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Abstract— Multirotor unmanned aerial systems (UASs) are
often used to transport a variety of payloads. However, the
maximum time that the cargo can remain airborne is limited
by the flight endurance of the UAS. In this paper, we present
a novel approach for two multirotors to transfer a payload
between them in-air, while keeping the payload aloft and
stationary. Our framework is built on a visual-feedback and
grasping pipeline that enables one UAS to grasp the payload
held by another, thereby allowing the UASs to act as swappable
carriers. By connecting the payload outwards along a single
rigid link, and allowing the UASs to maneuver about it, we let
the payload remain online while it is transferred to a different
carrier. Furthermore, building entirely on monocular vision, the
approach does not rely on precise extrinsic localization systems.
We demonstrate our proposed strategy in a variety of indoor
and GPS-free outdoor experiments, and explore the range of
operating limits for our system.

I. INTRODUCTION

Multirotor UASs are immensely useful aerial platforms
for carrying and transporting a variety of payloads. Their
ability to hover at precise, and often hard to access locations
is an added advantage when a certain sensor package may
need to be “hoisted” around a volume of interest. However,
the maximum duration that a payload can be held aloft, and
the maximum distance across which it can be transported, is
limited by the flight endurance of the vehicle. We therefore
envision a scenario where a payload, such as an expensive
thermal imager monitoring a wildfire, could remain “online”
even while it gets transferred to another UAS. Thus the
transfer must happen in situ, such that replacing the UAS
is inconsequential to the payload. Moreover, in many cases,
an aerial transfer is preferable over the simpler approach of
landing and swapping the payload. For instance, a precision
landing might be challenging over remote and uncertain
terrains, or infeasible when flying over water bodies.

In this work, we develop and evaluate a means for multi-
rotors to transfer payloads between them. This can be non-
trivial in the absence of motion capture systems that enable
very accurate relative positioning. Furthermore, coordinating
such a transfer in a way that minimizes the contact duration
between the UASs requires precise monitoring and feedback.
Our previous work has addressed some of these challenges
by completely detaching the payload on a parachute [1]
and by actively swinging it about the vehicle’s yaw axis
[2]. These methods do not keep the payload oblivious to
the transfer and require it to undergo large motions, which
may not be suitable for some payloads (e.g. a camera).
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Fig. 1: A snapshot from outdoor tests where a payload support
bar originally held by a UAS (right) is grasped mid-air by another
for transferring a payload.

Furthermore, when deployed on a parachute, neither UAS
is in full possession of the payload while being transferred.
On the other hand, actively swinging a heavier payload might
adversely impact the flight stability of the UASs.

In this paper, we present a novel strategy that enables
the transfer of a cargo payload from one carrier multirotor
to another, while they are both airborne. As shown in the
snapshot in Figure 1, our proposed method involves one
UAS actively grasping a support bar connecting a payload
held by another. A fundamental challenge in this mission is
the risk posed by the two UASs flying in close proximity
without precise, external localization systems. We mitigate
the risk of collisions by extending a rigidly linked support
bar horizontally away from the carrier UAS. By precise
closed-loop control of the second UAS and active grasping
of this support bar, our approach keeps the payload in either
UAS’s possession, thus allowing it to stay airborne for longer.
However, introducing the support bar as a grasping point
also leads to non-trivial challenges in its localization and
coordinated grasp/release. Furthermore, the dynamic change
of mass must also be compensated for in the control strategy.
The key contributions of this work are:
• A novel strategy for transferring a payload carried by

one UAS to another, while keeping the payload hovering
in-place;

• A fast and efficient visual-feedback control pipeline,
coupled with a single-axis gripper, that allows multiple
UASs to pass objects amongst them; and,

• Indoor and outdoor studies that demonstrate au-
tonomous payload transfers between two multirotors,
a characterization of the effectiveness of the proposed
approach through 24 tests in total, and a detailed dis-
cussion on the elements of system design.



