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A distributed model structure for representing groups of coupled dynamic agents is pro-
posed, and the least-squares method is used for fitting model parameters based on mea-
sured position data. The difference equation model embodies a minimalist approach, in-
corporating only factors essential to the movement and interaction of physical bodies. The
model combines effects from an agent’s inertia, interactions between agents, and interac-
tions between each agent and its environment. Global positioning system tracking data
were collected in field experiments from a group of 3 cows and a group of 10 cows over the
course of several days using custom-designed, head-mounted sensor boxes. These data
are used with the least-squares method to fit the model to the cow groups. The modeling
technique is shown to capture overall characteristics of the group as well as attributes of
individual group members. Applications to livestock management are described, and the
potential for surveillance, prediction, and control of various kinds of groups of dynamic
agents are suggested. © 2008 Wiley Periodicals, Inc.
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1. INTRODUCTION

We wish to model groups of interacting dynamic
agents, such as flocks, swarms, and herds, using mea-
sured data from those agents. For example, we would
like to use the trajectories of people in a crowd to de-
velop dynamic models that capture the behaviors of
the crowd as a whole. This is a prohibitively com-
plicated problem in general; however, we provide a
practical solution by restricting our attention to a spe-
cial model structure. We embrace a minimalist ap-
proach in that we use only position measurements,
with a minimum of prior environmental information
incorporated into the model. We propose a difference
equation model that is decentralized and nonlinear,
though it is designed to be linear in parameters. The
least-squares method is then used to fit model param-
eters to position data from a group of agents. Such a
model may then be used, for example, to predict fu-
ture states of the group, to determine individual roles
of agents within the group (e.g., leaders vs. follow-
ers), or, ultimately, to control the group.

The most immediate application of these ideas
is for virtual fencing of livestock (Anderson, 2007;
Butler, Corke, Peterson, & Rus, 2006; Wark et al.,
2007), in which physical fences are replaced with
sensor/actuator devices mounted on the animals.
The animals’ positions are monitored, and if they
stray beyond a virtual fence line, the animals are
given cues to return to the desired area. Our mod-
eling techniques will be useful for virtual fencing
in several ways. First, our models lead to verified
behavioral simulations that can be used to test vir-
tual fencing algorithms in a simulation environment
before they are implemented in a costly and time-
consuming field test. Second, our dynamic models
can be used to enhance the animal control algorithm
itself, so that it works in conjunction with the ani-
mals’ natural tendencies. Finally, because our model
is inherently distributed and because our minimal-
ist approach requires few computational resources,
we envision that the model can run online over
the same network of animal-mounted sensor de-
vices that carry out the virtual fencing algorithm.
The distributed model can then be used to predict
where the group is headed and inform the controller
in real time. Simultaneously, the model can be up-
dated to fit the most recent position data collected
from the animals. This simultaneous model learning
and model-based control is in the spirit of adaptive
control.

In addition to livestock management applica-
tions, there are many other uses for learned models
of distributed dynamic systems. In the case of peo-
ple, the ability to model group behavior has numer-
ous applications in surveillance, urban planning, and
crowd control. Also, the models can be used to drive
groups of robots to mimic the behavior of observed
groups. This may be useful in reproducing collabo-
rative behaviors exhibited in natural systems, or in
producing decoy robots to participate with natural
or engineered groups, and even to influence group
behavior (Halloy et al., 2007).

The problem of learning models for groups of in-
teracting dynamic agents lies at the intersection of
two fields of research: modeling of distributed dy-
namical systems and system identification. A vig-
orous body of work is emerging from the controls
and robotics communities focused on analyzing mod-
els of flocks, swarms, and similar distributed dy-
namic systems. This work, however, has not con-
sidered using learning techniques to generate these
models from data. Instead, it concentrates on the
dynamic properties of models, such as stability of
formations (Gazi & Passino, 2003, 2004; Tanner,
Jadbabaie, & Pappas, 2007; Tanner, Pappas, & Kumar,
2004; Zavlanos & Pappas, 2007), asymptotic con-
sensus of agent positions or velocities (Cucker &
Smale, 2007; Jadbabaie, Lin, & Morse, 2003; Olfati-
Saber & Murray, 2004; Wang & Slotine, 2004), or de-
signing local controllers from global specifications
(Belta & Kumar, 2004; Ferraru-Trecate, Buffa, & Gati,
2006). These considerations are elemental in describ-
ing more complex social phenomena, but they are
quite different from the question of learning models
from data, which we address in this work.

Conversely, the rich literature on learning dy-
namic systems from data, often called system identi-
fication, has not yet addressed models of distributed
dynamic systems, such as the ones we consider in this
work. Some related problems have been considered,
however. For example, in Correll and Martinoli (2006)
a system identification technique is used to model
global properties of a swarm of robots over time us-
ing observed data from the robots. These proper-
ties include collision likelihoods of robots and transi-
tion probabilities among robot behaviors. There also
has been considerable activity in learning behavioral
models of individual natural agents. In Oh, Rehg,
Balch, and Dellaert (2005) and Pavlovic, Rehg, and
MacCormick (2001), system identification is carried
out on switching linear systems to learn models of
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the honey bee waggle dance and human hand mo-
tion, respectively, and in Delmotte, Egerstedt, and
Austin (2004) a technique is used to find motion de-
scription language codes from observed ants. These
works, however, do not consider group interactions
but investigate the action of individuals isolated from
their group roles.

It is our intention in this paper to bridge the gap
between these two research communities by apply-
ing system identification techniques to distributed
model structures. In addition to this cross-pollination
of ideas, we also contribute a new technique for mod-
eling general vector fields (i.e., nongradient vector
fields) in a way that is amenable to system identifica-
tion. We also pursue our ideas from theory through
implementation by testing our method with data
from natural agents.

For this purpose, we developed a hardware plat-
form to record position and orientation information
of groups of free-ranging cows. The hardware plat-
form is capable of recording global positioning sys-
tem (GPS) position information and head orientation
and is able to provide sound and electrical stimuli,
though no stimuli were administered during the data
collection for this study. We demonstrate our model
learning technique by fitting it to GPS data collected
from a group of 3 and a group of 10 free-ranging
cows and validate the resulting models by testing
the whiteness of the residual error and by comparing
global statistics of simulations with the actual data.
Previous works have considered animal-mounted
sensor network devices, such as the ZebraNet plat-
form (Juang et al., 2002) and sensor/actuator de-
vices (Anderson, 2007; Butler et al., 2006; Rutter,
Champion, & Penning, 1997; Wark et al., 2007) for au-
tomatic livestock management. Our device has sev-
eral innovations for applying animal control stimuli
and for using communication between devices over a
network; however, we do not describe these innova-
tions in detail in this work. In the context of this work,
the devices were used as a means to collect GPS data
for learning and validating dynamic models.

