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Abstract— Consensus algorithms provide a framework for
the distributed coordination of a multi-agent system. However,
widespread application and deployment of consensus algorithms
may be limited in real-world multi-agent coordination problems
due to implementation on size, power, and weight constrained
vehicles. In this case, limited resources may contribute to
delay and packet loss causing algorithm deterioration and
violation of performance guarantees. This calls for novel
strategies for intelligent resource utilization and computation-
ally simple implementation. Towards this goal, we propose
co-regulation strategies for discrete time average consensus
under delays allowing dynamic resource utilization while coping
with communication limitations. This is done by dynamically
adjusting communication frequency to facilitate higher state
exchange rates while simultaneously adjusting agents’ locations
to increase inter-agent connectivity for rapid convergence. We
prove that convergence is still guaranteed for co-regulation
strategies for discrete time average consensus under bounded
delays. In addition, we propose a pause for agents’ locations
to mitigate adverse behavior caused by delay. To simplify
implementation we devise a consensus strategy that decouples
the co-regulated consensus from low-level vehicle feedback
control. The usability of our proposed system is evaluated
through a series of simulations, and we show our proposed co-
regulation strategies in fact result in faster convergence time.
We evaluate the approach with an outdoor experiment using 4
customized unmanned aircraft systems (UASs).

I. INTRODUCTION

Consensus algorithms are decentralized algorithms that
are used to compute weighted averages of values between
multiple agents. This weighted average has been used as an
estimation strategy [1], collective, multi-agent controller [2],
and clock synchronization scheme [3] amongst other things.
Much of the research in this area focuses on guarantees
about convergence, time to convergence, and the differ-
ences associated with time-triggered and event-triggered
formulations [4]. While consensus algorithms have been
deployed on indoor robots [5] and on unmanned aircraft
systems (UASs) [6], [7], additional research is needed into
the practical aspects needed for deployment. This includes
handling delay, integrating motion with communication, and
careful coordination between the higher- and lower-level
control systems.

In this paper, we propose consensus-based control algo-
rithms that dynamically adjust each agent’s physical position
and communication frequency, which we consider resources,
according to collective consensus performance. Co-regulating
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Fig. 1: Distributed agents apply co-regulated consensus strategies in an
outdoor experiment.

resources also changes the inherent inter-agent communication
delay that arises in real-world communication. While perfor-
mance guarantees that ignore this delay under ideal conditions
can be computed, overlooking delay can have significant
consequences in real-world systems [8]. Communication delay
in a consensus algorithm causes an agent to update its state
based on obsolete states of its neighbors. Our co-regulation
strategy dynamically adjusts the frequency proportional to
the difference in information state. Convergence of states is
further assisted by dynamically changing the physical position
of agents to improve the connectivity of the system. This has
the benefit of achieving reduced times in state convergence.
Co-regulated consensus has many of the same advantages of
event-triggered consensus [9], including minimizing commu-
nication resources, but, in contrast, allows for easier analysis
by maintaining a time-triggered architecture, albeit a time-
varying one. These advantages are primarily realized when
applied and implemented in real-world applications because
the time-triggered architecture allows the use of existing real-
time operating system strategies, guarantees, and robustness
in implementation [10].

To ease the design of co-regulated consensus algo-
rithms and their corresponding implementation across non-
homogeneous vehicles, we develop a tiered architecture that
decouples consensus control from low-level control. Figure 2
provides an overview of the proposed architecture. We prove
both convergence and stability of this tiered architecture.

In our prior work, we provided proofs of convergence
and rates-of-convergence under dynamic communication fre-
quency and agent movements which change connectivity [11].



Fig. 2: Two-tier architecture for consensus implementation alongside
traditional vehicle controller

In this work, we extend our approach and performance guar-
antees to incorporate communication delay and implement
it on a team of small UASs (see Figure 1) for potential use
in surveillance, scientific, monitoring, and other applications.
The key contributions of this work are:
• Theoretical guarantees on the convergence of co-

regulation consensus algorithms under co-regulation of
communication frequency and physical position with
delays;

• A tiered consensus architecture to decouple co-regulated
consensus control from a vehicle’s low-level feedback
control to simplify implementation; and

• Evaluation and demonstration of our approach on a real
UAS testbed with outdoor flights results.