II. RELATED WORK

Transfer of airborne payloads between UASs has not been
studied extensively. The closely-related problem of multiple
aerial vehicles interacting with the same payload object,
however, has been previously demonstrated in the context of
collaborative load carrying. Specifically, cooperative flight
and leader-follower configurations for load transport have
been shown to perform well using only visual cues within
semi-constrained environments [3], [4]. More generalized
n-vehicle control frameworks [5], [6] have also explored
how multiple UASs can dynamically reorient themselves for
safe and efficient transport of a common, suspended payload
inside motion-capture environments. While these proposed
approaches tackle the problem of collaborative transport, it
is typically assumed that the UASs are already connected
to the payload. That is, the vehicles do not dynamically
transfer or share the ownership of the payload. On the other
hand, several approaches have been developed and field-
tested for UASs that grasp and manipulate objects while
hovering airborne [7], [8], or moving at some speed [9].
However, they do not focus on systems and mechanisms
that involve another UAS that is simultaneously airborne,
which introduces constraints such as an uncertain motion of
the payload (induced by another UAS), and challenges with
proximity and mission time. As also demonstrated by Dollar
et al. [7], the dynamic change in aircraft loading must keep
the flight controller within a stable operating region.

Vision-based control approaches play a critical role for
UASs interacting with extremely precise contact locations
and objects with fast dynamics. These have been ex-
ploited for chasing and landing on ground-based targets
[10], [11], [12], [13], as well as for intercepting airborne tar-
gets [1], [14]. Precise visual servoing has also been employed
for perching, grasping objects, and navigating through clut-
tered spaces [15], [9]. Instead of relying on visual cues from
the environment, several of these approaches use fiducial
markers for state estimation. Similar to previous approaches
that have used a pattern of light-emitting diodes (LEDs)
to compute perspective [16], [17], we employ LEDs as the
fiducial marker mounted at the tip of the support bar. Even
with the penalty of added weight, we prefer it over passive
tags (such as AprilTags [18]) to aid fast state estimation.

A closely related problem is the one of aerial vehicles
connecting with each other mid-air to form conjoined flying
structures. This has recently seen some successful demon-
strations within semi-structured environments [19]. Methods
for landing and autonomously swapping batteries have been
presented in prior work [20]. Our previous work has also
demonstrated how a cargo payload can be transfered from
one airborne UAS to another by agitating the payload [2].
In this work, we present a strategy for a transfer of payload
between two UASs while they remain airborne, so that the
payload can remain online during the transfer.

III. TECHNICAL APPROACH

Our objective is to enable two UASs, referred to as Alpha
and Bravo, to perform an autonomous aerial transfer of pay-

load between each other. Without relying on precise motion-
capture systems, the systems must ensure that the vehicles
or the payload are not jeopardized during the mission. We
consider such a fully autonomous mission successful when
Bravo grasps the support bar originally held by Alpha,
completely disengages it, and flies away with it afterwards.

Figure 2a shows a graphical illustration of the mission
phases of our approach. We assume at the start of the mission
that the first vehicle, Alpha, performs a stationary hover with
the payload support bar. In practice, this support bar connects
with the payload and protrudes horizontally outwards from
Alpha’s center. The tip of this bar has active LED markers
mounted on it to aid Bravo in relative localization and
identification of the grasping location. We also assume that
the two vehicles can get within relatively close proximity
to each other, for instance, by agreeing on a common GPS
location. Our technical approach to performing the payload
hand-off between the two vehicles is split into 4 stages,
shown in Figure 2a:
1. Bravo: Pose estimation relative to support bar
2. Bravo: Stable flight relative to Alpha
3. Bravo: Approach and grasp the support bar
4. Alpha: Coordinated release of the support bar.
We now present the details of each of these stages.