The remainder of this paper is organized as fol-
lows. The model structure is described in Section 2.
The application of system identification to identify
model parameters is described in Section 3, along
with a review of basic system identification tech-
niques in Section 3.1. Our data collection device and
experimental method are described in Section 4. Re-
sults of the system identification technique are pre-
sented in Section 5 with GPS tracking data from a
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Figure 1. Schematic of the method of system identifica-
tion. The time-correlated (not independent identically dis-
tributed) data and the model structure are combined in an
optimization procedure to get model parameters tuned to
fit the data.

group of 3 cows and a group of 10 cows, and the qual-
ity of the learned models is evaluated in Section 5.3.
Finally, in Section 6 we use a learned model to control
a group of mobile robots to behave like the group of
three cows. Simulation results of the group of robots
are presented. Concluding remarks and directions for
future work are given in Section 7.

2. MODEL DESCRIPTION

We consider a linear-in-parameters model structure
with three naturally distinct parts to describe the mo-
tion of coupled physical agents moving over a plane
surface. First, each agent is given internal dynamics
to enforce the constrains of Newton’s laws. Second,
a force! is applied to each agent from its interaction
with each of the other agents in the group. Third, a
force is applied to each agent as a function of its po-
sition in the environment. All remaining effects are
modeled as a white noise process.

Throughout this section, we refer to free param-
eters as 6, and features, or regressors, are denoted by
¢. It should be understood that the parameters 6 are
left unknown for now. In Section 3 we describe how
position data are used to tune these parameters to fit
the data. A schematic showing the different parts of
the model learning process is shown in Figure 1.

2.1. Individual Agent Dynamics

Given a group of m agents, the proposed model struc-
ture for an individual agent i € {1,...,m} can be

'In this work the term “force” is used in a metaphoric sense. When
we talk of a “force” we are referring to the intention of the agent to
accelerate in a particular way using its own motive mechanisms.
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written in state-space, difference equation form as

10Ar 0O 00
01 0 At 00
xil'+1= xl'r+
00a; O 10
000 01

x Z fii (Pl p3) +&i(pl) +wi | (1)

j=1j#i

Agent i’s state x] = [ef n} u? vf]" consists of its east
position, north position, eastern component of veloc-
ity, and northern component of velocity after the rth
iteration, and its position is given by pf = [¢} nf]”.
The time step At is given by t**! — 7, and we assume
that it is constant for all r. The term «; represents
damping, a; =1 for zero damping and |a;| <1 for
stable systems. The function f;;(p;, p]’.) determines
the coupling force applied by agent j to agent i. The
function g;(p]) represents the force applied by the en-
vironment to the agent at point p;. Finally, w} is a
zero-mean, stationary, Gaussian white noise process
uncorrelated with p; Vj used to model the unpre-
dictable decision-motive processes of agent i. Non-
holonomic constraints that are often present in mo-
bile agents, such as people, cattle, and automobiles,
are neglected in this treatment, though they could be
incorporated with an increase in the complexity of the

Agent-to-Agent Interaction Force
1 ™

Force Coefficient (N)

0 2 4 6 8 10
Separation Distance (m)

(a)

Figure 2.

model structure. Note that the force terms are applied
only to affect changes in velocity in accordance with
Newton’s second law.

2.2. Agent-to-Agent Interaction Force

Dropping the 7 superscripts for clarity, the form of
the agent coupling force f;;(p;, p;) is given by

02i > ni;j
- ) (2)
lp; — pill ) (m —1)

fij(pi, pj) = (91,;,

where n;; = (p; — pi)/llpj — pill is the unit vector
along the line from p; to p; (henceforth, || - || will de-
note the ¢? norm). The factor (m — 1) is included to
normalize the force exerted by one neighbor by the
total number of neighbors.

This is the simplest of a family of force laws
commonly used in computational models of physi-
cal, multibody systems. The important feature of this
family is that an agent is repulsed from its neigh-
bor at small distances and attracted to its neighbor
at large distances. To see this property clearly, ex-
amine the magnitude of force exerted by one neigh-
bor (m —1=1) given by | f;;|| = 61, — 02, /Il p; — pill
and shown in Figure 2(a). Notice that with 6;, > 0
and 6, > 0 the desired characteristic is achieved. In-
deed, as ||p; — pill = 0, || fi;Il = —oo, which is repul-
sive, whileas ||p; — pill — oo, || fijIl = 61, > 0, which
is attractive. Other, similar force laws can be created

Environment-to-Agent Interaction Force

600f - "4

400

MNorth Position (m)

200

2000
East Position (m)

(b)

1800 2200

(a) Magnitude of the agent-to-agent interaction force for 6 = 6, = 1. (b) The vector field representing the force

felt by an agent at each point on the plane shown for an example agent trajectory. The swirling patterns evident in the field

are made possible by a novel parameterization.
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to produce unbounded attraction as ||p; — p;|| = oo
and zero attraction as || p; — p;|l — o0o. We chose this
law for its simplicity. The function can equivalently
be expressed as the gradient of a potential function.

After some manipulation, the sum of f;; over all
neighbors j can be expressed as

D fi= [g;: } Or ®)

J#i
where
¢ — |: (el_ei) (em_ei) —(61—6’1')
f lpr — pill  llpm — pill llp1 — pill?
—(em —ei):| 1
X 5 ,
| pm — pill* ] (m = 1)
b = |: (n1 —n;) (nm —ny) —(n1 —ny)
P =2l pw — pill oy — pill?
_(nm _ni)] 1
X 2 9
| pm — pill* ] (m —1)
0= [91,’1 o by, Oy O, ]T ’

and where the indices j =i are excluded from the
above vectors (because we do not want an agent to
feel a force from itself). This notation will be useful in
what follows.

The agent-to-agent force law with the dynam-
ics described above gives a so-called potential field—
based flocking model, the analytical properties of
which have been treated extensively in the con-
trols and robotics literature (Gazi & Passino, 2003,
2004; Tanner et al., 2004, 2007; Zavlanos & Pappas,
2007). The environment-to-agent force described be-
low makes our model rather different, however, and
the inclusion of the noise term w; makes the model
a random process, which is fundamentally differ-
ent from the deterministic systems treated in those
works.