II. RELATED WORK

Consensus for leaderless coordination among information-
exchanging agents provide early examples of distributed
averaging [12], [13]. Each agent’s update in state and
subsequent information exchange between agents results
in further reduction of state value differences to converge
on single state value - consensus. We use a model similar
to the “state update model” in [13], [14]. Update models
that exchange observations on a random variable are known
as information consensus problems [13]. We propose co-
regulating controllers that utilize state information to form
an information consensus problem and achieve an adjustable
level of performance in state convergence while minimizing
resource utilization of a delay-affected, discrete-time system.

Digital communication devices used to implement such
algorithms are inherently discrete [15], suited more to discrete
consensus algorithms to develop regularization strategies [16].
Our work changes the controller rate and communication rate
which makes the distributed agents asynchronous [17] and
variable in communication topology. We consider a connected
communication topology between agents with sufficiently
frequent communications to keep the network connected [13],
[18].

Communication delay is a significant roadblock consensus
algorithms should account for. Work on convergence and
stability properties in continuous time consensus affected
by delay was done using Lyapunov-Krasovskii techniques
through LMI [19], [20], and furthered for second order
systems under delay [21]. The discrete-time system under

delay is can be analyzed using a matrix representation of the
communication topology [22], [17]. However, the discrete-
time algorithm we use dynamically adjusts the duration of
the discrete time step in accordance with state difference [11].
While we have shown this to be effective under ideal
conditions we have not considered communication time delay
- a necessary component for real-world deployment and one
of the objectives of this paper.

Multi copters are a compelling platform for deploying
consensus algorithms due to their rapid maneuverability,
payload capabilities, and application possibilities. Consensus
algorithms proposed in [23], [24] use three multi copters
as a testbed. Research-grade multi copters often communi-
cate through XBee modules1 and use location consensus
waypoints for planning for the agents while a distributed,
low-level controller computes trajectories for each multi
copter to achieve the consensus waypoint. Such strategies
have also been augmented with a decentralized model
predictive controller for flocking of a group of multi copters
in outdoor experimentation [7]. To cleanly implement such
algorithms, research in [7] proposes a two-layer architecture:
a coordination layer to compute consensus values and a flight
control layer for the multi copter navigation. Our work follows
a two-layer architecture to separate consensus computations
from low-level flight control similar to that in [7].

III. BACKGROUND

Graphs are both suitable and highly useful to map a
network of inter-communicating agents. A node in the
graph represents an agent, and an edge between two nodes
represents a communication instance between two agents.
Matrix representation of a such graph can be analyzed to
prove the convergence properties of the consensus algorithm.

A. Graph Theory in Consensus

Let a set of N agents be represented in a N node graph G =
(V, E) with a mapping of the set of nodes V = {v1, v2, .., vN}
to N agents and the set of edges E to agent communications.
Single communication instance between two agents in E is
denoted by εij = (vi, vj). A directed edge in E represents
one way communication [8].

The equivalent adjacency matrix representation of the graph
G is denoted by A = [aij ], where

aij =

{
1, εij ∈ E
0, otherwise.

A weighting factor wij can be assigned to each edge to
denote communication strength or the trustworthiness of states
between two agents i and j.

A communication subgraph is a graph with N nodes and
a set of edges that maps the communications between N
agents at a given time instance. For a N agents system,
let Ḡ = {G1,G2, . . . ,GM} be the finite set of all possible
communication subgraphs.

1https://www.digi.com/xbee



B. Matrix Theory for Consensus

A matrix is known as a non-negative matrix if all the entries
are greater than or equal to zero, L ≥ 0. A nonnegative
matrix becomes a stochastic matrix if raw sum of the non-
negative matrix equals to one [25]. A stochastic matrix L
is known as stochastic indecomposable aperiodic (SIA) if
lim

m→∞
Lm = 1yT [26]. 1 represents a column vector of size

n× 1 with all the entries equal to one.

