G takes at most O(2n2k) time.

Independent Set Problem

Definition

An independent set of an undirected graph G = (V,E) is a subset
of vertices V ′ ⊆ V such that for any two vertices v, v′ ∈ V ′,
(v, v′) /∈ E

Problem (IndependentSet)

Given an undirected graph G = (V,E)
Question: Does there exist an independent set of size k?

Independent Set Reduction

Again, we’ll follow our 5-step process to show that
IndependentSet is NP-Complete.

1. Just like the Clique problem, we can formulate a certificate
and verify it in polynomial time.

2. We will make the following reduction:
Clique ≤p IndependentSet

3. The function is as follows f : G→ G.

4. We want to show that a clique of size k in G is equivalent to
an independent set of size k in G.

5. The computation of f is certainly polynomial; O(|V |2)

Traveling Salesman Reduction

Exercise

Show that the TravelingSalesman problem is NP-Complete by
showing a reduction from HamiltonianCircuit.

Beyond P and NP

There are, of course, many more complexity classes other than
those we’ve looked at here. There are space (memory) classes,
nondeterministic space classes, quantum classes, probabilistic
classes etc.

For an almost complete listing and more recent results in
complexity classes, check out the Complexity Zoo:
http://www.complexityzoo.com/

Beyond P and NP

We conclude this discussion by giving an overall view of the
complexity classes we’ve seen. A few quick notes, first however:

I coRE is the compliment class of RE, that is it consists of all
decision problems for which no instances can be verified by a
Turing Machine in a finite amount of time. yes instances are
not guaranteed to halt.

I coNP is the compliment class of NP. Rather than producing
certificates, acceptance is defined as being able to produce a
disqualifier (i.e. if some computation path produces a no
answer, we accept. This is still a nondeterministic class. A
good example: Tautology.

Beyond P and NP

I NP ∩ coNP is the intersection of NP and coNP, P is
contained in this class as is

I NPI (NP intermediate).

I If P 6= NP, then NPI 6= ∅ is all we know.

I To date no one has shown that an actual problem is in NPI.
The leading candidate is GraphIsomorphism.

One big note here, the following picture merely depicts the
prevailing opinion of the Complexity Theory community. Again, no
one has proven that P 6= NP yet. Which of the separations in the
following diagram have been proven though?

Complexity Hierarchy

RE coRE

R

NP coNP

P

NPC coNPC

