
Algorithms & Algorithm Analysis

Computer Science & Engineering 235: Discrete Mathematics

Christopher M. Bourke
cbourke@cse.unl.edu

Algorithms
Brief Introduction

Real World Computing World
Objects, Entities Data Structures, ADTs, Classes
Activities Operations, Functions, Methods

I Problems are descriptions of objects with an objective

I Instances are problems on a specific input

I Algorithms1 are methods or procedures that solve instances
of problems

1”Algorithm” is a distortion of al-Khwarizmi, a Persian mathematician

Formal Definition I

Definition

An algorithm is a sequence of unambiguous instructions for solving
a problem. Algorithms must be

I Correct – always gives a “correct” solution.

I Finite – must eventually terminate.

Formal Definition II

I An algorithm is a feasible solution to a problem if it is also
efficient

I Notion of efficiency: it executes in a “reasonable” amount of
time

I Alternatively: if it uses a “reasonable” amount of memory

I In general: if it uses a “reasonable” amount of some resource

I There can be multiple algorithms acting on different data
structures that solve the same problem!

General Techniques I

There are many broad categories of Algorithms:

I Randomized algorithms

I Monte-Carlo algorithms

I Approximation algorithms

I Parallel algorithms

I Distributed algorithms

I And many more!

General Techniques II

General strategies of algorithms may be classified as:

I Brute Force

I Divide & Conquer

I Decrease & Conquer

I Transform & Conquer

I Dynamic Programming

I Greedy Techniques

Pseudo-code

Algorithms can be specified using some form of pseudo-code

Good pseudo-code:

I Balances clarity and detail

I Abstracts the algorithm

I Makes use of good mathematical notation

I Is easy to read

Bad pseudo-code:

I Gives too many details

I Is implementation or language specific

Good Pseudo-code
Example

Intersection

Input : Two sets of integers, A and B

Output : A set of integers C such that C = A ∩B

1 C = ∅
2 for i = 1, . . . , |A| do
3 if ai ∈ B then
4 C = C ∪ {ai}
5 end

6 end

7 output C

Designing An Algorithm

A general approach to designing algorithms is as follows.

1. Understand the Problem

2. Choose an approach (exact or approximate, probable solution)

3. Choose an appropriate data structure

4. Choose a strategy

5. Prove Correctness

6. Evaluate complexity

7. Test it

Algorithms
Example I

When designing an algorithm, we usually give a formal statement
about the problem we wish to solve.

Problem

Given a set A = {a1, a2, . . . , an} integers.
Output the index i of the maximum integer ai.

A straightforward idea is to simply store an initial maximum, say
a1 then compare it to every other integer, and update the stored
maximum if a new maximum is ever found.

Algorithms
Example I - Algorithm

Max

Input : A set A = {a1, a2, . . . , an} of integers.
Output : An index i such that ai = max{a1, a2, . . . , an}

1 index = 1

2 for i = 2, . . . n do
3 if ai > aindex then
4 index = i

5 end

6 end

7 output index

Algorithms
Example I - Understanding

This is a simple enough algorithm that you should be able to:

I Prove it correct

I Verify that it has the properties of an algorithm.

I Have some intuition as to its efficiency.

Questions to answer:

I How many “steps” would it take for this algorithm to
complete?

I What constitutes a step?

I How do we measure its complexity?

Algorithms
Example II

In many problems, we wish to not only find a solution, but to find
the best or optimal solution.

A simple technique that works for some optimization problems is
called the greedy technique.

As the name suggests, we solve a problem by being greedy—that is,
choosing the best, most immediate solution (i.e. a local solution).

However, for some problems, this technique is not guaranteed to
produce the best globally optimal solution.

Algorithms
Example II

Consider the change problem:

Problem

Given An integer n and a set of coin denominations (c1, c2, . . . , cr)
with c1 > c2 > · · · > cr
Output A set of coins d1, d2, · · · dk such that

∑k
i=1 di = n and k is

minimized.

I Can you describe an algorithm to solve this problem?

I How complex is it?

I Is it optimal?

Algorithms
Example II - Algorithm

Change

Input : An integer n and a set of coin denominations (c1, c2, . . . , cr)
with c1 > c2 > · · · > cr.

Output : A set of coins d1, d2, · · · dk such that
∑k

i=1 di = n and k is
minimized.