2.3. Environment-to-Agent Interaction Force

The agent’s preference for certain paths in the en-
vironment is modeled as a nonlinear mapping from
each point on the plane to a force vector felt by the
agent. To this end, two networks of Gaussian basis
functions are used, one for each of two perpendicular
force components.

Journal of Field Robotics DOI 10.1002/rob

In particular, the function g;(p;) can be written
¢g1 (pl)
gi(pi) = Oy, - : . 4)
be,(Pi)

where

1 | pi —J/ik||2)
(pi) = exp| - ————
¢g1k (p ) 27'[0'1-2]( p( 20’,'2]{

is the bivariate Gaussian function and k € {1, ..., n}.
Each Gaussian is centered at y;;, with standard de-
viation oy, and its strength is represented by the un-
known parameters 6,,, for the eastern component and
0y, for the northern component. Gaussian basis func-
tions were chosen for their familiarity, the objective
being to demonstrate the modeling approach with a
minimum of complications. A number of other basis
function types could be used, including wavelets, sig-
moidal functions, and splines.

It is important to note that a vector field param-
eterized in this way is not a potential gradient. A po-
tential gradient field cannot admit circulation around
closed paths.? We introduce a nongradient param-
eterization to enable circulation, as one can imag-
ine agents intending to traverse closed orbits on the
plane. For example, a cow may have a routine of
passing between a water source, a shaded tree, and
a grassy patch in a periodic fashion.

Figure 2(b) shows a plot of an example force field
parameterized in the above way. The arrows show
the forces induced by the field, the heavy dots show
the centers of the Gaussian functions y;;, and the
curve shows the path of an agent over the vector
field. The swirling patterns evident in the vector field
would be impossible if it were a gradient field.

The expression in Eq. (4) can be put into a differ-
ent form to match that of Eq. (3). In particular,

¢ U;
gi(pi) = [ ) ]9 5)

8Vi

ZProof: Let W(p) be a potential function and V(p) = —grad(¥) its
gradient field. Then curl(V) = curl(—grad(¥)) = 0; thus by Green’s
theorem, §, Vds = [ N curl(V)dA = 0, where s is any closed curve
on the plane and A, is the area enclosed by s.
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where

¢gu,- :[¢g1"'¢gn"’0"']a
¢gv,- :["'0"'¢g1 "'¢g,,]’

eg, = [9u,1 o 'eumevn o ‘evm ]T'

This form will become useful in what follows.

To consider the computational complexity of this
model, consider that the number of agent-to-agent in-
teraction terms grows as the square of the number
of agents O(m?) and, in the worst case, the number
of environment-to-agent interaction terms grows as
the product of the time duration and the number of
agents O(Tm). Therefore computing successive itera-
tions of the model, not to mention learning the model
parameters, will become intractable as the size of the
group approaches hundreds or thousands of mem-
bers. However, we can alleviate these difficulties in
a natural way. First, if the area in which the agents
move is bounded, the environment-to-agent interac-
tion terms will approach O(m) as the entire area is
explored by all the agents. Also, for large groups
we could simply add a finite communication radius
around each agent, so that neighbor agents outside
that radius do not produce a force. This would limit
the complexity of agent-to-agent parameters to O (m).
Thus we can modify the model to have an overall
complexity linear in the number of agents. Also, the
model is naturally decentralized, and thus it could
easily be implemented on a network of, say, m pro-
cessors, reducing the computation time to a constant
independent of the size of the group. In this paper we
do not consider such implementation issues, and the
groups of agents we deal with are small enough that
computation speed is not a concern.

3. SYSTEM IDENTIFICATION WITH
LEAST-SQUARES FITTING

We will provide a brief introduction to the field
of system identification. Then we will use a least-
squares method to identify optimal parameters for
our model. We will also discuss recursive methods
for least-squares fitting that can be used to tune pa-
rameters for our model online as data are collected.

301 *

In this section we employ the tools of system identifi-
cation (Ljung, 1999), the basics of which are briefly re-

Method Overview

viewed here as they may be unfamiliar to the reader.
If a stochastic dynamic system is such that its state at
the next time step is determined by its state at the cur-
rent time step and the inputs at the current time step,
a state-space model of its dynamics can be formed as
a difference equation:

xr+1 — F(XT, MT, wr’ ‘L'),

where x is the state, u is the input, w is a zero mean,
stationary, Gaussian white noise process, and  is the
discrete time index. Furthermore, we may formulate
a model structure in which several of the parameters
6 of the model are unknown. If these parameters are
time invariant and occur linearly in the function F,
and if the noise is additive, we can write the model as

=T, ut, 1) + w', (6)

where ¢ is a row vector of functions of the state, in-
put, and time (these are called statistics, regressors,
or features depending on the research field in which
they are used) and 6 is a column vector of the un-
known parameters. Suppose that we have some arbi-
trary value of the parameters of the system 6. Then
we can interpret Eq. (6) as a means of predicting the
expected output at the next time step given the state
x%, inputs u*, and time v measured at the current
time:

7 =B | X7, 0, 1, 0] = o(xF, u’, 1)6, (7)

where the * denotes a predicted value (w® drops out
in the expectation because it is zero mean). Notice
that the predicted output is a function of the param-
eter values £771(0). If we then compare the predicted
value #7t! with the actual value x™*!, we have an
error that gives an indication of how different our
model is from the actual system. We form a cost func-
tion using this error. One common cost function is
constructed from summing over all the squared er-
rors that we have collected from measuring the out-
put of the actual system and comparing it to the pre-
dicted output, J = Y__[|£7() — x||%. We can then use
an analytical optimization method, the least-squares
method, to find the parameters 6§ = 6* that minimize
the cost function J(f). This can be interpreted as
“fitting” the model parameters to the data, and it re-
sults in a model that we would expect to give the best
prediction of outputs given the inputs. This process
is described graphically in Figure 1.

Journal of Field Robotics DOI 10.1002/rob
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System identification shares many similarities
with machine learning; however, because it deals
with dynamic systems, the training data are time cor-
related and are presented in a specific order—they are
not independent identically distributed (IID). This
is a crucial difference between system identification
and most other computational learning problems. Be-
cause of this fact, much of the machine learning in-
tuition does not apply to system identification, espe-
cially with regard to model validation, as described
in more detail in Section 5.3.