A. Bravo: pose estimation

We employ a monocular vision feedback system for Bravo
to estimate its full pose relative to the support bar held by
Alpha. Visual feedback control is easily adapted to a variety
of scenarios (indoor vs. outdoor) and is advantageous when
precise localization is critical. Our approach is independent
of the choice of markers, and can easily generalize to several
other monocular state estimation methods [21], [22]. We
develop a position-based visual servoing (PBVS) framework
using a calibrated camera to control Bravo’s motion over
desired trajectories. Using active markers for this purpose
dramatically speeds up the target identification problem by
admitting very small camera exposures. This, in turn, allows
fast and unambiguous full state estimation to be run entirely
onboard the UAS. Note that since Bravo does not use any
extrinsic localization method, its “full state” in this context
is always relative to a local origin at the markers’ center.

Consider two NED (north-east-down) frames of reference
for the target and the UAS, T and U , respectively, as shown
in Figure 2b. We denote the location of the UAS in the T
frame as P Tuas. A calibrated camera is rigidly mounted under
the body-center of the UAS such that it is pointed along the
positive z axis of U . The location of a target t in the UAS’s
frame, PUt = [nt, et, dt]

T , is related to its projection in the
pixel-space (ut, vt) as,utvt

1

 = KC ∗ [RC |TC ] ∗


nt
et
dt
1

 , (1)

where, KC represents the camera’s intrinsics (obtained from
calibration), and RC |TC denotes its extrinsic rotation and
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Fig. 2: a) An illustration of the four system phases described in the mission: 1© pose estimation, 2© stable flight, 3© approach and
grasping, and 4© coordinated release; b) The frames of reference used in this work. The T frame denotes the position of the markers.

translation elements stacked together. We recover the ex-
trinsics, RC |TC , using a Perspective-from-N-Points (PnP)
algorithm [23] over the known points on the target pattern.
The notation RC |TC is used to describe the rotation and
translation of PUt . The 3D pose of the UAS relative to the
fixed-frame of the target is then obtained by

P Tuas = R−1C TC = −RTCTC . (2)

The calculated Puas and Ṗuas from this step are later used
as measurements for the estimator and controller.

B. Stable flight relative to Alpha

Once Bravo is able to establish its pose using visual
feedback, it attempts to maintain a stable hover relative to
Alpha. Our control strategy for the UAS is based on a linear
quadratic regulator (LQR) with non-linear output mapping.
The state equations for the UAS are derived from a feedback-
linearized system model such that,

˙̂x = Ax̂+Bu, and y = Cx, (3)

with

A =

[
03x3 I3x3
03x3 03x3

]
, B =

[
03x3 0
I3x3 0

]
, C = I,

where the UAS’s state vector is denoted by x =
[Puas, Ṗuas]

T , and, u = [uθ, uφ, uψ, uT ]
T represents the

acceleration inputs to the system in each degree of freedom.
Note that we omit yaw from the state vector only for an
ease of notation. We set it to zero without loss of generality,
although it could be easily adapted to arbitrary orientations.
The x̂ used in the system model is produced by a Kalman
filter, and represents the best estimate of the state x. The
filter uses the system model in Equation (3), and runs at a rate
higher than that of the camera pose estimation. The different
phases of the mission highlighted in Figure 2a benefit from
different closed-loop system response. We employ a gain-
scheduled framework that allows the system to vary the
control effort at these different stages (for instance, based
on the proximity to the support bar). The control feedback
law for Equation (3) is then a function of the system state,
such that,

u = −Kphasex̂e, (4)

where x̂e ≡ x̂ − xr(t) and xr is a reference function. For
this phase, xr is a constant to maintain a stable hover. The

feedback gain K(·) is precomputed by solving the algebraic
Ricatti equations for different weights in the matrices Q
and R for a standard LQR cost function. Finally, using the
total mass, m, of the system, the acceleration inputs from
Equation (4) are mapped to corresponding attitude and thrust
targets for the inner attitude controller, [θd, φd, ψd, T ] =
gkin(u,m). This non-linear map, gkin : R5 → R4, is
obtained by inverting the UAS’s kinematics [24].
Assessing a stable phase: Note that Bravo’s pose is
measured in the T frame, which is affixed to the support
bar and is, in general, non-inertial. As a result, Bravo cannot
directly infer whether the bar is undergoing a turbulent
phase (for instance, because of Alpha’s non-ideal hover). To
mitigate this challenge, we use the variance in the estimator’s
x̂ over a small time interval. Assuming Bravo’s body-frame
rotations are negligible over an interval, tstab, the variance
in estimated state must be due to the bar’s accelerations.
Hence, σ ≡ var