C. Delayed Discrete Information Consensus

Agents i and j are neighbors at a given time instant if
εij ∈ E . For any given agent i, we use Mi to denote the set
of agent i’s neighbors. We assume each agent shares its state
with itself, hence, the set Mi includes agent i.

We define the information state of the agents as xI =
(xI1, x

I
2, · · · , xIN )T . Agents share xI among themselves and

calculate the common consensus value individually. Let K be
the global discrete clock indexed as K ∈ {1, 2, 3, . . .}. Let
τij be the communication time delay, which is discrete, on a
state transmitted from agent i to agent j, and τii = 0 (i.e., an
agent has instant access to its own state). Assuming digital
communication, we consider communication to be a discrete
event and use the discrete-time consensus algorithm [13]
extended to represent communication delay as in [22]:

xIi [k+1] =
1∑

j∈Mi
wij

∑
j∈Mi

wijx
I
j [k−τij ] i = 1, · · · , N (1)

where k ∈ K, and k − τij represents a discrete time index
prior to the kth time index. Therefore, xIj [k − τij ] is the
information state value of agent j at [k − τij ]

th discrete
time index. Let τmax be the maximum value of all such
communication delays such that for any τij ≤ τmax <∞. If
the communication delay in each agent varies with time, τmax

varies respectively. Large communication delays increase
time to converge thereby reduce the system performance.
Therefore, knowing τij helps with algorithm design but it is
not a necessity.

For a given set of initial conditions xI [0] [1], the system (1)
achieves consensus once

lim
k→∞

∥∥xIi [k]− xIj [k]
∥∥→ 0, i, j = 1, · · · , N. (2)

When edge weights are equal, and time delays are equal or
non-existent, Equation (1) averages the initial state values -
known as the average consensus problem, limk→∞

(
xI [k]

)
=

1
n

∑N
i=1 x

I
i [0] .

IV. CO-REGULATED CONSENSUS WITH DELAY

Here we discuss the derivation of our co-regulation control
strategies for both information, and position consensus.
We prove convergence properties of the controllers under
delay and discuss the impacts of our strategy in improving
performance in state convergence.

A. Information Consensus

We implement the delay-adjusted information consensus
algorithm in Equation (1) with wij = 1 ∀i, j = 1, · · · , N .
Each agent exchanges its information state in a commu-
nication step and subsequently calculates the average of
received information states. We assume that delay, τij , is
primarily dictated by communication delay (τij,comm), and that
nonzero computation time (τi,comp) is significantly smaller
(e.g., τij,comm � τi,comp ∀i, j).

B. Communication Frequency Co-Regulation under Delay

Depending on the implementation, computation of the av-
erage information state value and exchange of states between
agents could account for a large portion of resources available
in size, weight, and power (SWaP) constrained system. This
could be due to inefficient polling for new information,
transmission power settings, or overly conservative sampling
rates. Hence, while computationally simple, a consensus
controller executing at a fixed, high rate may severely limit
available resources that can be allocated to other critical
processes (e.g., machine learning, perception). In contrast, a
low computation and communication rate drastically hinders
holistic multi-agent system performance. In our proposed
co-regulation strategy increased resources are allocated to
computation and communication when there exists a large
difference in information state value between the agents
and reduced resources are allocated when the difference in
information state value diminishes. We make direct use of
our communication frequency controller, xFi , provided in our
previous work [27] but augment our performance guarantees
to account for communication delay. From [27],

uFi [k] =

Pushes comm rate toward xF
i,max︷ ︸︸ ︷

−αF
1

∣∣Σj∈Mi

(
xIi [k]− xIj [k − τij ]

)∣∣
+ αF

2

∣∣xFi [k]− xFi,min

∣∣︸ ︷︷ ︸
Pushes comm rate towards xF

i,min

.
(3)

Communication frequency is modeled as a discrete time
variable with xFi [k] = 1/Ti[k], Where Ti[k] is the time period
between two successive communications of agent i. We allow
Ti[k] to evolve according to the discrete-time equation,

Ti[k + 1] = Ti[k] + xFi [k]uFi [k] (4)

controller by a designed forcing function, uFi . Now we
provide convergence guarantees of the delay affected system
in Equation (1) and Equation (3) by extending the Theorem
4.4 which proves convergence of Equation (1) regulated by
Equation (3) in [27]. Theorem 4.4 does not account for the
delay in the system. We re-write Theorem 4.4 as Lemma 4.1.