1 C = ∅
2 for i = 1, . . . r do
3 while n ≥ ci do
4 C = C ∪ {ci}
5 n = n− ci

6 end

7 end

8 output C

Algorithms
Example II - Optimal?

Will this algorithm always produce an optimal answer?

Consider a coinage system where c1 = 1, c2 = 7, c3 = 15, c4 = 20
and we want to give 22 “cents” in change.

What will this algorithm produce?

Is it optimal?

It is not optimal since it would give us one c4 and two c1, for three
coins, while the optimal is one c2 and one c3 for two coins.

Algorithms
Example II - Optimal?

What about the US currency system—is the algorithm correct in
this case?

Yes, in fact, we can prove it by contradiction.

For simplicity, let c1 = 25, c2 = 10, c3 = 5, c4 = 1.

Algorithms
Example II - Proof

I Let C = {d1, d2, . . . , dk} be the solution given by the greedy
algorithm for some integer n. By way of contradiction, assume
there is another solution C ′ = {d′1, d′2, . . . , d′l} with l < k.

I Consider the case of quarters. Say there are q quarters in C
and q′ quarters in C ′

I If q′ > q we are done: the greedy algorithm uses fewer
quarters and so fewer coins

I If q′ < q: the greedy algorithm uses as many quarters as
possible so:

I n = q(25) + r where r < 25
I since, q′ < q, n = q′(25) + r′ where r′ ≥ 25
I Thus, C ′ does not provide an optimal solution

I Finally, if q = q′, then we continue this argument on dimes
and nickels. Eventually we reach a contradiction.

I Thus, C = C ′ is our optimal solution.

Algorithms
Example II - Proof

Why (and where) does this proof fail in our previous counter
example to the general case?

The algorithm fails because there is no greedy choice property:
locally optimal solutions do not lead to a globally optimal solution.

Algorithm Analysis

How can we say that one algorithm performs better than another?

Quantify the resources required to execute:

I Time

I Memory

I I/O

I circuits, power, etc

Time is not merely CPU clock cycles, we want to study algorithms
independent or implementations, platforms, and hardware.

We need an objective point of reference. For that, we measure
time as a function of an algorithm’s input size.

Input Size I

For a given problem, we characterize the input size, n,
appropriately:

I Sorting – The number of items to be sorted

I Graphs – The number of vertices and/or edges

I Numerical – The number of bits needed to represent a number

Input Size II

The choice of an input size greatly depends on the elementary
operation; the most relevant or important operation of an
algorithm.

I Comparisons

I Additions

I Multiplications

Orders of Growth

An objective analysis means that we look at the order of growth
with respect to the input size

I Small input sizes can be computed instantaneously

I Hardware is continually improving

I Complexity should be independent of current technology

Objectively, we are more interested in how an algorithm performs
as n→∞

Intractability I

Intractable problems are problems for which there are no known
efficient algorithms

I May only have a brute-force exponential or super-exponential
running time

I Small inputs may be solved in a reasonable amount of time

I Moderate to large inputs: no hope of efficient execution

I Even with faster technology: may take millions or billions of
years

I Intractable problems are usually be solved using
approximations, heuristics, randomized algorithms, etc.

Intractability II

Tractable problems are problems that have efficient algorithms to
solve them

I A polynomial order of magnitude

I The number of steps can be bounded by p(n) = nk for some
constant k

I If k is large, the algorithm may still be impractical

Worst, Best, and Average Case

I Some algorithms perform differently on various inputs of a
similar size

I Helpful to consider:Worst-Case, Best-Case, and Average-Case
efficiencies of algorithms

I Motivating example: searching an array A of size n for a
given value K

I Worst-Case: K 6∈ A then we must search every item (n
comparisons)

I Best-Case: K is the first item that we check, so only one
comparison

Average-Case I

I Some inputs may lead to poor performance, but may be rare

I Some inputs may lead to great performance, but may also be
rare

I Rare instances may give an unfair perspective

I A frequently used algorithm’s performance may be based on
how it performs on average

Average-Case II

Consider searching an array for an element a:

I Let p be the probability of a successful search

I Assume a uniform probability on the index

I Then number of comparisons when a is found at index i:

i
p

n

I Summing over all possible indices:

n∑

i=1

i
p

n
=

p(n+ 1)

2

Average-Case III

I Probability of an unsuccessful search: (1− p)

I Number of comparisons in unsuccessful search: n(1− p)

I In total:

Cavg(n) =
p(n+ 1)