(
x̂(t) . . . x̂(t + tstab)

)
can be used as a

metric to identify whether the bar is held steady. The system
can transition into an approaching phase if σ < σth for some
interval tstab.

C. Approach and Grasping

For grasping the support bar, the UAS must approach it
and position itself accurately within relatively small error
margins. We use the same underlying control strategy to
guide the UAS to the target position by constructing xr as
a time-varying reference function. This trajectory is a linear
constant-velocity path that terminates at the grasping point
on the bar at a finite time, Tf .
Failure detection: When the vehicles are closer, small
environmental disturbances and drift can more easily move
the marker out of the camera’s field of view. The controller
uses the estimated pose, x̂, which can degrade rapidly if
measurement updates are too sparse in time. Thus, the chal-
lenges of early failure-detection and reaction become critical
at close proximities. Moreover, an unexpected motion of the
target during the approach is unfavorable for a successful
grasp. As a result, we employ a monitor which asserts that
|x̂e| < xth throughout the approach for each element in
the vector, with xth ∈ R6 denoting the threshold limits for
estimated position and velocity. The approach phase is also
constrained to a finite terminal time, Tf . Furthermore, while
occlusions are rare, the monitor admits a threshold interval,



tmiss, for which the target is allowed to be out of the field
of view. Violations of any of these constraints autonomously
trigger a restart of the approach phase.

D. Coordinated Release

If the constraints during the approaching phase are met,
and ||x̂ − xr(Tf )|| < xtf , then Bravo attempts to grasp
the support bar. When the grasp is attempted, the target
has a high likelihood of being out of the field of view of
the camera. In practice, therefore, an additional feedback
signal indicating a successful or failed grasp is critical to
the mission. An unexpected motion of the bar in the final
stage can mean that a) the gripper misses the bar, or b) the
grasp is unreliable or incorrectly positioned. The gripping
subsystem contains a magnetic feedback element is activated
only when the bar has been grasped successfully. If this
feedback signal is available, Bravo then commands Alpha
to release its hold, and is subsequently switched to a hover
flight mode. Otherwise, the grasp attempt is aborted, and the
mission is autonomously restarted in the approach phase.

The post-grasp hovering flight mode has a different mass
loading for the vehicles. The inner-loop attitude controller
uses a PID control strategy that remains within stable op-
erating limits under loaded and non-loaded configurations.
However, the transient response, as well as the thrust re-
quirements, will be different under both scenarios. We use
our gain-scheduled outer-loop control method (Equation (4)),
and the inversion map gkin to accommodate these two effects
produced by this transfer of mass.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

We first characterize the individual components of our
visual servoing and control pipeline. We then demonstrate the
capabilities of our proposed system using two commercially
available quadcopters customized for our tests. Table I lists
the values used for the constants in our implementation.

UASs: Alpha is a customized DJI Matrice 100 and is
equipped with a GPS to maintain a stable hover outdoors.
The payload bar is held in place by 3D printed supports
and a servo-controlled hatch that is actuated to release
the bar. Bravo is a DJI Flamewheel F450 frame outfitted
with a gripper mechanism that is actuated by a servo. The
sensing, estimation and control algorithms are run entirely
onboard the vehicle on an Odroid XU4, and the visual
feedback is obtained by a calibrated Bluefox MLC200c
camera (752 × 480px) equipped with a wide-angle lens
(approx. 110◦ horizontal field of view). The visual pose
detection runs onboard the Odroid with the camera triggered
at 60 fps, while the state estimation and control loops are
implemented at 70Hz and 40Hz, respectively.