Lemma 4.1: Let G be a communication graph with N
nodes, each representing an agent. Let Ḡ = {G1,G2, . . . ,GM}
be the finite set, cardinality M , of all possible communication
subgraphs between N agents. Let each agent’s communication
frequency, xFi [k] = 1/Ti[k], evolve as in Equation (4). That is,
an agent, i, sends a communication of its shared state variable
every Ti[k] time units. The discrete consensus algorithm in



Equation (1) achieves global asymptotic consensus if there
exists a non-overlapping infinite sequence of hyper periods,
denoted as TH [k], where TH [k] = max {Ti[k]}, and the
union of communication subgraphs in Ḡ has a spanning tree
within each TH [k]. Such a condition is met as long as every
agent’s communication rate is above 0 Hz.

Theorem 4.2: Let G be an N -agent communication graph.
Let Ḡ = {G1,G2, . . . ,GM} represents the finite set of all
possible communication subgraphs of the N -agent system.
Each agent, i, shares its state variable at every Ti[k] time
units while Ti[k] evolves according to Equation (4). Let τij
be the communication delay between agent i and j. Then
the delayed discrete consensus algorithm in Equation (1)
achieves global asymptotic consensus if there exists a non-
overlapping infinite sequence of hyper periods where each
hyper period, TH [k] = max {Ti[k] + τij}, and the union of
corresponding communication subgraphs from Ḡ at each hyper
period contains a spanning tree. Zeno behavior is avoided as
long as every agent’s communication frequency is bounded
between xFi,max and xFi,min.

proof: See Appendix I.
Theorem 4.2 proves that bounded communication delay

does not affect state convergence even under our time-varying
controller and communication frequency. However, average
consensus is not guaranteed except when communication
and controller frequency is synchronized and communication
delay is identical for all agents. It is important to note this
exception likely does not hold true for real-world systems, and
hence we cannot guarantee the average consensus value will
be the convergence value. This is a limitation of real-world-
deployed consensus analogous to how noise prohibits true
state estimation in other methods. However, in our experience,
under normal operation, communication frequency and delay
are typically close to ideal conditions and the consensus value
is close to the average.

C. Co-regulated Position Consensus under Delay

Higher connectivity in a multi-agent network typically
results in faster convergence speeds. Here, we move agents
to a common location to improve agent connectivity due to
limitations in the range of their wireless communication de-
vices. In [11], we introduced a consensus controller to change
the altitude of a set of agents to improve connectivity and
consensus performance. In that work the common altitude that
improved connectivity was pre-determined. Here, we replace
xIi , the information state in Equation (1), with agents’ physical
positions, xPi,cons, to dynamically derive the common location.
Communication delay has the unfortunate effect of causing
agents to update their state with outdated position information
leading to leaving to possible error in the consensus position
value. We define variable xPi,cons = [xPix,cons, x

P
iy,cons] to

be the consensus position state along agents latitude and
longitude directions. The position consensus algorithm can
be defined formally as

xPi,cons[k + 1] =
1∑

j∈Mi
wij

∑
j∈Mi

wijx
P
j,cons[k − τij ], (5)

where i = 1, · · · , N and k ∈ {1, 2, 3, . . .} is the discrete
time index. We define the initial value, xPi,cons[0], to be the
initial physical location of agent i.

D. Tiered Architecture

To support our tiered architecture, we introduce a reference
point to decouple the consensus controller from the lower-
level control of the agent. Before discussing the details of
the reference point, we start by defining the dynamics of the
agents. Agents are modeled with second order dynamics,

ẋP1i = xP2i, ẋP2i = uPi . (6)

xP1i, x
P
2i, and uPi are position, velocity, and control input for

agent i respectively. Furthermore,

xP1i =

[
xP1ix
xP1iy

]
xP2i =

[
xP2ix
xP2iy

]
accounting for position and velocity in the x and y directions
(e.g., longitude and latitude).