3.2. Manipulating the Linear Model

The model structure discussed in Section 2 has the
convenient property that it is linear in its unknown
parameters. For this reason, it can be manipulated
into a form so that its parameters can be fitted using
the system identification technique described above.
In keeping with our minimalist approach, we assume
that only position measurements, p;, t=1,..., N,
are available to perform the fitting. We can eliminate
u; and v; from the dynamics in Eq. (1) to provide
a second-order equation in the position only. Notice
that from Eq. (1) we can write

u
ﬁ“—ﬁ+m[i, ®)

V;

I/IF-H m
[v;“} =a [U} + ) fitE w9
i i j=1,j#i

We can solve Eq. (8) for [u} v/]" and substitute into
the right-hand side of Eq. (9). We then substitute the
result back into the right-hand side of Eq. (8), shift-
ing time indices appropriately, to obtain the desired
expression

D fiteltw

J=1j#i

P =p (Pl =P ak At

We can use the above expression to formulate a
one-step-ahead predictor in the form of Eq. (7).
First, define the combined regressor vectors ¢; =

[(ef ' —ef)/ALgY, 67,1 and ¢f = [(nf™! —n})A1g3,
By and a combined parameter vector
0; =[a; 07 6]1". By taking the expectation condi-

tioned on the positions, substituting Egs. (3) and (5)
for ., fij and g;, respectively, and then making use
of the combined regressor and parameter vectors, we

Journal of Field Robotics DOI 10.1002/rob

get

T
Vi

bu,
P =pit A 6 (10)
L
where p’+2 is the expected value of p; after r 4 2 time
steps, given positions up to v + 1, and w; drops out
in the conditional expectation.

3.3. Batch Method

The so-called least-squares batch method is now
implemented to find the optimal model parameters.
Specifically, we wish to find the parameters 6; to
minimize the mean squared prediction error over all
available time steps. The mean squared prediction

error can be written J; = 1/(N —2) YN (prt? —
P (pIt? — pi?).  Substituting  into J with
Egs. (10) and (8) yields
At?
= Y — @,0)7(Y; — ®,6,), 1
J] N—Z( )" ( ) (11)

where
Y, = [ 2...MN711)~2...UN71]T,
o = (o Tl

and u; and v/ are obtained from Eq. (8). The
least-squares problem is then formulated as 6 =
arg miny, J;(6;). Following the typical procedure for
solving the least-squares problem, we find that

N=2T 1T
R

-1

0; =[] o] @Y. (12)

The right-hand side of Eq. (12) consists entirely of
measured data, and the left-hand side is the vector
that represents the optimal parameters of the model.
We assume that the data are rich enough that the ma-
trix inversion in Eq. (12) is possible. The deep im-
plications of this invertibility are discussed in Ljung
(1999). The myriad merits and deficiencies of least-
squares fitting compared with other learning meth-
ods will not be discussed in this work.

The white noise signal w; can now be estimated
using the resulting residual error in the fitting pro-

cess, so that
T+1 T g%
. u; ¢..,9;
w;p = T+1 o x|’
U,‘ v,ei
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where @7 is our estimate of w;. If the “true” system
dynamics are represented by the fitted model, we ex-
pect to find that @} is zero-mean, stationary, Gaussian
white noise, as this would confirm our initial assump-
tion on the properties of w;. Specifically, for perfect
fitting, E[®; (1)@ (t + 7)] = 8(r) Q;, where §(7) is the
Kronecker delta function. Therefore, the “whiteness”
of W; can be used as an indicator of the goodness of fit
that has been achieved. We use this fact in Section 5.3
to validate our learned models. For simulation pur-
poses, as in Section 6, we would assume that w; is a
white noise process with covariance Q; equal to the
empirical covariance of 7.

In such a way, we learn a cow model for each cow
in a herd using measured tracking data. The optimal
parameters are found and the characteristics of the
random vector i are determined for each cow i =
1,...,m to yield parameters for the entire herd. To
make the entire process more clear, we have codified
it as Algorithm 1.

Algorithm 1 Batch Identification of Group Dynamics

for All agents in the group do
Apply the measured data to (12)
Use 67 in (10)
This defines the model for agent i
end for

3.4.

The least-squares method can also be formulated re-
cursively, so that each new available measurement
becomes integrated into the parameter estimates,
tuning them as time progresses. This method would
be particularly useful for the parameter identification
step in an adaptive control loop.

First, let ¢7 = [¢7 "¢2"]" and yf = [ulv]]". We
wish to tune parameters dynamically according to

Recursive Method

Qir = Qiril + Kir (yzr - 4’;9;71)’ (13)

where

Ki = P [+ o7 P (9)

Pir — P,'T_l_(Pir_l(b,'IT[)\iIZ + ¢;Pit—1¢irT]*1¢irPit—l)/)\’
(15)

where K[ is the parameter gain, P} is the parame-

ter covariance matrix, 1; is a forgetting factor (0 <

Ai £1), and I, is the 2 x 2 identity matrix. This stan-
dard algorithm is stated here without derivation. The
interested reader can find a thorough discussion in
Ljung (1999). The algorithm for this method is given
in Algorithm 2.

Algorithm 2 Recursive Identification of Group Dynamics

for All agents in the group do
Initialize parameters 6; and P; to an arbitrary value
Use P; to calculate K;
end for
loop
for Each agent in the group do
Apply one position to (13) and (15), using K;
Use resulting P; to calculate K; for the next iteration
Use 6 in (10)
This defines the model for agent i for one time step
end for
end loop

Note that the kinds of systems under consid-
eration are likely to have time-varying parameters.
For instance, cows are likely to change their behav-
ior throughout the day in accordance with sunlight,
temperature, their hunger and thirst, etc. For this
reason, we would expect the parameter-following
properties of the recursive algorithm with a forget-
ting factor to be advantageous. The recursive least-
squares algorithm can be used to learn the model
while it is simultaneously being used for prediction
in a control algorithm. This would result in an adap-
tive control algorithm for distributed groups. The re-
sults presented in the following sections use the batch
method. We save a detailed study of online and dis-
tributed learning algorithms for future work.

4, DATA COLLECTION EXPERIMENTS
4.1. Animal Monitoring Hardware

We have developed a small lightweight box (see
Figure 3) for data collection and animal control for
use during our field experiments. The box contains
electronics for recording the GPS location of the ani-
mal as well as other sensor data that we do not use
in this work (a three-axis accelerometer, a three-axis
magnetometer, and a temperature sensor). The box
also contains electronics for networking with other
boxes and for applying sound and electrical stimuli to
the animal, though the stimuli were not applied dur-
ing the data collection experiments described here.
Building on the pioneering work of Butler et al. (2006)
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Figure 3. The sensor box is shown here with lid closed (a) and lid open (b). The box is roughly 21.5 x 12.0 x 5.5 cm and
weighs approximately 1 kg. It is equipped with a GPS receiver, wireless networking features, and a suite of sensing and
actuation capabilities. The lithium-ion batteries and solar panel allow for indefinite operation under normal conditions. It
can also modularly accommodate expansion boards for various other applications.

and Wark et al. (2007) on animal monitoring hard-
ware, we improved the performance of the device by
mounting it on top of the animal’s head, as shown
in Figure 4, instead of packaging it as a collar. We
found that the head-mounted device improved sev-
eral aspects of the device’s performance compared to
the previous collar mounting: (1) the GPS satellites
were more likely to be visible from the top of the
head, (2) solar panels on the box were more likely
to receive direct sun exposure, (3) networking radio
communication was less obstructed by the animal’s
body, (4) the animal was less able to deliberately ro-
tate the box, and (5) the box was prevented from be-

ing dipped in water or mud and was generally better
protected.