The autopilot used is a Pixhawk board that runs cus-
tomized Arducopter firmware. The inner attitude-control loop
accepts desired attitude targets generated from Equation (4)
after the mapping by gkin. For the gain-scheduled imple-
mentation of Equation (4), we choose three sets of Q and
R matrices for the hover, approach and post-grasp flight
phases. These are chosen such that state errors are regulated

TABLE I: Listing of the values used in our implementation.

Variable Value Variable Value
Indoor Outdoor Indoor Outdoor

σ 0.0009 0.0016 tstab 3.0s 3.0s
Tf ≤10s ≤10s tmiss 1.35s 0.85s

xth
[
0.50 0.50 0.20 0.1 0.1 0.1

]T
xtf

[
0.15 0.15 0.10 0.0 0.0 0.0

]T

Fig. 3: [Left] A schematic drawing of our grasping mechanism1,
with the actuating servo and the hall-effect feedback sensor
highlighted. [Right] The 5-point LED pattern used as the marker
on the support bar.

at a faster rate during the approach phase (at the expense
of a higher control effort). Furthermore, the control can be
relaxed post-grasp, observing that Bravo’s mission no longer
requires strict velocity tracking. To ensure stability, we verify
that the eigenvalues of the closed-loop system are strictly
on the left-half of the complex plane for each resultant
K(·). Alpha and Bravo use a pair of 2.4GHz XBee radios
for a one-byte communication with each other only for the
command/acknowledgment of bar release.

Support bar: The support bar carried initially by Alpha is a
1.1m long thin tube made out of light-weight carbon-fiber.
The length of the bar is generally a tradeoff between two
factors: 1) an extremely short length challenges the safety
of operations, and 2) an extremely long bar might offset
Alpha’s center of mass significantly, resulting in unstable
flight dynamics. Through preliminary tests with our vehicles,
we established approximately 1.5m to be a safe operational
length of the bar. A predefined pattern designed using small
LEDs, powered by Alpha’s power source, is affixed to the
grasping end of the bar, along with a magnetic element. We
use blue LEDs as they are easily distinguishable from the
largely green and brown landscape below the UASs. Alpha
employs a servo-actuated release mechanism that holds the
bar and also simultaneously disconnects the power to the
LEDs when commanded by Bravo. The support bar, with
the LEDs and the magnetic element weighs 40 g, and pro-
trudes approximately 1m outwards from the tip of Alpha’s
propellers. In practice, a generic payload that needs to be
transferred would be attached to this bar close to the center
of mass of Alpha.

Gripper: Figure 3 shows a graphical schematic of our
grasping mechanism, which is designed around a Vex
Robotics model claw. A single servo provides actuation to
both arms of the gripper which are connected by a gear

1Base gripper design from VexRobotics, vexrobotics.com.



Fig. 4: The distribution of the error (euclidean distance) in camera
estimated poses compared to the ground truth. The histogram on
the left also shows the (count) distribution when the objects are
within 1m of each other.

system. The two arms therefore move symmetrically, and
are mounted such that they meet the sagittal plane of the
UAS simultaneously when closing. The grasping location on
the payload bar contains a magnetic strip which is sensed
by a hall effect sensor mounted inside the gripper arm. This
allows the system to passively recognize a successful grasp,
and helps reduce false and unreliable grasps. The gripper
system weighs 75 g, and has a maximal opening of ∼16 cm.

Experimental Setup

We perform two types of experiments to evaluate the
performance of our proposed strategy. Indoor tests are per-
formed inside a closed arena with Alpha mounted on a
raised platform, and Bravo executing its complete mission
using only visual state feedback from the active LEDs. No
external state estimation (such as a motion-capture system) is
used. Furthermore, to simulate a more realistic scenario, the
mounting platform for Alpha is not rigid, thereby admitting
small motions of the bar (constrained to ∼20 cm in each axis)
due to aerodynamic effects. These tests consequently eval-
uate the precision of the localization, control and grasping
subsystems in a simulated ideal hover by Alpha.