Connectivity is improved only if the agents move to the
consensus position calculated in Equation (5). Once the agents
achieve information state consensus, improved connectivity
has little advantage and hence agents move back to the lower-
connectivity positioning they were in to resume individual
tasks. To do this, we introduce a reference point for each
agent, which is used as a way-point for an agent’s low-level
controller. We model the reference point as a discrete-time
first order system. A reference point is defined, xP1i,ref =

[xP1ix,ref , x
P
1iy,ref ]T . The change in reference point is given

by the discrete-time equation:

xP1i,ref [k + 1] =

Pushes xP
1i,ref toward xP

i,cons︷ ︸︸ ︷
−βP

1

(
xP1i,ref [k]− xPcons[k]

)
∗Σj∈Mi

∣∣xIi [k]− xIj [k − τij ]
∣∣

−

Pushes xP
1i,ref toward xP

1i[0]︷ ︸︸ ︷
βP
2

(
xP1i,ref [k]− xP1i[0]

)
.

(7)

The first term of Equation 7 pushes the reference point of
each agent towards the consensus position xPi,cons. The term
calculating the difference in information state acts both as a
gain to the control input and a switch to the movement towards
xPi,cons(An agent is moved when there exists a difference in
information states). Once agents converge on information
state it is no longer desirable to move towards the consensus
position and the first term decays while the second term
pushes agents toward their initial position. We now provide
a guarantee of convergence of our co-regulated position
consensus.

Theorem 4.3: Let G be the communication graph for a
multi-agent system with N agents. Assume the agents in
G can at least communicate with one agent in the system
and maintain the connectivity at all the time. This ensures
G contains a spanning tree. Communication time period
between agents and communication frequency are related by
xFi [k] = 1

Ti[k]
, and the communication frequency is changed

as in Equation (4). Let agents’ positions be regulated by



Equation (7). Then the multi-agent system under position
consensus algorithm in Equation (5) achieves a consensus
position if there exists an infinite sequence of hyper periods
TH [k] with TH [k] = max{Ti[k] + τij}, and the connectivity
subgraph at each hyper period contains a spanning tree.

proof: See Appendix II.

V. SIMULATIONS

In this section we analyze and discuss the behavior and
effectiveness of the position consensus algorithm under
various conditions in simulation. But first we start by giving
an overview of our simulation environment.

A. Simulation Setup

We model agents as independent objects in a MATLAB
simulation environment. Agents are free to move horizontally
with a mapping of the world in longitude to the x-axis and
latitude to the y-axis. On a multi-agent system of 6 agents,
we fix the altitude of all agents to 5 m above ground level.
We model agent motion as in Equation (6). We use ode45()
in MATLAB to solve Equation (6). Agents are capable of
communicating their states to other agents at a variable
frequency from 0.1 Hz to 1 Hz. Equation (4) implements
frequency co-regulation with α1 = 1 and α2 = 5. We
initialize each agent with a random information state value,
[−5, 5], and set the sum of states to zero. Initially, agents are
positioned 5.1 meters from each other in a ring configuration
so that they can only communicate with their immediate
neighbor. We set wij to be 1 for every agent. Delay in state
communication in each agent is assumed to be time varying,
and modeled by the function y = 3 +3sin(ik) where i is the
agent index in simulation and k is the discrete time index. We
implement Equation (7) with gains of β1 = 10 and β2 = 15.

We let each simulation run until the agents converge on
the information state and finish their movements by reaching
the initial positions. We use 0.1 to be the desired convergence
value in the information state. We simulate the global clock
at a tick length of 0.1 s.

B. Behavior of the Position Consensus

Figure 3 plots information state convergence, communi-
cation frequency, connectivity of the network, convergence
in consensus position on the x-axis, the reference point for
agents’ movement on the x-axis, and actual positions of agents
on the x-axis. When agents receive information from their
neighbors, they increase communication frequency depending
on the difference in information state error. Similarly, agents
distributively calculate xPcons and xPRef that tracks xPcons. This
causes the agents to move towards xPcons. Being closer to
each other increases system connectivity. Information state
difference vanishes rapidly because of improved connec-
tivity and increased communication frequency. Note that
the delay in agents prevents them from achieving a single
step convergence even when connectivity is at its highest.
When information state difference vanishes, Equation (4) and
Equation (7) reduce communication frequency and move the
reference and physical states towards initial starting positions.