Our sensor box is approximately 21.5x 12.0 x
5.5 cm and weighs approximately 1 kg. The processor
is a 32-bit ARM7TDMI CPU (NXP model LPC2148)
with 512 kB of program memory, 40 kB of RAM,
USB, and a 10-bit A/D converter. The device also has
256 kB of FRAM (external nonvolatile memory with
no rewrite limit) and a removable secure digital (SD)
card with 2 GB of storage capacity. Data can be easily
and quickly downloaded to a computer by physically
transferring the SD card or by downloading remotely
via the radios. Two hardware serials are multiplexed

Figure 4. The sensor box is mounted to the head of the cow with a custom-fitted apparatus made of fabric and plastic. The
apparatus is designed to use the cow’s ears to keep the box in an upright position, as shown in this figure.
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for a total of five. The sensors in the box include a GPS
engine, three-axis accelerometer, three-axis magnetic
compass, and ambient air temperature sensor. There
are many general purpose analogue and digital in-
put/output (I/O) lines, so additional sensors can be
included.

The communication system consists of two ra-
dios. First, a 900-MHz radio (Aerocomm AC4790)
with 1-W transmit power is used for long-range, low-
bandwidth communication. This radio has a claimed
32-km range and a claimed 57,600-bits (b)/s transfer
rate. However, we observed a maximum of only 2-km
range and a data transfer rate of only 1,000 b/s. This
is particularly odd as the flat, remote environment
in which the radios were tested should have been
ideal for radio transmission. The cause of the poor
performance of this radio is still unknown. Second,
the box uses a Bluetooth radio with 100-m range and
100-kb/s data rate for short-range, high-bandwidth
communication.

Power is provided by a bank of eight lithium-ion
batteries with a total capacity of 16 W-h. The batteries
are continuously recharged by a solar panel mounted
on the top of the box, allowing the box to run indef-
initely under normal conditions. The batteries have
enough capacity for several days of operation with-
out the solar panels.

Finally, we have a two-tier animal control system
consisting of a set of speakers for applying arbitrary,
differential sound stimuli and a set of electrodes that
enable the application of differential electrical stim-
uli. The animal control system was not used during
the collection of the data described in this paper.

The box’s operating system is a custom-designed
collaborative multitasking architecture. Processes run
as scheduled events that can be scheduled to run at
millisecond intervals with no preemption or real-time
constraints. The software supports arbitrary network
topologies for communication. Users interact with
the system via a serial console or a Java user inter-
face. These can be accessed directly through the serial
port or remotely over either of the radios. This allows
remote reconfiguration of the monitoring devices in
the field. The operating system can be completely re-
programmed using an attached serial cable, remotely
over the radio, or by placing a file on the SD card.

4.2. Experimental Methodology

Data were collected during two trials, the first tak-
ing place from February 2 to 5, 2007, and the sec-

ond from July 9 to 11, 2007, during which time
3 head and 10 head of cows were monitored, re-
spectively, using the sensor boxes described above.
During both trials cows were allowed access to a
466-ha, or 4.66-km?, paddock (named 10B) located
on the U.S. Department of Agriculture-Agricultural
Research Service’s (USDA-ARS) Jornada Experimen-
tal Range (JER) in southern New Mexico (32° 37" N,
106° 45'W), which is approximately 37 km north-
east of the city of Las Cruces at an elevation of ap-
proximately 1,260 m above sea level. The climate
of this arid area has ambient air temperatures that
range from a high of 36°C in June to below 13° C in
January, with 52% of the mean annual precipitation
(230 mm) falling as rain between July and Septem-
ber (Paulsen & Ares, 1962; Wainright, 2006). Grasses
(39%—46%) and forbs (36%-49%) comprise the pre-
dominant vegetation, and woody shrubs compose
14%-19% of the remaining standing crop (Anderson,
Smith, & Hulet, 1985; Hulet, Anderson, Nakamatsu,
Murray, & Pieper, 1982) that grows in a mosaic pat-
tern across this relatively flat landscape composed of
three major landforms (Monger, 2006).

In the first trial, three free-ranging mature beef
cattle of Hereford and Hereford x Brangus genet-
ics, labeled Cows 1-3, were fitted with the sensor
boxes described above. Data were collected over four
days from February 2 to 5, 2007, at a data collection
rate of 1 Hz. In the second trial, 10 free-ranging ma-
ture beef cattle of similar genetics, labeled Cows 1-
10, were fitted with the sensor boxes. Data were col-
lected at 1 Hz over three days from July 9 to 11, 2007.
Cows 1, 2, and 3 correspond to the same three cows
in the first and second trials. The paddock for the
experiments was fenced with the geometry shown
in Figure 5. During these two trials, the animals
received no audio or electric cues from the sensor
boxes.

When they are introduced to a new paddock,
cows commonly trace out the perimeter to familiar-
ize themselves with the extent of their new environ-
ment (Anderson & Urquhart, 1986). They then con-
centrate their activities on certain areas, depending
on vegetation and other factors. During the first trial,
shown in Figure 5(a), the cows had been recently in-
troduced to paddock 10B from another neighboring
paddock (though they had previous experience in
paddock 10B), and their perimeter tracing behavior is
evident in the plot. In the second trial [in Figure 5(b)],
the cows had already been in the paddock for some
time before data were collected.
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Figure 5. The GPS positions of the cows are shown superimposed on satellite images of the paddock in which the data
were collected. (a) Data collected from three cows in the first trial between February 2 and 5, 2007. (b) Data collected from

10 cows in the second trial between July 9 and 11, 2007.