Outdoor tests are then performed by flying Alpha in a
stationary hover at a fixed GPS location. As before, Bravo
executes its mission using purely visual-inertial feedback.
The mission is entirely autonomous, and no pilot commands
are used during any of the phases. All outdoor tests are
conducted under low wind conditions (3–5m/s) in order to
reduce the impact of external disturbances on the vehicles.

V. RESULTS

We begin by characterizing the individual components of
our pipeline through indoor experiments in semi-constrained
environments. Afterwards, we present results from our indoor
and outdoor experiments that demonstrate the capabilities of
our full system. The objective in these experiments is to 1)
evaluate the controller’s response in converging to the correct
grasping point, and 2) determine the time and number of
attempts the system takes to retrieve the payload.

A. Vision Pipeline

Our first evaluation focuses on the effectiveness of the
visual feedback employed in the subsequent subsections. We
rigidly fix an LED marker pattern to the world frame, while
Bravo performs onboard pose calculation using the vision
pipeline (Section III-A). Bravo is systematically positioned
to view the pattern from a range of different poses. We record
over 6500 such data points that cover a volume of locations
in all three axes at a slow speed. A Vicon2 motion capture
system is used to acquire the corresponding ground truth
locations of the marker and Bravo at 200Hz. Figure 4 shows
the error in the 3-axis euclidean distance of Bravo’s relative
pose produced by the visual feedback compared against the
corresponding ground truth poses. Overall on average, over
74% of the sampled points fall within 0.16m of the ground
truth distance (roughly the maximal opening of the gripper).
When the marker is in closer proximity (under 1m), the
RMS error in the estimated distance is 0.07m.

Processing a camera frame to produce Puas takes approx-
imately 12.2ms on average on the Odroid. This allows us to
easily trigger the camera at over 60 fps. Since our estimation
and control loops run at fixed rates (70Hz and 40Hz,
respectively), the typical worst case latency in reacting to
one camera frame is 12.2 + 1000/70 + 1000/40 ≈ 51.5ms.
On average, assuming that the arrival times for inter-process
results are uniformly distributed between the process inter-
vals, this latency drops down to ≈ 32ms.

B. Controller Performance

For the ultimate grasping experiments, we must ensure that
the visual-control strategy enables precise maneuverability
for Bravo. We perform this evaluation in a motion capture
room with Bravo flying commanded trajectories using purely
visual feedback from an LED pattern positioned stationary in
the world frame. Figure 5(a)(b) show the results from flying
a circular path around the marker at a fixed altitude with
radius 0.5m and a period of approximately 10.5 s. Figure 5c
shows the corresponding euclidean error in the lateral axes
compared to the ground truth motion-capture data. The figure
also shows the euclidean error for a stationary hover for the
same duration. Through these experiments, we observe that
the controller is able to maintain an average position error of
less than 10 cm throughout. We also note a finite steady-state
drift and bias for the vehicle. Since this bias can vary due to
several factors such as vehicle calibration and battery voltage,
in our experiments, we compensate for it by measuring it in
the stable hover stage of the mission (Section III-B) before
an approach is initiated.

This state error (and its temporal variance) can be higher in
the presence of external wind. Figure 6 shows the cumulative
distribution of the estimated variance in the pose during a
30 s hover in the presence of wind using purely onboard
visual feedback. We observe that for winds up to 4−5 km/h,
the controller is able to meet the outdoor variance thresholds
75-90% of the intervals. In particular, the controller stays
within 2σth for over 85% of the times under low wind

2https://vicon.com
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Fig. 5: Bravo’s positions in (a) north and (b) east while flying a circular trajectory using our visual control pipeline. Using a motion
capture system, we observe that the euclidean error shown in (c) is typically within 10 cm.