Fig. 3: Top to bottom : Agents’ information state; All agent communication
frequency change; All agent connectivity change; All agent xPcons on x-axis;
All agent xPref on x-axis; All agent xP1 on x-axis.

Fig. 4: Low utilization in bandwidth as a result of variable frequency by
co-regulation technique

Figure 4 plots the savings in communication bandwidth in
using co-regulation method as opposed to using a fixed rate
controller.

Figure 5 plots convergence of reference point xPRef and
physical location xP1 towards the consensus position xPcons.
Initially, asynchronous agents connect at minimum connec-
tivity and minimum frequency of communication. Hence,
the calculation of the consensus position xPcons evolves and
achieves consensus only after subsequent communications.
Asynchronous clocks and nonidentical time delays of the
agents may trigger some agents to act prior to the others.
The result is a zigzag path for the consensus position. The
reference point that tracks the consensus position takes a



Fig. 5: Paths of xPref and xP on x and y axis over the complete simulation
time period are denoted by × and ◦ respectively. Black circles mark the
initial agent positions and arrows point the directions that the agents moved.

non-straight line path towards the converged xPcons.

C. Improved Following of the Reference Point

Asynchronous agents with distinct time delays result in
agents that update states on outdated values of their neighbors.
Hence, xPcons takes a non-ideal zigzag like path towards its
consensus value and clearly seen in Figures 5 and 3. We
propose to mitigate this zigzag behavior by adding a short
pause before allowing agent movement. We pause the physical
movement of agent i for tpi seconds, and let xPi,cons converge
beyond a threshold ε such that when k → ∞, for every
xPi,cons[k]−xPi,cons[k−1] ≤ ε holds true afterwards. However,
an agent can only calculate tpi after a significant number of
time steps. As a solution, we estimate the regression of xPi,cons
locally by recursively fitting a polynomial to xPi,cons[k] at
every time step k. This allows each agent to have an estimate
of time tpi that satisfies xPi,cons[k]−xPi,cons[k− 1] ≤ ε. When
the real world discrete time step k reaches tpi , an agent starts
to move towards xPi,cons.

Note that the pause of tp seconds does not affect informa-
tion state convergence as agents continue to maintain the ini-
tial connectivity and exchange states. However, longer pauses
adversely impact the time to information state convergence.
Figure 6 shows that choosing a large convergence value on
ε makes the agents move immediately; however, the path
may be suboptimal despite fast information state convergence
time is achieved in 29.3 s. In contrast, a small ε value delays
the motion excessively and the system fails to realize the
benefits of improved connectivity as the information state
converged in 4.27 s. Intelligent selection of ε could optimize
the trade-off between delayed convergence and reduced agent
motions - an issue we leave for future research.

We analyze the advantage of regulating both the position
and the communication frequency for multi-agent systems
with 3, 6, and 9 agents. We analyze time to convergence and
distance traveled by an agent in five variants of co-regulation.
We create these variants by regulating agents’ position only,
regulating agents’ communication frequency only, not regu-
lating either agents’ position or agents’ frequency, and adding
delay to agents’ movement as suggested in Subsection V-C.

Fig. 6: Left: xP of 6 agents, information state convergence at 29.3 s, and
agent connectivity plot when ε =∞. Right: xP of 6 agents, information
state convergence at 42.7 s, and agent connectivity plot when ε = 0.1

N No
Regulation

Frequency
Reg. Only

Position
Reg. Only

Position and
Frequency Reg

Initial
Pause

Dist(m) Time(s) Dist(m) Time(s) Dist(m) Time(s) Dist(m) Time(s) Dist(m) Time(s)
3 0 10.1 0 10.1 7.96 10.1 8.54 10.1 5.61 10.1
6 0 52.00 0 42.00 6.48 27.50 7.40 23.07 7.26 25.79
9 0 117.6 0 78.4 6.59 35.1 7.81 24.19 7.52 32.05

TABLE I: Average time to converge and average distance traveled by each
agent in different network sizes.