5. MODELING A GROUP OF COWS

The method presented in Section 3 was used to model
the dynamics of a group of 3 cows, as well as a group
of 10 cows. Data collected as described in Section 4
were used for fitting the model parameters and for
evaluating the resulting model. We will first present
modeling results for the 3 cows as it is less compli-
cated to interpret data for a smaller group, and then
we will show results for the 10 cows. The total num-
ber of agent-to-agent interaction forces grows like the
square of the number of agents; hence the difficulty in
efficiently displaying results for large groups. Finally
we discuss the problem of validating the learned
models and propose a statistically justified method
for validation. Results of the validation method are
shown for both the 3- and 10-cow models.

5.1. Three Cows

The dynamics of a cow group are known to be
modal (Schwager, Anderson, Butler, & Rus, 2007), in
the sense that model parameters are approximately
constant over contiguous intervals but can change
rapidly when switching between such intervals, for
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example, when the group transitions from resting to
foraging. We intentionally selected a 52-min interval
of data (from approximately 18:02 hrs to 18:54 hrs on
February 2, 2007) for learning model parameters that
corresponded to a stretch of time when the herd was
apparently in a constant foraging /walking mode. For
each cow, the data used for the least-squares fitting
consisted of 3,100 GPS position entries collected at
1 Hz. The data for all animals were artificially syn-
chronized to a common clock using a standard linear
interpolation. The characteristic time scale of cow dy-
namics is considerably longer than 1 s (that is to say,
cows move little in the span of 1 s); thus such an in-
terpolation is expected to have a negligible effect on
modeling results.

The data were used to find model parameters as
described in Section 3. The panels in Figure 6 show
the agent-to-agent force magnitudes || f;;(pi, p;)l
for the three cows. For each cow, the two curves show
the force imposed by each of the two other cows in
the group. Note that the forces are not necessarily
pairwise symmetric, that is, || f;;|| # || f;: |l in general.
The force curves are useful for analyzing behavioral
traits of the cows. It is well known that groups of
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Figure 6. The agent-to-agent interaction forces for the three cows. Each curve represents the size of the force imposed by
one cow on another as a function of the distance between the cows. A positive value is attractive, and a negative value is

repulsive.

cows have complicated social subgroupings and hier-
archies (Lindberg, 2001). The plots indicate that Cows
1 and 3 had an affinity for one another, while Cow 2
was comparatively not very attractive to, or attracted
by, Cows 1 and 3. We will reexamine the behavior of
Cow 2 below in the context of the 10-cow group.

The environment-to-agent vector fields are
shown in Figure 7 for the three cows. The heavy dots
show the centers of the Gaussian basis functions
ki, the arrows show the direction and magnitude of
the force felt by a cow at each point, and the curve
indicates the position data used for learning. The
Gaussian centers were spaced over an even grid

containing the trajectory of the cow. If the trajectory
did not come within one standard deviation o;; of a
Gaussian function, the Gaussian was dropped from
the network. This primitive pruning algorithm was
used for simplicity; more complex algorithms could
be employed. The Gaussian widths were chosen to
be 2/3 the length of the grid space occupied by the
Gaussian. This width was found to give good perfor-
mance with our data. One could imagine including
the widths as free parameters in the least-squares
cost function (11), but the cost function becomes
nonconvex in this case and is therefore very difficult
to optimize.
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Figure 7. The environment-to-agent force fields for the three cows. The heavy dots indicate the centers of the Gaussian
functions, and the arrows show the forces produced by the learned vector field. The continuous curve marks the actual

cow’s path over the region.
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5.2. Ten Cows

For each cow, data consisted of 4,000 GPS position
entries collected at 1 Hz during the second trial de-
scribed in Section 4.2. As before, care was taken to
use a contiguous stretch of data (from approximately
11:33 hrs to 12:40 hrs on July 9, 2007) during which
the cow group appeared to be in a foraging/walking
mode. Cows 1, 2, and 3 were the same animals as
in the first trial. The data for all animals were artifi-
cially synchronized to a common clock using a stan-
dard linear interpolation as was done for the three-
cow data.

The data were used to find model parameters
as described in Section 3. The panels in Figure 8
show the magnitude of the agent-to-agent force for
the 10 cows. The number of agent-to-agent interac-
tion forces is much higher than for three cows (10 x 9
as opposed to 3 x 2), so the plots are correspond-
ingly more complicated. In particular, the force plot
for each animal shows 10 curves. Each of the nine thin
curves represents the magnitude of force caused by
each of the nine other animals as a function of sepa-
ration distance. The thick curve shows the mean over
all nine force curves. Despite considerable variation
over animals (including some inverted force curves),
the mean force felt by any one animal as a result of its
proximity to all of the others is relatively similar, as
indicated by the mean force curve.

The environment-to-agent vector fields are
shown in Figure 9 for the 10 cows. The heavy dots
show the centers of the Gaussian basis functions y;;,
the arrows show the direction and magnitude of the
force felt by a cow at each point, and the curve shows
the position data used for regression. The Gaussian
centers were spaced and pruned as described for the
three-cow trial.

To demonstrate the potential usefulness of the
learned model to study animal behavior, consider
again the behavior of Cow 2 in the context of the
10-cow group. By comparing the mean force curves
in Figure 8 with the curves in Figure 6, we see that
Cow 2 does not tend to stay as far from the other cows
in the larger group as in the smaller group. It seems,
for example, that Cow 3 stays farther from the other
cows than does Cow 2 in the larger group. The appar-
ent dependence of animal behavior on group size is a
property of interest to the animal behavioral sciences.
Of course, a number of other factors could be respon-
sible for this behavior, including time of year, the ani-
mals’ physiological state, weather conditions, and the
quality and quantity of standing crop. However, by
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analyzing the learned model we have generated an
interesting hypothesis about cow behavior, which can
be used to guide the design of further experiments.

5.3. Model Validation

In terms of signal processing, our learning algorithm
can be seen as taking a time-correlated velocity signal
and producing model parameters and a residual error
signal. If our velocity data are rich in temporal corre-
lation, it is good for modeling. Also, if our learned
model is successful in capturing the relevant corre-
lation of the velocity signal, the residual error sig-
nal will have little temporal correlation. More plainly,
we want our velocity signal not to be white and our
residual error signal to be white. Therefore, we are
interested in testing for “whiteness” in each of these
signals by comparing them against a 90% whiteness
confidence interval.

To be specific, consider some random signal
x(z) generated by a stationary Gaussian white noise
process X(z). Each point on the empirical auto-
covariance function,

1 T
K(r) = ——— > x(t—1)x(0),

is asymptotically normally distributed, with zero
mean and variance equal to K.(0)?/(T —1t) (see
Ljung, 1999; Lemma 9.A1, or Orey, 1958). The 90%
confidence interval is then found from the inverse cu-
mulative normal distribution to have boundaries de-
fined by the curves

Cs(t) = ,/%KX(O)erf_l(Z x .05 — 1),
Cos(1) = ,/%KX(O)erf_l(Z x 95 —1),

meaning the process X(r) would produce a value
K.(t) below Cs(r) with probability .05 and below
Cos(7) with probability .95 for each point 7.