Fig. 6: Calculated variance in the pose for different wind speeds,
viewed as a cumulative distribution (CDF).

Fig. 7: Loading effect compensated using a gain-scheduled con-
troller of the type described in Equation (4). The shaded region
in green highlights the duration for which the controller switches
for compensating for the added mass.

conditions. Even for higher wind speeds, nearly 60% of
the samples always meet the outdoor threshold. The tail of
the distribution is not shown for clarity. However, it can be
observed that for all wind speeds, 90% of the samples fall
within 3σth.

Figure 7 shows our evaluation of the controller’s compen-
sation for the added mass on Bravo after the payload has been
acquired. Recall that our non-linear output map, gkin, from
Section III-B already accounts for the mass of the system.
Since the added mass is not centered around Bravo’s center
of gravity, we employ our gain-scheduled control strategy
from Equation (4). We switch the feedback gain post-grasp

such that the position errors are penalized more heavily. In
our characterization, we command Bravo to hover inside a
motion-capture environment while carrying the support bar
(simulating a post-grasp scenario) and switch the gains in-
flight. The highlights in Figure 7 mark the regions where the
post-grasp gains are applied. We observe that in doing so,
the controller better reduces the effect of a biased loading
from a mean error of 0.35m down to 0.24m.

C. Indoor Grasping Tests

In all our grasping tests (indoors and outdoors), we ran-
domize Bravo’s starting location relative to the support bar
to validate the controller’s performance for different initial
conditions. The offset for these starting locations still lies
within the camera’s field of view.

We conducted 16 successive indoor trials in which Alpha
is mounted on a semi-rigid mounting platform and Bravo
localizes, grasps, and retrieves Alpha’s support bar. In all
of our trials, Bravo was able to successfully grasp the bar
and synchronize its release from Alpha. The polar plot in
Figure 8a graphically illustrates the different initial positions
for Bravo at the start of its mission. Figure 8b plots the
trajectories of the error (measured as euclidean distance)
between the target point and Bravo during the approach. As
expected, the system spends some initial time in ascertaining
a steady positioning before rapidly converging towards the
grasping location. The final approach takes ∼9 s on average.

Figure 8c shows the number of approaching and grasping
attempts made by Bravo before successfully finishing its
mission. Recall that the system can correctly detect grasp-
ing failures and unsteady relative motions of the bar, and
autonomously recover by restarting another approach phase.
Consequently, the system makes an average of 3-4 attempts
before it makes one with a high confidence. Figure 8c also
plots the total time spent by Bravo in phases 2 and 3 (hover
and approach). On an average, this is about 60 s.

D. Outdoor Grasping Tests

We performed 8 outdoor field tests where both vehicles are
simultaneously airborne, and Bravo autonomously localizes,
graps and retrieves the support bar from Alpha. In only one
instance (trial #1), the autonomous restart failed, requiring
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Fig. 8: Results from indoor ((a)-(c)) and outdoor ((d)-(f)) tests. (a)(d) Starting locations of the approach, with the colormap representing
the vertical (z-axis) distance (meters); (b)(e) Approach trajectories of the error (euclidean dist.) in Bravo’s location relative to the grasping
point on the bar. The highlighted area represents the acceptable region for triggering a grasp; (c)(f) A summary of key statistics.

pilot intervention. In the remaining 7 trials, Bravo was
successful in its localization and grasping tasks. However in
the last 3 trials, our gripper began experiencing mechanical
fatigue, which rendered Bravo unable to retain the support
bar after its release from Alpha, despite the grasper enclosing
the bar.

Figure 8d shows Bravo’s starting location relative to the
support bar. The starting locations follow a similar distribu-
tion to the indoor trials since this state is entered based on
the position reported by the active markers. In Figure 8e,
we show the trajectories of the euclidean distance between
Bravo and the target point as it approaches it. These follow
a trend similar to the ones observed in Figure 8b for our
indoor tests. While there is some increased noise, especially
noticeable when the error increases a few times, it does not
significantly impact the control and estimation pipelines.