2
+ n(1− p) ≈ n

2

I Interpretation: on average, the search algorithm must examine
half of all elements in A

Amotized Cost

I Cavg and Cworst may have the same order of magnitude

I From a theoretical point of view, they are equivalent

I Practical considerations may come in to play

I May motivate another approach: Amortized efficiency

I Similar to loan amortization

I A single operation may be costly, but the overall run-time over
the long-run is less expensive

I Example: rehashing a hash-based map to improve subsequent
look-ups

Mathematical Analysis of Algorithms

After developing an algorithm, we must analyze; a general
approach:

1. Decide on a parameter(s) for the input, n

2. Identify the basic operation

3. Evaluate how the elementary operation depends on n

4. Generate a general formula for the number of times the
elementary operation is executed with respect to n

5. Simplify the equation to get as simple of a function f(n) as
possible.

Analysis Examples
Example I

Consider the following code.

Algorithm (UniqueElements)

Input : Integer array A of size n

Output : true if all elements a ∈ A are distinct

1 for i = 1, . . . , n− 2 do
2 for j = i+ 1, . . . n− 1 do
3 if ai = aj then
4 return false

5 end

6 end

7 end

8 return true

Analysis Example
Example I - Analysis

For this algorithm, what is

I The elementary operation?

I Input Size?

I Does the elementary operation depend only on n?

The outer for-loop is run n− 2 times. More formally, it contributes

n−2∑

i=1

Analysis Example
Example I - Analysis

The inner for-loop depends on the outer for-loop, so it contributes

n−1∑

j=i+1

We observe that the elementary operation is executed once in each
iteration, thus we have

Cworst(n) =

n−2∑

i=1

n−1∑

j=i+1

1 =
n(n− 1)

2

Analysis Example
Example II

The parity of a bit string determines whether or not the number of
1s appearing in it is even or odd. It is used as a simple form of
error correction over communication networks.

Algorithm (Parity)

Input : An integer n in binary (b[])

Output : 0 if the parity of n is even, 1 otherwise

1 parity = 0

2 while n > 0 do
3 if b[0] = 1 then
4 parity = parity + 1 mod 2

5 right-shift(n)

6 end

7 end

8 return parity

Example: Selection Sort

I Pseudocode

I Input, input size

I Elementary operation

I Analysis

I Asymptotics

Example: Euclid’s GCD Algorithm

I The greatest common divisor (GCD) of two integers is the
largest integer that evenly divides both of them

I Euclid (Greek, 300 BCE): any divisor must also divide the
remainder of a/b, so iteratively divide until there is no
remainder

Algorithm (GCD)

Input : Integers, a, b, a > 1, b > 1

Output : g such that g = gcd(a, b)

1 while b 6= 0 do
2 t← b

3 b← a mod b

4 a← t

5 end

6 output a

Euclid’s GCD Algorithm
Analysis

I Input?

I Input size?

I Elementary operation?

I Number of iterations?

Euclid’s GCD Algorithm
Analysis

I Number of iterations is dependent on the nature of the input,
not just the input size

I Generally, we’re interested in the worst case behavior

I Number of iterations is maximized when the reduction in b
(line 3) is minimized

I Reduction is minimized when b is minimal; i.e. b = 2

I Thus, after at most n iterations, b is reduced to 1 (0 on the
next iteration), so:

b

2n
= 1

I The number of iterations, n = log b

Analysis Example
Example II - Analysis

For this algorithm, what is

I The elementary operation?

I Input Size?

I Does the elementary operation depend only on n?

The while-loop will be executed as many times as there are 1-bits
in its binary representation. In the worst case, we’ll have a bit
string of all ones.

The number of bits required to represent an integer n is

dlog ne

so the running time is simply log n.

Analysis Example
Example III

Algorithm (MyFunction(n,m, p))

Input : Integers n,m, p such that n > m > p

Output : Some function f(n,m, p)

1 x = 1

2 for i = 0 . . . 10 do
3 for j = 0 . . . n do
4 for k = m/2 . . .m do
5 x = x× p

6 end

7 end

8 end

9 return x

Analysis Example
Example III - Analysis

I Outer Loop: executed 11 times.

I 2nd Loop: executed n+ 1 times.

I Inner Loop: executed about m
2 times.

I Thus we have

C(n,m, p) = 11(n+ 1)(m/2)

I But, do we really need to consider p or m?

I If m = f(n), yes

I If n >> m, probably not