Applying this reasoning to our velocity y;(t) =
[vi(#)u;(#)] and residual error @;(t) signals, we vali-
date the learned model by examining the empirical
autocovariance functions,

1z
Ky (7)) = T+ Zyi(f —n)y()",

-7
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Figure 8. The agent-to-agent interaction forces for the group of 10 cows. Each thin, dashed curve represents the size of the
force imposed by one cow on another as a function of the distance between the cows. The thick, solid curve shows a mean
over all of the individual force curves. A positive value is attractive, whereas a negative value is repulsive.

1 —. )
Ky, () = T_1 Zwi(t — w0,
=1

respectively, where the time of the sample is now ex-
plicitly written as an argument, for example o;(r) =
w;. If the velocity y;(r) and the residual error w;(r)
were generated by a white noise process, we would
expect K,,(r) and Ky, () to fall within their respec-
tive whiteness confidence intervals with probability
.9 at each 7. Again, we want the velocity signal to fail
this test and the residual error signal to pass it.

There are other tests for whiteness, but this is the
simplest one with a rigorous statistical interpretation
(Ljung, 1999). This whiteness test takes the place of
leave-one-out validation, or other similar validation

methods common in machine learning applications.
We cannot use such methods because our data are not
IID, a key assumption in most machine learning al-
gorithms. Indeed, our model is specifically trying to
capture correlation between data points, so to leave
one data point out would obscure precisely the rela-
tionship we want to learn.

Figure 10(a) shows the autocovariance from the
three-cow trial of the eastern component of the ve-
locity for Cow 1, and Figure 10(b) shows the auto-
covariance of the corresponding residual error. No-
tice that there is strong temporal correlation in the
velocity and all points in the plot lie outside the confi-
dence interval; therefore it fails the whiteness test, as
desired. For the residual error autocovariance, there
is apparently little temporal correlation and a large
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Figure 9. The environment-to-agent force fields for the group of 10 cows. Heavy dots indicate the centers of the Gaussian
functions, and the arrows show the force produced by the learned vector field. The continuous curve marks the cow’s actual

path over the region.

majority of the points lie inside the whiteness confi-
dence interval; therefore it passes the whiteness test.
Thus, by this measure, the algorithm has done a good
job of producing a model to describe the cow’s dy-
namics. The plots for the other components of the au-
tocovariance functions and for the other cows in the
three-cow trial are excluded in the interests of space.
Instead, we summarize the results in Table I, which
shows for each cow, and for each of the four com-
ponents of the autocovariance functions Kj,(r) and
K,,(7), the percentage of points within the 90% white-
ness interval. The results show that the velocity sig-
nals for all cows fail the whiteness test (as desired),
whereas the residual error signals can all be consid-
ered nearly white in that nearly 90% of their values
were within the confidence interval.

The whiteness test was also carried out for
10 cows with similar results as summarized in
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Table I. Percentage of points lying within the 90% white-
ness confidence interval for each of the three cows in the
first trial and for each of the four components of the auto-
covariance function. According to this test, the velocity sig-
nal is not white, and the residual error is approximately
white, and so the model fits the data well.

Velocity Residual

Cow Number 1 2 3 1 2 3

East—east 0 0 0 76 81 87
East-north 0 0 5 73 78 83
North—east 21 4 17 81 84 91
North-north 0 0 0 66 68 87

Table II. The results in the table show that all of the
residual errors for the 10-cow model are nearly white.
As for Ky, in this case, all of the points for all of the
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Figure 10. The empirical autocovariance function for the eastern component of the velocity (a) and for the error residual
(b). The dotted lines indicate a 90% whiteness confidence interval, meaning that a stationary, Gaussian, white noise process
would have generated an empirical autocovariance inside the interval with probability .9 at each point. By this metric, the
velocity signal is not white and the residual error signal is “nearly white,” indicating that a good model has been learned
for the data.

components and all of the cows lie outside of the 6. SYNTHETIC CONTROL
whiteness confidence interval; therefore the velocity

; : ) Simulation experiments were carried out with the
is very likely not white for any cow.

model fitted in Section 5.1. We simulated a group of

Simulated Robot Trajectories Actual Cow Trajectories

\ 3000

2500

3000

B

2500

2000 2000

North Position (m)

1500 1500
500 1000 1500 2000 500 1000 1500 2000

East Position (m) East Position (m)
(@) (b)

Figure 11. Trajectories of a team of simulated robots controlled to behave like a group of cows. The robots use dynamic
laws generated from the procedure described in this work. Their trajectories are superimposed over the fence lines of the
paddock where the original cow data were collected, though they have no direct knowledge of fence positions. (b) The
actual cow data over the same time window.
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Figure 12. Bar charts comparing statistics for the actual three-cow data from trial 1 and the simulated robots. (a) The mean
and standard deviations of the distance from one cow to the other two cows in the group. (b) The mean and standard

deviations of the speed of each cow.

Table Il. Percentage of points lying within the 90% white-
ness confidence interval for each of the 10 cows and for
each of the four components of the residual error auto-
covariance function. By this metric, the residual errors for
all cows are approximately white. For the velocity auto-
covariance function (not shown in the table), no point is
within the interval for any cow, and thus the velocity is very
likely not white. By this test, the 10-cow model successfully
fits the data.

Residual

CowNumber 1 2 3 4 5 6 7 8 9 10

East—east 75 85 87 81 69 8 87 79 71 84
East-north 69 82 76 83 60 75 78 77 74 83
North—east 79 80 82 84 61 72 80 80 75 80
North-north 68 75 75 84 62 61 74 73 69 83

three simple mobile robots controlled to have the dy-
namics in (1) with the parameters found in Section 5.1
These equations were iterated forward in time in a
Matlab environment with the robots started from the
same initial positions as the cows. The simulation
procedure is summarized in Algorithm 3
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Algorithm 3 Synthetic Control Algorithm

Execute Algorithm 1 to obtain a set of optimal parameters
for each agent
Set initial conditions for simulated group of robots
loop
for Each robot in the group do
Use the current state of all the robots and 6; obtained
from Algorithm 1.
Apply these to the dynamical equations for agent i (1)
to produce the next robot state
end for
end loop

The trajectories of the robots from a typical
simulation are shown in Figure 11(a) laid over a
schematic showing the fences of the paddock where
the actual cow data were recorded. The trajectories
of the simulation are similar to those of the real cows.
Most importantly, the simulated robots track the
fence lines, as did the real cows. This tendency is cap-
tured solely through the agent-to-environment force
field (described in Section 2.3), as the model has no
direct knowledge of where fence lines may lie.
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Furthermore, statisticcs were gathered for the
simulated robots and compared with those from the
cow data. Figure 12 shows a comparison of the two
sets of statistics. Specifically, the distance between
cows over time and the speed of the cows over time
have similar mean and standard deviations for the
real and simulated data. Thus the model preserves
global properties of the group, as measured by these
statistics.