The number of trials and the time taken by the system
varies significantly outdoors. Figure 8f shows the time Bravo
spends in phases 2 and 3 (hover and approach), and on aver-
age this is approximately 126 s (more than twice compared
to indoors). The average number of trials is also nearly twice
(7-8) compared to indoors.

There is an expected difference in the statistics of our
results from indoor and outdoor experiments. Our control
and state estimation pipelines perform well in both scenarios.
However, we notice that, in general, the outdoor tests take
more time and number of trials. In particular, while flying
outdoors, Bravo can make more than twice the number of

approach attempts outdoors before it is confident on one and
attempts to grasp. This is evident in Figure 8f, where, in
trials #3 & #5, the system begins an approach 12-18 times,
but aborts several of them. There are only 6 grasp attempts
for either of these cases. Nevertheless, the average mission
time is still close to 126 s.

We attribute these higher numbers primarily to the devia-
tions from an ideal hover by Alpha (caused by environmental
disturbances, downdraft from Bravo, etc.). Furthermore, note
from Table I that we use stricter thresholds outdoors to
aid the safety of operations. Consequently, the system is
more conservative in its mission, and favors a retrial more
frequently. However, trial #1 in outdoor tests failed such a
restart in a timely manner due to errors in state estimation
that allowed the system to incorrectly meet the thresholds.

VI. DISCUSSION ON DESIGN CHOICES

The thresholds and parameters enumerated in Table I are
selected empirically based on our choice of vehicles, the sen-
sors and the payload, and the expected operating conditions.
Some thresholds, such as Tf , are chosen to constrain the
speed and the time spent in approach. Length of the support
bar and the weight mounted on it are dependent on UAS’s
capabilities, and are identified prior through independent
flights. This also influences the mission parameters such as
xth and xtf , since larger values of these thresholds will
admit larger deviations from a target system state. Similarly,
σth regulates how steady the relative positioning must be



before an approach is attempted. This can be higher for
systems that have longer support bars, or larger grippers. The
mechanical design of the gripper also governs factors such
as the variability in the grasping location, and the maximum
allowable payload. Through indoor tests with the support
bar, we have established that our system is capable of safe
operations with an off-centered payload of up to ∼ 70−80 g
additional to the support bar.

Our current design for Bravo uses a single-point gripper
with a single contact region on the bar. This greatly simplifies
the mechanical structure, while reducing the weight of both
the gripper system and the feedback elements at the tip of the
support bar. However, this poses two noticeable challenges:
1) upon release, the weight of the bar must be counteracted
by frictional and normal forces at only one contact point, and
2) the bar will not remain horizontal during the post-grasp
flight with Bravo. While this is advantageous in preventing
an immediate collision with Alpha, it restricts the possibility
of Bravo transferring it to another vehicle later on. In this
work, we have not prioritized this element of the design.
This can be extended to a synchronous two-point gripper to
ensure that the grasp aids future transfers to other vehicles.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a novel strategy that allows
two multirotors to transfer a payload between them while
remaining simultaneously airborne. Our method requires a
multirotor to simply hover in place, and extend a rigid link
as a support bar to be grasped by the other. By employing
precise visual servoing and active grasping, we are able to
perform a transfer that requires no agitation of the payload.
We demonstrate feasibility of our approach, and characterize
the performance of its various elements through extensive
tests.

In the next revisions of our system, we will use some of the
lessons learnt from our field trials to improve the capabilities
of our system. In particular, we plan on further improving
the state estimation pipeline to relax the environmental
constraints under which the systems operate. Modifications
and updates to the gripping mechanism are also underway
that allow a stronger grasp on the bar. As a result, our future
work will also include the ability for Alpha to re-acquire the
payload from Bravo by reversing the roles.
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