The simulation set up is identical to the one described in
Subsection V-A. Table I summarizes the simulation results.
It is clear that the fastest convergence times are achieved
when we co-regulate both the communication frequency, agent
position, and when we do not impose any pause to agent
initial movement. However, the cost in this is visible in high
traveling distance compared to position non-pause imposing
method. Similarly, the initial pause does result in reduced
agent travel distances, however, the increase in convergence
time is inevitable.

VI. EXPERIMENTS

To validate our approach, we implemented the proposed
co-regulation algorithms on 4 UASs in an outdoor setting.

A. UAV System Overview

We used three customized quadcopter UASs shown in
Figure 7. The frame of the quadcopter is a DJI4502 type frame
with a 450mm arms span. We selected open-source flight
controller board Pixhawk 43 and connected an external Global
Positioning System (GPS) which aids low-level navigation
of the UAS. Attached to each UAS is an Odroid XU44, a
single board computer that powers on-board processing and
runs Ubuntu Mate operating system. The onboard computer
uses MAVROS installed on top of the Robotic Operating
System (ROS) to handle message passing between the onboard
computer and the Pixhawk flight controller. An XBee S3B
900MHz radio communication module is attached to each

2https://www.dji.com/flame-wheel-arf/feature
3https://docs.px4.io/v1.9.0/en/flight_controller/

pixhawk4.html
4https://wiki.odroid.com/odroid-xu4/odroid-xu4



onboard computer for communication. All radio modules are
set to broadcast to all UASs in range.

Fig. 7: Top view of experimental UAS platform

B. Two-tier Architecture and Consensus Implementation.

The consensus control portion of the two tire architecture
resides in the onboard computer. We use the onboard computer
to connect to the XBee device to receive and transmit the
information state and consensus position state. In addition,
the onboard computer implements algorithms in Equation (1),
Equation (5), and Equation (7). It results in a target way-
point in latitude, longitude, altitude, and yaw. Vehicle control
is handled through the Pixhawk flight controller. The target
way-point is sent to the Pixhawk flight controller through a
serial communication link from the onboard computer. We
use the ROS topic “mavros/setpoint raw/global” to publish
the target way-point to the Pixhawk flight controller. In turn,
Pixhawk flight controller calculates necessary actuator input
commands to the motors such that the UAS is navigated to
the target waypoint.

We set up initial states of the agents to be a random valued
3x3 matrix between 0 and 1. Agents’ xFmax and xFmin are set
to 0.3Hz and 0.1Hz which controls both the computation and
communication frequency. We select gains of 1 and 10 for
αF
1 and αF

2 in Equation (3) and 0.01 and 0.05 for βP
1 and

βP
2 in Equation (7). The 4 agents are initially dispersed in

an area such that each neighbor is guaranteed to stay within
the communication radius of its immediate neighbor.

Figure 8 plots the information state change and the agents’
actual paths xP1 towards the common position xPcons. When
there exists a difference between an agent’s information state
and its neighbors’ information states, Equation (4) increases
the communication frequency to its maximum. Dispersed
agents exchange their positions, and Equation (5) updates
the consensus position xPcons recursively at each execution
cycle defined by their respective xF . The differences in
xPcons and xI cause agents to update the reference position
xPref and move towards the consensus location. Subsequent
communications and increased connectivity, from being in
close proximity to each other, resulting in fast convergence
of the information state value. This causes xPref to change its

position towards the agents’ initial location, and the agents
move back to the starting locations gradually.