One should expect the trajectories of the simula-
tion to be qualitatively similar to the actual training
data, but the question of how similar is not a simple
one. The model we have constructed is a random pro-
cess, and two different sets of data generated by the
same random process will almost certainly be differ-
ent. It is also not informative to look at, for exam-
ple, the mean distance between points of the actual
and simulated data, because, again, two signals from
the same random process can generate trajectories ar-
bitrarily far from one another. The appropriate test
for model validation is the whiteness test described
in Section 5.3. We show Figures 11 and 12 only to
indicate that the properties verified with the white-
ness test lead, in practice, to a qualitative match in
performance.

It is also important to point out that comparing
these simulation results to the cow data is not the
same as testing a learned model on training data, a
common pitfall in machine learning applications. In-
deed, the only training data given to the simulation
are the initial positions of the robots. The model re-
cursively generates its own data points, which then
become inputs for successive time steps. This is a
manifestation of the fact that system identification
takes place in a non-IID setting, and so much of
the intuition that applies in typical machine learning
problems is not applicable.

This simulation study suggests that our model
equations can be used to control a group of robots
to exhibit the behavior of the modeled group. In this
way controllers can be automatically synthesized for
robots to mimic groups that have some desirable col-
lective behavior, such as flocking or herding. One
can also imagine introducing artificial members of
a group without changing the group dynamics (i.e.,
without “being noticed”) or for the purpose of mod-
ifying the group dynamics in a nondisruptive way,
for example, to influence collective decision mak-
ing in natural groups, as was done in Halloy et al.
(2007).

7. CONCLUSIONS

In this paper, we presented a method to generate
behavior models of groups of dynamic agents, such
as cow herds, using observations of the agents’ po-
sitions over time. We formulated a physically mo-
tivated difference equation model and used least-
squares system identification to fit the model to data.
We demonstrated the method by learning models for
a group of 3 cows and a group of 10 cows by us-
ing GPS position data. The position data were col-
lected with specially designed sensor boxes fitted to
the heads of free-ranging cows. An important and
surprising contribution of this work is the demonstra-
tion that a minimalist approach to modeling group
interactions using only position data leads to mean-
ingful group dynamic models.

Our approach is minimalist in that no informa-
tion is included in the model about the geometry and
configuration of the environment or about any attrac-
tive (e.g., vegetation) or repulsive (e.g., fences) fea-
tures in the environment. It was shown in Section 6,
however, that our method can be used to infer the lo-
cations of such features, because the robots avoided
a fence obstacle even though they were given no
prior indication of the fence’s existence. An interest-
ing research direction is to investigate the trade-offs
between including additional information about fea-
tures in the environment and the quality of the result-
ing model. More specifically, we can explicitly model
obstacles in the space as a force field with some free
parameters that are learned from the position data.
We can also include dependencies on weather and
other ambient environmental conditions for which
measurements are available. The question is, Does
the performance improvement of the learned model
justify the extra complexity and prior information re-
quired for such a model? Our preliminary studies
with explicit fence models show that this additional
information leads to models that give similar behav-
ior to those without the explicit obstacle features, but
the explicit inclusion of the obstacle gives the ability
to enforce hard position constraints on the agents. We
generally prefer the minimalist approach described in
this paper in that it is amenable to situations in which
no detailed environmental information is available.

An important problem that we hope to address in
the future is capturing the modal changes in the dy-
namics of groups of agents over long time scales. We
collected data at 1 Hz continuously over several days,
but as discussed previously, we expect our model to
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describe the cow group dynamics only over an in-
terval of approximately 1 h, during which time the
group was in a single behavioral mode. In the fu-
ture, we intend to broaden the model class to include
switching state-space models. That is, we will model
both the motion of the group while it is in one mode
and the transitions among modes. With such a model
structure, we expect to be able to capture the behav-
ior of the cow group over extended periods of time
and to be able to model other natural and artificial
groups that exhibit modal properties (e.g., traffic mo-
tion, which is congested during rush hour and less so
at other times). Unfortunately, exact system identifi-
cation is known to be intractable for switching state-
space models (Chang & Athens, 1978). A topic of cur-
rent research in the system identification and learning
communities is to find approximately optimal param-
eters using, e.g., variational approaches (Ghahramani
& Hinton, 2000) or Markov-chain Monte Carlo meth-
ods (Oh et al., 2005). We will investigate these ideas
in the future, as well as other approximate meth-
ods that may be better suited to our problem. We
are also currently exploring other model classes and
learning methods. For example, we expect that the
environment-to-agent interaction force could be well
represented by a kernel-based model with a regular-
ization term included in the least-squares cost func-
tion. Other loss functions, such as the hinge loss (for
support vector machines), may also be of interest,
though the computational difficulties introduced by
the hinge loss seem contrary to our minimalist vision.

Also, our method was evaluated on only two
sizes of animal groups. It will be interesting to vali-
date the model on much larger groups, though this
presents serious technological and logistical chal-
lenges in instrumenting and maintaining a large
number of cows. We are currently preparing for large-
scale field experiments with more animals and in-
corporating control actuation from the sensor boxes.
Eventually we wish to use the stimulus capability of
the sensor box along with the prediction capabilities
of the model to control the location of the cow herd.
Specifically, we plan to investigate how the model
will inform the control system to choose actions con-
sistent with the animals’ natural inclination for ac-
tion.

Our work has provided some insights into de-
veloping a minimalist approach to modeling group
behavior; however, many questions remain to be re-
solved. Learning models of complex natural and arti-
ficial groups is an exercise in balancing trade-offs be-
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tween model fidelity and model complexity. The sys-
tems we are interested in modeling are too sophisti-
cated to characterize their motion in its entirety, but
we have shown in this work that a simple model
structure with a simple learning algorithm can give
enough prediction power to be practically useful for
controlling, simulating, and interacting with groups
of dynamic agents.
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