Fig. 8: Positions of 4 UASs in GPS coordinates (left) and Information State
convergence (right)

VII. CONCLUSION

This paper analyzes co-regulation consensus strategies un-
der delay and provides a framework for decoupling consensus
from low-level feedback control. Co-regulation strategies
are implemented on a system of 4 UASs and experimental
results presented. This paper provides both theoretical and
implementation advancements towards consensus deployment
in real-world applications. Toward this goal, while theoretical
guarantees abound in consensus research there is relatively
little empirical evidence supporting real-world deployment.
Our primary future objective is to construct a highly reliable
platform and deployment mechanism for repeatable multi-
agent demonstrations of co-regulated consensus. We expect
to carry out an in-detailed study on adjusting controller gains
and evaluating the proposed co-regulation methods with event
triggered techniques as future works.

APPENDIX I
PROOF OF THEOREM 4.2

TH [k] = max {Ti[k] + τij} denotes the longest time for
any agent i’s state to reach an any agent j. Selecting TH [k] to
be the longest time period provides a guarantee that all agents
have broadcasted and received states at least once within
TH [k]. As xFi is time varying, multiple exchanges between
agents can occur during a hyper period, TH [k], indicating
possible Zeno behavior. However, binding xFi to an upper
bound of xFi,max guarantees 0 < TH [k], and, therefore, avoids
and infinite number of agent communication within a TH [k],
or Zeno behavior.

Define Sm to be the equivalent matrix representation of
a communication subgraph in Ḡ where m = 1, . . . ,M . Let
there be q communication instances at the lth hyper period,
the product of such subgraph matrices, Hl, will be, Hl =
S1S2S3 · · ·Sq. From Lemmas 3.1 and 3.2 in [13], the product
of communication subgraph matrices results in a SIA matrix,
and therefore, Hl is a SIA matrix.

Now consider we apply Equation (1) for k discrete time
steps and represent it in terms of communication subgraphs
at each discrete step k: xI [k] = SkSk−1 · · ·S1x

I [0]. As we
bind the communication frequency of each agent between
xFi,min and xFi,max, hyper period TH [k] agrees to the following
inequality: 0 < TH [k] <∞. Therefor, when k →∞, l→∞.



The state propagation can be expressed at each hyper period
Hl ,

lim
k→∞

xI [k] = lim
l→∞

HlHl−1 · · ·H1x
I [0].

From [27], the product of SIA matrices converge to a
vector as k → ∞ as l → ∞, lim

l→∞
HlHl−1 · · ·H1 = 1yT

where y denotes a constant column vector of positive entries
representing the consensus values. Therefore,

lim
k→∞

xI [k] = 1yTxI [0].

APPENDIX II
PROOF OF THEOREM 4.3

This theorem is similar to the theorem on information state
convergence under variable frequency in Theorem 4.2. At
each hyper period, the communication subgraph contains a
spanning tree as we select TH [k] = max{Ti[k] + τij}. Let
Qm be the equivalent matrix representation of a communi-
cation subgraph that represents xPcons, and m = 1, . . . ,M .
Weighted average calculation of xPcons in Equation (5) ensures
Qm is a SIA matrix. Therefore, at each hyper period
l, for q communicating instances, we write the union of
communication subgraphs Hl as, Hl = Q1Q2Q3 · · ·Qq.

From Lemmas 3.1 and 3.2 in [13], Hl is a SIA matrix as it
is a product of SIA matrices. When considering the system for
k discrete time steps, xPcons[k] = QkQk−1 · · ·Q1x

P
cons[0].

Re-writing it in terms of each hyper period l, we get
the following equation, xI [k] = HlHl−1 · · ·H1x

I [0]. As
we bind the communication frequency by a minimum and
maximum, 0 < TH [k] < ∞, when k → ∞, l → ∞.
Therefore,

lim
k→∞

xPcons[k] = lim
l→∞

HlHl−1 · · ·H1x
P
cons[0].

The product of SIA matrices converges to a matrix with
identical rows, 1yT when k → ∞, lim

l→∞
HlHl−1 · · ·H1 =

1yT . Hence,

lim
k→∞

xP
cons[k] = 1yTxP

cons[0].

The necessary condition for convergence, that is to maintain a
spanning tree in connectivity at each hyper period, is satisfied
as long as the agents maintain the connectivity throughout.
The bounded time delay ensures that each agent will receive
a state update within a finite amount of time and spanning
tree property is maintained.
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